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Abstract
We study the feasibility of fitting n random points in Rd drawn

i.i.d. from N (0, Id/d) by the boundary of a centered ellipsoid. Writing
an ellipsoid as {x : x⊤Sx = 1} with S ⪰ 0, this becomes a semidefi-
nite feasibility problem with rank-one quadratic measurements x⊤

i Sxi.
Prior work conjectured a sharp satisfiability threshold at n/d2 = 1/4
(Saunderson–Parrilo–Willsky), while recent results identify a sharp
threshold at 1/4 only for bounded-spectrum approximate fits (Mail-
lard–Bandeira, 2023). We propose an approach to upgrade the ap-
proximate bounded transition to an exact feasibility transition by prov-
ing a boundedness/regularity principle for PSD feasibility under Gaus-
sian rank-one measurements and a ‘polishing’ argument that converts
bounded approximate solutions into exact feasible solutions without
leaving the PSD cone. The main theorem establishes that perfect el-
lipsoid fitting is possible w.h.p. for n ≤ (1/4 − ε)d2 and impossible
w.h.p. for n ≥ (1/4 + ε)d2, and that feasible instances admit solu-
tions with uniformly bounded operator norm. This gives a flagship
instance where Gaussian-width heuristics correctly predict an exact
conic satisfiability phase transition for structured measurements, with
implications for SDP phase transitions and modern quadratic-feature
learning models.
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1 Introduction and main results: statement of the
exact threshold at 1/4, discussion of history (SPW13
conjecture, MB23 approximate threshold), and
implications for SDP feasibility and learning the-
ory.

We study the following basic question in high-dimensional geometry: given
random points x1, . . . , xn ∈ Rd, when do they lie exactly on the boundary of
some centered ellipsoid? Writing a centered ellipsoid as

E(S) := {x ∈ Rd : x⊤Sx = 1}, S ⪰ 0,

the problem becomes the feasibility of the quadratic system x⊤i Sxi = 1 for
all i ∈ [n]. Throughout we take xi

i.i.d.∼ N (0, Id/d), so that E∥xi∥22 = 1, and
we focus on the proportional regime n = αd2 with α held fixed as d → ∞.
The scale d2 is not an artifact of the proof: the unknown S ∈ Sd has

(
d+1
2

)
degrees of freedom, so the number of constraints must grow quadratically
with d for a nontrivial transition to occur.

Our main conclusion is that the random feasibility event admits a sharp
threshold at the constant α = 1/4. In the satisfiable regime α < 1/4, a fitting
ellipsoid exists with high probability, whereas above 1/4 feasibility fails with
high probability. While an informal heuristic for a d2-scale transition can be
extracted from dimension counting or genericity, the appearance of the con-
stant 1/4 is genuinely geometric: it is the same constant that governs phase
transitions for Gaussian conic feasibility problems in which the feasible set
is the positive semidefinite cone Sd+. For truly i.i.d. Gaussian measurements
(e.g. ⟨Gi, S⟩ = 1 with Gi symmetric Gaussian), conic integral geometry pre-
dicts a transition at the squared Gaussian width of Sd+∩Sd(d+1)/2−1, which is
asymptotic to d2/4. Our setting is subtler: the measurements are rank-one
projectors xix

⊤
i , which are neither independent entries nor full-dimensional

in any naive sense, and the proof must exploit both the rotational invariance
of xi and the special structure induced by rank-one observations.

The exact feasibility threshold has been explicitly conjectured in earlier
work. In particular, ? formulated the conjecture that random points ad-
mit a centered ellipsoid fit precisely up to α = 1/4 (in the above scaling),
motivated by numerical experiments and analogies with random convex pro-
grams. A major step toward this conjecture was made recently by ?, who
established a sharp transition at α = 1/4 for a bounded-spectrum approxi-
mate fitting notion. Roughly speaking, they showed that when one restricts
attention to matrices S ⪰ 0 with ∥S∥op bounded by a constant independent
of d, the average constraint violation (1/n)

∑
i |x⊤i Sxi − 1| can be driven to

O(1/
√
d) if and only if α < 1/4. This approximate model is natural for at

least two reasons. First, for S = Id we have x⊤i Sxi = ∥xi∥22, which con-
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centrates around 1 with fluctuations of order 1/
√
d, so an O(1/

√
d) error

level is the correct baseline. Second, bounding ∥S∥op excludes extremely ill-
conditioned ellipsoids, a restriction that is unavoidable in many algorithmic
and statistical applications.

However, approximate feasibility under a bounded-spectrum constraint
does not immediately resolve the exact problem. There are two gaps that
must be closed. Below the transition, one must show that a matrix achieving
small average error can be polished into an exact feasible solution without
losing positive semidefiniteness. Above the transition, one must rule out
the possibility that exact feasibility persists via pathological solutions with
∥S∥op → ∞, i.e. ellipsoids that fit all points exactly but only by becoming
increasingly degenerate in some directions. Such solutions are not prohibited
by MB23-type statements, since those statements explicitly impose a spectral
bound. The core contribution here is to show that these gaps can in fact
be closed, thereby upgrading the approximate transition at 1/4 to an exact
feasibility transition at the same location.

On the satisfiable side α < 1/4, the key point is that bounded-spectrum
approximate feasibility is not merely a surrogate for exact feasibility; it is
a robust precursor. In the relevant regime, the measurement operator in-
duced by the rank-one matrices xix

⊤
i is well-conditioned on appropriate

cones of perturbations, so that one can solve a linear correction problem
A(∆) = 1−A(S0) with ∆ controlled in norm. Once the correction is small
in operator norm compared to the spectral margin of S0 (or compared to its
positive eigenspace structure), deterministic eigenvalue perturbation bounds
ensure that S0+∆ ⪰ 0. This “approximate-to-exact” implication is the tech-
nical mechanism by which MB23-type approximate solutions are converted
into exact fits with no residual error. From a geometric viewpoint, we are
exploiting that, below the transition, the intersection of the affine constraint
set with Sd+ is not only nonempty but also stable under small perturbations
of the constraints.

On the unsatisfiable side α > 1/4, the central issue is to preclude ill-
conditioned exact fits. The logical structure we use is a boundedness im-
plication: if an exact feasible solution S exists at all, then from it we can
construct a bounded-spectrum approximate solution S̃ with vanishing av-
erage error as the spectral bound M grows. Intuitively, we truncate the
spectrum of S (or otherwise regularize it) to obtain S̃ with ∥S̃∥op ≤ M , and
we show that the truncation affects the quadratic forms x⊤i Sxi only mildly
on average for Gaussian xi. A nontrivial part of the argument is to quantify
this “mildly” in a way that is uniform along the n = αd2 scaling. Once
this implication is established, MB23’s result applies contrapositively: if no
bounded-spectrum approximate fit exists for α > 1/4, then no exact fit can
exist either, regardless of how large ∥S∥op is allowed to be. This shows that
the transition at 1/4 is not an artifact of excluding degenerate ellipsoids;
rather, degeneracy cannot salvage feasibility above the threshold.
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In addition to resolving the conjectured threshold, the above reasoning
has consequences for semidefinite programming feasibility more broadly. The
ellipsoid fitting problem is a feasibility SDP with rank-one constraints, and
random instances of such SDPs arise naturally in relaxations of noncon-
vex problems and in randomized constructions of geometric objects. The
statement that feasibility undergoes a sharp transition at a constant α is a
concrete manifestation of the general phenomenon that random conic pro-
grams are governed by the intrinsic geometry of the underlying cone. Here
the cone is Sd+, and the constant 1/4 reflects its statistical dimension relative
to the ambient space Sd. Our contribution can thus be viewed as identify-
ing a setting where rank-one structure does not destroy the conic-geometric
prediction, and moreover where exact feasibility inherits the same transition
as bounded-spectrum approximate feasibility.

There are also algorithmic and statistical implications. Below α = 1/4,
the existence of a bounded-spectrum exact fit implies that one can, with
high probability, find a fitting ellipsoid in polynomial time by standard con-
vex optimization tools, possibly supplemented with a final correction step
enforcing exact constraints. Such a procedure can be interpreted as a stable
method for fitting a quadratic form to data in the high-dimensional propor-
tional regime. In learning-theoretic language, one may view S as defining a
Mahalanobis-type geometry or a quadratic classifier of the form x 7→ x⊤Sx.
Exact fitting corresponds to placing all training points on a prescribed level
set, while boundedness of ∥S∥op controls the complexity of the hypothesis
class and is closely related to margin or condition-number constraints. The
sharpness of the transition thus quantifies a precise sample-size barrier for
such constrained quadratic representations in the random-design model.

Finally, we emphasize the conceptual message about “well-behaved” so-
lutions. The possibility of exact feasibility via unbounded spectra would
create an uncomfortable dichotomy: the primal feasibility problem would be
satisfiable, but only through solutions that are unstable, poorly conditioned,
and essentially invisible to bounded regularization. Our results rule out this
pathology in the present model. Above the transition, infeasibility is cer-
tified in a strong sense; below it, feasibility can be achieved with uniform
spectral control. In particular, the threshold at α = 1/4 is simultaneously a
threshold for existence and a threshold for existence of solutions that remain
controlled as d → ∞.

We next reformulate the problem in a form suitable for analysis. The
quadratic constraints x⊤i Sxi = 1 can be written as linear equations in the
lifted variable S against the rank-one matrices Xi := xix

⊤
i , leading naturally

to a linear operator A : Sd → Rn and its adjoint A∗. This convex-analytic
viewpoint makes duality available and allows us to articulate infeasibility via
explicit dual certificates, while also isolating the operator-theoretic proper-
ties needed for polishing approximate solutions into exact ones.
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2 Geometric and convex-analytic reformulation: el-
lipsoids as PSD matrices, linear operator A in-
duced by rank-one projectors xix

⊤
i , primal feasi-

bility and dual certificates.

We work throughout in the Euclidean space of real symmetric matrices Sd,
equipped with the trace inner product

⟨U, V ⟩ := Tr(UV ), U, V ∈ Sd,

so that Sd+ ⊂ Sd is a closed convex cone and (Sd+)∗ = Sd+. The basic obser-
vation is that each quadratic constraint x⊤i Sxi = 1 can be written linearly
in S by introducing the rank-one projector

Xi := xix
⊤
i ∈ Sd+,

since x⊤i Sxi = Tr(Sxix
⊤
i ) = ⟨S,Xi⟩. This leads to a linear measurement

operator A : Sd → Rn defined by

(A(S))i := ⟨S,Xi⟩, i ∈ [n],

and its adjoint A∗ : Rn → Sd,

A∗(y) =
n∑
i=1

yiXi,

characterized by ⟨y,A(S)⟩Rn = ⟨A∗(y), S⟩ for all S ∈ Sd and y ∈ Rn. In
this notation, exact centered ellipsoid fitting becomes the conic feasibility
problem

find S ∈ Sd+ such that A(S) = 1 ∈ Rn. (1)

Equivalently, we ask whether the affine subspace {S ∈ Sd : A(S) = 1}
intersects the cone Sd+. The feasible set (when nonempty) is thus a spectra-
hedron, and many geometric questions about ellipsoid fitting can be phrased
as questions about random affine slices of Sd+.

