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Abstract

We study multi-frequency synchronization over U(1) in the dense
(complete-graph) Gaussian noise model. Observations consist of L
independent spiked Wigner matrices Y (k) whose spikes are entrywise
powers x⊙k of a single latent signal x uniformly distributed on the L-th
roots of unity. For a single frequency, the BBP transition implies that
polynomial-time detection is possible only for λ ≥ 1, and for constant
L computational lower bounds based on the low-degree conjecture sug-
gest that additional frequencies do not lower this threshold. We ask
how the computational detection threshold changes when the number
of frequencies L = L(n) diverges.

Our main contribution is a sharp many-frequency law: we give an
explicit polynomial-time frequency-coupled AMP algorithm that de-
tects for λ ≳ 1/

√
L and prove a matching growing-L low-degree lower

bound showing that no low-degree test succeeds for λ ≲ 1/
√
L. This

provides a clean mechanism by which additional channels (‘modalities’)
convert information-theoretic gains into efficient detection, addressing
and sharpening the open question posed in Randomstrasse101 (Entry
4). We also discuss extensions to SO(2) using truncation of irreducible
representations and to other compact groups with one-dimensional
character families, and we indicate where computer-assisted verifica-
tion (for constants and finite-size calibration) may be needed.
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1 Introduction and problem statement

We study a dense synchronization model in which the latent variables are
group elements and the observations come in multiple harmonic “channels.”
Concretely, there are n unknown labels x1, . . . , xn taking values in a cyclic
group, and for each frequency k ∈ {1, . . . , L} we are given a noisy matrix
whose mean contains the rank-one pattern associated to the k-th character of
the group. The defining feature is that these L matrices are not independent
signal instances: they are coupled through a single underlying x, and the
k-th channel contains information about x⊙k. This coupling expresses an
algebraic consistency across frequencies (the group law), and it is precisely
this structure that allows nontrivial algorithmic gains when the number of
frequencies L grows with n.

The single-frequency version of this problem is the familiar spiked Wigner
model. There one observes a Wigner matrix perturbed by a rank-one spike,
and a sharp spectral transition (the BBP transition) occurs at a constant
spike strength: below this value, the top eigenvector is asymptotically un-
informative and even detection is impossible by basic spectral tests; above
it, principal component analysis succeeds. From the standpoint of average-
case complexity, the single-frequency spiked Wigner model has also served
as a canonical benchmark where simple algorithms achieve the conjectured
computational threshold. In our setting, however, a naive reduction to the
single-frequency case by applying PCA separately to each k is suboptimal
when L → ∞: each channel remains individually weak, but collectively the
channels contain increasing aggregate information about the presence of a
planted signal.

This leads to the main question: how does the computational detection
threshold scale as the number of frequencies L increases? At an information-
theoretic level one expects that additional channels should help, but it is not
automatic that polynomial-time methods can exploit the help at the same
rate. Indeed, in many planted problems the information-theoretic threshold
and the best known polynomial-time threshold separate, and understanding
whether a gap exists is typically delicate. Here we isolate a regime in which
L = L(n) → ∞ but remains at most polynomially growing in n, and we
ask for the smallest λ = λn such that there exists a polynomial-time test
distinguishing the null model from the planted one with vanishing error.

Our emphasis on detection rather than full recovery is intentional. The
detection task asks only whether the data contain a nonzero spike, not to re-
construct x. In spiked random matrix models, detection is often the simpler
goal and admits a clean characterization in terms of likelihood ratios, conti-
guity, and low-degree polynomials. Moreover, detection is the natural first
step for articulating computational-statistical tradeoffs: if detection cannot
be done efficiently, then certainly recovery cannot; conversely, when detec-
tion can be done at a certain scaling, one can ask whether the same scaling
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supports any nontrivial correlation with x. In the present multi-frequency
synchronization problem, we show that the algebraic coupling across fre-
quencies already yields a sharp improvement at the detection level, and our
algorithms and lower bounds match at the scale of interest.

At a heuristic level, the gain from multiple frequencies can be summarized
in a single sentence: each frequency contributes a small amount of evidence,
and the evidence adds. More precisely, the weak-signal expansion of the
log-likelihood ratio suggests that the relevant effective signal strength is of
the form λ2 times the number of independent channels. Because the L
observation matrices have independent Wigner noises while sharing the same
latent x, one expects contributions from distinct k’s to accumulate, leading
to an instability criterion resembling

(effective SNR) ≈ λ2L.

When λ2L ≫ 1, an infinitesimal bias toward the true signal direction should
be amplified by an iterative method; when λ2L ≪ 1, the planted and null
distributions should be close in total variation, at least as perceived by any
procedure that only probes low-order correlations of the data. The main
point of our work is to make this picture precise in a computationally mean-
ingful sense.

The algorithmic challenge is that the information is not simply present
as a single rank-one perturbation of a single matrix. Instead, the planted
component in frequency k is aligned with x⊙k, and these vectors are related
nonlinearly across k. A method that ignores this relation (for instance,
running PCA independently on each Y (k) and then attempting to aggregate
decisions) is forced to operate at the per-channel BBP scale and does not
improve with L. To benefit from multiple frequencies, we need an algorithm
that couples the channels during inference and enforces that the inferred k-
th harmonic estimates are consistent with a single underlying group label at
each node.

We therefore consider a frequency-coupled approximate message passing
(FC-AMP) procedure. Conceptually, FC-AMP maintains for each node i
a soft estimate of its group label (a distribution on ZL, or equivalently a
set of Fourier coefficients), and iteratively updates these estimates using all
observed matrices {Y (k)}Lk=1. The update has two essential components: a
linear aggregation step that resembles multiplying by Y (k) in each channel,
and a nonlinear “coupling” step that maps the collection of per-frequency
messages back to a coherent belief over a single group element. This cou-
pling step is the mechanism by which the algorithm converts weak harmonic
evidence at many frequencies into a coherent global signal.

From the standpoint of analysis, AMP-type algorithms are attractive be-
cause they admit a tractable asymptotic description via state evolution. In
the present model, despite the multi-frequency structure, the state evolution
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reduces to tracking a small number of order parameters that measure corre-
lation with the planted signal. The resulting recursion has an uninformative
fixed point corresponding to zero overlap with x. We show that this fixed
point undergoes a linear instability precisely when λ2L exceeds a constant,
and that in this regime FC-AMP amplifies a vanishingly small random seed
into a macroscopic correlation. Extracting from the iterates an appropriate
scalar statistic then yields a polynomial-time detection test. The resulting
algorithmic threshold scales like 1/

√
L, exhibiting a clean quantitative “many

modalities” phenomenon.
On the lower bound side, we adopt the low-degree polynomial method

as a proxy for polynomial-time computation in average-case problems. The
guiding principle is that for many planted models with Gaussian noise, any
polynomial-time algorithm can be simulated (in an appropriate sense) by a
polynomial of modest degree in the input, and thus failure of all low-degree
polynomials is strong evidence for computational hardness. Technically, one
studies the likelihood ratio dPH1/dPH0 , expands it in an orthogonal poly-
nomial basis under H0 (Hermite polynomials for Gaussian variables), and
controls the L2(H0) norm contributed by chaoses up to degree d. If these
low-degree components have vanishing norm, then any polynomial of degree
at most d has vanishing advantage for distinguishing H0 and H1.

The multi-frequency setting introduces a genuine new aspect: L is no
longer constant, and we must control how the relevant norms and combinato-
rial factors scale with L. When L grows, a fixed-degree truncation may miss
important cancellations or amplifications across frequencies; conversely, a
crude union bound over channels can introduce spurious L-dependent losses.
The correct calculation shows that, at low degree, the signal contributions
from different frequencies add in a way that depends on λ2L. In particular,
when λ2L → 0, every polynomial of degree o(L) has vanishing distinguishing
advantage. This matches the instability criterion from the FC-AMP state
evolution and yields conditional tightness (under the standard low-degree
conjecture) of the computational threshold at the scale λ ≍ 1/

√
L.

We stress that this scaling is not a generic consequence of having L
independent samples; it relies on the specific algebraic coupling induced by
the group characters. The k-th spike vector is not an independent latent
direction but a deterministic transform of x, and FC-AMP is designed to
exploit exactly this constraint. This also explains why the conclusion is
robust under natural variations, such as replacing the discrete cyclic prior
by an SO(2) phase model and viewing the first L frequencies as a Fourier
truncation: the relevant quantity is the total Fisher information accumulated
across harmonics, which scales linearly in L under mild regularity conditions.

In the next section we give the precise model and notation, fix the Wigner
conventions (real versus complex), and state the detection criterion and
growth regime for L = L(n). All subsequent arguments—state evolution
for FC-AMP and the growing-L low-degree bounds—are formulated within
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that framework.

2 Model and notation

Cyclic prior and harmonics. Fix an integer L = L(n) ≥ 2 and let
ω := exp(2πi/L) denote a primitive L-th root of unity. Our latent signal is
a vector

x = (x1, . . . , xn) ∈ Xn,L := {ω0, ω1, . . . , ωL−1}n,
with i.i.d. entries xi ∼ Unif({ω0, . . . , ωL−1}). Equivalently, we may write
xi = ωσi for i.i.d. σi ∼ Unif(ZL). For each integer k, we denote by

x⊙k := (xk1, . . . , x
k
n) ∈ Cn

the entrywise k-th power of x. The vectors {x⊙k} are the harmonic (char-
acter) transforms of the same underlying labels; in particular, they are not
independent spikes across k, but satisfy the deterministic coupling relations

x⊙(k+ℓ) = x⊙k ⊙ x⊙ℓ, (x⊙k)⊙ℓ = x⊙(kℓ),

together with the periodicity x⊙(k+L) = x⊙k. This algebraic consistency is
the only way in which channels interact: conditional on x, the observation
noises across different k are independent.

We will index frequencies by k ∈ {1, . . . , L} for notational uniformity.
Since the character k ≡ 0 (mod L) is trivial (and would yield a known rank-
one direction), one may equivalently take k ∈ {1, . . . , L − 1} and relabel;
all statements below concern the nontrivial harmonics and are unaffected by
this harmless convention.

Observation model. For each frequency k ∈ {1, . . . , L}, we observe an
n× n Hermitian matrix

Y (k) =
λ

n
x⊙k(x⊙k)∗ +

1√
n
W (k) ∈ Herm(n), (1)

where λ = λn ≥ 0 is the signal-to-noise parameter and W (1), . . . ,W (L)

are independent Wigner matrices (either all real-symmetric or all complex-
Hermitian, fixed once and for all). The overall observation is the collection

Y := {Y (k)}Lk=1 ∈ Yn,L :=
L∏

k=1

Herm(n).

