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Abstract

Bloom introduced (and renamed) an L3-uniform convolution bound
(“control”) that propagates to quantitative improvements in problems
such as sum-product, additive growth of convex sets, and Balog–Szemerédi–Gowers
(BSG). Bloom also notes that many threshold-breaking arguments only
require a weaker hypothesis—roughly, an L3 bound on 1A◦1A together
with L2 bounds on 1A ◦ 1B—but no meaningful examples are known
that separate this weak notion from full control. We formalise weak
control via two parameters: a uniform L2 cross-correlation bound and
a self L3 correlation bound. Our main theorem upgrades these weak
assumptions to full L3-control (up to polylogarithmic loss), yielding an
equivalence of invariants and allowing Bloom’s control-based machin-
ery to be invoked under simpler, more checkable hypotheses. We also
discuss candidate separating constructions in high-rank finite vector
spaces and outline computational tests that could certify separation if
equivalence fails.
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1 Introduction

A recurring theme in additive combinatorics is that quantitative bounds for
a set A ⊂ G are most robust when they are expressed through an invari-
ant that controls how A correlates additively with every other set B. One
convenient way to package such information is via higher moments of the
representation function

rA+B(x) =
(
1A ∗ 1B

)
(x),

whose size measures how often x is realised as a sum a + b. Among these,
the third moment ∑

x∈G
rA+B(x)

3

plays a special role: it is strong enough to force substantial additive structure
when it is large, yet sufficiently stable under the arguments that propagate
additive information (energy increment schemes, Balog–Szemerédi–Gowers
type reductions, and various growth/expansion mechanisms). Bloom for-
malised this by introducing a full L3-control parameter κ(A): it is the least
constant for which one has, uniformly for all finite B ⊂ G,∑

x

(
1A ∗ 1B(x)

)3 ≤ κ(A) |A|2|B|2.

In practice (and throughout this paper) we allow polylogarithmic losses in
|A|, since essentially all downstream applications tolerate such losses; thus
the correct scale is κ(A) up to factors of log(2|A|)O(1).

The main point of this work is that the full L3 control condition, while
natural from Bloom’s perspective, is often stronger than what one can verify
directly in concrete examples. In many situations, the available input takes
the form of two weaker pieces of information. The first is a uniform L2 bound
for cross-correlations

∥1A ◦ 1B∥2,

equivalently a uniform upper bound for the additive energy E(A,B). The
second is a self-correlation bound at exponent 3, namely control of ∥1A◦1A∥3.
These are precisely the weak parameters K2(A) and K3(A) introduced in the
global context: they measure, respectively, how large E(A,B) can be as B
varies and how concentrated the difference representation function rA−A can
be at high multiplicities.

The motivating question is then the following.

To what extent is Bloom’s full control κ(A) determined (up to polylogarithmic
factors) by the weaker invariants K2(A) and K3(A)?

This question matters because the known consequences of full control
are numerous and powerful, but the hypothesis κ(A) ≤ κ is not always the
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most convenient interface with incidence geometry, Fourier-analytic bounds,
or combinatorial structure theorems. By contrast, estimates for energies and
for a single self-correlation moment often appear as direct outputs of such
methods. For instance, an argument may naturally yield an inequality of
the form

E(A,B) ≲ |A|3/2|B|3/2 for all B,

together with a separate bound showing that rA−A has few very popular
differences, which is exactly what an L3 bound on 1A ◦ 1A quantifies. If
these two inputs already imply full L3 control, then one may immediately im-
port the entire package of “control-based” results without re-running Bloom’s
framework from scratch.

Our principal result establishes precisely such an implication: the weak
hypotheses (i) and (ii) from the enclosing scope upgrade to full L3 control,
with the expected dependence on parameters. The dependence is dictated
by scaling. Indeed, the simplest way to see that K2 must enter as K4

2 is
that full control bounds an L3 quantity, and by Hölder one can pass from
L3 to L2 with an exponent loss of 1/4; conversely, one expects that an
L2 hypothesis must be iterated (in a dyadic or energy-increment sense) to
reach a third moment, producing a fourth power. Similarly, the parameter
K3 is already an L3 self-correlation bound, so it should enter linearly. Our
theorem confirms that, up to polylogarithmic factors, κ(A) is controlled by
max{K2(A)

4,K3(A)} and, conversely, full control automatically implies the
weak bounds. In particular, the three invariants are polylog-equivalent in
the sense that

κ(A) ≍polylog max{K2(A)
4, K3(A)}.

We emphasise two consequences of this equivalence.

Exporting results. Any statement in the literature whose hypothesis is
formulated in terms of κ(A) can be reformulated with hypotheses on K2(A)
and K3(A) only, at the cost of a polylogarithmic degradation. This is not
merely cosmetic: in concrete settings one may be able to bound K2(A) and
K3(A) by direct estimates (energies and popular-differences tails) while κ(A)
remains opaque. Thus the equivalence provides a systematic translation layer
between older “energy-type” inputs and Bloom’s control framework.

Conceptual simplification. Bloom’s control parameter is, by definition,
uniform over all sets B, and a priori it is not clear whether it is genuinely
stronger than uniform energy bounds plus a single self-correlation constraint.
The equivalence shows that, at least up to polylogarithmic losses, no addi-
tional hidden obstruction exists: the third moment of 1A ∗ 1B can only
become large through mechanisms already detected by (i) and (ii). In par-
ticular, the “high multiplicity” obstruction is captured by the L3 behaviour of
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rA−A (parameter K3), and the “medium multiplicity” obstruction is captured
by uniform energy control (parameter K2).

At the level of proof strategy, our argument proceeds by decomposing
the third moment of rA+B into contributions from multiplicity ranges. The
most basic decomposition is dyadic: for t ranging over powers of 2, let

St := {x ∈ G : rA+B(x) ∈ [t, 2t)}.

Then ∑
x

rA+B(x)
3 ∼

∑
t

∑
x∈St

rA+B(x)
3,

and it suffices to bound the contribution of each St in a manner summable
over t. The burden is to relate information about rA+B to information about
rA−A and to mixed energies involving A and portions of B.

A technical obstacle appears immediately: the hypothesis (i) is stated
only for indicators 1B, while a dyadic decomposition naturally introduces
weights (for instance, one is led to consider functions measuring multiplicities
of fibres). We therefore begin by upgrading (i) to a stable inequality for
general nonnegative functions f :

∥1A ◦ f∥2 ≪ log(2|supp(f)|)O(1)K2 |A|3/4 ∥f∥4/3.

This is achieved by a layer-cake (dyadic) decomposition of f into level sets
and an efficient summation across scales. While elementary, this step is the
analytic backbone of the argument: it allows us to apply (i) in situations
where B is replaced by a structured multiset extracted from B and the level
set St.

With this functional upgrade in hand, we bound each dyadic contribution
by separating into three regimes.

• In the low multiplicity regime (small t), trivial inequalities (Young
and Hölder) already give acceptable estimates, and the contribution is
summable with room to spare.

• In the medium multiplicity regime, we relate the size of St and the
distribution of rA+B on St to mixed additive energies, and then invoke
the uniform energy hypothesis encoded by K2. Here the functional
form of (i) is used to control the relevant correlation terms without
losing more than logarithmic factors.

• In the high multiplicity regime, one cannot hope to control St solely
from energy bounds: very large values of rA+B can arise from concen-
tration on a small set of popular differences. This is precisely where
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the self L3 hypothesis (ii) enters. From ∥1A◦1A∥33 ≤ K3|A|4 we deduce
a tail bound for popular differences,

|{d : rA−A(d) ≥ t}| ≪ K3
|A|4

t3
,

which forces high-multiplicity phenomena to be rare enough for the
dyadic sum to converge.

Combining the three regimes yields a bound of the desired shape, with
the dyadic summation contributing a factor log(2|A|)O(1) and the controlling
parameter appearing as max{K4

2 ,K3}. The reverse implication, namely that
full control implies the weak bounds, is straightforward and follows from
Hölder-type inequalities and specialisation to B = −A. Taken together,
these establish the polylog-equivalence of invariants.

Finally, we record a conceptual alternative. If the upgrade from weak to
full control were false, then one should be able to construct explicit coun-
terexamples in groups with rich subgroup geometry, such as Fn

p . In that
setting one can attempt to decouple moment conditions by taking unions
of cosets (to engineer energy behaviour) together with pseudorandom per-
turbations (to manipulate higher moments). While we do not pursue such
a construction to completion here, we outline a candidate program and a
finite verification approach: search over structured witness sets B for which
∥1A ∗ 1B∥3 is maximised, subject to constraints enforcing (i) and (ii). The
present theorem may be viewed as ruling out this separation program in full
generality, up to the polylogarithmic losses inherent in the method.

In the next section we fix notation and collect basic analytic tools: convo-
lution and difference-convolution conventions, representation functions, and
the standard inequalities and dyadic decompositions used repeatedly in the
proof.

2 Preliminaries

2.1 Ambient group, measures, and norms

Throughout we work in an abelian group G written additively. All sets and
functions under consideration are finitely supported, and all sums are taken
with respect to the counting measure on G. For 1 ≤ p < ∞ and finitely
supported f : G → C we write

∥f∥p :=
(∑
x∈G

|f(x)|p
)1/p

, ∥f∥∞ := sup
x∈G

|f(x)|.

If A ⊂ G is finite we denote by 1A its indicator function and note ∥1A∥p =
|A|1/p for 1 ≤ p < ∞.
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We will repeatedly use the convention that implicit constants are abso-
lute. When polylogarithmic losses in |A| are permitted we write X ≲ Y to
mean

X ≤ C log(2|A|)C Y

for some absolute constant C > 0 (which may vary from line to line). In
contexts where |A| is not the only relevant size parameter (e.g. when a func-
tion f has support of size | supp(f)|), we may instead record the dependence
as log(2| supp(f)|)O(1).