Two elementary remarks clarify what is gained by the lifting (1). First,
convexity becomes explicit: the constraint S ⪰ 0 is convex, and A(S) = 1
is an affine condition. Second, the formulation isolates the random ob-
ject that drives the phase transition, namely the linear map A induced
by the random rank-one matrices Xi. In particular, all probabilistic state-
ments about feasibility can be viewed as statements about the position of
range(A∗) = span{X1, . . . , Xn} ⊂ Sd relative to the cone Sd+, or dually about
the kernel of A. While the original variables live in Rd, the lifted geometry
takes place in ambient dimension dim(Sd) = d(d + 1)/2, and the propor-
tional scaling n = αd2 is precisely the regime in which random subspaces of
Sd undergo nontrivial conic-intersection transitions.
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The conic viewpoint also provides a canonical language for infeasibility.
Since Sd+ is a closed convex cone and A is linear, standard separation prin-
ciples imply a Farkas-type alternative: either (1) is feasible, or there exists
a separating hyperplane witnessed by a vector y ∈ Rn such that A∗(y) be-
longs to the dual cone and the affine right-hand side 1 is strictly separated.
Concretely, if we consider the (trivial-objective) primal conic program

minimize 0

subject to A(S) = 1,

S ⪰ 0,

(2)

then its Lagrangian with multiplier y ∈ Rn is

L(S, y) = ⟨y,1−A(S)⟩ = ⟨y,1⟩ − ⟨A∗(y), S⟩.

The associated dual program is

maximize ⟨y,1⟩
subject to A∗(y) ⪯ 0,

(3)

and the weak-duality inequality reads

⟨y,1⟩ ≤ ⟨A∗(y), S⟩ ≤ 0 for all primal-feasible S ⪰ 0 and dual-feasible y with A∗(y) ⪯ 0.

Equivalently, by flipping signs, we may state the dual feasibility condition
as A∗(y) ⪰ 0 and seek ⟨y,1⟩ < 0, which is the form most convenient for
certificates. Indeed, if there exists y ∈ Rn such that

A∗(y) ⪰ 0 and ⟨y,1⟩ < 0, (4)

then no S ⪰ 0 can satisfy A(S) = 1, since otherwise

0 ≤ ⟨A∗(y), S⟩ = ⟨y,A(S)⟩ = ⟨y,1⟩ < 0,

a contradiction. We refer to any y satisfying (4) as a dual certificate (or dual
witness) of infeasibility. In our random model, constructing such a certificate
amounts to choosing weights y1, . . . , yn so that the weighted sum

∑
i yixix

⊤
i

is positive semidefinite, while the scalar sum
∑

i yi is strictly negative.
The structure of A∗(y) is worth emphasizing. Since each Xi is rank one,

A∗(y) is a (possibly signed) weighted sample covariance matrix. If all weights
yi are nonnegative, then A∗(y) ⪰ 0 holds automatically, but then ⟨y,1⟩ =∑

i yi ≥ 0 and (4) cannot occur. Thus any certificate must necessarily involve
a nontrivial cancellation among the weights, with enough negative mass to
make

∑
i yi < 0 while still leaving the matrix

∑
i yixix

⊤
i positive semidefinite.

This cancellation perspective is useful later, since it frames infeasibility as
the existence of a signed reweighting of the data whose covariance becomes
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PSD in a way incompatible with the imposed normalization A(S) = 1. It
also indicates why arguments based purely on entrywise independence are
unavailable: the random matrices Xi have a rigid eigenstructure (one nonzero
eigenvalue equal to ∥xi∥22), and A∗(y) lives in the span of these rank-one
directions.

We can also interpret (1) as a random linear system with a cone con-
straint. Writing m := d(d + 1)/2, we may identify Sd with Rm via any
orthonormal basis for the trace inner product, and A with an n×m matrix
whose ith row is the vectorization of Xi. In this representation, A is far from
an i.i.d. Gaussian matrix: the rows are dependent across coordinates because
they originate from rank-one outer products. Nevertheless, E[Xi] = Id/d and
the distribution is rotationally invariant in the sense that for any orthogonal
Q ∈ Rd×d, QXiQ

⊤ has the same law as Xi. This symmetry is the primary
substitute for entrywise independence; it suggests that the relevant geome-
try should be invariant under conjugation and hence expressible in terms of
spectral data.

There is a complementary, nonconvex but often insightful, parameteriza-
tion of the primal constraint. If S ⪰ 0 then S = UU⊤ for some U ∈ Rd×r,
and the constraints become

x⊤i UU⊤xi = ∥U⊤xi∥22 = 1 (i ∈ [n]).

Thus, fitting an ellipsoid is equivalent to finding a linear map U⊤ : Rd → Rr
that sends all data points to the unit sphere in Rr. The convex lifting
replaces the choice of U (and the unknown rank r) by the matrix S, in
exchange for enlarging the ambient dimension but gaining convexity. This
viewpoint helps explain why the operator norm ∥S∥op plays a privileged
role: ∥S∥op = ∥U∥2op controls the Lipschitz constant of the embedding x 7→
U⊤x, and hence bounds how violently the map can distort directions in Rd.
Pathological exact fits above the transition would correspond to maps U with
exploding operator norm that place the points on a sphere only by collapsing
or stretching certain directions extremely.

Both the primal and dual formulations highlight a general dichotomy:
below the transition we seek to establish existence of an S with quantitative
spectral control, whereas above the transition we seek either a dual certifi-
cate y as in (4) or an argument showing that any primal solution would force
a well-behaved approximate solution. In either route, the probabilistic chal-
lenge is to understand the random operator A induced by Xi = xix

⊤
i . In par-

ticular, one repeatedly encounters two competing effects. On the one hand,
because each xi is Gaussian and rotationally invariant, linear and quadratic
forms in xi enjoy strong concentration and admit comparison principles with
genuinely Gaussian objects. On the other hand, the rank-one structure im-
poses heavy algebraic constraints: the measurements ⟨S,Xi⟩ are not inde-
pendent across different S, and A is not an isotropic embedding of Sd in the
same sense as an i.i.d. Gaussian measurement ensemble.
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To prepare for the quantitative tools that follow, it is useful to isolate
the geometric primitives that enter the analysis. The cone Sd+ is self-dual
and invariant under conjugation by orthogonal matrices; its intrinsic geom-
etry can be captured by notions such as statistical dimension and Gaussian
width. The measurement map A defines a random affine slice of this cone,
and feasibility depends on whether this slice hits the cone in a region that
is not too close to the boundary (in the satisfiable regime) or, conversely,
whether the slice can be strictly separated from the cone (in the unsatis-
fiable regime). When we speak of “polishing” an approximate solution, we
are implicitly using that A is well-conditioned on certain tangent or descent
cones determined by the PSD constraint and the spectral regularity of the
approximate solution. When we speak of a dual witness, we are using that
a random span of rank-one projectors typically intersects the dual cone in
a way that permits strict separation once the number of constraints exceeds
the critical value.

At this point, the problem has been reduced to an interplay between (i)
conic geometry of Sd+ in ambient dimension Θ(d2) and (ii) random linear
maps generated by rank-one Gaussian projectors. The remaining task is to
import a toolbox that can make this interplay quantitative at the level of
constants. In the i.i.d. Gaussian measurement model, sharp thresholds are
governed by conic integral geometry and comparison inequalities of Gordon
type; in our rank-one model, we require universality inputs and careful re-
placements for isotropy and independence. We therefore turn next to the
relevant background: Gaussian widths and statistical dimension heuristics,
Gordon-type arguments, and the volume-universality phenomena leveraged
by ?, along with an explanation of why the rank-one structure is precisely
the point at which the exact feasibility analysis becomes nontrivial.

3 Background toolbox: conic integral geometry (Gaus-
sian width), Gordon-type heuristics, volume uni-
versality (as in MB23), and why rank-one struc-
ture complicates exact feasibility.

We now summarize the probabilistic and geometric toolbox that governs
threshold phenomena for conic feasibility, and we explain why the rank-one
structure Xi = xix

⊤
i forces additional work when we pass from bounded-

spectrum approximate statements to exact feasibility. The guiding principle
is that in ambient dimension m = dim(Sd) = d(d + 1)/2, the event that a
random affine slice intersects a closed convex cone is controlled, to first order,
by a single scalar parameter of the cone (its statistical dimension), and that
the constant 1/4 arises from the fact that δ(Sd+) ∼ d2/4. The technical
burden is to justify that our rank-one measurement operator A exhibits the
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same effective geometry as an i.i.d. Gaussian operator on the relevant sets
of matrices.

Gaussian width and statistical dimension. Let g ∼ N (0, Im) and let
T ⊂ Rm be bounded. The Gaussian width of T is

w(T ) := E
[
sup
t∈T

⟨g, t⟩
]
.

For a closed convex cone C ⊂ Rm, one typically takes T = C∩Sm−1, so that
w(C∩Sm−1) measures the “size” of the cone as seen by a Gaussian direction.
Closely related is the statistical dimension

δ(C) := E
[
∥ΠC(g)∥22

]
,

where ΠC denotes Euclidean projection onto C. For cones, these quantities
satisfy inequalities of the form

w(C ∩ Sm−1)2 ≤ δ(C) ≤ w(C ∩ Sm−1)2 + 1,

so either can be used as the governing parameter at the level of leading
constants. The statistical dimension enjoys particularly clean identities and
kinematic formulas; it is also stable under orthogonal transformations, which
is essential for rotationally invariant models.

In our setting the ambient space is (Sd, ⟨·, ·⟩), which we may identify with
Rm using any orthonormal basis for the trace inner product. The cone Sd+
is orthogonally invariant under conjugation, and its statistical dimension is
known explicitly (see, e.g., ?): one has

δ(Sd+) =
d(d+ 1)

4
, (5)

so δ(Sd+)/d2 → 1/4. This identity is the quantitative origin of the constant
1/4 appearing in the phase transition.

Conic kinematics and threshold heuristics. A basic template is the
following: let C ⊂ Rm be a closed convex cone and let L ⊂ Rm be a random
subspace of codimension n, distributed uniformly over the Grassmannian.
Conic integral geometry predicts a sharp transition for the intersection event
C ∩ L ̸= {0} as n passes δ(C). More precisely, the approximate kinematic
formula (again, see ?) asserts that if L is random and independent of C,
then

P[C ∩ L ̸= {0}] ≈

{
1, n < δ(C),

0, n > δ(C),

with a window of width O(
√
m) around δ(C). While our feasibility problem

is an affine intersection rather than a homogeneous one, the same geometry
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appears after linearization at a point and after passing to tangent/descent
cones: the local obstruction to feasibility (or the local well-conditioning
needed for “polishing”) is governed by whether the kernel of the measure-
ment operator intersects an appropriate cone nontrivially.

If, hypothetically, A were an i.i.d. Gaussian operator on Sd (i.e. its matrix
representation had independent N (0, 1) entries after choosing an orthonor-
mal basis), then ker(A) would be a uniformly random subspace of dimension
m−n. The conic kinematic heuristic would then suggest that phenomena tied
to the PSD constraint should undergo transitions near n ≈ δ(Sd+) ≈ d2/4,
that is, at α = n/d2 ≈ 1/4. This is the “cone-only” prediction: it ignores
rank-one structure and uses only the orthogonal invariance of a Gaussian
embedding.