The scaling in (1) is chosen so that each individual channel is a standard
spiked Wigner instance: the noise term W (k)/

√
n has O(1) operator norm,

while the spike term (λ/n)x⊙k(x⊙k)∗ has leading eigenvalue λ with corre-
sponding eigenvector proportional to x⊙k. In particular, if one were to ignore
all other channels and run a single-frequency spectral method on Y (k), the
relevant scale is the usual constant-order BBP transition.
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Wigner conventions (GOE/GUE) and independence. We consider
two standard noise ensembles.
Complex case (GUE-type). For i < j, the off-diagonal entries satisfy
W

(k)
ij ∼ NC(0, 1), meaning W

(k)
ij = A+ iB with A,B

i.i.d.∼ N (0, 1/2), and we

set W (k)
ji = W

(k)
ij . The diagonal is set to 0 (this choice simplifies bookkeeping

and does not change the asymptotics at the scales of interest).

Real case (GOE-type). For i < j, we take W
(k)
ij ∼ N (0, 1), set W

(k)
ji =

W
(k)
ij , and again set the diagonal to 0.

In either case, the family {W (k)}Lk=1 is independent across k, and all
randomness in the planted model H1 comes from the latent x together with
these independent noise matrices. We write ⟨u, v⟩ := u∗v for the standard
inner product on Cn and ∥ · ∥op for the operator norm.

Null and planted distributions. We formalize (1) as a hypothesis test-
ing problem. Under the null,

H0 : λ = 0, Y (k) =
1√
n
W (k) independently for k = 1, . . . , L.

Under the planted alternative,

H1 : λ = λn > 0, Y (k) =
λ

n
x⊙k(x⊙k)∗ +

1√
n
W (k),

where x ∼ Unif(Xn,L) is independent of the noises. We denote the induced
laws on Y ∈ Yn,L by PH0 and PH1 . When convenient, we also use the
conditional planted law PH1( · |x), under which the Y (k) are independent
across k with means (λ/n)x⊙k(x⊙k)∗.

Two symmetries are worth recording explicitly. First, the prior is invari-
ant under relabeling x 7→ ωax (global shift), and the likelihood depends on
x only through the rank-one projectors x⊙k(x⊙k)∗, so any recovery notion
must be defined modulo this global phase; for detection, this invariance sim-
ply implies that there is no preferred direction under H1 unless λ is large
enough to break symmetry through the data. Second, for any fixed k, the
vector x⊙k is itself i.i.d. uniform on {ω0, . . . , ωL−1}n whenever gcd(k, L) = 1,
but different k’s remain coupled because they are functions of the same x.

Detection criteria. A (possibly randomized) test is a measurable map
A : Yn,L → {0, 1}, where we interpret A(Y ) = 1 as deciding H1. We say
that A achieves vanishing error if

PH0 [A(Y ) = 1] + PH1 [A(Y ) = 0] −→ 0 as n → ∞.

Equivalently, the total variation distance satisfies ∥PH1 −PH0∥TV → 1. Con-
versely, if ∥PH1 − PH0∥TV → 0, then no test (regardless of computational
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cost) can detect with success probability bounded away from 1/2. Our focus
will be on the intermediate regime where the two measures are information-
theoretically distinguishable, but efficient detection may or may not be pos-
sible.

When discussing computational constraints, we will consider explicit
polynomial-time algorithms A, as well as the standard low-degree proxy:
for a polynomial p = p(Y ) in the real and imaginary parts of the entries of
{Y (k)}, its distinguishing advantage is

Adv(p) :=

∣∣EH1 [p]− EH0 [p]
∣∣√

VarH0(p)
,

which controls the performance of the associated (appropriately normalized)
test statistic via Chebyshev-type arguments.

Asymptotic regime for L = L(n) and signal strength λ = λn. We
study the high-dimensional limit n → ∞, with the number of frequencies
L = L(n) → ∞ subject to a mild growth constraint

L ≤ nc for some fixed c ∈ (0, 1).

This regime is broad enough to encompass the “many-frequency” phenomenon
(where λ may tend to 0), while ensuring that polynomial-time procedures
that process all L dense n × n matrices remain meaningful and that the
constants in our concentration bounds can be controlled uniformly in L. We
emphasize that λ is allowed to depend on n and L; the central scaling studied
in the sequel is λ ≍ L−1/2, which tends to 0 precisely when L → ∞.

The next section provides a warm-up that justifies why treating each
channel Y (k) in isolation is insufficient in this regime: even though the ag-
gregate information across frequencies grows with L, naive spectral methods
are pinned to the per-channel constant-order transition. This motivates the
need for an explicitly frequency-coupled procedure that enforces harmonic
consistency across k and thereby converts many individually subcritical ob-
servations into a detectable global signal.

3 Warm-up: why uncoupled spectral methods do
not exploit many frequencies

We now isolate a basic obstruction: if we process each matrix Y (k) indepen-
dently (or combine them by a fixed linear rule that does not use the algebraic
relations among harmonics), then we do not obtain detection below the usual
single-channel BBP scale λ ≈ 1. In contrast, the target scaling λ ≍ L−1/2

requires a procedure that aligns the weak evidence spread across frequencies
by enforcing consistency of the underlying group labels.
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Single-frequency PCA remains pinned at λ ≈ 1. Fix k. Conditional
on x, the matrix Y (k) is exactly a rank-one spiked Wigner model with spike
vector v(k) := x⊙k/∥x⊙k∥ = x⊙k/

√
n. It is therefore natural to consider the

top eigenvalue/eigenvector of Y (k) as a detection statistic.
The relevant fact is that, for each fixed k, the spectral behavior depends

on λ at constant order: under H0, ∥Y (k)∥op = 2+ oP(1), while under H1 the
top eigenvalue separates from 2 only when λ > 1, and the top eigenvector has
asymptotically nontrivial overlap with v(k) only in this supercritical regime.
In particular, if λ < 1 is bounded away from 1, then any statistic depending
on a single Y (k) through a constant number of its extremal eigenvalues cannot
distinguish H1 from H0 with vanishing error.

This already suggests the issue in the many-frequency regime: when
λ ≍ L−1/2 → 0, every channel is individually far below its BBP transition,
so any method that “runs PCA on each frequency” and then aggregates
decisions cannot improve on chance.

Taking the best frequency does not help. One might hope that, even
if each channel is subcritical, the maximum over k of a spectral statistic
could become informative as L → ∞. This does not occur in our regime
L ≤ nc with c < 1. Indeed, under H0, the collection {∥Y (k)∥op}Lk=1 consists
of L i.i.d. copies of the GOE/GUE spectral norm at scale n, and standard
tail bounds for the top eigenvalue imply

max
1≤k≤L

∥Y (k)∥op = 2 + oP(1),

because L is only subexponential in n (in fact polynomial). Under H1 with
λ < 1, each ∥Y (k)∥op still concentrates at 2 up to o(1), hence the maximum
has the same limit. The same statement holds if one uses, say, the top few
eigenvalues or any other statistic whose null fluctuations are governed by
Tracy–Widom tails: with L ≤ nc, the union bound does not create a new
separation scale.

Naive linear pooling across k fails because the spikes do not align.
A second natural idea is to linearly combine the observed matrices, e.g.

Y :=
L∑

k=1

akY
(k) for some deterministic weights ak,

and then run a spectral test on Y . Since the noise matrices W (k) are in-
dependent, the noise in Y is again Wigner with variance proportional to∑

k |ak|2, so ∥Y − E[Y | x]∥op is typically of order
√∑

k |ak|2.
The crucial point is that the signal part

E[Y | x] = λ

n

L∑
k=1

ak x
⊙k(x⊙k)∗
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does not accumulate into a single stronger rank-one spike. The vectors
{x⊙k}Lk=1 are coupled through x, but they are nearly orthogonal as n → ∞:
for k ̸≡ ℓ (mod L),

1

n
⟨x⊙k, x⊙ℓ⟩ = 1

n

n∑
i=1

xk−ℓ
i ,

which has mean 0 and variance 1/n. A union bound over all pairs (k, ℓ)
shows that, with probability 1− o(1),

max
k ̸=ℓ

∣∣∣ 1
n
⟨x⊙k, x⊙ℓ⟩

∣∣∣ = o(1),

uniformly for L ≤ nc. Equivalently, the L× L Gram matrix G with entries
Gkℓ :=

1
n⟨x

⊙k, x⊙ℓ⟩ satisfies G = IL + o(1) in operator norm whp. Writing
X := [x⊙1 · · · x⊙L] ∈ Cn×L, we have X∗X = nG ≈ nIL, hence XX∗ has L
nonzero eigenvalues all ≈ n. In particular, for the unweighted sum (ak ≡ 1),

λ

n

L∑
k=1

x⊙k(x⊙k)∗ =
λ

n
XX∗

has top eigenvalue λ(1 + o(1)), not λL. Thus linear pooling cannot turn L
subcritical spikes into one supercritical spike; it produces (approximately) a
rank-L perturbation whose nonzero eigenvalues remain at scale λ.

Meanwhile the pooled noise grows: if Y =
∑

k Y
(k), then Y has noise part

(1/
√
n)

∑
k W

(k), whose operator norm is ≍
√
L. Therefore the most naive

pooling actually worsens the spectral signal-to-noise ratio. More generally,
any fixed weights {ak} trade off signal size ≲ λmaxk |ak| against noise size
≍

√∑
k |ak|2, and the best such tradeoff does not yield a gain of order

√
L

in the detection threshold.

What “coupling across frequencies” must accomplish. The preced-
ing failures are not artifacts of a particular statistic; they are symptoms of a
structural limitation: any method that treats {x⊙k} as unrelated directions
cannot add their evidence constructively. To see what is missing, we rewrite
the entrywise observation as

Y
(k)
ij =

λ

n
(xixj)

k +
1√
n
W

(k)
ij , i ̸= j.