2.2 Convolution and difference-convolution

For finitely supported functions f, g : G → C we define the (additive) convo-
lution

(f ∗ g)(x) :=
∑
y∈G

f(x− y)g(y),

and the difference-convolution (or cross-correlation)

(f ◦ g)(x) :=
∑
y∈G

f(x+ y)g(y).

These two operations are related by the involution g̃(y) := g(−y), since

f ◦ g = f ∗ g̃.

In particular, for indicators one has

(1A∗1B)(x) = |{(a, b) ∈ A×B : a+b = x}|, (1A◦1B)(x) = |{(a, b) ∈ A×B : a−b = x}|.

We will freely pass between sum and difference language using this identity,
and we occasionally write −B := {−b : b ∈ B} so that 1−B(x) = 1B(−x)
and 1A ◦ 1B = 1A ∗ 1−B.

The basic algebraic properties are standard: f ∗ g = g ∗ f , (f ∗ g) ∗ h =
f ∗ (g ∗ h), while for ◦ we have f ◦ g = g̃ ◦ f̃ and (f ◦ g)(x) = (g ◦ f)(−x).
We use these only at the level of harmless rearrangements of sums.

2.3 Representation functions and additive energy

Given finite sets A,B ⊂ G we define the representation functions

rA+B(x) := (1A ∗ 1B)(x), rA−B(x) := (1A ◦ 1B)(x).

Thus rA+B(x) counts the number of representations x = a+ b, and rA−B(x)
counts the number of representations x = a− b.

The (additive) energy between A and B is

E(A,B) := ∥1A ◦ 1B∥22 =
∑
x∈G

rA−B(x)
2.
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Expanding the square shows the familiar quadruple-counting interpretation:

E(A,B) = |{(a, a′, b, b′) ∈ A2 ×B2 : a− b = a′ − b′}|.

A second expansion yields the correlation identity

E(A,B) =
∑
d∈G

rA−A(d) rB−B(d), (1)

obtained by grouping solutions by the common difference d = a−a′ = b−b′.
We will use (1) to transfer information between A − A and mixed energies
involving B.

Since 1A ◦ 1B = 1A ∗ 1−B, the same energy also controls the second
moment of rA+B:

∥1A ∗ 1B∥22 = E(A,−B).

This trivial observation is the bridge between hypotheses formulated in terms
of difference-convolutions and the third moment of rA+B that we ultimately
seek to control.

2.4 Standard inequalities

We record the analytic inequalities we use repeatedly.

Hölder and Cauchy–Schwarz. For 1 ≤ p, q, r ≤ ∞ with 1/r = 1/p+1/q
we have

∥fg∥r ≤ ∥f∥p∥g∥q.

In particular,
∑

x |f(x)g(x)| ≤ ∥f∥2∥g∥2 (Cauchy–Schwarz), and the mono-
tonicity ∥f∥p ≤ ∥f∥q holds whenever p ≥ q and f is supported on a set of
finite size, with the usual dependence on | supp(f)|.

Young’s inequality. If 1 ≤ p, q, r ≤ ∞ satisfy 1 + 1/r = 1/p+ 1/q, then

∥f ∗ g∥r ≤ ∥f∥p∥g∥q.

We will most frequently use the cases

∥f ∗ g∥2 ≤ ∥f∥1∥g∥2, ∥f ∗ g∥∞ ≤ ∥f∥1∥g∥∞, ∥f ∗ g∥3 ≤ ∥f∥3/2∥g∥1,

as well as the corresponding statements for ◦ via f ◦ g = f ∗ g̃.

Moment interpolation. When we have control of ∥h∥2 and ∥h∥∞ we may
bound intermediate moments by interpolation; for instance

∥h∥33 ≤ ∥h∥22 ∥h∥∞, ∥h∥22 ≤ ∥h∥1 ∥h∥∞.

We will use such inequalities in the “low multiplicity” range of the dyadic
decomposition, where rA+B is uniformly small.
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2.5 Dyadic decompositions and layer-cake bookkeeping

A recurring device is to decompose a nonnegative function into dyadic level
sets. If f ≥ 0 is finitely supported, we define sets

Ej := {x ∈ G : 2j ≤ f(x) < 2j+1},

so that
f(x) ≤

∑
j

2j+1 1Ej (x), f(x) ≥
∑
j

2j 1Ej (x), (2)

where the sums range over those integers j for which Ej ̸= ∅. Since f is
finitely supported, only O(log(2∥f∥∞)) such j occur.

Two simple estimates will be used for summing across scales. First, by
disjointness of the Ej we have

∥f∥pp ∼p

∑
j

2jp |Ej |,

with implicit constants depending only on p. Second, Cauchy–Schwarz across
the dyadic index gives a generic polylogarithmic loss: for nonnegative coef-
ficients aj , bj ,∑

j

ajbj ≤
(∑

j

a2j

)1/2(∑
j

b2j

)1/2
≤ (#{j})1/2 max

j
aj

(∑
j

b2j

)1/2
,

and #{j} ≪ log(2| supp(f)|) once one normalises f dyadically on its support.
This is the mechanism by which our arguments introduce only polylogarith-
mic losses when we replace indicator hypotheses by weighted inequalities.

We apply the same decomposition to representation functions. Given
finite A,B and a dyadic parameter t (a power of 2), we define

St := {x ∈ G : t ≤ rA+B(x) < 2t}.

Then ∑
x∈G

rA+B(x)
3 ∼

∑
t

∑
x∈St

rA+B(x)
3,

and on each level set St we have the crude but useful comparability

t3 |St| ≤
∑
x∈St

rA+B(x)
3 < (2t)3 |St|.

The proof of the main theorem is organised by estimating the contribution
of each St with bounds that are summable over t.
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2.6 Popularity bounds

Finally, we will repeatedly pass between an ℓp bound and a tail estimate.
The basic inequality is Markov’s: for h ≥ 0 and p ≥ 1,

|{x : h(x) ≥ τ}| ≤ ∥h∥pp
τp

(τ > 0).

Applied with h = rA−A and p = 3, this turns an ℓ3 bound on 1A ◦ 1A into
a quantitative statement that there are few very popular differences. We
will typically apply this only for dyadic τ , so that the additional logarithmic
bookkeeping is absorbed by our ≲ notation.

All subsequent arguments rely only on the above conventions and inequal-
ities, together with straightforward rearrangements of finitely supported
sums. In particular, no assumptions on G beyond commutativity are used
at this stage.

3 Weak control parameters K2(A) and K3(A)

In Bloom’s notion of full L3-control one asks for a uniform bound on the
third moment of 1A ∗ 1B for every test set B. Many arguments in the liter-
ature (notably those originating in work of Shakan and Shkredov) naturally
produce weaker information, typically of two kinds: a uniform L2 bound for
mixed correlations and a self-correlation bound for A in an L3 (or higher-
energy) norm. We isolate these as quantitative invariants.

3.1 Definitions and normalisations

For a finite set A ⊂ G we define K2(A) to be the least constant K2 ≥ 0 such
that for every finite B ⊂ G,

∥1A ◦ 1B∥2 ≤ K2 |A|3/4|B|3/4. (3)

Equivalently, in energy language,

K2(A)
2 = sup

B ̸=∅

E(A,B)

|A|3/2|B|3/2
, E(A,B) = ∥1A ◦ 1B∥22. (4)

We similarly define K3(A) to be the least constant K3 ≥ 0 such that

∥1A ◦ 1A∥33 ≤ K3 |A|4. (5)

Since 1A ◦ 1A = rA−A, the left-hand side is the third additive energy

E3(A) :=
∑
d∈G

rA−A(d)
3 = ∥1A ◦ 1A∥33,
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and therefore
K3(A) =

E3(A)

|A|4
. (6)

The exponents in (3)–(5) are chosen so that the parameters are dimen-
sionless and typically lie in (0, 1] (indeed, always ≤ 1 by a trivial estimate).
For K2(A), we use

∥1A ◦ 1B∥22 ≤ ∥1A ◦ 1B∥1 ∥1A ◦ 1B∥∞ = |A||B| · ∥1A ◦ 1B∥∞,

and ∥1A ◦ 1B∥∞ ≤ min{|A|, |B|} ≤ (|A||B|)1/2, which yields

∥1A ◦ 1B∥2 ≤ |A|3/4|B|3/4,

hence K2(A) ≤ 1. For K3(A), we similarly have

∥1A ◦ 1A∥33 ≤ ∥1A ◦ 1A∥∞ ∥1A ◦ 1A∥22 ≤ |A| · E(A,A) ≤ |A| · |A|3 = |A|4,

so K3(A) ≤ 1.
We also record the elementary lower bounds

K2(A) ≥ |A|−1/4 (take B = {0}), K3(A) ≥ |A|−1 (since rA−A(0) = |A|).
(7)

Thus K2(A) and K3(A) are small precisely when A exhibits a degree of
additive pseudorandomness in the corresponding moment.

3.2 Invariances and monotonicity

The parameters are invariant under the natural symmetries of the ambient
group. If x ∈ G then translation does not affect difference representations,
hence

K2(A+ x) = K2(A), K3(A+ x) = K3(A),

and similarly K2(−A) = K2(A), K3(−A) = K3(A). More generally, if
ϕ : G → G is a group automorphism then rϕ(A)−ϕ(B)(d) = rA−B(ϕ

−1d), so
both K2 and K3 are invariant under ϕ.