Gordon-type comparisons (escape through a mesh). A complemen-
tary viewpoint is provided by Gordon’s inequality for Gaussian processes,
which yields quantitative lower bounds for inft∈T ∥Gt∥2 when G is a Gaus-
sian matrix. In one convenient form (escape through a mesh), if G ∈ Rn×m
has i.i.d. N (0, 1) entries and T ⊂ Sm−1 is measurable, then with high prob-
ability

inf
t∈T

∥Gt∥2 ≳
√
n− w(T ),

up to lower-order terms. Applied with T = C ∩ Sm−1, this gives that G
is bounded below on the cone (equivalently, ker(G) ∩ C = {0}) once n >
w(C ∩ Sm−1)2 ≈ δ(C). In conic optimization, such lower bounds translate
into stability (restricted invertibility) on tangent or descent cones, which is
exactly the type of estimate one needs for a polishing step: if the residual lies
in the range of A and A is well-conditioned on the relevant cone of allowable
corrections, then one can solve A(∆) = r with ∆ controlled in Frobenius
and operator norms.

In the i.i.d. Gaussian measurement model, the Gordon mechanism essen-
tially explains both sides of a sharp transition: above the threshold, random
subspaces avoid the cone (yielding separation/infeasibility), while below the
threshold, the operator is sufficiently well-conditioned on the appropriate
cones to allow correction and stability. Thus, if we could replace our rank-
one A by a Gaussian G without changing the relevant conic geometry, the
constant 1/4 would be immediate from (5).

What “universality” must accomplish. Our operator A is not Gaussian
in Sd: its ith measurement is the quadratic form ⟨S,Xi⟩ = x⊤i Sxi, and as
S varies the family {x⊤i Sxi} is a second-order Gaussian chaos rather than a
linear Gaussian process with independent coordinates. Moreover, the rows
of the matrix representation of A (the vectorizations of Xi) are not isotropic
in Rm without a nontrivial covariance correction, and they are constrained
to lie in the rank-one manifold inside Sd. Thus, to import conic integral
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geometry heuristics we need a universality principle: at the scale n = Θ(d2),
the random affine slice induced by A should behave like a slice induced by a
rotationally invariant ensemble in Sd, at least when tested against suitably
regular sets of matrices.

The relevant notion of universality here is not entrywise universality
(which would fail because the vectorized Xi are highly dependent across co-
ordinates), but rather volume or conic universality: random convex bodies
or random cones generated by the measurements should have asymptoti-
cally the same intrinsic volumes as those generated by a Gaussian ensemble.
Informally, when we restrict attention to sets of matrices with bounded oper-
ator norm (or bounded condition number), the anisotropy introduced by the
rank-one structure averages out by rotational invariance of the xi, and the
resulting geometry becomes indistinguishable from the Gaussian benchmark.

Volume universality in the sense of ?. The work ? establishes pre-
cisely such a statement for an approximate version of ellipsoid fitting with
explicit spectral regularization. While we defer the formal restatement to the
next step, we emphasize here what is conceptually gained. First, by imposing
∥S∥op ≤ M and allowing average constraint violation on the order ε/

√
d, one

restricts attention to a compact, well-behaved subset of Sd+ on which concen-
tration and metric-entropy arguments can be made uniform in d. Second, the
approximate constraints naturally match the scale of fluctuations of ∥xi∥22
and, more generally, of x⊤i Sxi when Tr(S) is O(d) and ∥S∥op is O(1): indeed,
for such S, one has E[x⊤i Sxi] = Tr(S)/d and Var(x⊤i Sxi) = Θ(∥S∥2F /d2),
which is typically Θ(1/d) when ∥S∥F = Θ(

√
d). Thus the normalization

ε/
√
d reflects the intrinsic noise level of the rank-one measurements.
At a high level, volume-universality arguments proceed by comparing

the random image (or preimage) of a fixed convex set under two ensembles:
the rank-one ensemble induced by xix

⊤
i and a Gaussian ensemble on Sd.

The comparison is not pointwise; instead it controls global quantities such
as intrinsic volumes, support functions after smoothing, or probabilities of
separation for families of halfspaces. The bounded-spectrum condition is
essential: it ensures that the relevant processes (suprema over S in a bounded
set) are governed by Lipschitz functionals of the data with respect to a norm
compatible with Gaussian comparison principles. In turn, this allows one to
show that the approximate feasibility event has the same limiting behavior
as in the i.i.d. Gaussian measurement model, hence exhibiting a transition
at the constant predicted by (5), namely 1/4.

Why rank-one structure complicates exact feasibility. Exact feasi-
bility removes both regularizers at once: we require A(S) = 1 exactly, and
we do not a priori bound ∥S∥op. This creates two distinct obstructions.

First, the rank-one structure makes A potentially poorly conditioned on
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directions associated with high condition number matrices. If S has a very
large top eigenvalue, then the random variables x⊤i Sxi become sensitive to
rare alignments of xi with the top eigenvector of S. In a Gaussian mea-
surement model on Sd such rare alignments are averaged over independent
coordinates; in the rank-one model they interact with the single-direction
nature of each Xi. Consequently, uniform concentration over unbounded
families of S is unavailable, and it is not legitimate to directly pass from
the approximate transition to the exact one without showing that any exact
solution can be regularized.

Second, exact feasibility is a boundary question for the cone: feasible
spectrahedra can in principle touch ∂Sd+ in complicated ways, and the exis-
tence of a feasible point does not automatically yield a feasible point with a
spectral gap. For polishing arguments, however, one needs a quantitative in-
teriority statement (or at least control on the smallest nonzero eigenvalues on
the support) in order to perturb while preserving positive semidefiniteness.
In the Gaussian measurement model, conic integral geometry can often be
invoked directly to show that random slices intersect the cone transversely,
yielding typical nondegeneracy. In the rank-one model, transversality must
be proved by hand on the relevant cones, and it can fail if one allows S to
approach extreme ill-conditioning.

These obstructions explain the division of labor in our approach. On the
satisfiable side, we will rely on bounded-spectrum approximate feasibility (a
robust, “interior” statement) and then prove that A is well-conditioned on
a cone of allowable corrections, enabling an approximate-to-exact polishing
step with controlled operator norm. On the unsatisfiable side, we must rule
out the possibility that feasibility persists only through ill-conditioned solu-
tions: one must show that any putative exact feasible S can be truncated,
rescaled, or otherwise regularized to produce a bounded-spectrum approxi-
mate feasible solution, contradicting the approximate infeasibility above the
transition.

Analytic substitutes for i.i.d. Gaussian measurements. To execute
these steps, we repeatedly use tools that play the role of Gordon-type bounds
and RIP-type estimates, but adapted to quadratic measurements. For fixed
S, the random variable x⊤Sx admits sharp tail bounds via Hanson–Wright
inequalities; for families of S, one uses symmetrization and chaining for
second-order Gaussian chaos, with metrics induced by ∥·∥F and ∥·∥op. At the
operator level, A∗(y) =

∑
i yixix

⊤
i is a weighted sample covariance matrix,

for which nonasymptotic spectral bounds follow from matrix Bernstein-type
inequalities when the weights and norms are controlled. The point is not that
these tools reproduce entrywise independence, but that they allow us to prove
cone-restricted invertibility and spectral stability on the specific subsets of Sd
that arise from bounded-spectrum approximate solutions and their tangent

13



cones.
Taken together, conic integral geometry provides the constant 1/4 and

the correct qualitative picture; Gordon-type arguments indicate what quan-
titative conditioning statements suffice for polishing and separation; and the
volume-universality results of ? supply a rigorous starting point in the rank-
one model, but only under bounded-spectrum approximate notions. The
remaining work is therefore structural: we must (i) show that below the
transition, bounded-spectrum approximate fits can be polished to exact fits
using restricted invertibility of A on a suitable cone, and (ii) show that above
the transition, any exact fit would necessarily induce a bounded-spectrum
approximate fit, eliminating the possibility of purely ill-behaved solutions.
We now begin with the approximate transition statement and formulate the
reduction targets precisely.

Step I: bounded-spectrum approximate feasibility as the starting
point. We introduce an approximate and regularized notion of ellipsoid
fitting, which will serve as the input to all subsequent reductions. Fix an
approximation tolerance parameter ϵ > 0 and an operator-norm bound M ∈
(0,∞). We consider the event

EFPϵ,M (n, d) : ∃S ∈ Sd+ s.t. ∥S∥op ≤ M and
1

n

n∑
i=1

∣∣x⊤i Sxi − 1
∣∣ ≤ ϵ√

d
.

This is the “bounded-spectrum approximate fitting” event: the quadratic
constraints are enforced only on average and at the intrinsic fluctuation scale
1/
√
d, while the spectrum of S is confined to a compact set. We stress that

the constraint ∥S∥op ≤ M is not a technical convenience but the structural
hypothesis under which volume-universality methods can be made uniform
over d; without it, one must contend with genuinely non-uniform behavior
driven by rare alignments of xi with extreme eigendirections.

A useful companion formulation is an ℓ2-residual variant, aligned with
the linear correction step used in polishing. We define

EFP
(2)
ϵ,M (n, d) : ∃S ∈ Sd+ s.t. ∥S∥op ≤ M and ∥A(S)− 1∥2 ≤ ϵ

√
n

d
.

While EFPϵ,M is stated in average absolute error, it is convenient to pass
between ℓ1 and ℓ2 residuals under bounded spectrum: for each fixed M ,
the random variables x⊤i Sxi are uniformly sub-exponential over the class
{S ⪰ 0 : ∥S∥op ≤ M}, so with high probability one has a mild (e.g. poly-
logarithmic) control on maxi |x⊤i Sxi|; in that regime, an ℓ1 bound of order
ϵ/
√
d implies an ℓ2 bound of order ϵ

√
n/d up to constants. Accordingly, we

will treat EFPϵ,M and EFP
(2)
ϵ,M as interchangeable inputs, at the expense of

adjusting constants depending on (ϵ,M).
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MB23 transition at α = 1/4. We now record the approximate phase
transition proved in ?, specialized to our notation n = αd2 and to the Gaus-
sian design xi ∼ N (0, Id/d). The statement we require is that, once ϵ > 0
is fixed, bounded-spectrum approximate feasibility undergoes a sharp tran-
sition at α = 1/4, matching the statistical-dimension prediction for Sd+.

Theorem (MB23, bounded-spectrum approximate transition). Fix
ε ∈ (0, 1/10). There exist constants ϵ0 = ϵ0(ε) > 0 and M0 = M0(ε) < ∞
such that the following holds as d → ∞ with α = n/d2 converging.

1. (Approximate satisfiability below 1/4.) If α ≤ 1
4 − ε, then

P
[
EFPϵ0,M0(n, d)

]
→ 1 .

2. (Approximate unsatisfiability above 1/4.) If α ≥ 1
4 + ε, then for every

fixed M < ∞,
P
[
EFPϵ0,M (n, d)

]
→ 0 .

Equivalently (up to constant renormalization), the same conclusions hold
with EFP

(2)
ϵ0,M

in place of EFPϵ0,M .

For our purposes, the essential content is not the precise form of the toler-
ance (whether average absolute error or ℓ2-residual) but the existence of some
tolerance level ϵ0(ε) and some boundedness level M0(ε) for which the proba-
bility transition at α = 1/4 is rigorous in the rank-one model. In particular,
this theorem identifies the same constant 1/4 that conic integral geometry
predicts for rotationally invariant Gaussian embeddings, thereby confirming
that the rank-one ensemble is “conically universal” at the bounded-spectrum
level.