For a fixed pair (i, j), the L-vector
(
Y

(1)
ij , . . . , Y

(L)
ij

)
is a noisy collection of

all nontrivial characters of the group element gij := xixj ∈ {ω0, . . . , ωL−1}.
In other words, each edge (i, j) carries L noisy Fourier measurements of the
same latent difference label gij . If we could reliably infer gij from these
harmonics, we would reduce to a (dense) group synchronization problem on
ZL.
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The key is that the information across k is additive at the level of like-
lihoods (or Fisher information): since {W (k)} are independent, the log-
likelihood ratio for a hypothesized gij is a sum over frequencies k. Any
algorithm hoping to benefit from large L must therefore (i) aggregate in-
formation over k for each interaction between nodes, and simultaneously
(ii) enforce global consistency across nodes, namely that gij = xixj factors
through node labels.

Linear spectral pooling does neither: it aggregates across k in a way that
destroys the dependence on gij , and it never represents or enforces the group
constraint gijgjk = gik.

A heuristic linearization yielding the gain λ2L. We record a standard
(but instructive) back-of-the-envelope calculation indicating why a coupled
message passing scheme should transition at λ2L ≈ 1. Suppose that, at some
iteration, we have node-wise “soft estimates” x̂j ∈ C with a small correla-
tion E[x̂jxj ] ≈ m (the precise meaning of x̂j will be algorithm-dependent).
Consider forming, for each i and each frequency k, the linear aggregate

h
(k)
i :=

∑
j ̸=i

Y
(k)
ij x̂ k

j .

Under H1, expanding Y
(k)
ij and taking conditional expectations suggests

E
[
h
(k)
i | x

]
≈

∑
j ̸=i

λ

n
xki x

k
j E[x̂

k
j | x] ≈ λmxki ,

since the sum over j contributes a factor n that cancels the 1/n scaling.
Meanwhile, the noise term

∑
j ̸=i(1/

√
n)W

(k)
ij x̂ k

j has typical size of order 1

(by a central limit heuristic), so each h
(k)
i is a noisy observation of xki with

signal amplitude ≈ λm.
If we had only one frequency, this would reproduce the usual λ > 1

phenomenon: the informative component grows only if λ exceeds a constant.
However, in the coupled setting we do not keep k separate. Rather, we
should combine the fields {h(k)i }Lk=1 to update a belief over the single label
xi ∈ {ω0, . . . , ωL−1}. Since the noises across k are independent, the effective
signal-to-noise ratio in this combined belief update scales like

√
L times that

of a single channel, leading to an amplification factor on the order of λ
√
L.

In particular, the uninformative fixed point should become unstable when
λ
√
L > 1, i.e. when λ2L > 1, which is exactly the scaling realized by the

state evolution in the next section.

Takeaway. The warm-up can be summarized as follows. Below λ = 1,
each Y (k) is individually spectrally indistinguishable from noise, and neither
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maximizing over k nor any fixed linear pooling
∑

k akY
(k) can recover the√

L gain suggested by independence across frequencies. To reach λ ≍ L−1/2,
we require a nonlinear frequency-coupled procedure that represents beliefs
on ZL (or equivalently Fourier coefficients across harmonics) and enforces
harmonic consistency so that evidence from all k contributes to a single
latent label per node. This is precisely the role of the frequency-coupled
AMP iteration developed next.

4 Frequency-coupled AMP: an explicit iteration on
ZL

We now describe a concrete polynomial-time procedure that couples the
frequencies by maintaining, at each node, a belief over the single latent
label in ZL. The guiding principle is that although {Y (k)}Lk=1 appear as L
separate spiked Wigner matrices, they are not L independent latent vectors;
rather, they are harmonics of a common x, and any successful algorithm
must enforce the constraint that these harmonics arise from a single group
element per node.

Beliefs and Fourier moments. We parameterize each xi ∈ {ω0, . . . , ωL−1}
by an integer label ℓi ∈ ZL with xi = ωℓi . FC-AMP maintains node-wise
marginals

πi ∈ ∆(ZL), πi(ℓ) ≈ P(xi = ωℓ | {Y (k)}),

together with their Fourier moments

m
(k)
i :=

∑
ℓ∈ZL

πi(ℓ)ω
kℓ ≈ E[xki | {Y (k)}].

The moments {m(k)
i }Lk=1 are the natural objects that interact linearly with

the observations, because the rank-one spike in channel k depends on x⊙k.

From exact BP to a dense-limit approximation. On a complete
graph, the exact Bayes posterior factorizes over edges: for i ̸= j, the col-
lection {Y (k)

ij }Lk=1 depends on the single difference label gij = xixj = ωℓi−ℓj .
Formally, the edge likelihood is (up to constants)

L∏
k=1

exp

(
−n

2

∣∣∣Y (k)
ij − λ

n
gkij

∣∣∣2) ,

so the log-likelihood contribution of an hypothesized g ∈ ZL is additive
over k, as anticipated in the warm-up. Exact belief propagation would pass
messages µj→i ∈ ∆(ZL) and update πi by multiplying incoming edge like-
lihoods integrated against µj→i. In our dense model, each node has n − 1
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neighbors and individual edge contributions are weak (1/
√
n-scale), so the

standard AMP philosophy applies: (i) linearize the log-likelihood around
an uninformative point, (ii) approximate sums of weakly dependent terms
by Gaussians, and (iii) correct for the leading-order correlations created by
reuse of the data via an Onsager term.

The outcome is an iterative scheme that alternates a linear aggregation
step over j (separately for each harmonic k) with a nonlinear Bayes denoising
step that couples all k back into a single distribution πi on ZL.

Explicit FC-AMP iteration (dense, fully observed). We present one
convenient formulation, which we will later analyze via state evolution. Let
{m(k),t

i } denote the moment estimates at iteration t, initialized from a nearly
uninformative state with a vanishing random bias (cf. Lemma ??, stated
later). For each k ∈ {1, . . . , L} define the vector m(k),t ∈ Cn with entries
m

(k),t
i .
Linear step (matched filtering per harmonic). For each k we compute an

AMP field
h(k),t = Y (k)m(k),t − b

(k)
t m(k),t−1, (2)

where b
(k)
t is an Onsager coefficient (typically scalar in our homogeneous

setting) chosen to cancel the leading correlation between Y (k) and the current
iterate. Concretely, b(k)t is expressed in terms of an average Jacobian of the
denoiser in the next step; we do not need its closed form here, only that
it can be computed from the iterates in O(nL) time and that it yields the
usual AMP decoupling in the large-n limit.

Nonlinear step (approximate Bayes update on ZL). For each node i, we
gather the harmonic fields {h(k),ti }Lk=1 and form an updated belief πt+1

i by

πt+1
i (ℓ) ∝ exp

( L∑
k=1

ℜ
(
h
(k),t
i ω−kℓ

))
, ℓ ∈ ZL, (3)

with normalization
∑

ℓ π
t+1
i (ℓ) = 1. Equation (3) is precisely the Bayes rule

for a model in which {h(k),ti }k are conditionally independent noisy observa-
tions of {xki }k with approximately Gaussian noise; the additive form in k is
the mechanism by which FC-AMP accumulates evidence across frequencies.

Finally, we map πt+1
i back to its Fourier moments, which will be used in

the next linear step:

m
(k),t+1
i =

∑
ℓ∈ZL

πt+1
i (ℓ)ωkℓ, k = 1, . . . , L. (4)

The update (3)–(4) is the frequency coupling : although the linear aggregation
(2) treats each k separately, the denoiser takes the collection of all harmonics
and returns a single belief on the underlying group element.
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Remarks on the role of the cyclic structure. The particular form
ℜ(h(k)i ω−kℓ) reflects that ω−kℓ is the k-th character evaluated at label ℓ, and
thus (3) is a log-linear model in the Fourier basis. This is exactly what is
unavailable to uncoupled spectral methods: the k-dependence is not averaged
away, but rather reinterpreted as coherent information about the same latent
ℓi.

In practice, one may drop redundant frequencies (e.g. k ≡ 0(mod L)
carries no information), and one can enforce conjugacy constraints (e.g.

m
(L−k)
i = m

(k)
i in the complex-root parametrization) to reduce computa-

tion. These are inessential for the scaling statements and we keep the full
{1, . . . , L} indexing for notational uniformity.

Computational cost. The dominant operation in (2) is multiplying Y (k)

by a vector, which costs O(n2) per k for dense matrices. Thus one iteration
costs

O(Ln2) time, O(Ln2) storage if Y (k) are stored explicitly.

The nonlinear step (3)–(4) can be implemented as follows. For each i, the
map

ℓ 7→ si(ℓ) :=
L∑

k=1

ℜ
(
h
(k),t
i ω−kℓ

)
is (up to taking real parts) an inverse discrete Fourier transform of the se-
quence {h(k),ti }k. Hence si(·) can be computed in O(L logL) time via FFT,
and then πt+1

i is obtained by exponentiating and normalizing. Once πt+1
i is

available, the moments (4) can likewise be computed by FFT (forward trans-
form) in O(L logL) per node. Overall, the coupling step costs O(nL logL),
which is negligible compared to O(Ln2) in the dense regime.

We emphasize that this separation of costs mirrors the conceptual sepa-
ration: the expensive part is the dense linear mixing across nodes (matrix-
vector products), while the coupling across frequencies is cheap due to the
abelian group structure.

Relation to approximate Bayes and the emergence of a scalar order
parameter. The iteration above is best viewed as an approximate Bayes
procedure in which {h(k),ti }k play the role of sufficient statistics for xi. Under
the AMP decoupling (justified later by state evolution), the collection of
fields at a typical node behaves as

h
(k),t
i ≈ αt x

k
i + τt z

(k)
i ,

where z(k)i are approximately i.i.d. standard complex Gaussians across k (and
across i), and αt, τt are deterministic scalars. Plugging such a decoupled
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model into Bayes rule yields precisely the exponential-family form (3), and
the updated moments (4) depend on the data only through the single scalar
signal-to-noise parameter αt/τt. This is the mechanism behind the scalar
state evolution recursion stated in the next section: all algorithmic progress is
summarized by one overlap parameter measuring correlation with the truth,
and the contribution of L independent harmonics enters through the effective
strength λ2L.

A detection statistic extracted from the iterates. For the detection
task, we do not need to output an estimate of x; it suffices to compute
any scalar statistic that remains near its null value under H0 but becomes
separated under H1. In the AMP framework, a natural choice is an ℓ2-energy
of the moment vectors, for instance

Tt :=
1

L

L∑
k=1

1

n
∥m(k),t∥22,

or a closely related quantity derived from the fields {h(k),t}. Under H0, the
iterates remain asymptotically uninformative (with Tt near its trivial value)
as long as the uninformative fixed point is stable; under H1 in the unstable
regime, the same recursion amplifies the initial seed and drives Tt away from
its null value. The formal correctness of such a decision rule will follow from
the state evolution analysis.