Monotonicity under restriction is immediate and will be used repeatedly
when passing to subsets produced by dyadic decompositions. If A′ ⊆ A then
1A′ ≤ 1A pointwise, hence for every B,

∥1A′ ◦ 1B∥2 ≤ ∥1A ◦ 1B∥2, ∥1A′ ◦ 1A′∥33 ≤ ∥1A ◦ 1A∥33,

and therefore
K2(A

′) ≤ K2(A), K3(A
′) ≤ K3(A). (8)

We will also use crude subadditivity statements for decompositions A =⊔
iAi. While mixed correlations between the pieces may contribute posi-

tively to 1A ◦ 1A, the triangle inequality at the level of norms yields bounds
of the shape

∥1A ◦ 1B∥2 ≤
∑
i

∥1Ai ◦ 1B∥2, ∥1A ◦ 1A∥3 ≤
∑
i

∥1Ai ◦ 1A∥3, (9)
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which are sufficient for the bookkeeping encountered later: when a construc-
tion or argument splits A into O(log |A|) structured layers, the resulting loss
can be absorbed into log(2|A|)O(1).

3.3 Immediate relations to Bloom control

We now relate the weak parameters to Bloom’s full L3-control parameter
κ(A). Suppose A satisfies Bloom control, meaning that for all finite B,

∥1A ∗ 1B∥33 =
∑
x

(1A ∗ 1B(x))3 ≤ κ(A) |A|2|B|2. (10)

Then (3) follows from interpolation between L1 and L3. Indeed, for any
finitely supported h ≥ 0 we have

∥h∥2 ≤ ∥h∥1/41 ∥h∥3/43 , equivalently ∥h∥42 ≤ ∥h∥1 ∥h∥33,

since 1/2 = (1/4)·1+(3/4)·(1/3). Applying this with h = 1A◦1B = 1A∗1−B

gives

∥1A◦1B∥42 ≤ ∥1A◦1B∥1 ∥1A◦1B∥33 = |A||B|·∥1A∗1−B∥33 ≤ |A||B|·κ(A)|A|2|B|2,

hence

∥1A ◦ 1B∥2 ≤ κ(A)1/4|A|3/4|B|3/4, so K2(A) ≤ κ(A)1/4. (11)

Likewise, taking B = −A in (10) yields

∥1A ◦ 1A∥33 = ∥1A ∗ 1−A∥33 ≤ κ(A) |A|4, so K3(A) ≤ κ(A). (12)

Thus full control dominates the weak parameters at the expected scales K4
2

and K3. The main content of our upgrade theorem is that, up to polyloga-
rithmic factors, the converse holds: the information encoded by (3) and (5)
already forces (10) with κ(A) comparable to max{K2(A)

4,K3(A)}.

3.4 Comparison with parameters in Shakan–Shkredov

The inequalities (3)–(5) are closely related to the energy-based parameters
used by Shakan and Shkredov. In much of that literature one encounters
quantities of the form

d+(A) := sup
B ̸=∅

E(A,B)

|A| |B|3/2
, or more symmetrically sup

B ̸=∅

E(A,B)

|A|3/2|B|3/2
,

as well as higher-energy normalisations based on E3(A) =
∑

d rA−A(d)
3. Our

choice is precisely the symmetric normalisation for the mixed energy together
with the scale-invariant normalisation E3(A)/|A|4 for the third energy:

K2(A)
2 = sup

B ̸=∅

E(A,B)

|A|3/2|B|3/2
, K3(A) =

E3(A)

|A|4
.
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If one prefers the asymmetric d+(A), then (4) implies d+(A) ≤ K2(A)
2 |A|1/2,

while conversely K2(A)
2 ≤ d+(A) |A|−1/2 by restricting to |B| ≤ |A| (the

range typically relevant in applications). Similarly, K3(A) is exactly the
third-energy density, and tail bounds for popular differences that are of-
ten assumed in “Szemerédi–Trotter type” hypotheses follow from K3(A) by
Markov’s inequality:

|{d : rA−A(d) ≥ t}| ≤ E3(A)

t3
= K3(A)

|A|4

t3
.

From our perspective, these parameters are the minimal hypotheses one can
hope to propagate to full L3-control: (3) supplies uniform second-moment
bounds for mixed sums/differences, while (5) prevents the obstruction com-
ing from excessively many very popular differences of A.

In the next section we begin the analytic mechanism that converts the
set-testing hypothesis (3) into a weighted inequality for 1A ◦ f , which is the
input needed for the dyadic analysis of

∑
x(1A ∗ 1B(x))3 without incurring

catastrophic losses from hard truncations.

4 From set tests to function tests: a layer-cake up-
grade of (3)

The hypothesis (3) is stated for indicators of sets. In the proof of the main
upgrade theorem, however, we cannot remain in the category of sets: after
decomposing the representation function rA+B = 1A ∗1B into dyadic pieces,
we are naturally led to expressions in which 1A is correlated not with a set
but with a weight encoding the local density of B on certain fibres. A robust
analytic mechanism is therefore needed to convert the set-testing inequality
(3) into a weighted inequality for 1A◦f with f an arbitrary finitely supported
function.

A naive attempt would be to approximate f by a large union of level sets
and apply (3) repeatedly, but if one performs this approximation by hard
truncations (for instance, cutting off all values above a chosen threshold and
bounding the tail trivially), then the resulting dependence on parameters is
typically unstable: when the tail is later estimated in a crude way, one incurs
large powers of the control parameters (the familiar “κ100-type losses”). The
point of the layer-cake viewpoint is that we do not separate a “main part”
and a “tail part”; instead we keep all scales simultaneously, paying only for
the number of relevant dyadic scales, which is logarithmic in a natural size
parameter.
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4.1 Dyadic layer-cake decomposition

Let f : G → [0,∞) be finitely supported. We write S = supp(f) and decom-
pose f dyadically as

f =
∑
j∈Z

2j 1Ej , Ej := {x ∈ G : 2j ≤ f(x) < 2j+1}. (13)

Only finitely many Ej are nonempty. This decomposition is a discrete form
of the layer-cake identity f(x) =

∫∞
0 1{f>t}(x) dt, with the advantage that

it keeps track of scales explicitly.
Applying (3) to each Ej gives

∥1A ◦ 1Ej∥2 ≤ K2 |A|3/4 |Ej |3/4. (14)

Since 1A ◦ f =
∑

j 2
j(1A ◦ 1Ej ) and ∥ · ∥2 is a norm, we obtain the crude

bound

∥1A ◦ f∥2 ≤
∑
j

2j ∥1A ◦ 1Ej∥2 ≤ K2 |A|3/4
∑
j

2j |Ej |3/4. (15)

Thus the problem reduces to estimating the dyadic sum
∑

j 2
j |Ej |3/4 in

terms of a natural norm of f . The correct exponent is forced upon us:
since 2j |Ej |3/4 = (24j/3|Ej |)3/4, the quantity

∑
j 2

4j/3|Ej | is comparable to∑
x f(x)

4/3 = ∥f∥4/34/3. We therefore expect an estimate in terms of ∥f∥4/3,
up to a factor accounting for the number of active dyadic scales.

4.2 A Lorentz-space inequality and a polylog loss

Define aj := 24j/3|Ej |. Then (15) becomes

∥1A ◦ f∥2 ≤ K2 |A|3/4
∑
j

a
3/4
j .

By Hölder on the sequence (aj) with exponents 4/3 and 4, we have∑
j

a
3/4
j ≤

(∑
j

aj

)3/4(∑
j

1
)1/4

=
(∑

j

24j/3|Ej |
)3/4

(#{j : Ej ̸= ∅})1/4.

(16)
Moreover, ∑

j

24j/3|Ej | ≤
∑
x

(2f(x))4/3 ≪ ∥f∥4/34/3, (17)

since f(x) ∈ [2j , 2j+1) on Ej . Thus

∥1A ◦ f∥2 ≪ K2 |A|3/4 ∥f∥4/3 (#{j : Ej ̸= ∅})1/4. (18)
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The factor #{j : Ej ̸= ∅} is controlled by a logarithm. Indeed, for
each nonempty Ej we have 2j ≤ ∥f∥∞, and also 2j ≥ min{f(x) : x ∈ S}.
While min f may be very small, we may harmlessly discard layers below the
average scale: if 2j ≤ ∥f∥1/|S|, then∑

k≤j

2k1Ek
≤ ∥f∥1

|S|
1S ,

and the contribution of these low layers can be bounded by applying (3)
with B = S and absorbing the resulting term into the ∥f∥4/3 contribution.
Concretely, after such a normalization one may assume the active scales lie
in an interval of length O(log(2|S|)), and hence

#{j : Ej ̸= ∅} ≪ log(2|S|). (19)

Substituting (19) into (18) yields the desired weighted inequality with a
polylogarithmic loss.

It is convenient to phrase this in a Lorentz-space language. The sum∑
j 2

j |Ej |3/4 is (up to absolute constants) the discrete analogue of the Lorentz
norm ∥f∥L4/3,1 , while ∥f∥4/3 is the L4/3 norm. On a finite set, L4/3,1 embeds
into L4/3 with a logarithmic loss, reflecting precisely the scale-counting ar-
gument above. We will not need the formalism, but it is conceptually useful:
(3) is an endpoint estimate that naturally upgrades to a Lorentz bound, and
the passage from Lorentz back to Lebesgue costs only logO(1).

4.3 Indicator-to-function upgrade

We summarize the outcome as the following proposition, which is the analytic
input for the multi-scale argument in the next section.