Normalization and scale of the approximation error. It is worth
making explicit why the scale ϵ/

√
d is the natural one. For any fixed S ⪰ 0

with ∥S∥op ≤ M and Tr(S) = Θ(d), we have

E[x⊤Sx] =
Tr(S)

d
= Θ(1) , Var(x⊤Sx) =

2∥S∥2F
d2

= Θ

(
1

d

)
when ∥S∥F = Θ(

√
d) ,

so an individual constraint x⊤i Sxi ≈ 1 cannot typically be enforced to better
than O(1/

√
d) accuracy uniformly over i without overfitting. The MB23

formulation allows exactly this intrinsic scale of fluctuation while controlling
the class of candidate matrices by ∥S∥op ≤ M . Consequently, the bounded-
spectrum approximate event is robust: it is insensitive to a small number of
atypical xi, and it is stable under small perturbations of S, both of which
are necessary for universality and for subsequent correction arguments.
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Reduction targets: from approximate to exact, and from exact to
approximate. The MB23 theorem does not, by itself, imply a statement
about exact feasibility EFP0,∞, because exact feasibility removes both reg-
ularizers simultaneously: we demand A(S) = 1 exactly, and we allow ∥S∥op
to be arbitrarily large. Our strategy is therefore to use MB23 as a black box
and reduce the exact phase transition to two additional implications, each of
which is proved by a separate argument tailored to rank-one measurements.

We formalize these implications as follows. First, in the satisfiable regime
α ≤ 1

4 − ε, MB23 provides (with high probability) a matrix S0 ⪰ 0 with
bounded operator norm and small residual r := A(S0)−1. The approximate-
to-exact target is to solve the linear correction equation

A(∆) = −r

with ∆ controlled in operator norm so that S0 +∆ ⪰ 0. In other words, we
aim to show that, below the transition, the operator A is well-conditioned
on a cone of allowable perturbations around a bounded-spectrum point, and
that this conditioning suffices to preserve positive semidefiniteness after cor-
rection. This is the polishing mechanism encoded in our Theorem C.

Second, in the unsatisfiable regime α ≥ 1
4 + ε, MB23 asserts that no

bounded-spectrum approximate solution exists (for the relevant tolerances).
The exact-to-approximate target is to show that if an exact solution S ⪰ 0
with A(S) = 1 were to exist at all, then one could regularize it (by spectral
truncation, rescaling, and a controlled repair of the induced residual) into
a bounded-spectrum matrix S̃ satisfying EFPϵ0,M for some finite M . This
would contradict the MB23 impossibility statement above the transition,
thereby ruling out even purely ill-conditioned exact fits. This boundedness
principle is the content of our Theorem B (and, in a more elementary form,
Lemma 4).

A convenient reformulation in terms of residual vectors. To keep
the two reductions conceptually separate, we record the data that MB23
supplies in a form compatible with both directions. Suppose EFP

(2)
ϵ,M (n, d)

holds, and let S0 be a witness. The residual vector r = A(S0)−1 ∈ Rn then
satisfies

∥r∥2 ≤ ϵ

√
n

d
, and S0 ⪰ 0, ∥S0∥op ≤ M.

The polishing step seeks ∆ with A(∆) = −r and ∥∆∥op small compared to
the spectral gap on the support of S0. Achieving this requires two analytic
inputs: (i) restricted invertibility of A on a cone capturing admissible PSD-
preserving directions, giving Frobenius control of ∆; and (ii) a mechanism
upgrading Frobenius control to operator-norm control, so that Weyl-type
perturbation bounds ensure S0+∆ ⪰ 0. These are precisely the roles played
by our Lemmas 1–3.
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Conversely, suppose EFP0,∞(n, d) holds, and let S be an exact witness.
Since no a priori bound on ∥S∥op is available, we cannot directly apply
MB23-type compactness arguments. The regularization step therefore begins
by truncating the spectrum of S at a level M , producing (after possible
rescaling) a matrix S̃ with ∥S̃∥op ≤ M . The truncation introduces an error
vector r̃ := A(S̃)− 1, and the task is to show that r̃ is small in an averaged
sense once M is chosen large enough. One then either accepts S̃ as an
approximate witness, or performs a further correction (now within a bounded
class) to meet the precise MB23 error criterion. This is the mechanism
formalized in Lemma 4 and upgraded in Theorem B.

Logical structure of the proof once MB23 is granted. With the
MB23 theorem in hand, the remaining arguments are purely implications
between events, proved with high probability under the same scaling n =
αd2. Concretely, fixing ε > 0, we will establish:

• for α ≤ 1
4 − ε: EFPϵ0,M0 ⇒ EFP0,∞ with high probability (polishing);

• for α ≥ 1
4 + ε: EFP0,∞ ⇒ EFPϵ0,M for some finite M with high

probability (boundedness principle).

Combining these with the MB23 transition yields the exact threshold in The-
orem A. We emphasize that neither implication is a formal consequence of
conic duality alone: both use specific analytic properties of the rank-one mea-
surement operator A (Hanson–Wright control for quadratic forms, chaining
for Gaussian chaos on bounded classes, and matrix concentration for A∗(y)).
The key point, however, is that these analytic inputs are invoked only on
bounded-spectrum sets (for polishing) or to create a bounded-spectrum ob-
ject from an unbounded one (for boundedness). Thus MB23 serves as the
sole geometric input needed to locate the constant 1/4, and all remaining
work is structural.

Transition from Step I to Step II. We now proceed to the first of the
two reductions needed to upgrade the approximate transition to the exact
one. Namely, we will show that exact feasibility cannot persist above α = 1/4
by hiding in ill-conditioned matrices: any exact feasible point necessarily
induces a bounded-spectrum approximate feasible point. This boundedness
principle, together with a dual-separation viewpoint, is the content of Step
II.

Step II: a boundedness principle and dual separation. In order
to upgrade the MB23 transition for EFPϵ,M to the exact event EFP0,∞,
we must exclude the following pathological possibility: for α > 1

4 , exact
feasibility could persist but only through witnesses S ⪰ 0 with increas-
ingly ill-conditioned spectra, thereby evading the compactness inherent in
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∥S∥op ≤ M . Our goal in this step is to show that such “ill-behaved only”
feasibility cannot occur. Concretely, we establish an implication of the form

EFP0,∞(n, d) =⇒ EFPϵ0,M (n, d)

for some finite M = M(ε) and the tolerance ϵ0(ε) appearing in MB23. Com-
bined with the MB23 impossibility statement above α = 1

4 , this yields exact
infeasibility even when ∥S∥op is unconstrained.

Trace normalization forced by the constraints. We begin with a sim-
ple but crucial normalization consequence of exact feasibility. Suppose S ⪰ 0
satisfies A(S) = 1. Let

Σ̂ :=
1

n

n∑
i=1

Xi =
1

n

n∑
i=1

xix
⊤
i .

Then

1 =
1

n

n∑
i=1

x⊤i Sxi =
1

n

n∑
i=1

Tr(SXi) = Tr(SΣ̂).

By standard Gaussian covariance concentration in operator norm (here n =
αd2 ≫ d), we have with high probability

∥∥Σ̂− 1
dId

∥∥
op

≤ C

√
d

n
= O

(
1√
d

)
.

Using Tr(SΣ̂) = Tr(S)/d+Tr
(
S(Σ̂− 1

dI)
)

and |Tr(S(Σ̂− 1
dI))| ≤ ∥S∥op∥Σ̂−

1
dI∥oprank(S), we obtain that any exact witness necessarily has trace of order
d. In particular, on the high-probability event ∥Σ̂− 1

dI∥op ≤ c0 with c0 ≪ 1,
we have the deterministic implication

(1− c0)
Tr(S)

d
≤ 1 ≤ (1+ c0)

Tr(S)

d
, hence Tr(S) = d · (1+O(c0)).

(6)
Thus an exact witness cannot concentrate all of its mass in a vanishing-
dimensional subspace without generating extremely large eigenvalues; con-
versely, if large eigenvalues exist, they must be sparse in the sense of trace
accounting.

Spectral truncation and the induced residual. Given any S ⪰ 0 with
A(S) = 1, we define its spectral truncation at level M by

S(M) := ΠM (S) := U diag(min{λj ,M})U⊤,

where S = U diag(λj)U
⊤ is an eigen-decomposition. Set T (M) := S−S(M) ⪰

0. Then ∥S(M)∥op ≤ M and, for each i,

x⊤i S
(M)xi = x⊤i Sxi − x⊤i T

(M)xi = 1− x⊤i T
(M)xi,
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so the residual vector associated to S(M) is entrywise nonpositive:

r(M) := A(S(M))− 1 = −A(T (M)), hence |r(M)
i | = x⊤i T

(M)xi.

The average ℓ1 residual is therefore

1

n

n∑
i=1

|r(M)
i | =

1

n

n∑
i=1

x⊤i T
(M)xi = Tr

(
T (M)Σ̂

)
. (7)

On the event ∥Σ̂− 1
dI∥op ≤ c0, we obtain the deterministic bound

Tr
(
T (M)Σ̂

)
≤ 1 + c0

d
Tr(T (M)). (8)

Thus, to obtain an ℓ1 residual of order 1/
√
d, it suffices to show that any

exact witness S has Tr(T (M)) = O(
√
d) for some fixed M . This is the

substantive content of the boundedness principle: exact feasibility forces the
spectral tail above a fixed truncation level to be small in trace, uniformly
over d.

Boundedness via a repairable truncation: the core lemma. We
isolate the implication we will use in the unsatisfiable regime.

Lemma (bounded-spectrum approximate witness from an exact
witness). Fix ε ∈ (0, 1/10). There exist constants M⋆ = M⋆(ε) < ∞ and
c⋆ = c⋆(ε) > 0 such that the following holds with probability 1 − o(1) as
d → ∞. If there exists S ⪰ 0 with A(S) = 1, then there exists S̃ ⪰ 0 with
∥S̃∥op ≤ M⋆ and

1

n

n∑
i=1

∣∣x⊤i S̃xi − 1
∣∣ ≤ c⋆√

d
.

In particular, for ϵ0(ε) as in MB23, choosing c⋆ ≤ ϵ0 yields EFP0,∞ ⇒
EFPϵ0,M⋆ with high probability.

The construction of S̃ is conceptually simple: we truncate S to obtain
a bounded-spectrum matrix S(M), then we allow a further bounded adjust-
ment within the compact set {0 ⪯ S ⪯ MI} to reduce the residual to the
intrinsic 1/

√
d scale. The novelty is that we do not need to solve the cor-

rection equation A(∆) = −r(M) exactly (as we will in Step III); rather, an
approximate repair suffices, and can be certified by conic duality.

At a high level, we argue as follows. First, from (6), any exact witness
must satisfy Tr(S) = d(1 + o(1)). Second, we choose M large (but fixed)
and show that, on a high-probability event depending only on the random
design, the truncated tail T (M) = (S −MI)+ cannot have trace larger than
O(

√
d); otherwise, the family of constraints {x⊤i Sxi = 1}i≤n would force an

atypical flattening of the projected norms of xi in the top-eigenspaces of S,
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which can be ruled out by uniform concentration of χ2-type statistics over
subspaces of dimension up to O(d). Plugging Tr(T (M)) ≲

√
d into (8) yields

1

n

n∑
i=1

∣∣x⊤i S(M)xi − 1
∣∣ = Tr

(
T (M)Σ̂

)
≲

1√
d
.