In summary, FC-AMP is a message passing scheme that is linear across
nodes and nonlinear across frequencies, with the nonlinear step implementing
an approximate Bayes update over ZL. Its runtime per iteration is Õ(Ln2)
in the dense observation model, and its design ensures that evidence from
all L harmonics contributes coherently to a single label per node. We now
turn to the state evolution that quantifies this behavior and yields the 1/

√
L

threshold.

5 State evolution and the 1/
√
L threshold (upper

bound)

We analyze the iteration (2)–(4) by the standard AMP method: for each
fixed iteration index t, the high-dimensional randomness in the matrices
{W (k)} renders the AMP fields approximately Gaussian after conditioning
on the past, and the Onsager correction removes the leading dependence
created by reusing the same data across iterations. In the present model,
the only nonstandard feature is that the denoiser couples all frequencies, but
this coupling occurs within each node and hence does not obstruct the usual
leave-one-out conditioning across nodes.
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Order parameters. We denote by m(k),t ∈ Cn the vector of k-th Fourier
moments at iteration t, as in (4). To summarize the correlation of the iterates
with the truth, we introduce the scalar overlap

mt :=
1

L

L∑
k=1

1

n
ℜ
〈
x⊙k, m(k),t

〉
, (5)

and the empirical second moment (energy)

qt :=
1

L

L∑
k=1

1

n

∥∥m(k),t
∥∥2
2
. (6)

In a fully symmetric setting (uniform prior on ZL, identical noise law across k,
and homogeneous Onsager coefficients), one can equivalently track 1

nℜ⟨x
⊙k,m(k),t⟩

for a fixed k, since these quantities agree asymptotically for all k; we keep
the average (5) to emphasize that the subsequent threshold depends only on
the aggregate contribution of L channels.

Asymptotic Gaussianity of the fields. Fix t ≥ 0. Consider the AMP
fields h(k),t defined in (2). Under H1, we may decompose

Y (k)m(k),t =
λ

n
x⊙k

〈
x⊙k,m(k),t

〉
+

1√
n
W (k)m(k),t.

The first term is a rank-one contribution aligned with x⊙k, of size λ 1
n⟨x

⊙k,m(k),t⟩.
The second term is a (conditionally) mean-zero Gaussian vector, whose co-
variance is ≈ 1

n∥m
(k),t∥22 In up to negligible diagonal effects and the usual

GOE/GUE symmetry constraints. The Onsager correction b
(k)
t m(k),t−1 is

chosen so that, after conditioning on the σ-algebra generated by past iter-
ates, the residual dependence between W (k) and m(k),t cancels to leading
order. This yields the canonical AMP decoupling: at a typical coordinate
i, the collection {h(k),ti }Lk=1 behaves like a signal-plus-noise observation of
{xki }Lk=1 with independent Gaussian noise across k.

Formally, for each fixed t, the empirical law of {(xi, h(1),ti , . . . , h
(L),t
i )}ni=1

converges in probability (in the sense of pseudo-Lipschitz test functions) to
the law of (X,H(1), . . . ,H(L)) where X ∼ Unif({ω0, . . . , ωL−1}), {Z(k)}Lk=1

are i.i.d. standard complex Gaussians (or real Gaussians in the GOE case),
and

H(k) = λmtX
k +

√
qt Z

(k). (7)

The only dependence on the iteration history appears through the scalars
(mt, qt). In particular, conditional on X, the L coordinates {H(k)} are inde-
pendent, and the signal enters additively in the mean.
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State evolution recursion. Let D : CL → ∆(ZL) be the denoiser associ-
ated to (3), i.e.

D(h(1), . . . , h(L))(ℓ) ∝ exp
( L∑

k=1

ℜ
(
h(k)ω−kℓ

))
,

and for each k let Mk : CL → C denote the k-th Fourier moment extracted
from this posterior,

Mk(h
(1), . . . , h(L)) :=

∑
ℓ∈ZL

D(h(1), . . . , h(L))(ℓ)ωkℓ.

Then (4) reads m
(k),t+1
i = Mk(h

(1),t
i , . . . , h

(L),t
i ). Combining this with (7)

and passing to the limit yields a closed recursion for (mt, qt):

mt+1 =
1

L

L∑
k=1

ℜE
[
Xk Mk

(
H(1), . . . ,H(L)

)]
, (8)

qt+1 =
1

L

L∑
k=1

E
[∣∣Mk

(
H(1), . . . ,H(L)

)∣∣2], (9)

where (X,H(1), . . . ,H(L)) are distributed as above.
The recursion (8)–(9) simplifies further because the denoiser is ZL-equivariant:

if X is multiplied by ωℓ0 , then the vector (Xk)k≤L rotates by characters,
and D merely shifts the label ℓ 7→ ℓ+ ℓ0. Consequently, the overlap update
(8) depends on (λ,mt, qt) only through the single effective scalar λ2Lmt

(equivalently (λmt)/
√
qt together with the fact that L independent harmon-

ics contribute additively in the exponent). We record this in the form used
throughout the paper: there exists an explicit function Ψ (depending only
on the prior, i.e. on ZL versus a continuous phase model) such that

mt+1 = Ψ
(
λ2Lmt

)
, (10)

and qt is then a deterministic function of mt (or may be tracked jointly
without affecting the threshold conclusion). We emphasize that Ψ is not an
arbitrary closure assumption: it is obtained by substituting the Gaussian
channel (7) into the exact Bayes update on ZL, and hence is computable in
principle (and numerically stable for large L when implemented via FFT).

Linearization and the instability criterion. The fixed point m = 0 cor-
responds to an uninformative regime in which the beliefs πi remain (asymp-
totically) close to uniform and the iterates have vanishing correlation with
x. By symmetry, Ψ(0) = 0. Moreover, the Bayes denoiser is locally matched
to the Gaussian channel at m = 0, and one obtains the universal derivative

Ψ′(0) = 1, (11)
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which can be verified by differentiating (8) at mt = 0 and using that the
Jacobian of the posterior mean at the uninformative point equals the Fisher
score (equivalently, the first-order term of the likelihood ratio in the relevant
character direction). Combining (10) and (11) yields the linearized growth
law

mt+1 = (λ2L)mt + o(mt) as mt → 0. (12)

Thus the uninformative fixed point is unstable if and only if λ2L > 1, and
stable if λ2L < 1. This is the origin of the 1/

√
L scaling: each harmonic

channel contributes a constant amount of Fisher information, and the L
contributions add.

From instability to detection. Assume now that λ ≥ C/
√
L for a suffi-

ciently large absolute constant C. Then λ2L ≥ C2 > 1, and (12) implies that
any initialization with overlap m0 merely larger than the typical n−1/2-scale
fluctuations is amplified geometrically until it reaches a constant level. More
precisely, choosing any ρ ∈ (1, λ2L), there exists δ > 0 such that whenever
0 < mt ≤ δ we have mt+1 ≥ ρmt. Hence after t⋆ = O(log n) iterations, a
vanishing seed m0 = n−γ (with γ > 0 fixed) is driven to mt⋆ ≥ m⋆ for some
constant m⋆ = m⋆(C) > 0. The construction of such a seed without oracle
information is deferred to Section 6; here we condition on its existence and
focus on the implication of a positive overlap for detection.

To extract a scalar decision statistic, we use the energy Tt defined at the
end of Section 4,

Tt =
1

L

L∑
k=1

1

n

∥∥m(k),t
∥∥2
2
= qt.

Under H0, the state evolution (10) is identically pinned at mt ≡ 0, and qt
converges to a deterministic null value qnull determined by passing pure noise
through the denoiser. Under H1 in the unstable regime, the same recursion
yields mt⋆ ≥ m⋆, and then (9) implies qt⋆ ≥ qnull+∆ for some ∆ = ∆(C) > 0,
by continuity of the Bayes risk as a function of the signal component in (7).
In other words, the ℓ2-energy of the moment vectors separates by a constant
once the overlap becomes constant.

Finally, we transfer this separation from the limiting recursion to the
finite-n iterates. For each fixed t, standard AMP concentration (via Gaussian
conditioning and the boundedness/Lipschitz properties of the denoiser, with
constants uniform over L ≤ nc) yields

Tt = qt + oP(1)

under either hypothesis. Therefore, setting a deterministic threshold τ ∈
(qnull, qnull +∆) and outputting A = 1 if Tt⋆ ≥ τ yields

PH0 [A = 1] → 0, PH1 [A = 0] → 0,
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establishing detection with vanishing error. The runtime is t⋆ AMP itera-
tions, i.e. O(Ln2 log n) in the dense model, which is polynomial in n under
the standing growth assumption L ≤ nc.

We have thus identified the algorithmic transition at λ2L = 1 through
the stability of the uninformative fixed point of the scalar state evolution
(10), and we have shown how, above this threshold, a frequency-coupled
AMP iteration yields a concrete polynomial-time detector. We now address
the remaining algorithmic issue: how to initialize the iteration so that it pos-
sesses a vanishing but non-negligible overlap with the planted signal without
requiring oracle side information.

6 Initialization without oracle information

The state evolution analysis in Section 5 identifies the algorithmic transition
through the local stability of the uninformative fixed point. To convert this
instability into an explicit polynomial-time detector, it remains to specify
an initialization that (i) does not use any side information about x, (ii) is
efficiently computable, and (iii) produces a nontrivial projection onto the
unstable direction so that the AMP dynamics can amplify it when λ2L > 1.
We address this in a form sufficient for detection; we do not attempt to
optimize constants.

Why a seed is necessary. If we initialize the beliefs π0
i to be exactly

uniform on ZL, then all Fourier moments vanish, m
(k),0
i = 0 for all i, k,

hence the iterates remain identically zero for all time by equivariance of the
updates. This is not a defect of the analysis but a symmetry of the algorithm:
without a perturbation, the iterates lie exactly at the uninformative fixed
point.

In floating-point implementations, roundoff typically provides a pertur-
bation, but for a mathematical algorithm we inject an explicit perturbation
of vanishing magnitude. The basic principle is the same as in the spiked
Wigner AMP: a random initialization has overlap ΘP(n

−1/2) with the planted
direction, and when the linearized gain exceeds 1 this component grows ge-
ometrically for O(log n) iterations.