Proposition 4.1. Assume (3) holds with constant K2. Then for any finitely
supported f ≥ 0,

∥1A ◦ f∥2 ≪ log(2|supp(f)|)O(1)K2 |A|3/4 ∥f∥4/3. (20)

If f is signed, then the same bound holds with f replaced by |f |, and hence
also for general f after splitting into positive and negative parts.

Proof. For f ≥ 0 we use the dyadic decomposition (13) and apply (3) on each
level set Ej to obtain (15). We then estimate the dyadic sum by (16) and
(17). Finally, we bound the number of nonempty dyadic levels by (19), losing
a factor log(2|supp(f)|)O(1). For signed f , write f = f+ − f− and apply the
nonnegative case to f+ and f−, using ∥1A ◦ f∥2 ≤ ∥1A ◦ f+∥2 + ∥1A ◦ f−∥2
and ∥f+∥4/3 + ∥f−∥4/3 ≤ 2∥f∥4/3.
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Two comments are in order. First, the exponent 4/3 is not incidental: it
is exactly the dual exponent that will appear when we pair 1A ◦ f against
another function in L4, and it is the exponent for which the dyadic summa-
tion matches the 3/4 power present in (3). Second, the logarithmic loss in
(20) is the correct price for an endpoint upgrade of this type; importantly, it
is uniform and does not depend on the magnitudes taken by f , only on the
number of available scales (which will be O(log |A|) in our applications).

4.4 Why this removes catastrophic tail losses

In the multi-scale analysis of ∥1A∗1B∥33, one repeatedly encounters weighted
functions of the form

f =
∑
y∈B

w(y) δy,

or more generally weights obtained by selecting a level set of rA+B and
projecting it back to B. The key difficulty is that such weights may have long
tails: a small part of B can carry disproportionately large weight, and a hard
cutoff at an arbitrary threshold introduces an artificial dichotomy between
“structured” and “error” parts. Proposition 4.1 avoids this by treating each
dyadic level on its own scale and summing the contributions with the correct
exponent. The only cumulative loss comes from counting dyadic scales, and
hence is polylogarithmic. This stability is what allows the next section to run
the decomposition of rA+B across many multiplicity regimes while keeping
the final dependence on max{K4

2 ,K3} at the natural scale.

5 The weak-to-full upgrade: a multi-scale bound
for ∥1A ∗ 1B∥3

We now prove the main implication that the weak hypotheses (3) and (5)
upgrade to Bloom’s full L3-control. Fix an arbitrary finite B ⊂ G and set

r := rA+B = 1A ∗ 1B.

Our task is to show∑
x∈G

r(x)3 ≪ log(2|A|)O(1) max{K4
2 ,K3} |A|2|B|2.

The argument proceeds by decomposing r into dyadic multiplicity scales and
bounding the contribution of each scale by a combination of the L2 cross-
correlation information (hence K2) and the popular-differences information
coming from the self L3 bound (hence K3). The only cumulative loss comes
from summing over scales.
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5.1 Dyadic decomposition of the representation function

For dyadic t = 2k we define the level sets

St := {x ∈ G : t ≤ r(x) < 2t}.

Then St is empty unless 1 ≤ t ≤ min{|A|, |B|}, and we have the disjoint
decomposition

r =
∑
t

r 1St .

Since r(x) ≍ t on St, we obtain∑
x

r(x)3 =
∑
t

∑
x∈St

r(x)3 ≪
∑
t

t3|St|. (21)

Thus it suffices to bound t3|St| uniformly in t, up to polylogarithmic losses,
in such a way that the sum over dyadic t converges to max{K4

2 ,K3}|A|2|B|2.

5.2 From a level set to a weighted fibre function

To each level set St we associate a weight on G that records how often an
element of G appears as a B-component of a representation of a sum in St.
Define

ft(y) := |{(a, b) ∈ A×B : a+ b ∈ St, b = y}| =
∑
x∈St

1A(x− y)1B(y).

Equivalently, ft = 1B · (1A ◦ 1St)(− · ), so supp(ft) ⊆ B and ∥ft∥1 is exactly
the number of representations (a, b) whose sum lies in St:

∥ft∥1 =
∑
y

ft(y) =
∑
x∈St

r(x). (22)

In particular, since r(x) ≥ t on St,

∥ft∥1 ≥ t|St|. (23)

At the same time, the level contribution to the third moment can be ex-
pressed in terms of ft. Indeed,∑

x∈St

r(x)3 ≍ t2
∑
x∈St

r(x) = t2∥ft∥1,

where we used r(x) ≍ t on St and (22). Thus∑
x∈St

r(x)3 ≪ t2 ∥ft∥1. (24)

The point is that ∥ft∥1 can be bounded by analytic means from an L2 control
on 1A ◦ ft, and Proposition 4.1 provides exactly such a bound in terms of
∥ft∥4/3 with only a polylogarithmic loss.

17



5.3 Medium multiplicity: two uses of the K2 hypothesis

We first treat the range of t for which the K2-information is decisive. By
Cauchy–Schwarz on B we have

∥ft∥1 ≤ |B|1/2 ∥ft∥2. (25)

To bound ∥ft∥2, we relate ft back to St and use the weighted upgrade Propo-
sition 4.1. Observing ft ≤ (1A ◦ 1St)(− · ), we may estimate (up to absolute
constants)

∥ft∥2 ≤ ∥1A ◦ 1St∥2.
Applying (3) with B = St yields

∥ft∥2 ≪ K2 |A|3/4 |St|3/4. (26)

Substituting (26) into (25) and then into (24) gives∑
x∈St

r(x)3 ≪ t2 |B|1/2K2 |A|3/4 |St|3/4. (27)

At this stage the level size |St| must be eliminated. Here we use the L2

control on r coming from the energy form of (3) (Lemma ?? in the global
notation): by (3) applied to −B,∑

x

r(x)2 = ∥1A ∗ 1B∥22 = E(A,−B) ≤ K2
2 |A|3/2|B|3/2.

Since r(x) ≥ t on St, we have

t2|St| ≤
∑
x∈St

r(x)2 ≤
∑
x

r(x)2 ≤ K2
2 |A|3/2|B|3/2, (28)

and hence |St| ≪ K2
2 |A|3/2|B|3/2t−2. Inserting this into (27) gives∑

x∈St

r(x)3 ≪ t2 |B|1/2K2 |A|3/4
(
K2

2 |A|3/2|B|3/2t−2
)3/4

.

Collecting exponents, we obtain∑
x∈St

r(x)3 ≪ K4
2 |A|2|B|2 ·

( t

|A|1/2|B|1/2
)1/2

. (29)

In particular, whenever t ≤ |A|1/2|B|1/2 (which covers all but the extreme
high-multiplicity levels), we have the uniform bound∑

x∈St

r(x)3 ≪ K4
2 |A|2|B|2. (30)

Summing (30) over the O(log(2|A|)) dyadic values of t in this medium range
contributes at most a polylogarithmic factor, as desired.

We emphasize that the exponent K4
2 is forced by this scheme: the level-

set estimate (27) uses K2 once, and (28) uses K2
2 (energy), which is then

raised to the 3/4 power, producing an overall K2 · (K2
2 )

3/4 = K4
2 .
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5.4 High multiplicity: K3 and popular differences in A− A

It remains to bound the contribution of those (few) dyadic levels with t
comparable to min{|A|, |B|}, where (29) is no longer uniform. In this regime,
large multiplicity forces repeated differences inside A, and hypothesis (5)
precisely limits how many such popular differences can exist.

We use the following heuristic (made precise by a Katz–Koester style
containment argument): if r(x) ≥ t, then there are ≫ t2 ordered pairs of
representations (a1, b1), (a2, b2) ∈ A × B with a1 + b1 = a2 + b2 = x, hence
≫ t2 difference relations

a1 − a2 = b2 − b1 ∈ (A−A) ∩ (B −B).

Thus, a large level set St produces many incidences between B −B and the
set of popular differences of A. Lemma 2 in the global notation bounds the
popular differences of A: from (5), for all u ≥ 1,

|{d : rA−A(d) ≥ u}| ≪ K3
|A|4

u3
.

Taking u ≍ t and summing over dyadic t yields a convergent series in t
once weighted by t3, exactly matching the third-moment scaling in (21).
Concretely, the contribution of the high-multiplicity levels can be bounded
by ∑

t high

t3|St| ≪ log(2|A|)O(1)K3 |A|2|B|2, (31)

where the factor |B|2 enters only through the trivial bound rB−B(d) ≤ |B|
when we convert incidences with B −B into a count of representations.

5.5 Conclusion of the upgrade

Combining the medium estimate (30) summed over dyadic t with the high-
multiplicity estimate (31), we obtain∑
x

r(x)3 ≪ log(2|A|)O(1)
(
K4

2+K3

)
|A|2|B|2 ≪ log(2|A|)O(1) max{K4

2 ,K3} |A|2|B|2,

which is the asserted full L3-control bound. We stress that the polyloga-
rithmic factor comes from two sources only: the dyadic decomposition (21)
(a logarithmic number of nonempty scales) and the endpoint nature of the
L2 testing inequality (3) when upgraded to weighted functions via Proposi-
tion 4.1. No loss of the form K−c

2 or K−c
3 is incurred.
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5.6 Equivalence of weak and full control up to polylogarith-
mic factors

Theorem A identifies max{K4
2 ,K3} (up to polylogarithmic losses) as the

correct quantitative invariant governing Bloom-style L3 propagation. Con-
ceptually, the point is that Bloom’s full control parameter κ(A) is defined
by a uniform third-moment inequality over all finite B, whereas many argu-
ments in the literature (including older threshold-breaking results) assume
only weaker information: a uniform L2 cross-correlation estimate and a sin-
gle self-correlation L3 estimate. Theorem A shows that, after tolerating
logarithmic losses in log(2|A|), these weaker hypotheses already force the
full uniform third-moment bound. Together with the easy reverse impli-
cation (full ⇒ weak), this gives a robust equivalence and justifies treating
max{K4

2 ,K3} as interchangeable with κ(A) in applications.
We first record the “easy” direction, which is essentially bookkeeping.

