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Abstract

Bloom introduced an L? ‘control’ parameter x(A) defined by the
uniform bound Y (14 * 15(2))*® < k(A)|AJ?|B|? for all finite B, and
showed that improvements in control-to-structure inequalities propa-
gate to convex-set growth, sum-product, and Balog—Szemerédi—-Gowers-
type results. A technical step in the paper replaces indicators 15 by
general functions using a dyadic layer-cake argument, at the cost of a
large tail term (of size £19°) that is harmless for the paper’s exponent-
level results but obstructs weighted /asymmetric variants.

We identify the correct functional-analytic formulation: the convo-
lution operator Ty : f — 1 4% f has a sharp strong-type bound from the
discrete Lorentz space £3/21(QG) to £3(G). We define the Lorentz con-
trol constant C(A) as the operator norm of T4 on £3/%! and prove the
exact identity C(A) = k(A)'/3. This yields a tail-free extension princi-
ple: for all finitely supported f > 0, |14 f||5 < &(A)Y/3|A[*/3(|f|l3/2,1-

We then repackage Bloom’s symmetry-set arguments in a weighted
form, replacing repeated dyadic truncations by Lorentz-norm book-
keeping. As a result, all of Bloom’s ‘propagation’ applications ex-
tend cleanly to weighted/asymmetric settings (including continuous
weights and measures), and one can isolate exactly where polyloga-
rithmic losses arise when working in £3/2 instead of ¢3/%1,
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1 1. Introduction and motivation: control as an
operator norm; why Lorentz spaces remove tail
losses; overview of applications (weighted /asymmetric,
stability, portability).

We recast Bloom’s L3-control hypothesis as an operator norm statement for
the convolution operator T's: f + 14 % f. The point is that the quantitative
input in Bloom’s argument is not tied to indicators 1p as such; rather, it is a
bound on the third moment of representation functions, and such bounds are
more naturally expressed as a mapping property between function spaces.
Once the correct domain space is chosen, one obtains a formulation that is
simultaneously (i) equivalent to Bloom’s original invariant when tested on
indicators, and (ii) stable under the layer-cake manipulations that appear
throughout the propagation and extraction steps.

The guiding observation is that the inequality

Y (laxlip@)® 5 AP B

xT

is a priori an estimate for ||14%1p|;s = (Zx(lA*lB(x))g’)l/B, and so it should
be compared to |A[*?|B|?/3. In other words, the natural normalization
suggests that T4 ought to map some version of ¢3/2 to ¢3 with operator
norm =< |A|*? times a parameter depending only on A. The exponent 3,2
is forced by scaling (or, in the discrete setting, by homogeneity): Holder’s
inequality indicates that ¢3 is dual to ¢3/2 and the third moment is the
quantity that propagates in Bloom’s symmetry-set arguments.

However, Bloom’s paper requires more than the indicator-to-indicator
inequality. At several points one needs to replace 15 by a general nonnegative
function f, interpreted as a weighted multiset, and to control |14 * f||3 in
terms of a simple functional of f. The naive choice | f|[3/ is not sufficiently
well adapted to dyadic decompositions: if one writes f as a sum of dyadic
pieces,

frY Mg, EBpi={x:2F < fla) <2},
kEZ

then the triangle inequality in ¢3 yields

I1a* flls < > 2|14 % 1g,]ls.
k

If one inserts Bloom’s control bound for each Ej, one obtains a sum of the
form 3, 2¥|Ej|?/3. This sum is not [ fll3/2; it is the endpoint Lorentz quan-
tity [|f[l3/2,1.- Any attempt to estimate ), 2k |EL|2/3 by | fll3/2 introduces
either a logarithmic factor (when f has bounded range) or a truncation/tail
term (when f has many scales). In Bloom’s implementation, such tail terms



are suppressed by additional hypotheses and then absorbed into a large power
of k, producing the familiar x'%-type losses.