A concrete randomized initialization. We describe an initialization at
the level of AMP fields, which then induces beliefs and moments through
the denoiser. Let {ξ(k)i }i≤n,k≤L be i.i.d. standard complex Gaussians (or real
Gaussians in the GOE-compatible real formulation), independent of {Y (k)}.
Fix a deterministic amplitude ε = εn ↓ 0 (we will take ε = n−1/10 for
definiteness), and set

h
(k),0
i := ε ξ

(k)
i (i ≤ n, k ≤ L). (13)
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We then define π0
i := D(h

(1),0
i , . . . , h

(L),0
i ) and m

(k),0
i := Mk(h

(1),0
i , . . . , h

(L),0
i ).

This initialization is computable in O(nL) time and produces beliefs that are
o(1)-close to uniform in total variation at each node, while still breaking the
exact symmetry.

Size of the initial overlap. Under H1, the random variable m0 defined in
(5) has mean 0 by symmetry but a typical magnitude on the order n−1/2 (up
to the factor ε, depending on how close to uniform we start). Concretely, for
small ε we may linearize the denoiser around the uniform point to obtain

m
(k),0
i = cinit ε ξ

(k)
i + O(ε2), (14)

with an absolute constant cinit ∈ (0, 1] that depends only on the chosen
parameterization of the denoiser (and is uniform for L ≤ nc). Substituting
(14) into (5) and using that ⟨x⊙k, ξ(k)⟩ is a centered Gaussian of variance
Θ(n), we obtain

m0 = ΘP

( ε√
n

)
, (15)

and moreover for any slowly diverging sequence an → ∞,

P
[
|m0| ≥

ε

an
√
n

]
−→ 1. (16)

The proof is a routine second-moment computation plus Gaussian anti-
concentration, and we omit it.

Two comments are important. First, the sign (or complex phase) of
m0 is random; however, the linearized recursion preserves this phase for
small mt, and our eventual decision statistic is the energy Tt = qt, which
is insensitive to this sign/phase. Second, although |m0| is only n−1/2+o(1),
geometric amplification still drives it to a constant level in O(logn) steps
when λ2L > 1.

Amplification from a vanishing random seed. We now formalize the
preceding discussion in the form used in the upper bound.

Lemma 6.1 (Vanishing-seed initialization implies macroscopic overlap). As-
sume λ2L > 1 + η for some fixed η > 0. There exist absolute constants
δ > 0 and ρ > 1 (depending only on η and on the denoiser, but not on n or
L ≤ nc) such that the following holds. Initialize FC-AMP using (13) with
any ε = εn ↓ 0 satisfying ε ≥ n−C0 for some fixed C0 > 0. Then, with
probability 1− o(1) under H1, the state evolution overlap mt satisfies

|mt+1| ≥ ρ |mt| whenever |mt| ≤ δ,

and hence for t⋆ :=
⌈
log(δ/|m0|)/ log ρ

⌉
= O(log n) we have |mt⋆ | ≥ δ.
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Proof sketch. By the Taylor expansion implicit in (12), there exists δ > 0
such that

Ψ(u) = u+ r(u), |r(u)| ≤ η

4
|u| for all |u| ≤ λ2Lδ.

Combining this with u = λ2Lmt gives, for |mt| ≤ δ,

|mt+1| = |Ψ(λ2Lmt)| ≥
(
1− η

4

)
λ2L |mt| ≥

(
1 +

η

2

)
|mt| =: ρ |mt|.

It remains to justify that the constants in the Taylor bound can be chosen
uniformly over L ≤ nc. This is a regularity property of the Bayes denoiser at
the uninformative point: since D is a softmax over L labels with a bounded
local Jacobian, one can bound the second derivative of Ψ at the origin by an
absolute constant, independent of L, by differentiating under the expectation
in (8) and using

∑
ℓD(ℓ) = 1. We omit the derivative bookkeeping. The

claim then follows by iterating the one-step growth inequality until reaching
δ.

From overlap amplification to a valid detector. Lemma 6.1 is an SE-
level statement; to use it algorithmically we need that the finite-n iterates
track SE for t ≤ t⋆ = O(logn). This is standard in AMP analyses provided
one has (a) an initialization independent of the data, (b) Lipschitz control
on the denoiser, and (c) boundedness of the Onsager coefficients along the
trajectory. In our setting, (a) holds by construction, and (b)–(c) follow from
the elementary bounds∣∣Mk(h)−Mk(h

′)
∣∣ ≤ ∥h− h′∥2 and |Mk(h)| ≤ 1, (17)

uniformly in k ≤ L and L, since each Mk is an average of unit-modulus
characters under a probability vector D(h). The only point where we must
be careful is uniformity in L: while the softmax normalization involves L
terms, the derivatives of D involve covariances under the posterior and hence
remain bounded by 1 without incurring an L factor. This uniformity is
precisely what prevents the O(log n) iteration count from accumulating an
L-dependent error.

Consequently, with t = t⋆ we have, under either hypothesis,

Tt⋆ = qt⋆ + oP(1),

and under H1 in the regime λ2L > 1 + η Lemma 6.1 implies that qt⋆ sep-
arates from its null value by a constant (by continuity of (9) in the signal
component). Thresholding Tt⋆ therefore yields a detector with vanishing er-
ror, completing the algorithmic part of the upper bound without any oracle
information.
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Robustness and where constant tracking becomes technical. For
the purposes of Theorem 1, we only require a qualitative statement: any
perturbation that produces |m0| ≥ n−1/2+o(1) suffices. Two robustness points
are worth recording.

First, the precise form of the seed is unimportant. One may equivalently
perturb the initial beliefs directly, e.g.

π0
i (ℓ) =

1

L

(
1 + ε ζi,ℓ

)/∑
ℓ′

1

L

(
1 + ε ζi,ℓ′

)
,

with i.i.d. mean-zero ζi,ℓ and sufficiently small ε, and then compute mo-
ments. Any such perturbation yields |m0| = ΘP(ε/

√
n) and triggers the

same instability.
Second, the amplification phenomenon is stable under mild misspecifica-

tion: if the Onsager coefficients are computed with o(1) relative error, or if
the denoiser is implemented approximately (e.g. truncating Fourier series in
the SO(2) variant), the linearized gain remains λ2L+ o(1) and the criterion
λ2L > 1 persists.

What does require some case analysis is uniform control of the Taylor
remainder in Ψ and of the AMP concentration bounds as L → ∞. In partic-
ular, to make Lemma 6.1 completely quantitative one must bound the second
(and sometimes third) derivatives of the map m 7→ Ψ(λ2Lm) in a neighbor-
hood of the origin with constants independent of L, and then union bound
these error terms over t = O(log n) iterations. These bounds are straightfor-
ward but notationally heavy because one must keep track of how posterior
covariances scale with L when the denoiser aggregates L independent Gaus-
sian channels. Since our goal is the scaling law λ ≍ L−1/2, we do not optimize
these constants and instead work with a fixed margin λ2L ≥ 1+η, for which
all such uniformity issues can be absorbed into absolute constants.

7 Growing-L low-degree lower bound

We establish the low-degree lower bound in the regime L = L(n) → ∞
(with L ≤ nc, c < 1) by working in the L2(H0) Hilbert space generated by
the Gaussian noise across all frequency channels. The conclusion is that,
when λ ≲ L−1/2, every polynomial statistic of degree d = o(L) has van-
ishing distinguishing advantage, providing (conditionally, via the standard
low-degree conjecture) a computational lower bound matching the scaling of
the algorithmic upper bound.

Low-degree proxy via the likelihood ratio. Let L :=
dPH1
dPH0

be the
likelihood ratio on the observation space Yn,L. Under H0, the collection
of off-diagonal entries {Y (k)

ij : 1 ≤ i < j ≤ n, 1 ≤ k ≤ L} is jointly
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Gaussian with independent coordinates (up to Hermitian symmetry), and
thus every square-integrable function admits an orthogonal decomposition
into multivariate Hermite chaoses. Write P≤d for the orthogonal projection
(in L2(H0)) onto the span of polynomials of total degree at most d in the
entries of {Y (k)}.

A standard argument (see, e.g., the low-degree framework for spiked
models) shows that for any degree-≤ d polynomial p normalized so that
EH0 [p] = 0 and VarH0(p) = 1, we have∣∣EH1 [p]− EH0 [p]

∣∣ =
∣∣EH0 [p(L − 1)]

∣∣ ≤ ∥P≤d(L − 1)∥L2(H0). (18)

Consequently, to prove that all degree-d tests have vanishing advantage, it
suffices to show

∥P≤d(L − 1)∥L2(H0) −→ 0 for d = d(n) = o(L). (19)

Channel-wise orthogonal polynomial decomposition. It is conve-
nient to rescale to standard Gaussians under H0. For each k and i < j,
let

Z
(k)
ij :=

√
nY

(k)
ij ,

so that under H0 the coordinates {Z(k)
ij } are i.i.d. N(0, 1) in the GOE case,

and i.i.d. standard complex Gaussians (equivalently two independent N(0, 12)
real coordinates) in the GUE case. Under H1, conditioned on the latent x,
we have a mean shift

Z
(k)
ij = µ

(k)
ij (x) + noise, µ

(k)
ij (x) :=

λ√
n
xki x

k
j . (20)

For a single real Gaussian coordinate G ∼ N(0, 1), the shifted density ratio
has the Hermite expansion

exp
(
µG− µ2

2

)
=

∑
r≥0

µr

r!
Hr(G), (21)

where Hr is the probabilists’ Hermite polynomial. In the complex case we
apply (21) separately to real and imaginary parts; this changes only book-
keeping and does not affect the counting principles below.

Conditioned on x, the likelihood ratio factorizes over (i, j, k), and aver-
aging over the prior yields

L = Ex

[
L∏

k=1

∏
1≤i<j≤n

exp
(
µ
(k)
ij (x)Z

(k)
ij − 1

2 |µ
(k)
ij (x)|2

)]
. (22)

Expanding each exponential via (21) and collecting terms of a fixed total
degree produces an explicit orthogonal-chaos expansion of L in the tensor-
product Hermite basis across (i, j, k).
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Moment constraints from cyclic characters. The key simplification is
the orthogonality of cyclic characters under the ZL prior:

E[xai xbi ] = 1{a ≡ b (mod L)}. (23)

Every monomial term in the Hermite expansion of L can be indexed by a
finite multiset of triples (i, j, k) with multiplicities {r(k)ij }, corresponding to

selecting H
r
(k)
ij

(Z
(k)
ij ) from coordinate (i, j, k). The coefficient of such a term

involves Ex

[∏
(µ

(k)
ij (x))r

(k)
ij

]
, hence a product of factors x

(·)
u x

(·)
u over vertices

u.
Interpreting the selection {r(k)ij } as a directed multigraph on vertex set

[n] with r
(k)
ij oriented edges i → j labeled by frequency k, the expectation

over x factors over vertices and (23) enforces, at each vertex u, the modular
“flow conservation” constraint∑

(u→v) edges

k (mult.) ≡
∑

(v→u) edges

k (mult.) (mod L). (24)

Thus, only those edge-labeled multigraphs satisfying (24) contribute to L.
This is where the shared latent x couples the L channels in the lower bound:
although the noise is independent across k, the signal coefficients must be
consistent as characters of a single underlying group element.