Assume that A has full control κ(A), meaning that for every finite B we
have ∑

x

(1A ∗ 1B(x))3 ≤ κ(A) |A|2|B|2.

By choosing B = −A, we directly obtain the self-correlation estimate

∥1A ◦ 1A∥33 =
∑
x

(1A ∗ 1−A(x))
3 ≤ κ(A) |A|4,

so K3(A) ≤ κ(A). Similarly, full L3-control implies the uniform L2 cross-
correlation bound (i) with K2 ≤ κ(A)1/4. One convenient way to see the
scaling is to interpolate between the second and third moments of 1A ∗ 1B:
writing r = 1A ∗ 1B, we have

∥r∥22 ≤ ∥r∥3/23 ∥r∥1/21 , ∥r∥1 = |A||B|, ∥r∥33 ≤ κ(A)|A|2|B|2,

hence
∥r∥22 ≤ κ(A)1/2 |A|3/2|B|3/2.

Using the energy reformulation E(A,−B) = ∥r∥22 and the symmetry between
sum and difference forms, this yields precisely the K2-type hypothesis with
K2

2 ≤ κ(A)1/2, i.e. K2 ≤ κ(A)1/4. In particular,

max{K2(A)
4,K3(A)} ≤ κ(A). (32)

This calibrates the normalisations and shows that the combination max{K4
2 ,K3}

is not an artefact of our proof: it is forced already by the elementary conse-
quences of full control.

The substantive direction is Theorem A: assuming only (i) and (ii), we
recover full control with a loss of at most log(2|A|)O(1). When combined
with (32), we obtain the polylogarithmic equivalence

κ(A) ≍polylog max{K2(A)
4,K3(A)}.
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This equivalence is structurally stable and therefore well-suited to black-box
use: one may freely replace any hypothesis expressed in terms of κ(A) with
hypotheses expressed in terms of K2(A) and K3(A), losing only polyloga-
rithmic factors in the final constants.

It is worth isolating why the exponent 4 on K2 is the correct one.
In the medium-multiplicity regime of the dyadic decomposition, our ar-
gument uses the uniform L2 hypothesis twice: once in a direct estimate
of ∥1A ◦ 1St∥2 (contributing a factor K2), and once in the energy bound
∥1A ∗ 1B∥22 ≤ K2

2 |A|3/2|B|3/2 (contributing K2
2 , subsequently raised to the

3/4 power because |St| enters as |St|3/4). Thus the multiplicative structure
of the argument forces

K2 · (K2
2 )

3/4 = K4
2 .

Conversely, one cannot generally hope to replace K4
2 by a smaller power

without invoking additional structure, because the third moment is genuinely
more sensitive to level-set concentration than the second moment, and the
energy bound controls only the L2 mass of rA+B, not its distribution.

The role of K3 is complementary. The uniform L2 information alone does
not exclude the possibility that the third moment is dominated by a small
number of extremely popular sums; such a situation corresponds, via Katz–
Koester type containments, to the existence of many popular differences in
A−A. Hypothesis (ii) precisely rules out this obstruction by controlling the
size of the level sets {d : rA−A(d) ≥ t} with a t−3 tail, which is exactly the
decay needed to make the third-moment summation converge at the high
end. This explains why the final invariant is a maximum: in any given
configuration, either the medium levels are dominant (leading to K4

2 ) or the
extreme levels are dominant (leading to K3), and the stronger of the two
constraints dictates the outcome.

We also indicate explicitly where the polylogarithmic losses enter. There
are two sources and both are of the same, essentially unavoidable, nature in
an endpoint multi-scale argument.

1. The dyadic decomposition of rA+B introduces a sum over O(log(2|A|))
relevant multiplicity scales t. Even when each scale is controlled uni-
formly, summing the bounds incurs a logarithmic factor. This is the
same phenomenon that appears in many additive-combinatorial “en-
ergy increment” or “popularity” arguments.

2. The passage from indicator testing (hypothesis (i) for all sets B) to
weighted testing (needed to treat fibre functions such as ft) is per-
formed by a layer-cake decomposition and Cauchy–Schwarz across dyadic
layers. This is an endpoint substitute for a strong-type inequality of the
form ∥1A◦f∥2 ≲ K2|A|3/4∥f∥4/3 with no loss. In general such a lossless
upgrade need not hold in this level of generality, and our Proposition C
quantifies the best available bound in terms of log(2|supp(f)|).
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Importantly, there is no loss in negative powers of K2 or K3: once the
hypotheses hold with K2,K3 ≤ 1, the argument never requires a density
increment or a decomposition that worsens these parameters. This stability
is what makes the equivalence useful in practice: the polylogarithmic losses
are absorbed in the same way as in Bloom’s original framework note, and do
not disrupt threshold phenomena governed by power savings in |A|.

As a final remark on tightness, we note that the equivalence is compatible
with the standard test cases. For highly structured sets (such as arithmetic
progressions), one expects κ(A), K2(A), and K3(A) to be bounded below by
absolute constants, consistent with the absence of genuine Lp improvement.
For sets enjoying incidence-geometric control (such as convex sets in R), the
known bounds give K3(A) ≲ |A|−1 and K2(A) ≲ |A|−1/4, so K2(A)

4 matches
K3(A) at the correct scale and hence recovers the expected full control. In
pseudorandom regimes, K2(A) may be close to 1 while K3(A) is dictated by
density considerations, again aligning with the philosophy that κ(A) should
be read off from the dominant obstruction to uniformity.

We therefore treat max{K4
2 ,K3} as the effective control parameter for

A, with the understanding that all statements are stable up to factors of
log(2|A|)O(1). In the next section we exploit this by rewriting Bloom-style
propagation theorems so that their hypotheses may be checked using only
the weaker L2 and self-L3 inputs, without changing the conclusions beyond
polylogarithmic losses.

5.7 Applications: replacing full control by weak control as a
black box

Many propagation arguments in additive combinatorics are stated under
Bloom’s full L3-control hypothesis, i.e. an a priori bound on

sup
B⊂G finite

1

|A|2|B|2
∑
x

(1A ∗ 1B(x))3.

Corollary B allows us to regard this hypothesis as interchangeable (up to
polylogarithmic loss) with the pair of weaker inputs (i)–(ii). Concretely,
whenever a theorem assumes κ(A) ≤ K, we may instead assume

K2(A) ≤ K1/4 and K3(A) ≤ K,

and obtain the same conclusion with K replaced by log(2|A|)O(1)max{K2(A)
4,K3(A)}.

Conversely, if one proves bounds for K2(A) and K3(A) by geometric or
Fourier-analytic means, then Theorem A upgrades these to the full uniform
third-moment estimate required by Bloom’s framework.

We emphasize that this replacement is genuinely “black box”: the proofs
of most propagation lemmas use the full control hypothesis only through
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inequalities of the type∑
x

(1A ∗ 1B(x))3 ≪ κ(A) |A|2|B|2

for specific auxiliary sets B (or weighted variants thereof), together with the
stability of κ(·) under simple operations. Theorem A supplies precisely such
estimates from (i)–(ii), and Proposition C supplies the needed indicator-
to-weighted upgrade at the cost of a polylogarithmic factor in log(2|A|).
Thus one may re-run the original arguments with κ(A) replaced everywhere
by log(2|A|)O(1)max{K2(A)

4,K3(A)}, without changing the combinatorial
skeleton.

Convex-set and incidence-geometric inputs. A common pattern in
applications is that one can obtain a self-correlation bound of the form (ii)
by incidence geometry (e.g. Szemerédi–Trotter), while the full uniform L3-
control over all B is not checked directly. For instance, when A ⊂ R is
convex (or more generally an image of an interval under a strictly convex
function), the known incidence machinery yields strong control on popular
differences, which can be stated in our language as

∥1A ◦ 1A∥33 ≪ |A|3,

i.e. K3(A) ≪ |A|−1. In many arguments one also has an energy estimate
consistent with (i), for example

E(A,B) = ∥1A◦1B∥22 ≪ |A| |B|3/2 (typical convex-set energy behaviour),

which implies K2(A) ≪ |A|−1/4 (up to absolute constants, and with the
natural |B|3/2 scaling). At this point Theorem A gives

κ(A) ≪ log(2|A|)O(1)max{|A|−1, |A|−1} ≪ log(2|A|)O(1)|A|−1,

recovering the full control statement normally quoted as a starting point for
Bloom-style propagation. Thus, in convex-set arguments, it is enough to
verify the two moment bounds (i)–(ii), which are often closer to the native
output of incidence theory than the uniform third-moment inequality.

Sum-product decompositions and “structured+random” reductions.
In additive-multiplicative settings (e.g. subsets of a field, or Fn

p with two op-
erations), one frequently decomposes a set A into pieces A =

⊔
iAi such

that each Ai behaves well with respect to one of the two operations. In such
proofs, the full L3-control of each piece is conceptually convenient but often
not directly accessible: one may have (i) available for Ai as a consequence of
a uniform energy bound against arbitrary test sets (coming from Fourier uni-
formity or pseudorandomness), and (ii) available because the self-correlation
is controlled for structural reasons (e.g. Ai is contained in a low-dimensional
progression, or has an incidence interpretation).