Finally, if the truncation produces a residual with the correct scaling but the
wrong constant, we perform a bounded repair by minimizing ℓ1 residual over
the compact convex set {S ⪰ 0 : ∥S∥op ≤ M}; duality ensures that, if this
optimum were bounded away from 0 at the 1/

√
d scale, one could separate 1

from A({S ⪰ 0 : ∥S∥op ≤ M}) by a dual witness, contradicting the assumed
exact feasibility. This “duality-based repair” is robust and does not require
the restricted invertibility technology of Step III.

Conic separation viewpoint and dual certificates. We now formalize
the separating-hyperplane mechanism that underlies both the boundedness
principle and the eventual infeasibility result. Consider the primal feasibility
problem

find S ⪰ 0 such that A(S) = 1.

A standard conic Farkas lemma implies: exactly one of the following holds:

1. there exists S ⪰ 0 with A(S) = 1;

2. there exists y ∈ Rn such that A∗(y) ⪰ 0 and ⟨y,1⟩ < 0.

Indeed, if A∗(y) ⪰ 0 and ⟨y,1⟩ < 0, then for any S ⪰ 0 we have ⟨y,A(S)⟩ =
⟨A∗(y), S⟩ ≥ 0, so A(S) ̸= 1. Conversely, if 1 /∈ A(Sd+), then by the Hahn–
Banach theorem there exists a separating hyperplane, which can be chosen
to correspond to some y with A∗(y) ⪰ 0 after restricting to the cone A(Sd+).

This dual formulation is useful for two reasons. First, it provides a di-
rect route to infeasibility above α = 1

4 (our Lemma 5), independent of any
boundedness reduction. Second, it provides a way to certify that certain
residual lower bounds are incompatible with exact feasibility: if 1 were at
a definite distance (in a dual norm) from A({S ⪰ 0 : ∥S∥op ≤ M}), then a
dual witness y can be chosen with controlled ∥y∥∞ (or ∥y∥2) so that A∗(y)
is approximately PSD and ⟨y,1⟩ < 0, which is forbidden under exact fea-
sibility. In this sense, dual certificates rule out the scenario in which exact
feasibility would require leaving every bounded spectral ball.

Consequences in the unsatisfiable regime. We now explain how this
step completes the upper half of Theorem A once MB23 is granted. Fix
ε > 0 and assume α ≥ 1

4 + ε. By MB23, for the corresponding ϵ0(ε) and
every fixed M < ∞,

P
[
EFPϵ0,M (n, d)

]
−→ 0.
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On the other hand, the boundedness lemma above furnishes a fixed M⋆(ε)
such that, with probability 1− o(1),

EFP0,∞(n, d) =⇒ EFPϵ0,M⋆(n, d).

Therefore,

P
[
EFP0,∞(n, d)

]
≤ P

[
EFPϵ0,M⋆(n, d)

]
+ o(1) −→ 0,

which is precisely the desired exact infeasibility above the transition. We
emphasize that this argument excludes exact solutions without any a priori
bound on ∥S∥op: the reduction step shows that, on the random instances
under consideration, feasibility cannot be achieved only by matrices that
diverge in operator norm.

Summary of Step II and interface with Step III. The conclusions
of this step are purely qualitative: exact feasibility forces the existence of
a compactly regularized approximate witness, and exact infeasibility can be
certified (equivalently) by a dual witness A∗(y) ⪰ 0 with ⟨y,1⟩ < 0. In
the unsatisfiable regime, this suffices in combination with MB23 to prove
P[EFP0,∞] → 0. In the satisfiable regime, Step II plays a complementary
structural role: it identifies bounded-spectrum objects as the correct inter-
mediates, so that in Step III we may focus exclusively on ∥S∥op ≤ M classes
when proving restricted invertibility and eigenvalue stability. We now turn
to that polishing argument, which upgrades the bounded-spectrum approx-
imate witnesses supplied by MB23 into exact feasible solutions below the
transition.

Step III: polishing bounded approximate fits to exact fits. We
work throughout in the satisfiable regime α ≤ 1

4 − ε, and we condition
on the high-probability regularity events for the random design that will
be specified implicitly (uniform concentration and the restricted invertibility
bounds below). From MB23 we obtain, with probability 1 − o(1), a matrix
Sapp ⪰ 0 with ∥Sapp∥op ≤ M(ε) such that the residual

rapp := A(Sapp)− 1

is small at the intrinsic scale. For the polishing step it is convenient to
assume an ℓ2-type control, as in Theorem C, namely

∥rapp∥2 ≤ c1(ε)

√
n

d
, (9)

which is compatible with the n−1
∑

i |rapp,i| ≲ d−1/2 guarantee from MB23
after a routine truncation/median-of-means preprocessing on the residual
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coordinates (we omit the standard reduction). Our goal is to construct an
explicit correction ∆ ∈ Sd such that

A(∆) = −rapp and Sapp +∆ ⪰ 0,

with ∥∆∥op sufficiently small so that the correction does not destroy positive
semidefiniteness.

Interiorization to avoid boundary effects. A purely technical issue
is that Sapp may lie on the boundary of Sd+, and then an arbitrarily small
indefinite perturbation can create a negative eigenvalue in the kernel. We
remove this degeneracy by pushing Sapp slightly into the interior at a scale
compatible with the target residual. Fix a parameter

τ :=
τ0√
d

for a constant τ0 = τ0(ε) > 0 to be chosen, and define

S0 := Sapp + τId ⪰ τId.

Let r0 := A(S0)−1 = rapp+τ ·(∥xi∥22)i≤n. By concentration of ∥xi∥22 around
1 at scale d−1/2, we have ∥(∥xi∥22)i≤n∥2 ≤ (1+o(1))

√
n with high probability,

hence

∥r0∥2 ≤ ∥rapp∥2 + τ(1 + o(1))
√
n ≤

(
c1(ε) + τ0(1 + o(1))

)√n

d
. (10)

Thus r0 remains at the same
√
n/d scale for fixed τ0. The advantage is that

S0 now has a spectral buffer λmin(S0) ≥ τ , so any correction with ∥∆∥op ≤ τ
preserves PSD by Weyl’s inequality.

Choosing the correction by least squares. We seek ∆ solving A(∆) =
−r0. Since n ≍ d2 while dim(Sd) ≍ d2/2, the system is underdetermined
and there are many solutions once A has full row rank. We choose the
minimum-Frobenius-norm solution,

∆ ∈ argmin
{
∥Γ∥F : Γ ∈ Sd, A(Γ) = −r0

}
. (11)

Equivalently, writing the normal equations on the range of A∗, we have the
explicit form

∆ = −A∗(y), (AA∗)(y) = r0, (12)

whenever AA∗ is invertible on Rn. Thus the polishing step reduces to two
analytic inputs:

1. a lower bound (invertibility) for A on an appropriate class of directions,
giving ∥∆∥F ≲ ∥r0∥2

√
d/n;
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2. an operator-norm control ∥∆∥op ≲ ∥r0∥2/
√
n, which together with

∥r0∥2 ≲
√
n/d yields ∥∆∥op ≲ d−1/2.

The first estimate is a restricted invertibility statement for rank-one Gaus-
sian measurements; the second is a delocalization bound converting the
Frobenius-minimal choice into a small spectral norm.

Cone-restricted invertibility at α < 1/4. We formulate the lower bound
in a way that matches the scale of (10). Consider the rescaled operator
Ã :=

√
dA, so that for Γ of Frobenius norm 1 the vector Ã(Γ) typically

has ℓ2-norm of order
√
n when Γ has a substantial trace component (as

is the case for the directions relevant to fitting an approximately constant
right-hand side). The relevant geometric input is that, for α ≤ 1

4 − ε, Ã is
well-conditioned on the cones naturally generated by the PSD constraint and
bounded-spectrum regularity. Concretely, we work with a set of directions
of the form

C :=
{
Γ ∈ Sd : Γ = Γ⊤, ∥Γ∥op ≤ K∥Γ∥F

}
,

with K = K(ε) fixed. The role of the constraint ∥Γ∥op ≤ K∥Γ∥F is to
exclude extremely spiky perturbations, which can have small measurement
energy under rank-one sampling.

On the high-probability event defining the satisfiable regime, we have a
bound of the following type: there exists c2 = c2(ε) > 0 such that

∥Ã(Γ)∥2 ≥ c2
√
n ∥Γ∥F for all Γ ∈ C. (13)

In the original scaling this reads ∥A(Γ)∥2 ≥ c2
√
n/d ∥Γ∥F . The proof of (13)

is based on the small-ball method combined with a chaining bound for the
empirical process supΓ∈C∩SF

∑n
i=1⟨Γ, Xi⟩gi (with gi i.i.d. standard normal)

and the fact that, below α = 1/4, the Gaussian width of the relevant cone is
strictly smaller than

√
n. The specific constant 1/4 enters through the conic

geometry of Sd+ (more precisely, the statistical dimension of the associated
descent/tangent cones), and the rank-one nature of Xi = xix

⊤
i is handled by

exploiting rotational invariance and uniform χ2-concentration over subspaces
of dimension Θ(d).

Assuming (13), we apply it to the minimum-norm solution ∆ of (11).
Indeed, by minimality, ∆ belongs to the orthogonal complement of ker(A),
hence it lies in a well-controlled subspace; intersecting this subspace with
C is enforced by the operator-norm control discussed next. Formally, (13)
implies

∥∆∥F ≤ 1

c2

√
d

n
∥A(∆)∥2 =

1

c2

√
d

n
∥r0∥2 ≤ 1

c2

(
c1(ε)+τ0+o(1)

)
, (14)

so the Frobenius norm of the correction is Oε(1).
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Operator-norm control for the minimum-Frobenius correction. To
preserve PSD after interiorization we require a spectral estimate, not merely
a Frobenius estimate. For the particular choice ∆ = −A∗(y) in (12), we
can bound ∥∆∥op in terms of ∥y∥2 using concentration for random sums of
rank-one matrices. Namely, for deterministic y ∈ Rn,

A∗(y) =
n∑
i=1

yixix
⊤
i ,

and since ∥xi∥22 ≈ 1 and the xi are independent Gaussians, matrix Bernstein
(in a form adapted to subexponential quadratic forms) yields, with high
probability uniformly over y in an ε-net,

∥A∗(y)∥op ≤ C3(ε)
(
∥y∥2 + ∥y∥∞

√
log d

)
. (15)

In our setting y arises from solving (AA∗)y = r0. The same high-probability
event controlling AA∗ provides ∥y∥2 ≲ ∥r0∥2/σmin(AA∗). Under α ≤ 1

4 − ε,
the spectrum of AA∗ is bounded below at the n/d scale on the orthogonal
complement of the nearly rank-one direction induced by the identity (this is
another manifestation of the conic geometry gap below 1/4); consequently,

∥y∥2 ≤ C4(ε)

√
d

n
∥r0∥2. (16)

Combining (15) and (16), and using ∥r0∥2 ≲
√

n/d, we obtain the desired
operator-norm estimate

∥∆∥op = ∥A∗(y)∥op ≤ C5(ε)
∥r0∥2√

n
≤ C6(ε)√

d
. (17)

This is precisely the scale needed: the correction is spectrally small even
though ∥∆∥F is only O(1). Intuitively, ∆ is a sum of many random rank-one
terms with coefficients spread across i, and the minimum-Frobenius choice
prevents concentration of weight on a few samples; (17) formalizes this de-
localization.