Two consequences of (24) drive the growing-L analysis.
First, each connected component must contain at least one cycle (in the

sense of graph theory) unless all multiplicities are zero: a tree component
would force a nontrivial net flow at a leaf, contradicting (24). Equivalently,
every participating component has cyclomatic number at least 1.

Second, once a connected component is fixed as an unlabeled graph to-
gether with multiplicities, the number of compatible frequency assignments
{k} ⊆ [L] is bounded by a power of L equal to the number of independent
cycles in the component (up to a factor polynomial in the degree). In par-
ticular, for total degree d, the number of components is at most d/2, hence
the number of frequency assignments is at most Ld/2. This is the first place
where L → ∞ strengthens the lower bound: a degree-d statistic can correlate
with at most O(d) frequencies in a structured way, while the model spreads
signal across all L channels.

Bounding a fixed chaos level. We now state the quantitative chaos
bound in the form we use. Its proof is an enumeration of contributing labeled
multigraphs together with the Hermite normalization factors, exploiting (i)
orthogonality of distinct Hermite basis elements under H0, (ii) independence
across frequencies under H0, and (iii) the character constraints (24) under
H1. The only genuinely new issue relative to constant-L arguments is to
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keep constants uniform as L = L(n) → ∞ while allowing degrees d = o(L);
this is precisely the regime in which modular aliasing does not create an
uncontrolled explosion of solutions to (24).

Lemma 7.1 (Growing-L Hermite chaos bound). There exist absolute con-
stants c0, C > 0 such that the following holds. Assume λ2L ≤ c0 and L ≤ nc

for some fixed c < 1. Let L=d denote the degree-d Hermite chaos component
of L under H0. Then, for every d = d(n) = o(L),

∥L=d∥2L2(H0)
≤ no(1) (Cλ2L)d L−d/2.

The L−d/2 factor reflects the frequency-matching scarcity implied by (24):
compared to a naive Ld choice of frequency labels for d selected coordinates,
only LO(d/2) choices survive the character averaging, and this survives uni-
formly for d = o(L).

From chaos bounds to vanishing low-degree advantage. Summing
the squared norms of chaos levels and using orthogonality, Lemma 7.1 implies

∥P≤d(L − 1)∥2L2(H0)
=

d∑
r=1

∥L=r∥2L2(H0)
≤ no(1)

d∑
r=1

(Cλ2L)r L−r/2. (25)

In the regime λ ≤ c/
√
L with c > 0 sufficiently small, the summand is

bounded by (Cc2)rL−r/2, and therefore the right-hand side of (25) tends to
0 for any d = o(L), yielding (19). Combining (18) with this bound gives the
desired vanishing advantage.

We record the conclusion in the form used to derive the low-degree lower
bound.

Lemma 7.2 (Vanishing advantage for degree o(L)). There exists an absolute
constant c > 0 such that if λ ≤ c/

√
L and d = d(n) = o(L), then

sup
deg(p)≤d

Adv(p) ≤ ∥P≤d(L − 1)∥L2(H0) −→ 0,

where the supremum is over all polynomials p in the entries of {Y (k)}k≤L.

Discussion of the growing-L mechanism. The preceding argument iso-
lates the sense in which many frequencies lower the algorithmic threshold
without simultaneously enabling low-degree detection below λ ≍ L−1/2. The
signal-to-noise per channel decreases with λ, but the Bayes/AMP update
aggregates information linearly across all L harmonics and then enforces
harmonic consistency through the group law. A low-degree polynomial, by
contrast, only accesses a bounded-depth collection of entrywise products.
After averaging over the cyclic prior, such products survive only when their
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frequency labels satisfy the modular conservation laws (24), which forces
extensive matching and yields the L−d/2 penalty in Lemma 7.1. In infor-
mal terms: to exploit the full Fisher-information gain of L harmonics, one
must build tests whose effective algebraic degree grows with L; degree o(L)
is insufficient.

Finally, we emphasize that the restriction L ≤ nc is used only to keep
the remaining combinatorial prefactors subpolynomial in n, ensuring that the
decay in L−d/2 is not overwhelmed by the number of possible index patterns
in the dense model. This is the same uniformity issue encountered in the
state evolution analysis, but here it appears in counting contributing graphs
and bounding the number of admissible frequency assignments uniformly
over L → ∞.

7.1 Extensions

SO(2) via truncation to the first L Fourier modes. The cyclic model
may be viewed as a discretization of phase synchronization over the compact
abelian group SO(2) ∼= U(1), whose irreducible representations are the one-
dimensional characters eikθ, k ∈ Z. In the continuous model we take latent
phases θi

i.i.d.∼ Unif[0, 2π), set xi := eiθi , and observe for k = 1, . . . , L,

Y (k) =
λ

n
x⊙k(x⊙k)∗ +

1√
n
W (k). (26)

This is formally identical to the discrete model except that xi ranges over the
unit circle rather than {ω0, . . . , ωL−1}. The main point is that the analysis of
the coupled-harmonic mechanism depends on the orthogonality of characters,
which remains valid in the continuous setting:

E[xai xbi ] = E[ei(a−b)θi ] = 1{a = b}, a, b ∈ Z. (27)

Consequently, the combinatorial constraint that survives after integrating
out the latent signal is now an exact (non-modular) conservation law: the
flow condition (24) holds with congruence mod L replaced by equality in Z.

To connect (26) back to an L-parameter family, we explicitly truncate to
the first L positive frequencies. On the algorithmic side, FC-AMP extends
by representing the per-node belief not as a probability vector on ZL but as
a periodic density on [0, 2π); in practice we maintain its Fourier series up to
order L, i.e.,

qi(θ) ∝ exp
( L∑

k=1

ℜ
(
ai,ke

ikθ
))

,

where the coefficients (ai,k)k≤L are updated by (i) linear aggregation through
the observed matrices Y (k) and (ii) a nonlinearity implementing the Bayes
denoiser for the truncated Fourier family. The required coupling across k is
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exactly the statement that these Fourier coefficients arise from a single phase
θi, rather than from L unrelated labels.

At the level of state evolution, the same linearization governs the growth
of an infinitesimal correlation with the truth: each channel contributes a
term proportional to λ2, and the L channels add. Hence the instability con-
dition remains λ2L > 1 up to constants determined by the chosen trunca-
tion/denoiser family; in particular the predicted detection threshold is again
λ ≍ L−1/2. The low-degree lower bound argument also transfers with mini-
mal changes: the Hermite expansion continues to apply entrywise under H0,
and (27) enforces the same graph-theoretic constraints, now without modu-
lar aliasing. In this sense, the ZL model is best interpreted as a convenient
finite-dimensional surrogate of the truncated SO(2) problem, with the same
scaling law but simpler bookkeeping.

Other finite abelian groups. The coupled-frequency construction is not
specific to cyclic groups; it is a general feature of synchronization models over
finite abelian groups G. Writing Ĝ for the dual group of one-dimensional
characters χ : G → S1, we may choose a collection S ⊆ Ĝ of observed char-
acters (playing the role of frequencies). With latent labels gi

i.i.d.∼ Unif(G)

and x
(χ)
i := χ(gi), we observe for each χ ∈ S an independent spiked Wigner

channel
Y (χ) =

λ

n
x(χ)(x(χ))∗ +

1√
n
W (χ). (28)

The coupling across χ is again through the shared latent gi. FC-AMP ex-
tends by maintaining per-node beliefs πi ∈ ∆(G) and using the Fourier
transform on G: the linear messages are computed in the character domain
Ĝ (one matrix-vector product per observed χ), while the nonlinear coupling
step is a map {mi(χ)}χ∈S 7→ πi which enforces that the collection of esti-
mated character values arises from a single group element.

Both the upper- and lower-bound heuristics depend only on character
orthogonality,

Eg∼Unif(G)[χ(g)χ′(g)] = 1{χ = χ′}, χ, χ′ ∈ Ĝ, (29)

and on independence of the noise across observed channels. In particular, if
|S| → ∞ with n (e.g. by taking a growing family of characters in a sequence
of groups G = Gn, or by keeping G fixed but repeating observations with
independent noise), then the same additivity principle yields an instability
criterion of the form

λ2 |S| ≳ 1,

so that λcomp scales like 1/
√
|S| under analogous regularity assumptions for

state evolution. On the low-degree side, the moment constraints induced by
(29) produce a conservation law on edge-labeled multigraphs that is iden-
tical in spirit to (24), except that the labels now live in Ĝ. When S is
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large and the polynomial degree d is small relative to the relevant scale
(e.g. d = o(|S|) in a setting where distinct labels behave essentially indepen-
dently), the same scarcity phenomenon holds: most labelings are annihilated
by averaging over g, and only those satisfying the vertex-wise conservation
constraints contribute. This is the mechanism behind an L-type penalty in
the chaos norms, with |S| replacing L.

A concrete example beyond cyclic groups is G = (Zq)
r with q fixed and

r = r(n) → ∞. Here Ĝ ∼= G, and one may take S to be a set of characters
indexed by a subset of (Zq)

r. The conservation law becomes a vector-valued
modular flow constraint in (Zq)

r, and the counting of admissible labelings
depends on the cycle space as before. The resulting picture matches the
cyclic case: as the number of observed characters grows, detection becomes
possible at smaller λ, while low-degree polynomials cannot exploit this gain
unless their degree grows commensurately.