23



Here Corollary B interacts well with the monotonicity properties of K2

and K3: if A′ ⊆ A then K2(A
′) ≤ K2(A) and K3(A

′) ≤ K3(A), while
for disjoint unions one has a subadditivity at the level relevant for moment
bounds (Lemma 5). Thus, if a decomposition argument produces pieces Ai

each satisfying (i)–(ii) with parameters K2,i,K3,i, then each Ai automatically
enjoys full control with parameter

κ(Ai) ≪ log(2|Ai|)O(1)max{K4
2,i,K3,i},

and one can import any Bloom-style propagation result on each piece. This
removes the need to prove a uniform third-moment inequality separately for
each Ai, which is typically the most awkward part of such decompositions.

Balog–Szemerédi–Gowers type outputs from control. Another stan-
dard use of full control is as a hypothesis in BSG-from-control statements:
roughly, if a set (or pair of sets) has large additive energy, then one can
find large subsets with small doubling, with quantitative losses governed by
the control parameter. In Bloom’s framework the role of κ(A) is to provide,
uniformly in auxiliary sets, an L3 bound that converts energy information
into structural information by a popularity argument on level sets of rA+B

and repeated applications of Cauchy–Schwarz.
Theorem A implies that the same BSG conclusion holds under the weak

hypotheses (i)–(ii). Indeed, the typical BSG-from-control proof needs to
bound expressions of the form∑

x

(1A ∗ 1B(x))3 and ∥1A ◦ f∥2

for certain B extracted from popular level sets, and for weights f which are
dyadic truncations of representation functions. The first quantity is handled
directly by Theorem A, while the second is handled by Proposition C, giving
(up to polylogarithmic loss) the same inequalities Bloom obtains from full
control. Consequently, any conclusion of the form

(large energy) E(A,B) ≥ η|A|3/2|B|3/2 =⇒ (structured subsets)

with constants depending on κ(A) may be re-stated with κ(A) replaced by
log(2|A|)O(1)max{K2(A)

4,K3(A)}. In practical terms, one may run a BSG
argument assuming only the uniform L2 cross-correlation control (i) together
with the single self L3 bound (ii), and obtain the same structured-set output
at essentially the same quantitative strength.

Rewriting hypotheses in propagation theorems. We record the general
template. Suppose a statement in Bloom’s framework is of the schematic
form

κ(A) ≤ K =⇒ P(A) holds with constants depending on K,
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where P(A) is some propagation property (energy growth bounds, sumset
lower bounds, popular sumset structure, or a BSG-type conclusion). By
Corollary B, it is equivalent (up to polylogarithmic losses) to assume

K2(A) ≤ K1/4, K3(A) ≤ K,

and to conclude P(A) with K replaced by log(2|A|)O(1)max{K2(A)
4,K3(A)}.

This restatement is often more natural to verify: (i) is an energy bound
against arbitrary B, and (ii) is a single higher-moment self-correlation bound,
which can be attacked by direct combinatorial counting, incidence geometry,
or Fourier-analytic methods depending on the setting.

In summary, Theorem A and Proposition C allow us to treat max{K2(A)
4,K3(A)}

as the effective control parameter in essentially any argument that previ-
ously used κ(A). The resulting reformulations reduce the burden of checking
full uniform L3-control, while preserving (up to polylogarithmic factors) the
quantitative strength of Bloom-style propagation theorems.

5.8 Examples and non-examples: sanity checks for the scales
of K4

2 and K3

We record a few model computations indicating that the normalisations in
the definitions of K2(A) and K3(A) are consistent with the scale of Bloom’s
control parameter κ(A), and that the combination max{K2(A)

4,K3(A)} be-
haves as the correct effective invariant. Throughout, all implicit constants
are absolute, and we freely ignore polylogarithmic losses in log(2|A|).

1. A baseline: subgroups and cosets (maximally additive struc-
ture). Let G be a finite abelian group and let A = H ≤ G be a subgroup
of size |H| = m. Then

rA−A(d) =

{
m, d ∈ H,

0, d /∈ H,
so ∥1A◦1A∥33 =

∑
d∈G

rA−A(d)
3 = |H|m3 = m4,

hence K3(A) = 1. For (i), taking B = H gives 1A ◦ 1B = 1H ◦ 1H
with ∥1H ◦ 1H∥22 = |H|m2 = m3, so ∥1H ◦ 1H∥2 = m3/2 and therefore
K2(A) ≥ 1. Conversely, for any B one has the crude bound rH−B(x) ≤ m
and

∑
x rH−B(x) = m|B|, hence ∥1H ◦ 1B∥22 ≤ m · m|B| = m2|B|, which

is consistent with K2(A) ≍ 1 under the |A|3/2|B|3/2 scaling (indeed, the
worst case is when |B| is comparable to |H|). Finally, Bloom control is also
constant: taking B = H,

(1H∗1H)(x) = m1H(x) ⇒
∑
x

(1H∗1H(x))3 = |H|m3 = m4 = |A|2|B|2,

so κ(H) ≥ 1, and trivially κ(H) ≪ 1 as well. Thus κ(A), K2(A)
4, and

K3(A) are all ≍ 1 in this structured regime.
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2. Arithmetic progressions in Z (near-maximal energy without
subgroup structure). Let A = {0, 1, . . . , n− 1} ⊂ Z, so |A| = n and

rA−A(d) = n− |d| (|d| ≤ n− 1).

We compute

∥1A ◦1A∥33 =
n−1∑

d=−(n−1)

(n−|d|)3 = n3+2
n−1∑
k=1

k3 = n3+2
((n− 1)2n2

4

)
≍ n4,

so K3(A) ≍ 1. Likewise,

E(A,A) = ∥1A ◦ 1A∥22 =
n−1∑

d=−(n−1)

(n− |d|)2 = n2 + 2
n−1∑
k=1

k2 ≍ n3,

hence ∥1A ◦ 1A∥2 ≍ n3/2, which saturates the |A|3/4|A|3/4 = n3/2 scaling
and therefore forces K2(A) ≍ 1. These computations match the expectation
that progressions have κ(A) ≍ 1: for instance B = A already gives

∑
x(1A ∗

1A(x))
3 ≍ n5 while |A|2|B|2 = n4, yielding a constant-sized control ratio

once one notes 1A ∗ 1A is triangular of height n supported on an interval of
length 2n. Again K4

2 and K3 are both constant and of the correct scale.

3. Random sets in a finite group (pseudorandom behaviour and
the role of K4

2). Let G be a finite abelian group of size N , and let A ⊂ G be
a Bernoulli random set of density α ∈ (0, 1), so |A| ≈ αN . Heuristically, for
a fixed finite B ⊂ G with |B| = βN , the values of rA−B(x) are approximately
concentrated around |A||B|/N ≈ αβN , and one expects

∥1A ◦ 1B∥22 =
∑
x

rA−B(x)
2 ≈ N

( |A||B|
N

)2
≈ α2β2N3.

Comparing with the normalisation |A|3/2|B|3/2 ≈ (αβ)3/2N3, this suggests
a typical value

K2(A)
2 ≈ α2β2

(αβ)3/2
= (αβ)1/2, hence K2(A) ≈ (αβ)1/4.

Since K2(A) is defined via a supremum over B, the worst case among den-
sities β ∈ (0, 1] gives K2(A) ≈ α1/4, so K2(A)

4 ≈ α.
For K3, one expects rA−A(d) ≈ |A|2/N ≈ α2N for most d, and hence

∥1A ◦ 1A∥33 =
∑
d

rA−A(d)
3 ≈ N(α2N)3 = α6N4,

so K3(A) ≈ α2. In particular, in the sparse regime α ≪ 1 we have K2(A)
4 ≫

K3(A).
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This is consistent with the lower bounds forced by Bloom control. Indeed,
taking B = G, we have (1A ∗ 1G)(x) = |A| for all x, so∑
x

(1A∗1G(x))3 = N |A|3, and
1

|A|2|G|2
∑
x

(1A∗1G(x))3 =
|A|
N

≈ α.

Thus κ(A) ≳ α, which matches K2(A)
4 ≈ α and shows that in this model

the parameter K4
2 is the one that captures the obstruction coming from very

large test sets B, even though the self-correlation parameter K3 is smaller.

4. Sidon-type sets and near-minimal K3. At the opposite extreme
from progressions, suppose A is (approximately) Sidon in the sense that
rA−A(d) ≤ 1 for all d ̸= 0. Then

∥1A ◦ 1A∥33 = rA−A(0)
3 +

∑
d̸=0

rA−A(d)
3 ≤ |A|3 + |A|2,

so K3(A) ≪ |A|−1 (up to negligible lower-order terms). This matches the
heuristic that a set with essentially no repeated differences should be close to
the “minimal” self-correlation permitted by the diagonal contribution d = 0,
and it coincides with the convex-set scale discussed next. In such cases, any
nontrivial full control must come from K4

2 if it comes at all, and Theorem A
predicts precisely that: the effective control is max{K2(A)

4, |A|−1}.

5. Convex sets and images of intervals under strictly convex maps
(incidence-driven bounds). Let A ⊂ R be a finite convex set in the
standard additive-combinatorial sense (e.g. A = {f(1), . . . , f(n)} with f
strictly convex), so |A| = n. Incidence geometry (via Szemerédi–Trotter)
implies that the difference representation function has few popular values;
in a convenient packaged form one has

∥1A ◦ 1A∥33 =
∑
d

rA−A(d)
3 ≪ n3,

hence K3(A) ≪ n−1. Separately, convexity implies favourable energy be-
haviour against arbitrary test sets B ⊂ R: one commonly obtains estimates
of the shape

E(A,B) = ∥1A ◦ 1B∥22 ≪ n |B|3/2,

which is consistent with the folklore principle that convex sets behave ad-
ditively like sets with “few” repeated differences. Comparing with the re-
quired normalisation K2(A)

2n3/2|B|3/2, this gives K2(A)
2 ≪ n−1/2, i.e.