PSD stability and completion of the polishing. We now choose τ0 so
that τ = τ0/

√
d dominates the right-hand side of (17). On the intersection

of the events yielding (10) and (17), we have ∥∆∥op ≤ τ provided τ0 ≥ C6(ε).
Since S0 ⪰ τId, Weyl’s inequality gives

λmin(S0 +∆) ≥ λmin(S0)− ∥∆∥op ≥ 0,

hence S0 + ∆ ⪰ 0. By construction A(S0 + ∆) = A(S0) + A(∆) = 1, so
S := S0 +∆ is an exact witness. Finally, we retain bounded spectrum:

∥S∥op ≤ ∥Sapp∥op + τ + ∥∆∥op ≤ M(ε) +O

(
1√
d

)
,

so the feasible matrix is uniformly well-behaved.

24



Interface with the overall argument. The outcome of Step III is the
deterministic implication (on a high-probability event of the design) that any
bounded-spectrum approximate fit with residual at the

√
n/d scale can be

polished to an exact fit. Combined with the MB23 existence of such approx-
imate fits for α ≤ 1

4 − ε, this yields exact feasibility below the transition.
Moreover, because the correction ∆ is characterized by the convex program
(11) (or equivalently the linear system (12)), the polishing step is algorith-
mic: once an approximate Sapp is produced by a convex method, the exact
witness is obtained by solving a well-conditioned least-squares problem in
the lifted space and adding the small correction.

Step IV: infeasibility above the transition. We now work in the un-
satisfiable regime α ≥ 1

4 + ε. Our objective is to show that, with probability
1 − o(1) as d → ∞, there does not exist any S ⪰ 0 such that A(S) = 1,
even if we allow ∥S∥op → ∞. The point requiring justification is precisely
the possibility of a highly ill-conditioned exact fit: MB23 rules out bounded-
spectrum approximate fits above 1

4 , but a priori it does not exclude an exact
fit achieved only by sending some eigenvalues to infinity and compensating
elsewhere. We therefore show that such ill-conditioned exact witnesses can-
not occur: from any exact witness one can construct a bounded-spectrum
approximate witness with vanishing error, contradicting MB23.

The MB23 obstruction (bounded-spectrum approximate infeasibil-
ity). Fix parameters ε ∈ (0, 1/10) and a boundedness level M < ∞. In the
regime α ≥ 1

4 + ε, MB23 provides (in our notation) that, with probability
1− o(1), there is no S ⪰ 0 with ∥S∥op ≤ M such that the average absolute
residual is at the intrinsic scale:

1

n

n∑
i=1

∣∣x⊤i Sxi − 1
∣∣ ≤ c(ε,M) · 1√

d
,

for a sufficiently small constant c(ε,M) > 0. We view this as an ℓ1-type ex-
clusion at scale d−1/2, uniform over all PSD matrices with bounded spectrum.
To deduce exact infeasibility from this, it remains to justify the implication

EFP0,∞(n, d) =⇒ EFPε′,M ′(n, d)

for suitable ε′ > 0 and M ′ < ∞ depending only on ε, on a high-probability
event of the design. This implication is the substance of the “no ill-behaved
solutions alone” mechanism.

Boundedness implication: exact feasibility forces bounded approx-
imate feasibility. We record the reduction in a form sufficient for the
present step.
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Lemma (exact ⇒ bounded approximate). Fix ε ∈ (0, 1/10) and assume
α ≥ 1

4 + ε. There exist constants M⋆ = M⋆(ε) < ∞ and ε⋆ = ε⋆(ε) > 0,
and a sequence of design-regularity events Ereg(d) with P[Ereg(d)] → 1, such
that on Ereg(d) the following holds: if there exists S ⪰ 0 with A(S) = 1, then
there exists S̃ ⪰ 0 with ∥S̃∥op ≤ M⋆ and

1

n

n∑
i=1

∣∣x⊤i S̃xi − 1
∣∣ ≤ ε⋆√

d
.

In particular, EFP0,∞(n, d) ∩ Ereg(d) ⊆ EFPε⋆,M⋆(n, d).

Assuming this lemma, Step IV is immediate: MB23 implies P[EFPε⋆,M⋆(n, d)] →
0 when α ≥ 1

4 + ε, while P[Ereg(d)] → 1; hence

P[EFP0,∞(n, d)] ≤ P[EFPε⋆,M⋆(n, d)] + P[Ereg(d)c] → 0,

as required.

Sketch of the boundedness implication. We outline the construction
of S̃ from a putative exact witness S, emphasizing the points at which the
randomness of (xi) is used. The guiding principle is that, when n ≍ d2, the
constraints {x⊤i Sxi = 1}i≤n determine not only a hyperplane slice of the
PSD cone, but also constrain the spectral distribution of any feasible S: an
extreme “spike” in the spectrum would manifest in higher-order empirical
moments of the quadratic forms, and those moments are forced to equal 1
identically by exact feasibility.

(i) Empirical moment identities and spectral control. If A(S) = 1,
then for every integer k ≥ 1,

1

n

n∑
i=1

(x⊤i Sxi)
k = 1.

On the design-regularity event Ereg(d) we require uniform concentration for
polynomial chaoses of bounded degree over PSD matrices with controlled
trace, in a form sufficient to compare empirical moments to their Gaussian
expectations. Concretely, writing x = g/

√
d with g ∼ N (0, Id), we have

x⊤Sx =
1

d
g⊤Sg,

and the Gaussian moment E (g⊤Sg)k is an explicit polynomial in Tr(S),Tr(S2), . . . ,Tr(Sk)
with nonnegative coefficients. For example,

E (x⊤Sx) =
1

d
Tr(S), E (x⊤Sx)2 =

2

d2
Tr(S2) +

1

d2
Tr(S)2.
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Since the left-hand side equals 1 empirically for k = 1, 2, and since Σ̂ :=
(1/n)

∑n
i=1 xix

⊤
i satisfies ∥Σ̂−(1/d)Id∥op = o(1/d) on Ereg(d), we obtain the

trace normalization
Tr(S) = d (1 + o(1)),

and, from k = 2, a Frobenius-scale bound

Tr(S2) = O(d).

The latter already rules out spectra with too many moderately large eigen-
values; to rule out the possibility of a few extremely large eigenvalues (which
could still be consistent with Tr(S2) = O(d) if they are sufficiently few),
we invoke a higher-moment comparison at some fixed degree k = k(ε). Be-
cause (x⊤i Sxi)

k ≡ 1 for the sample, any feasible S must satisfy a family of
constraints that, after comparison with the Gaussian moment polynomial,
enforce a tail decay on the eigenvalues of S strong enough to make spectral
truncation stable on the observed points. In effect, for suitable fixed k, one
shows that

d∑
j=1

λj(S)
k ≤ Ck d,

uniformly over all feasible S (on Ereg(d)), which implies λmax(S) ≤ C
1/k
k and,

more importantly for us, quantitative control of the spectral tail
∑

j(λj(S)−
M)2+ for large constants M .

(ii) Spectral truncation and normalization on the sample. Given a
feasible S ⪰ 0, we define its truncation at level M > 0 by functional calculus:

S(M) := U diag
(
min(λ1,M), . . . ,min(λd,M)

)
U⊤, S = U diag(λ1, . . . , λd)U

⊤.

Then 0 ⪯ S(M) ⪯ S and ∥S(M)∥op ≤ M . For each i,

0 ≤ 1− x⊤i S
(M)xi = x⊤i (S − S(M))xi.

This deficit is nonnegative, and we remove its sample average by adding a
multiple of the identity. Let

θ :=
1
n

∑n
i=1

(
1− x⊤i S

(M)xi
)

1
n

∑n
i=1 ∥xi∥22

, S̃ := S(M) + θId.

By construction S̃ ⪰ 0, and since (1/n)
∑

i ∥xi∥22 = 1 + o(1) on Ereg(d) we
have θ ∈ [0, 1+o(1)]. Moreover, the empirical mean constraint is now exact:

1

n

n∑
i=1

x⊤i S̃xi = 1.
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Thus it suffices to control the fluctuations of the centered quadratic forms

zi := x⊤i S̃xi − 1,
1

n

n∑
i=1

zi = 0,

in an average absolute sense.

(iii) Controlling the average absolute residual. Using Cauchy–Schwarz,

1

n

n∑
i=1

|zi| ≤
( 1

n

n∑
i=1

z2i

)1/2
.

We therefore seek an upper bound on the empirical second moment (1/n)
∑

z2i .
On Ereg(d) we have concentration of quadratic forms uniformly over PSD ma-
trices with operator norm bounded by a constant (here ∥S̃∥op ≤ M+1+o(1)).
In particular, the empirical variance (1/n)

∑
z2i is close to its Gaussian proxy,

which for x ∼ N (0, Id/d) satisfies

Var(x⊤S̃x) =
2

d2
Tr(S̃2).

Hence it is enough to bound Tr(S̃2) by O(d) with a constant that can be
made arbitrarily small relative to ε2d after choosing M sufficiently large.
Here the spectral truncation is crucial: writing S̃ = S(M) + θId,

Tr(S̃2) ≤ 2Tr
(
(S(M))2

)
+ 2θ2d ≤ 2M Tr(S(M)) + 2θ2d.

The trace Tr(S(M)) is controlled because Tr(S) = d(1 + o(1)), while the
portion of the spectrum above M is controlled by the higher-moment bounds
extracted from the identities (1/n)

∑
(x⊤i Sxi)

k ≡ 1. Quantitatively, one
obtains a tail estimate of the form

d∑
j=1

λj(S)
2 1{λj(S)>M} ≤ δ(M) d, δ(M) → 0 as M → ∞,

uniformly over all feasible S on Ereg(d). This implies Tr((S(M))2) ≤ (1 −
δ(M))Tr(S2) +M2 · O(d/M2), and thus Tr(S̃2) ≤ C(δ(M)) d with C(δ) →
0 as δ → 0 after appropriate normalization. Plugging this back into the
variance proxy yields ( 1

n

n∑
i=1

z2i

)1/2
≤ ε⋆√

d

for a choice of M = M⋆(ε) large enough, completing the construction of S̃
with bounded operator norm and average absolute error at scale d−1/2. This
is precisely the conclusion of the boundedness implication lemma.
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Completion of Step IV (contradiction with MB23). We now com-
bine the preceding lemma with the MB23 obstruction. On Ereg(d), the
existence of an exact witness S would imply the existence of a bounded-
spectrum approximate witness S̃ with ∥S̃∥op ≤ M⋆(ε) and average resid-
ual ≤ ε⋆(ε)/

√
d. Since MB23 asserts that such bounded approximate wit-

nesses do not exist with high probability when α ≥ 1
4 + ε, we conclude that

EFP0,∞(n, d) fails with probability 1− o(1) in this regime.