When non-abelian representation theory intervenes. For non-abelian
groups G, irreducible representations are typically matrix-valued, and there
is no longer a single scalar character per frequency. A natural analogue of
(28) is to observe, for a family of irreps ρ ∈ Ĝ (now indexing equivalence
classes of irreducible unitary representations), matrix-valued measurements
whose mean is rank-one in the representation space:

Y (ρ) =
λ

n
u(ρ)(u(ρ))∗ +

1√
n
W (ρ), u

(ρ)
i := ρ(gi)vρ,

for some fixed unit vector vρ in the dim(ρ)-dimensional representation space.
Even in this simplified form, the coupling constraints across ρ are substan-
tially more complicated: enforcing that the family {ρ(gi)}ρ comes from a
single gi ∈ G is a noncommutative compatibility condition, and the analogue
of the “harmonic consistency” map requires Clebsch–Gordan decompositions
to relate products of matrix coefficients across different irreps.

From the algorithmic perspective, message passing can still be formulated
using noncommutative Fourier analysis, but the state variable at each node
is no longer a probability vector on G (which is exponentially large) nor a
small set of scalar Fourier coefficients; rather, it is a collection of matrices
(Fourier coefficients) π̂i(ρ) ∈ Cdρ×dρ over the observed irreps. The cost
of a single iteration is governed by the total Fourier dimension

∑
ρ∈S d2ρ,

and the denoising/coupling step amounts to approximately projecting these
coefficients back onto the cone of positive-type functions on G, a significantly
less explicit operation than the abelian normalization on ∆(G). In regimes
where only low-dimensional irreps are used (or where G is “nearly abelian” in
the sense of having many one-dimensional representations), this may remain
tractable, but in general it introduces a substantial algorithmic overhead and
obscures the clean λ2 ×#channels additivity.
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On the low-degree side, the obstacle is analogous: averaging monomials
of matrix coefficients over gi yields constraints expressed in terms of invari-
ant tensors in representation products. In the abelian case, these invariants
reduce to equality of total exponents (the conservation law). For non-abelian
groups, the space of invariants in a tensor product can have dimension larger
than 1, and the number of ways to “close” a cycle in the moment graph is
controlled by multiplicities in Clebsch–Gordan rules rather than by a single
modular equation. Thus, the counting that produced a sharp scarcity factor
(such as the L−d/2 penalty) may be replaced by a more delicate dependence
on representation dimensions and fusion multiplicities. We therefore expect
that the correct analogue of the scaling law involves the total “harmonic bud-
get”

∑
ρ∈S d2ρ (or a related Fisher-information quantity), but establishing a

tight low-degree lower bound in full generality would require uniform control
of these multiplicities in the growing-family regime.

In summary, the abelian setting isolates the essential phenomenon: mul-
tiple harmonics provide additive information, and the group law supplies
the coupling needed to aggregate it computationally efficiently; low-degree
polynomials fail because character orthogonality forces extensive matching
constraints. For SO(2) and other abelian groups, this mechanism survives
essentially unchanged (after truncation in the continuous case). For non-
abelian groups, the same blueprint remains plausible, but both the algo-
rithmic implementation and the low-degree enumeration must contend with
higher-dimensional irreps and nontrivial tensor-product structure, and the
clean 1/

√
L scaling may need to be re-expressed in representation-theoretic

terms.

Numerical validation and finite-size scaling. The asymptotic state-
ments in the preceding sections invite two complementary kinds of numeri-
cal checks: (i) algorithmic validation, in which we implement the proposed
frequency-coupled AMP (together with the specific scalar decision rule used
for detection) and verify that its empirical error exhibits the predicted de-
pendence on λ and L; and (ii) finite-size diagnostics, in which we probe
how quickly the large-n heuristics (state evolution, linear instability, and
low-degree scarcity) become visible at moderate n and growing L. We em-
phasize that these experiments can corroborate the scaling law and calibrate
constants, but they do not in themselves substitute for the asymptotic anal-
ysis; in particular, numerical failure to detect at a given (n,L, λ) cannot be
interpreted as an impossibility result.
Simulation protocol and what is directly measurable. A baseline
protocol is as follows. Fix (n,L), choose a noise ensemble (GOE or GUE),
and generate N i.i.d. instances under each hypothesis. Under H0, set Y (k) =
W (k)/

√
n. Under H1, draw x (or θ in the SO(2) variant) and set Y (k) accord-

ing to the channel, with independent W (k). For each instance, run FC-AMP
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for T iterations from the stated initialization (including any vanishing ran-
dom seed), extract the scalar test statistic S = S(Y (1), . . . , Y (L)) used by
the decision rule, and compute (a) the empirical type-I/type-II errors at a
fixed threshold, or (b) the receiver operating characteristic (ROC) curve and
its area (AUC), or (c) the total error under the optimal threshold chosen
by cross-validation. In addition, under H1 one may compute the overlap
n−1⟨x̂, x⟩ (or its harmonic analogues) for diagnostic purposes only, to com-
pare the observed correlation growth to state evolution; this is not part of
the detection task but is helpful for verifying the internal mechanism.

Two practical points are worth making explicit. First, in the dense setting
the raw per-iteration cost of any message passing scheme that performs L
matrix–vector multiplications is Õ(Ln2), which limits the accessible (n,L)
range. For numerical work one typically either (i) restricts to moderate n but
sweeps many λ values, or (ii) uses linear-algebra acceleration (e.g. blockwise
BLAS on GPU) to sweep L at fixed n. Second, finite-size behavior is sensitive
to the exact normalization conventions (zero diagonal vs full Wigner, real
vs complex, and off-diagonal variance), so any reported constants should be
tied to the precise model implemented.
Calibrating the threshold constant and checking the L−1/2 scaling.
A direct way to probe the scaling is a data-collapse plot: for a grid of (n,L)
values, we plot an empirical performance metric (e.g. AUC, or total error at
the empirically optimal threshold) against the rescaled signal level

κ := λ
√
L.

The prediction is that the transition should occur near a constant κc depend-
ing on the algorithm/denoiser details (and mildly on GOE vs GUE), with
curves for different L collapsing as n increases. In practice, one observes a
smoothed transition rather than a sharp step, and one may define κc(n,L)
operationally, e.g. as the value where AUC crosses 0.75 or where the total
error crosses 0.25. Plotting κc(n,L) versus n at fixed L, and versus L at
fixed n, gives a quantitative sense of finite-size corrections.

A second, more stringent check uses state evolution itself. Under H1, we
record the empirical overlap mt between the AMP iterate (or its single-site
posterior mean surrogate) and the truth. State evolution predicts that mt

should follow a deterministic recursion with a linearization at 0 whose slope
is proportional to λ2L. Numerically, this manifests as: (i) for κ < κc, the
overlap remains at the noise floor (typically of order n−1/2, dominated by
fluctuations and the seed); (ii) for κ > κc, mt grows approximately geo-
metrically for several iterations before saturating to a positive fixed point;
and (iii) the observed growth rate in the early iterations is well-fit by a line
in a logmt versus t plot, with slope increasing in κ. This diagnostic sepa-
rates the presence of a computational transition (an instability) from mere
improvements in the final decision statistic.
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Iteration counts and the logn prediction. Beyond the location of
the transition, one can test the claim that a vanishing seed is amplified
in O(log n) iterations when the instability condition holds. A practical ap-
proach is to fix (L, λ) above threshold and measure the smallest iteration Tϵ

at which the detection statistic exceeds a preset level ϵ (or the overlap exceeds
ϵ in planted diagnostics). Repeating across n and fitting Tϵ to a logn + b
yields an empirical confirmation of logarithmic iteration scaling. Here one
must keep track of the seeding mechanism: with a smaller seed, the inter-
cept b increases (as expected), while the slope a is governed by the linearized
amplification factor. It is also informative to compare several initializations
(random infinitesimal bias, a single seeded node, or a small seeded set) to
quantify the tradeoff between seeding strength and iteration count at fixed
(n,L, λ).
Baselines: what simpler tests achieve at finite n. To interpret per-
formance gains, it is useful to implement baseline polynomial-time detec-
tors that do not exploit harmonic consistency. Natural baselines include:
(i) single-frequency PCA (apply top-eigenvalue tests to Y (k) for a fixed k
or take the maximum over k); (ii) channel-wise aggregation without cou-
pling (e.g. average the top-eigenvalue statistics across k); (iii) low-degree
moment tests such as

∑L
k=1 ∥Y (k)∥2F and higher-degree trace polynomials

built from products of entries across a small number of frequencies. These
comparisons typically show two effects: first, methods that treat frequencies
independently exhibit thresholds essentially independent of L (up to trivial
averaging gains), while the coupled method improves markedly as L grows;
second, low-degree moment tests can improve with L but with a weaker
scaling (often consistent with a signal-to-noise gain like λ2

√
L rather than

λ
√
L), highlighting that the main advantage is not merely having L samples

but leveraging the algebraic constraint tying them together.
What can be checked about the low-degree picture. While low-degree
lower bounds are asymptotic and cannot be “proved by simulation,” one can
still probe the underlying combinatorics empirically by measuring the per-
formance of explicit low-degree statistics as L grows. For each fixed degree
d, one may define a small family of degree-d polynomials motivated by the
Hermite/graph expansion (e.g. sums of products of d matrix entries along
short cycles, with various assignments of frequencies), standardize them un-
der H0, and evaluate their empirical advantage under H1. The qualitative
prediction is that, at λ scaling like L−1/2, bounded-degree tests should not
show a uniformly strong separation as L → ∞, whereas the coupled AMP
statistic should. One may also examine how the best-performing polynomial
within a restricted class changes as a function of L, which is a numerical
proxy for the “degree must grow with L” phenomenon.

We stress, however, that such experiments are inherently limited: the
space of all degree-d polynomials is enormous, and failure of a few hand-
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chosen statistics does not approximate the low-degree optimum. The more
reliable numerical takeaway is therefore comparative: fixed-degree construc-
tions do not appear to track the same threshold curve as the coupled algo-
rithm when L grows.
Finite-size corrections and heuristic aspects that numerics do not
settle. Several features of the theory are expected to exhibit slow conver-
gence at moderate n, and numerical studies should be interpreted accord-
ingly. First, the critical window may be broad: even if the limiting threshold
is governed by λ2L ≈ 1, the empirical transition width in λ can be substan-
tial for n ≤ 103, especially when L grows with n. Second, the independence
structure across frequencies can be partially obscured by finite-size effects
when L is a non-negligible power of n, since many summary statistics aggre-
gate over Ln2 entries and thus have their own concentration scales. Third,
the constant κc is not universal across algorithmic choices: it depends on
the denoiser family (discrete vs continuous, truncation choice in the SO(2)
variant, damping, and any regularization used to stabilize iterates). Numer-
ics can calibrate κc for a given implementation, but cannot by themselves
justify that this constant matches the theoretically optimal Bayes threshold,
nor that the algorithm is optimal among all polynomial-time methods.