The Lorentz space £3/ 21(@) is exactly the space designed to measure the
layer-cake sum without loss. Concretely, for finitely supported f > 0, the
quasi-norm || fl|3/2,; is equivalent (up to absolute constants) to the dyadic

expression
Z ok |Ek’2/3~
keZ

Thus the triangle inequality in 3, combined with control estimates on indi-
cators, produces a clean and tail-free extension to general weights:

|14 % flls < (control parameter for A)'/3|A|?/3 Ifll3/2,1-

In this formulation there is no need to discard small values of f or to impose
an ad hoc cutoff to guarantee a bounded number of dyadic layers. Any later
conversion from || f||3/21 to ||f]|3/2 is then clearly separated as a secondary
step, and any polylogarithmic loss is attributable solely to this conversion
rather than to the control mechanism itself.

The second key point is that this Lorentz-operator formulation is not
merely comparable to Bloom’s original invariant; it is essentially equiva-
lent. Indeed, when f = 1p is an indicator, the Lorentz quasi-norm satisfies
11Bll3/2,1 = |B|?/3. Consequently, an inequality of the form

Lax flls < A AP 1 flla/2,1
immediately implies
Itax1pl5 < C(A)°|A? (B

for all finite B, which is Bloom’s control condition with x(A) = C(A)? (up to
the normalization constant in |[15]|3/2,1). Conversely, assuming the indicator
control for all B, the dyadic decomposition argument described above gives
the weighted inequality and hence bounds C(A) by x(A)'/3. This exactness
matters in applications: it means that any improvement in the control pa-
rameter (coming, for instance, from incidence geometry, sum-product input,
or structural hypotheses on A) transfers without degradation to the operator
norm C(A), and conversely any operator-norm bound yields the correspond-
ing moment inequality for indicators.

From the perspective of applications, the operator-norm package is useful
for three reasons.

First, it is inherently weighted and asymmetric. Many arguments in ad-
ditive combinatorics now pass through weighted models: sampling measures,
multiplicities, entropy-type weights, or intermediate functions produced by
Cauchy-Schwarz. Once we know that T4 maps /%! to £3 with norm
C(A)|A|?/3, any such weight f may be substituted directly, with no need



to return to an indicator by a dyadic pigeonhole or to discard a portion of
the mass. Likewise, asymmetric variants (e.g. 14 % f with f supported on a
different set or having different scale properties) fit the same formalism.

Second, the Lorentz formulation is stable under decomposition. If A is
partitioned into disjoint pieces A =| |, A;, then 14% f =", 14, * f, and the
triangle inequality in ¢3 yields subadditivity of the corresponding operator
norms. This is precisely the kind of bookkeeping needed in iterative pruning
and energy increment arguments, where one repeatedly removes structured
or unstructured parts and must track how the control parameter evolves.
Expressing control as C(A) makes such steps transparent, while keeping the
dependence on constants free of auxiliary tail parameters.

Third, the reformulation is portable across the symmetry-set machinery.
Bloom’s propagation arguments repeatedly compare convolutions and differ-
ence convolutions involving sets such as

Ss(A)={x € G:(1aoly)(x) > dlA|},

and one is led to estimates for quantities like ||14 0 1s][3/2 (or inner products
involving such terms). In these steps, intermediate functions naturally ap-
pear at many scales, and the Lorentz framework isolates the only place where
scale summation occurs: the passage from dyadic layers to a norm. Thus the
same chain of inequalities used by Bloom can be run with 15 replaced by
general weights f, and with truncation arguments replaced by the identity
defining || f||3/2,1- The resulting statements are cleaner (no large-power tail
losses), and they admit weighted analogues at essentially no additional cost.

In summary, by treating control as the operator norm of T4 from ¢3/%1
to £3, we obtain a single invariant C(A) that simultaneously encodes Bloom’s
third-moment bounds for indicators and provides the sharp extension needed
for weighted and multi-scale arguments. The subsequent sections record the
discrete Lorentz preliminaries and the basic inequalities that let us run this
program in a self-contained way.