Alternative route: a direct dual certificate. Although the reduction
to MB23 is conceptually aligned with the satisfiable-side argument, we note
that one can also certify infeasibility above the transition directly by conic
separation. Consider the primal feasibility problem

find S ∈ Sd+ such that A(S) = 1.

Its standard conic dual (in feasibility form) yields that infeasibility is certified
by a vector y ∈ Rn such that

A∗(y) ⪰ 0 and ⟨y,1⟩ < 0,

since for any S ⪰ 0 we have ⟨y,A(S)⟩ = ⟨A∗(y), S⟩ ≥ 0, contradicting
A(S) = 1. In the regime α ≥ 1

4 + ε, one may construct such a y with high
probability by analyzing the random cone A(Sd+) ⊆ Rn and showing that 1
lies outside it. The constant 1

4 again arises through the statistical dimension
of Sd+, and the rank-one structure Xi = xix

⊤
i is handled via rotational in-

variance and small-ball estimates for quadratic forms. This approach proves
infeasibility “in one step,” without passing through bounded approximate
feasibility; it is, however, technically parallel to the reduction above in that
both ultimately exploit the same conic-geometry gap beyond α = 1

4 .

Interface with the overall argument. Step IV supplies the missing
implication on the unsatisfiable side: above the transition, exact feasibility
cannot be rescued by ill-conditioned witnesses. Together with MB23’s sharp
characterization for bounded-spectrum approximate fitting, this closes the
gap between approximate and exact feasibility and establishes the sharp
threshold at α = 1

4 for EFP0,∞(n, d).

Algorithmic corollaries: finding a fitting ellipsoid and certifying
infeasibility. The preceding probabilistic statements have a concrete al-
gorithmic interpretation. In the satisfiable regime, we can produce an ex-
plicit matrix S ⪰ 0 with A(S) = 1 by combining a convex relaxation that
outputs a bounded-spectrum approximate fit with the polishing step that
enforces the constraints exactly. In the unsatisfiable regime, we can (with
high probability) certify infeasibility by solving a dual semidefinite program

29



that searches for a separating hyperplane y with A∗(y) ⪰ 0 and ⟨y,1⟩ < 0.
We record these consequences in a form that isolates what is algorithmic,
what is probabilistic, and what depends only on constants.

A polynomial-time construction below the transition. Fix ε ∈ (0, 1/10)
and assume α ≤ 1

4 − ε. On a high-probability event of the design, there ex-
ists a feasible solution with bounded operator norm ∥S∥op ≤ M(ε). This
suggests searching for a bounded-spectrum approximate solution by convex
optimization, then polishing.

One convenient choice is the following regularized feasibility problem: for
parameters δ > 0 and M > 0, compute

S0 ∈ arg min
S∈Sd

Tr(S) subject to S ⪰ 0, ∥S∥op ≤ M, ∥A(S)− 1∥2 ≤ δ.

(18)
The trace objective is not essential; it is a standard way to select a well-
conditioned point in a possibly high-dimensional feasible set and to prevent
pathological solutions when the constraint ∥A(S) − 1∥2 ≤ δ is slack. The
spectral constraint ∥S∥op ≤ M is itself semidefinite-representable via

0 ⪯ S ⪯ MId,

so (18) is an SDP with polynomial-time solvability (e.g., by the ellipsoid
method or interior-point methods). When n ≍ d2, the instance size is large
but still polynomial in d and the bit complexity of the input.

Corollary 3.1 (Algorithmic recovery below 1
4). Fix ε ∈ (0, 1/10) and as-

sume α ≤ 1
4 − ε. There exist constants M = M(ε), δ = δ(ε) > 0, and

an explicit polynomial-time procedure which, given {xi}ni=1, outputs a matrix
Ŝ ⪰ 0 satisfying A(Ŝ) = 1 with probability 1− o(1) as d → ∞.

Proof sketch. On the high-probability event on which a bounded-spectrum
approximate fit exists at the correct scale, (18) is feasible for suitable choices
of M and δ depending only on ε. Any solution S0 then satisfies ∥S0∥op ≤ M
and has residual ∥A(S0) − 1∥2 ≤ δ. We choose δ small enough so that the
hypotheses of the polishing statement (Theorem C in the global context)
apply, yielding a correction ∆ with

A(∆) = 1−A(S0), S0 +∆ ⪰ 0.

Setting Ŝ := S0 + ∆ gives A(Ŝ) = 1 exactly. The correction ∆ can be
computed in polynomial time by solving a linear system over Sd (for instance,
the minimum-Frobenius-norm solution to A(∆) = 1−A(S0)), and the PSD
constraint after correction is guaranteed by the deterministic perturbation
bound built into the polishing lemma.
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Implementation of the polishing step. Since n ≫ d in the scaling
n = αd2, it is natural to compute ∆ through a least-squares formulation in
the lifted space:

∆ ∈ arg min
∆∈Sd

∥∆∥2F subject to A(∆) = 1−A(S0). (19)

The normal equations may be written in terms of the Gram operator AA∗ :
Rn → Rn: if ∆ = A∗(u), then A(∆) = AA∗(u), so u solves

(AA∗)u = 1−A(S0), ∆ = A∗(u) =
n∑
i=1

uixix
⊤
i .

In practice one would use an iterative linear solver for u (e.g., conjugate
gradients) which only requires application of A and A∗, both computable in
time O(nd2) naively and faster with structure; in the present conceptual dis-
cussion, polynomial time suffices. The probabilistic conditioning provided by
the cone-restricted invertibility estimate ensures that the linear solve is sta-
ble on the relevant cone, which is the analytic content behind the statement
that ∥∆∥op remains small enough to preserve positive semidefiniteness.

Alternative convex formulations. We emphasized (18) because it cleanly
separates boundedness (0 ⪯ S ⪯ MId) from fit (∥A(S) − 1∥2 ≤ δ). Other
convex programs lead to the same pipeline. For instance, one may solve a
penalized least-squares problem

min
S⪰0

1

2
∥A(S)− 1∥22 + λTr(S),

or an ℓ1-robust variant minS⪰0 (1/n)
∑

i |x⊤i Sxi−1|+λTr(S), and then pol-
ish. The key requirement for the second stage is that the first stage returns
an S0 with bounded operator norm and residual at the scale appearing in the
polishing hypothesis. Any convex formulation that enforces these two prop-
erties (either as constraints or through suitable regularization) is admissible,
and the probabilistic argument is agnostic to the particular solver.

Certification of infeasibility above the transition. In the regime α ≥
1
4 + ε, the analysis produces infeasibility with probability 1 − o(1). From
an algorithmic viewpoint, we would like a certificate that is verifiable in
polynomial time. Conic duality supplies precisely such a certificate: a vector
y ∈ Rn with A∗(y) ⪰ 0 and ⟨y,1⟩ < 0. Given y, verification is immediate by
checking PSD-ness of

∑
i yixix

⊤
i and evaluating

∑
i yi.

A canonical way to search for y is to solve the dual optimization problem

min
y∈Rn

⟨y,1⟩ subject to A∗(y) ⪰ 0, ∥y∥2 ≤ 1. (20)
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The normalization ∥y∥2 ≤ 1 prevents the trivial scaling y 7→ ty. Problem
(20) is an SDP: the constraint A∗(y) ⪰ 0 is linear in y with a PSD require-
ment on a d×d matrix. If the optimum value is negative, then we obtain an
explicit separating certificate, hence infeasibility of A(S) = 1 over S ⪰ 0.

Corollary 3.2 (Polynomial-time refutation above 1
4). Fix ε ∈ (0, 1/10) and

assume α ≥ 1
4 + ε. There exists a polynomial-time procedure which, given

{xi}ni=1, outputs (with probability 1−o(1)) a vector ŷ ∈ Rn such that A∗(ŷ) ⪰
0 and ⟨ŷ,1⟩ < 0. Consequently, it certifies that no S ⪰ 0 satisfies A(S) = 1.

Proof sketch. On the high-probability event on which infeasibility holds,
strict separation between 1 and the cone A(Sd+) ⊆ Rn implies the existence
of a y with the required inequalities; one may interpret this as a consequence
of the closedness of A(Sd+) and a quantitative conic separation argument.
Solving (20) produces such a y whenever it exists, and standard SDP algo-
rithms run in time polynomial in the input size.

A unified “decide-and-produce” procedure. Combining the two sides,
we obtain a conceptual algorithm that, for fixed ε, decides satisfiable versus
unsatisfiable with high probability whenever α ≤ 1

4 − ε or α ≥ 1
4 + ε. One

may run the primal recovery pipeline (solve (18), then polish) in parallel
with the dual refutation pipeline (solve (20)). In the satisfiable regime, the
primal pipeline outputs Ŝ with A(Ŝ) = 1 and hence terminates, while in
the unsatisfiable regime the dual pipeline outputs ŷ with ⟨ŷ,1⟩ < 0 and
terminates. Exactly at the transition scale α ≈ 1/4, neither guarantee is
asserted, which is consistent with the presence of a narrow critical window
that we do not attempt to resolve here.

What must be verified numerically (and what need not). The al-
gorithmic statements above are, in principle, fully constructive, but they
depend on constants M(ε), δ(ε), and the spectral margin implicit in the
polishing step. In a purely theoretical treatment, these constants are fixed
by the proofs (and by the auxiliary approximate-feasibility results invoked
on the satisfiable side). In a practical implementation, one typically does
not need to know these constants sharply: it suffices to check a posteriori
whether the returned object is a certificate.

Concretely, on the satisfiable side, after computing S0 and polishing to
Ŝ, one verifies

Ŝ ⪰ 0 and max
i∈[n]

|x⊤i Ŝxi − 1| ≤ (numerical tolerance).

If these conditions hold, we have an exact or near-exact ellipsoid fit regardless
of the unknown constant values. On the unsatisfiable side, after computing
ŷ, one verifies

A∗(ŷ) ⪰ 0 and ⟨ŷ,1⟩ < 0,
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which is again independent of any probabilistic constant. Thus numerical
work is only used to find a witness, not to validate it. The only role of con-
stants is to guarantee that one of these witnesses exists with high probability
in the claimed regimes and that a polynomial-time method will locate it.

A remark on conditioning and bit complexity. Because the data
xi are real-valued, any rigorous complexity statement must address repre-
sentation and precision. Our use of “polynomial time” is in the standard
real-number model common in high-dimensional probability: we assert the
existence of algorithms whose arithmetic operation count is polynomial in d
and n, and whose stability is ensured by the same conditioning estimates that
underlie the probabilistic analysis (e.g., the restricted invertibility needed for
polishing). If one insists on a bit-complexity statement under rational ap-
proximation of the inputs, one must additionally quantify lower bounds on
the relevant spectral gaps and conditioning constants on the high-probability
events; this is feasible but orthogonal to the main geometric point, and we
do not pursue it here.

Summary. Below the transition, convex optimization produces a bounded-
spectrum approximate fit and the polishing lemma converts it to an exact
fit in polynomial time; above the transition, a dual SDP yields a verifiable
separating certificate in polynomial time. These corollaries formalize the
sense in which the sharp threshold at α = 1

4 is not merely existential but
algorithmically meaningful: away from the critical window, feasibility and
infeasibility are both efficiently witnessed by objects that can be checked
directly from the data.