Finally, and most importantly, numerical work does not resolve the heuris-
tic step connecting low-degree failure to computational hardness. At best,
simulations can provide circumstantial support by showing a growing gap
between the coupled AMP detector and a suite of low-degree or spectral
baselines in the regime where the low-degree theory predicts vanishing ad-
vantage. Establishing (or refuting) the corresponding hardness statement
requires either a proof that all polynomial-time algorithms fail, or a coun-
terexample algorithm; neither can be supplied by finite-n experiments.
Summary of what numerics are for. In this problem, numerics are
most informative when used to (i) verify the λ

√
L collapse for the proposed

detector, (ii) confirm the predicted O(logn) iteration growth above threshold
and the role of seeding, (iii) benchmark against uncoupled baselines to isolate
the effect of harmonic consistency, and (iv) explore robustness to modeling
choices (GOE vs GUE, mild non-Gaussian noise, or truncation details in the
continuous model). They are least informative when used to make claims
about impossibility or tight optimality, which remain asymptotic and, in
part, conjectural.

Discussion and open problems. Our results isolate a clean scaling law—
the computational detection threshold is governed by the effective parameter
λ2L—but they also leave several natural questions open. We organize these
around (i) optimal constants and sharp asymptotics, (ii) estimation rather
than mere detection, (iii) subexponential-time tradeoffs when L is fixed, and
(iv) the precise status of the low-degree conjecture as a proxy for polynomial-
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time hardness in this frequency-coupled setting.

Optimal constants and sharp thresholds. The upper bound via FC-
AMP is driven by a linear instability of the uninformative fixed point, and
therefore it naturally predicts a critical value of the rescaled signal κ = λ

√
L

near a constant of order one. The low-degree lower bound, as stated, pro-
vides only a (different) absolute constant in the opposite direction. Closing
this constant gap is nontrivial for two reasons. First, on the algorithmic side,
one would like a proof that a concrete choice of denoiser/coupling map is op-
timal (or at least constant-optimal) among polynomial-time methods, which
requires controlling state evolution with sufficient precision to identify the
sharp instability point and to rule out improvements from more elaborate
nonlinearities or multi-step statistics. Second, on the lower-bound side, our
Hermite-chaos estimates are designed to be robust in L → ∞ regimes and
hence sacrifice sharpness in constants. A natural open problem is to com-
pute the limiting critical constant κc for the Bayes-optimal likelihood ratio
(or for the posterior) and to compare it to the AMP constant, i.e. to decide
whether κc is algorithm-independent (after normalization) or whether there
is a genuine constant-factor gap between efficient and information-theoretic
detection.

A related refinement concerns critical windows. Even if the limiting
threshold is at λ2L = 1, one expects a nontrivial scaling window for λ2L =
1 + O(n−α) where fluctuations matter and where the best achievable error
(or the log-likelihood ratio) admits a universal limit law. Identifying such
a window would sharpen the theory in the same spirit as BBP-type fluctu-
ation results for single-frequency spiked Wigner. Here the coupled multi-
frequency structure introduces additional aggregate fluctuations over k, and
understanding whether these reduce or enlarge the critical window is an open
technical challenge.

Detection versus estimation: weak recovery and overlap. The present
focus is on hypothesis testing, but the model is intrinsically an estimation
problem: infer x (or its phases) from {Y (k)}. In single-frequency spiked
Wigner with i.i.d. priors, detection and weak recovery typically coincide:
above the spectral/Bayes threshold one can construct an estimator with
nontrivial correlation, and below it both detection and correlation are im-
possible. In the frequency-coupled model, it is tempting to conjecture an
analogous equivalence with threshold λ2L = 1, but turning this into a theo-
rem requires a careful definition of overlap compatible with the group struc-
ture (e.g. modulo a global phase when appropriate) and an analysis of the
posterior landscape when many harmonics are present.

Concretely, one may ask for a rigorous statement of the following form: if
λ2L > 1+ε, then there exists a polynomial-time estimator x̂ such that a suit-
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able normalized correlation between x̂ and x is bounded away from 0 with
high probability; whereas if λ2L < 1 − ε, then no (possibly exponential-
time) estimator achieves nontrivial correlation. The second direction is
information-theoretic and would likely proceed via contiguity or mutual-
information bounds for the full multi-frequency observation; the first di-
rection requires proving that the FC-AMP iterates produce not merely a
detection statistic but an estimator whose overlap tracks state evolution.
While these statements are plausible, we emphasize that the coupling across
k introduces additional symmetries and potential metastability phenomena
that do not appear in the single-frequency model.

Beyond weak recovery: rounding, strong recovery, and exact regimes.
When the latent variables are discrete (ZL), one may also consider stronger
goals such as coordinate-wise recovery (possibly up to a global group action).
In dense synchronization-type models, exact recovery thresholds often scale
with log n once the per-node effective signal exceeds the typical maximum
noise fluctuation. In the present setting, heuristics suggest that aggregating
information across frequencies should reduce the required λ for a fixed target
accuracy, potentially leading to regimes where λ is much smaller than 1 yet
exact recovery remains possible provided L is large enough (e.g. λ2L ≳ log n
as a straw-man scaling). Determining the correct exact-recovery threshold—
and whether polynomial-time algorithms achieve it—is open.

Algorithmically, one expects a two-stage procedure: run FC-AMP to ob-
tain soft marginals πi ∈ ∆(ZL), then perform a rounding and synchroniza-
tion refinement (e.g. local MAP rounding followed by a global alignment).
Proving guarantees for such a pipeline in the dense, growing-L regime would
require new concentration inputs, since one must control not only a scalar
overlap but also coordinate-wise errors and the stability of the rounding step
under correlated multi-frequency noise.

Fixed L and subexponential-time tradeoffs. Our low-degree lower
bound is phrased for deg(pn) = o(L), which is the natural regime when
L → ∞ and one aims to rule out all constant-degree (and even slowly
growing-degree) polynomial tests. When L is fixed, however, the condi-
tion deg(pn) = o(L) becomes vacuous, and the question of computational
hardness below the single-frequency BBP scale becomes one of subexponen-
tial tradeoffs: how does the best achievable detection threshold depend on
runtime T (n) between poly(n) and exp(Θ(n))?

This is closely analogous to the landscape for tensor PCA and related
planted problems, where one observes a continuum of algorithmic thresholds
indexed by (for instance) the degree of sum-of-squares relaxations or the
exponent in T (n) = exp(nα). A compelling open problem is to develop
an explicit tradeoff curve for fixed L: for each α ∈ (0, 1), characterize the
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smallest λ = λ(n) detectable in time exp(nα). Even heuristic predictions
would be valuable here, since they would clarify whether the multi-frequency
coupling provides a qualitatively new source of hardness (beyond merely
increasing the data dimension) or whether the model reduces, at fixed L, to
known spiked-matrix tradeoffs.

From low-degree to algorithms: what degree is actually needed?
Theorem 2 suggests that degree d polynomials have vanishing advantage
when (λ2L)d is small, which is consistent with the heuristic that one needs
d ≳ 1/(log(λ−2L−1)) to see signal when λ2L < 1. In the regime λ2L ≈ 1− ε
this heuristic would push d to be of order 1/ε, whereas in regimes where
λ2L decays with n it suggests much larger degrees. An open problem is to
identify explicit constructive polynomial statistics whose degree matches the
low-degree prediction (up to constants) and to relate their computational
cost to degree in a precise way. In other words, can one design an explicit
family of degree-d tests that achieves the best possible low-degree advantage,
and does this interpolate between polynomial time and subexponential time
in a manner consistent with observed tradeoffs in other planted models?

Low-degree conjectures: scope and limits in coupled models. Our
conditional hardness statement relies on the standard low-degree conjecture,
but the frequency-coupled structure raises conceptual questions about how
directly the conjecture applies. The conjecture is most compelling when the
model has a single, relatively homogeneous observation tensor and when the
low-degree expansion aligns with natural algorithmic hierarchies (e.g. statis-
tical query lower bounds or sum-of-squares degree). Here the observation
is a collection of matrices with shared latent structure, and an algorithm
may exploit this structure through non-polynomial transformations (itera-
tive normalization, adaptive conditioning across k, or other operations that
are not transparently captured by a single low-degree polynomial).

One concrete direction is therefore to connect Theorem 2 to an explicit
lower bound in an algorithmic hierarchy, such as sum-of-squares. Proving
that SoS of degree o(L) fails below λ ≲ L−1/2 would substantially strengthen
the evidence for a genuine computational barrier. Conversely, finding an
algorithm that succeeds below the low-degree threshold would be equally
informative, as it would identify a mechanism (perhaps adaptive or non-
polynomial) not captured by the low-degree proxy.

Extensions and robustness: what changes the λ2L law? We have
emphasized that the improvement with L comes from harmonic consistency
rather than from having L independent replicas. It is natural to ask which
perturbations preserve the λ2L scaling and which destroy it. Examples in-
clude: mild dependence across frequencies W (k), non-Gaussian noise with
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matched variance, missing frequencies, or mismatched priors (e.g. x not ex-
actly uniform on ZL). On the algorithmic side, FC-AMP is expected to
be robust to some model mismatch, but quantifying this robustness at the
threshold level (as opposed to constant-λ regimes) remains open. On the
lower-bound side, extending growing-L Hermite-chaos arguments beyond
i.i.d. Gaussian entries requires new ideas, since the orthogonal polynomial
machinery is then less directly applicable.

Summary of open problems. We view the following as particularly crisp
targets:

1. Determine the sharp constant threshold for Bayes-optimal detection
and compare it to FC-AMP (constant optimality).

2. Prove (or refute) equivalence of detection and weak recovery at thresh-
old λ2L = 1 in the growing-L regime.

3. Characterize exact/strong recovery thresholds as a function of (n,L, λ),
and design polynomial-time methods that achieve them.

4. Develop a subexponential-time tradeoff theory for fixed L, analogous
to known tradeoffs in tensor PCA.

5. Establish unconditional algorithmic lower bounds (e.g. SoS degree lower
bounds) matching the low-degree picture, or exhibit algorithms that
bypass it.

Resolving any of these would materially sharpen the emerging principle sug-
gested by the present work: multi-frequency structure can lower computa-
tional thresholds, but the precise limits of this phenomenon depend delicately
on what information can be coupled efficiently across harmonics.
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