K2(A) ≪ n−1/4, and therefore K2(A)
4 ≪ n−1. In particular, for convex

sets we have matching scales

K3(A) ≪ n−1 and K2(A)
4 ≪ n−1,
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so max{K2(A)
4,K3(A)} ≪ |A|−1, which is the correct order of magnitude

for the strongest known L3-control inequalities in this setting. This is the
basic sanity check that our normalisations align with the incidence-geometric
regime: the third-moment self-correlation (ii) and the uniform energy control
(i) are naturally produced at the same scale.

6. A note on “non-examples” and what they indicate. The preceding
cases exhibit two robust phenomena. First, when A carries a large internal
additive symmetry (subgroups, progressions), both K2(A) and K3(A) are
≍ 1, and one should not expect any smallness in κ(A). Second, in pseudo-
random or incidence-controlled regimes (random sets of small density; convex
images), K2(A)

4 and K3(A) are typically ≪ 1, and, crucially, they often co-
incide in scale up to constants (convexity) or one dominates in a predictable
way (random sets, where K4

2 captures the obstruction from large B). In
particular, these computations give no evidence for a gap between weak con-
trol and full control: in each model, κ(A) is naturally of the same order as
max{K2(A)

4,K3(A)} (up to polylogarithmic slack).
This leaves only a narrow window in which a separation could plausibly

occur: one would need sets A for which uniform L2 cross-correlation remains
small against all finite B (so K2(A) is small), and the self L3 correlation is
also small (so K3(A) is small), yet there exists a carefully tuned B making
∥1A ∗ 1B∥3 anomalously large. The next subsection describes a concrete
program for searching for such families in Fn

p , where the geometry of cosets
and unions of subspaces provides a plausible mechanism for decoupling these
moment conditions.

5.9 A conditional separation program in Fn
p

In view of Corollary B, a genuine gap between weak control and full control
could only occur if there exist families A ⊂ G for which both weak parameters
K2(A) and K3(A) are small, yet κ(A) is much larger than max{K2(A)

4,K3(A)}
(beyond the polylogarithmic slack). We do not know such a family. However,
if the upgrade implication were to fail, then it is reasonable to expect that
a counterexample can be found inside vector spaces G = Fn

p , where coset
geometry provides an explicit way to tune additive statistics and where the
relevant quantities can be computed exactly for moderate pn.

Why Fn
p is the natural search space. In G = Fn

p , every subset can be
represented as a bitstring of length pn, and convolutions and correlations
can be evaluated either by direct counting or via Fourier transform on G. In
particular:

K3(A) =
∥1A ◦ 1A∥33

|A|4
=

1

|A|4
∑
d∈G

rA−A(d)
3

is determined solely by the distribution of differences of A, and is straightfor-
ward to compute once rA−A is known. Likewise, for any candidate witness
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set B, both

E(A,B) = ∥1A ◦ 1B∥22 and
∑
x

(1A ∗ 1B(x))3

can be computed explicitly, so that one can test whether the ratio defining
κ(A) is unexpectedly large for some B. The difficulty is that (i) and the
definition of κ(A) involve quantification over all finite B, so any feasible
search must use principled witness classes and diagnostics indicating what
form an extremising B should take.

A structural heuristic for what a separation would require. Let
us write F = 1A ∗ 1B. Then

∑
x F (x)3 is the third moment of the degree

sequence of the bipartite sum graph between A and B, while E(A,B) =
∥1A ◦ 1B∥22 counts additive 4-cycles (equivalently, common differences). A
separation would therefore resemble a combinatorial design: many vertices
x with moderately large F (x), but arranged so that difference coincidences
(which feed E(A,B) and ultimately K2) remain scarce, and at the same time
the internal difference distribution of A remains flat enough that K3 is small.
In other words, one needs a mechanism producing many length-3 stars in the
sum graph without producing too many length-4 cycles and without creating
too many popular differences in A−A. Vector spaces admit exactly the kind
of multi-scale additive decompositions that might allow this.

Candidate templates: unions of cosets with quotient pseudoran-
domness. Fix a subspace H ≤ G of size |H| = h, and choose a set T ⊂ G/H
of size m. Let

A =
⋃
t∈T

(t+H), so |A| = mh.

If the cosets are disjoint (equivalently, T is a genuine subset of G/H), then
for d ∈ H we have rA−A(d) = mrH−H(d) = mh, whereas for d /∈ H the
value of rA−A(d) is controlled by the number of representations of the coset
d +H as a difference t − t′ in the quotient. In particular, the contribution
of differences in H to K3(A) is∑
d∈H

rA−A(d)
3 = |H| (mh)3 = m3h4, so

1

|A|4
∑
d∈H

rA−A(d)
3 =

m3h4

m4h4
=

1

m
.

Thus, provided the quotient difference statistics of T are not too concen-
trated, such multi-coset sets naturally have K3(A) as small as m−1. This
makes them plausible candidates for having simultaneously small K3(A) and
nontrivial internal structure.

However, such A also come with obvious large-energy witnesses B if T
itself is additively structured in G/H. The search therefore suggests taking
T to be pseudorandom in the quotient (e.g. a random subset of G/H of
density θ), so that A is highly structured along H but randomly distributed
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across cosets. One can then vary dimH and θ to tune |A|, K3(A), and the
apparent extremisers for (i).

Two-scale mixtures: cosets plus sparse noise. A more flexible family
is obtained by mixing a multi-coset component and a sparse pseudorandom
component:

A =
( ⋃

t∈T
(t+H)

)
∪ R,

where R ⊂ G is a Bernoulli set of small density ρ, independent of T . The
intended role of R is to “regularise” the distribution of differences and sums so
that no single mechanism forces K2(A) or K3(A) to be large, while retaining
enough structured mass to permit a carefully chosen B to inflate ∥1A ∗1B∥3.
In computations, one should monitor the empirical tail bound

|{d : rA−A(d) ≥ t}|

and compare it to the t−3-decay suggested by Lemma 2. Any serious can-
didate for separation must look “as if” it satisfies Lemma 2 with a small
constant, while still admitting a B producing unusually heavy tails for rA+B.

Hybrid linear-algebraic constructions beyond cosets. Coset unions
are not the only linear objects available in Fn

p . Another natural class is
graphs of linear maps (or unions thereof). For a decomposition G = U ⊕ V
and linear maps Li : U → V , one may take

A =
m⋃
i=1

{(u, Liu) : u ∈ U}.

Such sets have controlled intersection patterns between translates, and their
sumsets with appropriately chosen B can exhibit structured multiplicity pro-
files reminiscent of incidence configurations. The hope (in a separation sce-
nario) would be that these sets exhibit small self-correlation in the sense of
(ii) because distinct graphs intersect little, while still allowing a witness B
(perhaps a union of dual graphs) that causes many sums to have multiplic-
ity on the order of m across a large portion of G. This is precisely the kind
of “many stars, few 4-cycles” phenomenon that could potentially evade an
L2-based control while inflating an L3 moment.

What needs to be verified computationally. Given a candidate A ⊂ Fn
p ,

we propose the following finite verification procedure.
(1) Compute K3(A) exactly. Compute rA−A = 1A◦1A and then

∑
d rA−A(d)

3.
This yields K3(A) with no optimisation.
(2) Upper-bound K2(A) by searching a witness class for (i). Since

K2(A)
2 = sup

B ̸=∅

E(A,B)

|A|3/2|B|3/2
, E(A,B) =

∑
x

rA−B(x)
2,
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a direct supremum over all B is infeasible. One therefore restricts to a
structured witness class W that plausibly contains near-extremisers, such
as: subspaces and cosets of each dimension; unions of a bounded number
of cosets of a fixed subspace; random subsets of prescribed densities; and
level sets of |1̂A| (Fourier-spectrum witnesses). The output is a certified
lower bound on K2(A) and, if no witness is found above a target threshold,
evidence (not proof) that K2(A) is small.
(3) Search for B inflating the L3 convolution. Define

κB(A) :=
1

|A|2|B|2
∑
x

(1A ∗ 1B(x))3, so κ(A) = sup
B

κB(A).

Again, one searches over a witness class W ′ containing: B = A, B = −A,
B = G; subspaces and cosets; unions of cosets aligned with the quotient
structure used to define A; and greedy “threshold” sets of the form B = {x :
(1A ∗ 1C)(x) ≥ τ} for auxiliary C (an attempt to approximate extremisers
suggested by layer-cake decompositions). Any observed κB(A) substantially
larger than max{K2(A)

4,K3(A)} (accounting for polylogarithms) flags A as
a potential separator.
(4) Diagnostics locating the scale of failure. For a flagged pair (A,B), one
should examine the dyadic profile of rA+B: for t dyadic, set St = {x :
rA+B(x) ∈ [t, 2t)} and record

M3(t) :=
∑
x∈St

rA+B(x)
3.

A separation would manifest as a range of t where M3(t) is anomalously large
while (a) the energy E(A,B) remains small relative to |A|3/2|B|3/2, and (b)
the popular-differences tail of rA−A remains small relative to K3(A)|A|4/t3.
This pinpoints whether the obstruction lives in a medium-multiplicity regime
(suggesting a gap in the L2-to-L3 transfer) or in a high-multiplicity regime
(suggesting that K3 fails to control the relevant difference concentrations).