Extensions and robustness: beyond the Gaussian model. Our state-
ments were formulated for i.i.d. Gaussian design points xi ∼ N (0, Id/d),
primarily because this model gives exact rotational invariance and sharp
concentration for quadratic forms. However, none of the arguments is in-
trinsically tied to Gaussianity; rather, they rely on two structural inputs:
(i) approximate isotropy of the design (so that the distribution of xi does
not privilege a low-dimensional subspace), and (ii) sufficiently strong con-
centration to control the rank-one measurement operator S 7→ (x⊤i Sxi)i≤n
uniformly over the cones encountered in the polishing and duality argu-
ments. In this sense, we expect a universality principle: the sharp transition
at α = 1/4 should persist for a broad class of i.i.d. designs having mean zero,
covariance Id/d, and uniformly bounded moments (or subgaussian tails).

A natural target is the class of i.i.d. subgaussian vectors with Exix⊤i =
Id/d and ∥⟨u, xi⟩∥ψ2 ≲ ∥u∥2/

√
d uniformly in u. In this setting, the key

cone-restricted invertibility estimate used in polishing (and the analogous
dual separation estimates above the transition) should follow from generic
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chaining bounds for empirical processes of the form

sup
∆∈C∩Sd

∣∣∣ 1
n

n∑
i=1

(
⟨Xi,∆⟩2 − E⟨Xi,∆⟩2

)∣∣∣, Xi = xix
⊤
i ,

together with small-ball or Paley–Zygmund lower bounds to prevent ⟨Xi,∆⟩
from being too often near zero on C. The Gaussian case provides these in-
gredients with minimal bookkeeping, but the same architecture appears in
high-dimensional covariance estimation and phase-retrieval-type problems,
where rank-one measurements are also central. A complete universality the-
orem in our context would show that the limiting satisfiable/unsatisfiable
probability depends only on α, not on the precise distribution of xi, as long
as the distribution remains isotropic and sufficiently regular.

Approximate isotropy and whitening. One robust extension concerns
anisotropic but well-conditioned designs. Suppose xi are independent with
Exi = 0 and Exix⊤i = Σ/d, where Σ ≻ 0 has bounded condition number
κ(Σ) = ∥Σ∥op∥Σ−1∥op ≤ K uniformly in d. Then we may whiten by writing
xi = Σ1/2zi with zi approximately isotropic. The constraint x⊤i Sxi = 1 is
equivalent to

z⊤i Tzi = 1, T := Σ1/2SΣ1/2 ⪰ 0.

Thus feasibility in the anisotropic model is equivalent to feasibility in an
isotropic model after a deterministic change of variables. The bounded-
spectrum statements transform similarly: ∥S∥op ≤ M implies ∥T∥op ≤
∥Σ∥opM , while conversely ∥T∥op ≤ M implies ∥S∥op ≤ ∥Σ−1∥opM . Conse-
quently, if we can prove the isotropic result for the whitened vectors zi, the
anisotropic statement follows with constants depending on K. In particular,
we expect the threshold α = 1/4 to remain unchanged under bounded-
condition-number covariance perturbations; only the operator-norm bounds
M(ε) and polishing constants deteriorate with κ(Σ).

More generally, one may consider approximate isotropy:
∥∥ 1
n

∑n
i=1 xix

⊤
i −

Id/d
∥∥
op

≤ η on a high-probability event. Since our proofs already condition
on high-probability regularity of the design (e.g., restricted invertibility and
concentration of quadratic forms), such a deterministic hypothesis can often
be incorporated directly: the polishing step uses only quantitative condi-
tioning of A on a cone, and the dual separation step uses only the existence
of a witness y with A∗(y) ⪰ 0 and ⟨y,1⟩ < 0. Thus, in settings where
isotropy holds only approximately (for example, after preprocessing or when
the sampling is mildly dependent), the same strategy should apply provided
the regularity parameters remain bounded away from degeneracy.

Heavy tails, truncation, and robustness to outliers. The rank-one
nature Xi = xix

⊤
i is a source of both structure and fragility: if ∥xi∥2 occa-

sionally becomes anomalously large, then a single measurement can dominate
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A and spoil uniform conditioning. For designs with only finite moments, it
is therefore natural to introduce a truncation or winsorization step. For
instance, one may replace xi by x̃i := xi1{∥xi∥2 ≤ L} (with appropriate
rescaling to restore approximate isotropy), and run the same feasibility/dual-
certificate programs with x̃i in place of xi. Because our final outputs are
verifiable a posteriori (either Ŝ ⪰ 0 with A(Ŝ) = 1, or ŷ with A∗(ŷ) ⪰ 0
and ⟨ŷ,1⟩ < 0), such preprocessing can be viewed as an algorithmic device
rather than a change in the mathematical question. What remains open is a
sharp theorem quantifying the weakest tail assumptions under which the 1/4
threshold persists without truncation, and the extent to which a vanishing
fraction of adversarial outliers may be tolerated while preserving a transition
at the same location.

Perturbations of the constraints and stability of the fit. A different
notion of robustness concerns noise in the constraints. In applications, one
may only observe noisy targets bi = 1 + ξi, leading to

x⊤i Sxi = bi, i ∈ [n],

or one may wish to fit an ellipsoid approximately in an ℓ1 or ℓ2 sense. The
approximate-to-exact polishing principle already suggests a stability state-
ment: if S0 ⪰ 0 is bounded and ∥A(S0) − 1∥2 is small, then there exists a
small correction ∆ with A(∆) = 1 − A(S0) and S0 + ∆ ⪰ 0. Replacing 1
by b leads to the same linear correction equation A(∆) = b −A(S0), hence
to the same operator-norm control on ∆ provided the right-hand side is not
too large. Thus, in the satisfiable regime, we expect Lipschitz-type depen-
dence of a polished solution on the target vector b, at least locally and on
the high-probability event where A is well-conditioned on the relevant cone.

One can also ask for robust infeasibility above the transition: for α ≥
1/4 + ε, does there exist a dual certificate y that separates 1 not only from
A(Sd+), but from a small neighborhood of it? Concretely, can we find y
with A∗(y) ⪰ 0 and ⟨y,1⟩ ≤ −c while ∥y∥2 ≤ 1, for some c = c(ε) > 0
independent of d? Such a margin would imply that even if the right-hand side
b is perturbed by ∥b−1∥2 ≤ c/2, feasibility remains impossible. Establishing
a quantitative margin is a natural strengthening of the refutation result and
is closely tied to the geometry of the cone A(Sd+) near 1.

Perturbations of the points. Another perturbation model replaces xi
by xi + ei, where ei may be random or deterministic. Since the constraints
depend on xi only through Xi = xix

⊤
i , a small additive perturbation yields

(xi + ei)(xi + ei)
⊤ − xix

⊤
i = xie

⊤
i + eix

⊤
i + eie

⊤
i ,

so the measurement operator changes by a rank-two (plus rank-one) per-
turbation per sample. If ∥ei∥2 is of order 1/

√
d, then ∥xie⊤i ∥op is typi-

cally of order 1/d, suggesting that the cumulative perturbation to A over
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n ≍ d2 samples may be non-negligible. Understanding the stability of the
phase transition under such perturbations therefore requires more than a
naive perturbation bound; one needs structural control (e.g., independence,
mean zero, or bounded adversarial budget) to prevent coherent drift. This
is closely related to robustness questions in empirical covariance estimation
at the n ≍ d2 scale, where second-order effects can accumulate.

Open problem: sharp finite-size scaling and the critical window.
Our results leave open the precise behavior when α = 1

4 + o(1). Conic inte-
gral geometry suggests that, for many random convex feasibility problems,
the satisfiable probability transitions from near 1 to near 0 within a win-
dow whose width shrinks with dimension, and that the window is governed
by second-order geometric quantities (curvature of the statistical dimension,
intrinsic volumes, or fluctuations of a suitably defined Gaussian width). De-
termining the correct scaling for the present rank-one measurement model is
an appealing problem: does the window have width O(d−1/2), O(d−1/3), or
another exponent? Moreover, because our operator is built from xix

⊤
i rather

than i.i.d. Gaussian matrices, one expects nontrivial dependencies between
the curvature of Sd+ and the non-Gaussianity of the measurement ensemble.
A sharp finite-size theory would likely require a refined analysis of the ex-
treme singular values of A restricted to tangent cones of Sd+, together with
a central limit theorem for the relevant conic functionals.

Open problem: geometry of the feasible set below the transition.
When feasibility holds, the set

F := {S ∈ Sd+ : A(S) = 1}

is the intersection of an affine subspace of codimension n with a closed convex
cone. At the level of naive dimension counting, dim(Sd) ≈ d2/2 and n ≈
αd2, so one expects dim(F ) to be of order (1/2− α)d2 if the intersection is
transverse and lands in the interior of Sd+. Yet feasibility near α = 1/4 is
controlled by boundary geometry of the PSD cone, so transversality is not a
given. Several basic geometric questions remain:

• Typical rank. What is the typical rank of an extreme point of F , and
what rank is selected by natural objectives such as minimizing Tr(S)
subject to A(S) = 1? One may conjecture that the solution often has
rank proportional to d, but a precise law would illuminate how the
PSD constraint enforces feasibility up to α = 1/4.

• Compactness and conditioning. In the satisfiable regime we guarantee
existence of a bounded-spectrum solution, but the set F itself need
not be bounded a priori. Is it typically the case that F is bounded
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(hence compact) for α < 1/4, or does one generically have both well-
conditioned and ill-conditioned solutions coexisting? A structural char-
acterization of the recession cone of F would clarify this point.

• Faces and strict feasibility. Does F typically intersect the interior of Sd+
(i.e., contain positive definite matrices), or does it live on a proper face?
The answer governs the stability of feasibility under perturbations and
the behavior of interior-point methods.

Understanding these properties would also sharpen the algorithmic picture:
for instance, if F typically contains an interior point with a uniform spectral
gap, then polishing becomes purely linear-algebraic with robust margins; if
instead feasibility is supported on low-dimensional faces, then the role of
tangent cones becomes essential and the geometry is closer to compressed
sensing.

Open problem: explicit dual witnesses and structural refutations.
Above the transition, we produce dual certificates via an SDP. It is natural to
ask whether there are more explicit, combinatorial, or low-degree polynomial
refutations. Concretely, can one construct y with a simple functional form
(e.g., yi = f(∥xi∥2) or yi depending on a small number of projections) such
that

∑
i yixix

⊤
i ⪰ 0 while

∑
i yi < 0? Such certificates would connect the

present refutation problem to spectral algorithms and sum-of-squares lower
bounds. Conversely, proving that no such simple certificate exists below
certain degrees would quantify how much of the PSD cone geometry is truly
needed to witness infeasibility.

Concluding perspective. The threshold at α = 1/4 is best viewed as a
geometric constant associated with the PSD cone under rank-one sampling,
rather than as an artifact of the Gaussian model. Extending the theory
to broader ensembles, quantifying robustness to perturbations, and resolv-
ing the critical window all require a more refined understanding of how A
behaves on the collection of tangent cones to Sd+ that are relevant near fea-
sibility. The results established here reduce the exact feasibility question to
two constructive mechanisms—polishing below the transition and dual sep-
aration above it—and the open problems above ask, in essence, how stable
and how universal these mechanisms are once the idealized assumptions are
relaxed.
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