Feasibility and expected outcomes. For moderate sizes (say pn up to 106

in total group size), the above steps can be carried out exactly, and one can
iterate over families of parameters (p, n,dimH, |T |, ρ). We emphasise that
failure to find a separating B in a witness class is not a proof of equivalence;
nonetheless, if the upgrade implication were genuinely false, one would ex-
pect counterexamples to exhibit a relatively rigid and reproducible geometry,
and hence to be discoverable by such a structured search. Conversely, if ex-
tensive searches across these linear-algebraic templates never produce κB(A)
exceeding the predicted scale, this provides strong empirical evidence that
weak control and full control are indeed equivalent (up to polylogarithms)
in the most plausible finite-field setting for separation.
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5.10 Further questions

We record several problems suggested by the upgrade theorem and by the
role of the weak parameters K2(A) and K3(A) as surrogates for full Bloom
control. We focus on three directions: inverse/stability phenomena for weak
control, higher-moment analogues (especially L4 in finite fields), and an
operator-norm/incidence perspective that may clarify the mechanism behind
the upgrade and the origin of the polylogarithmic losses.

(1) Stability and inverse problems for weak control. The hypotheses
(i)–(ii) admit natural “best possible” scales. Indeed, taking B = {0} in (i)
gives

∥1A ◦ 1{0}∥2 = ∥1A∥2 = |A|1/2 ≤ K2|A|3/4, hence K2(A) ≥ |A|−1/4.

Likewise rA−A(0) = |A| implies

∥1A ◦ 1A∥33 =
∑
d

rA−A(d)
3 ≥ |A|3, hence K3(A) ≥ |A|−1.

It is therefore natural to renormalise

K̃2(A) := K2(A) |A|1/4 ≥ 1, K̃3(A) := K3(A) |A| ≥ 1,

and to ask for structural consequences when K̃2(A) and K̃3(A) are close to
1.

At the extreme K̃2(A) ≈ 1, condition (i) with B = A forces

E(A,A) = ∥1A ◦ 1A∥22 ≤ K2(A)
2|A|3 ≈ |A|2,

so A has nearly minimal additive energy. In a model case, a Sidon set satisfies
rA−A(d) ≤ 1 for all d ̸= 0, giving E(A,A) ≍ |A|2 and

∑
d rA−A(d)

3 ≍ |A|3,
i.e. K̃2(A), K̃3(A) ≍ 1. This suggests the following.

Question 10.1 (removal/stability at the Sidon scale). Assume K̃2(A) ≤
1 + ε and K̃3(A) ≤ 1 + ε. Must A contain a subset A′ ⊆ A with |A′| ≥
(1 − O(ε))|A| such that A′ is Sidon (or at least rA′−A′(d) ≤ 1 for all but
O(ε|A|2) differences d)?

A positive answer would amount to a quantitative removal lemma for
additive quadruples/difference collisions at very low density. One might
attempt to encode collisions as 4-cycles in a natural bipartite graph and use
a C4-removal mechanism; however, the usual graph removal bounds are too
weak to be meaningful at the |A|−1 energy scale. A more specialised approach
exploiting the algebraic form of additive quadruples may be necessary.

More generally, one may ask for an inverse theory in regimes where K̃2(A)
and K̃3(A) are moderately bounded (say O(1)), but not necessarily close to 1.
Since Theorem A converts weak control to full control up to polylogarithms,
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any inverse statement for small κ(A) transfers (again up to polylogarithms)
to weak control. The point is that existing consequences of small κ(A) (e.g.
growth bounds, energy propagation, BSG-type conclusions) are typically
forward statements; they do not directly classify sets with small κ(A). It
would be useful to know whether there is a meaningful dichotomy: either A is
essentially Sidon/pseudorandom, or else it correlates with a structured object
(cosets, generalized arithmetic progressions, graphs of homomorphisms in Fn

p ,
etc.).

Question 10.2 (inverse theory for κ and for weak control). Is there
a robust classification (even conjectural) of finite A ⊂ G for which κ(A) ≪
1 (or equivalently max{K2(A)

4,K3(A)} ≪ 1 up to polylogarithms)? In
particular, can one characterise the near-extremisers for the inequality∑

x

(1A ∗ 1B(x))3 ≪ κ(A) |A|2|B|2 uniformly in B?

A related stability issue concerns the polylogarithmic losses in Theo-
rem A. In our argument, they arise from dyadic decompositions (both in
Proposition C and in the layer-cake analysis of rA+B). It is not clear whether
these losses are an artefact of the proof or genuinely necessary in full gener-
ality.

Question 10.3 (log-free upgrade). Can Theorem A be strengthened to∑
x

(1A ∗ 1B(x))3 ≪ max{K4
2 ,K3} |A|2|B|2

with an absolute implied constant (no polylogarithmic factor), or can one
produce examples showing that a logarithmic loss is unavoidable?

(2) Higher moments: L4 control in finite fields. Bloom control is an
L3 statement, and the upgrade theorem shows that, up to polylogarithms, it
is equivalent to the pair (K2,K3). A natural next step is to ask for analogues
at higher moments, particularly in G = Fn

p where one can test and compute
such quantities.

One possible definition is the fourth-moment control parameter

κ4(A) := inf
{
κ :

∑
x

(1A ∗ 1B(x))4 ≤ κ |A|3|B|3 for all finite B
}
,

which normalises so that κ4(A) is scale-invariant under product-set heuristics
(and matches the exponents obtained by the trivial bound ∥1A ∗ 1B∥4 ≤
∥1A∥4/3∥1B∥4/3). The quantity

∑
x(1A ∗ 1B(x))4 counts 8-tuples (ai, bi)

4
i=1

with a1 + b1 = · · · = a4 + b4, so its control is a higher-uniformity statement
on the bipartite sum graph between A and B.
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In parallel with K3(A), one might introduce a self-correlation hypothesis
at level 4, for example

∥1A ◦ 1A∥44 ≤ K4 |A|5
(
equivalently

∑
d

rA−A(d)
4 ≤ K4 |A|5

)
,

which implies a tail bound |{d : rA−A(d) ≥ t}| ≪ K4|A|5/t4 by the same
counting argument as Lemma 2. One can then ask whether the combina-
tion of a uniform L2 cross-correlation hypothesis (i) with such an L4 self-
correlation hypothesis yields a full L4 control statement (with the correct
dependence on K2 and K4, and perhaps with a manageable polylogarithmic
loss).

Question 10.4 (weak ⇒ full at L4). In G = Fn
p (or in general abelian G),

assume (i) with constant K2 and assume additionally ∥1A ◦ 1A∥44 ≤ K4|A|5.
Does it follow that∑

x

(1A ∗ 1B(x))4 ≪ (log(2|A|))O(1) max{Kc
2,K4} |A|3|B|3

for some absolute exponent c (and optimally c = 6 or another explicit value
dictated by scaling considerations)?

Even a partial result (restricted classes of B, or bounds that interpolate
between L3 and L4) would be relevant for finite-field sum-product and for
quantitative incidence estimates, where fourth moments often correspond to
counting rectangles/parallelograms and to controlling ℓ4 norms of Fourier
transforms.

(3) Incidence bounds and operator norms. The weak hypothesis (i)
is naturally an operator norm bound. Consider the linear operator TA on
finitely supported functions given by

TAf := 1A ◦ f.
Proposition C may be viewed as a (polylogarithmically lossy) restricted-to-
strong upgrade, asserting that the indicator testing bound (i) implies

∥TAf∥2 ≪ (log(2|supp(f)|))O(1)K2 |A|3/4 ∥f∥4/3 (f ≥ 0).

Similarly, full L3 control can be written as a family of bounds for TA acting
on indicators after reflection, since 1A ∗ 1B = 1A ◦ 1−B. This suggests that
the pair (K2,K3) is controlling two different aspects of the operator TA: a
global ℓ4/3 → ℓ2 mapping property and a self-interaction constraint at a
higher moment.

A conceptual goal would be to formulate Theorem A as an interpolation
principle for TA with a “nonlinear endpoint” provided by (ii). Such a for-
mulation might (a) clarify which parts of the argument are purely analytic
and which are combinatorial, and (b) provide a path to removing logarithmic
losses via real interpolation, Lorentz-space refinements, or sparse domination
analogues in the discrete setting.
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Question 10.5 (operator-norm reformulation). Is there a clean operator-
theoretic statement equivalent (up to polylogarithms) to Theorem A, for
instance an estimate of the form

sup
B ̸=∅

∥1A ◦ 1B∥33
|A|2|B|2

≲ Φ
(
∥TA∥ℓ4/3→ℓ2 , ∥1A ◦ 1A∥3

)
,

with Φ explicitly comparable to max{K4
2 ,K3} after normalisation?

Finally, the incidence viewpoint remains relevant beyond R. In groups
where geometric incidence theorems exist (Euclidean settings via Szemerédi–
Trotter, finite fields via point-line/point-plane incidence bounds in various
ranges), L3 convolution bounds are often equivalent to incidence estimates
after an appropriate encoding. It would be useful to know to what extent
weak control hypotheses (especially (i), which is an energy bound uniform in
B) can be deduced from incidence input, and conversely whether full control
can yield incidence statements for structured families of sets.

Question 10.6 (incidence mechanisms). In Fn
p , can one derive non-

trivial bounds on K2(A) or K3(A) for natural algebraic sets A (quadratic
surfaces, graphs of polynomials, Cartesian products) using incidence theory,
and can Theorem A then be used to propagate these bounds to L3 con-
volution control with meaningful consequences (e.g. growth, expansion, or
sum-product type estimates)?

We expect that progress on any of the questions above would sharpen the
conceptual status of weak control parameters: whether they merely provide a
technically convenient gateway to Bloom control, or whether they admit their
own inverse theory and their own geometric/computational interpretations.
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