2 Preliminaries: convolutions, rearrangements, and
discrete Lorentz spaces

Throughout we work on a fixed abelian group G, written additively. All
functions f,g,w: G — [0, 00) that appear in the sequel are assumed finitely
supported unless explicitly stated otherwise; in particular, all sums over G
are finite and rearrangements of summation are justified without further
comment. For a finite set A C G we write 14 for its indicator function, and
we use the discrete inner product

(f,9) = > f(x)g(x).

zeG



Convolutions on G

We use two closely related convolutions. The (additive) convolution is
(fxg)(@) = > flz—y)gy)
yeG
and the (difference) convolution is
(fog)(@) = > flz+y)gy).
yeG

When f =14 and g = 1p are indicators, (14*1p)(x) counts representations
x =a+bwitha € A, b € B, while (14 0 14)(x) counts representations
x =a—a with a,a’ € A. We frequently use the involution f(z) := f(—=z),
in terms of which one has the identities

fog = fxd,  fxg = g*f

These allow us to pass freely between * and o at the cost of a reflection.
Two elementary algebraic facts will be used repeatedly. First, convolution
is associative and commutative (since G is abelian), and it is bilinear on
finitely supported functions. Second, convolution interacts with the inner
product via the standard adjointness relation: for finitely supported f, g, h,

(fxg.h) = (g, foh) = (f hog).
We will also use the pointwise bounds

0<(f+9)(@) < fllellgle,  F x gl = [Ifllerllgllers

which are immediate from the definitions and nonnegativity.

Discrete (P spaces
For p € [1,00) we write
1/p
Il = (Do1@EF) T Il = swlf@).
QG zeG

The triangle inequality (Minkowski) and Holder are used in their usual forms;
for instance, if 1/p + 1/q = 1/r with p,q,r € [1, 00|, then

1f*glle < N fllerllgllea
(Young’s inequality), and if 1/p+ 1/p’ =1 then
(f:9) < |l fllerllgllr-

In practice we will apply Minkowski in £3 to sums of dyadic pieces, and we will
apply Holder to inner products arising from symmetry-set manipulations.



Decreasing rearrangements and distribution functions

To formulate the correct endpoint space for dyadic decompositions we recall
the discrete decreasing rearrangement. If f is finitely supported, let f*(1) >
f*(2) > --- denote the nonincreasing rearrangement of |f| on its support
(extended by 0 thereafter). Equivalently, if we set the distribution function

pp(t) == e e G: |f(z)] >t}

then f*(n) = inf{t > 0 : pus(t) < n}. Rearrangement invariance of the
Lorentz norms will allow us to estimate quantities depending only on level
sets of f, which is precisely what emerges from layer-cake expansions.

A convenient way to pass between a function and its dyadic level sets is
to consider

By = {zeG: 2" < f(x) <2y, keZ

For nonnegative finitely supported f we then have the pointwise comparison

fl@) < > 2"1p, (2),

kEZ

with absolute implicit constants (indeed, f < 37, 2511, and f > Y, 2¥1p,).
This elementary discretization is the starting point for all “no-cancellation”
extensions from indicators to general weights.
Discrete Lorentz spaces (*!(G)
Let p € (1,00). The discrete Lorentz quasi-norm || f{|r.1 () is defined by
[ fllers = D 0770 f* (),
n>1

which is finite for finitely supported f. We will also use the weak Lorentz
space (P°°(G) with quasi-norm

1 fllpe = supn'/Pf*(n) = Suptuf(t)l/p.
n>1 t>0
Both P! and 7> are rearrangement-invariant, and they sit at the endpoints

of the scale (P! C (P C (P>, with continuous embeddings and absolute
constants. In particular, for finitely supported f,

[ fller < [fllgrr-

We emphasize that ¢7! is the appropriate domain for dyadic layer-cake ar-
guments: the quantity naturally produced by summing contributions from
dyadic pieces agrees, up to absolute constants, with || f||p.1.
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Concretely, for p = 3/2 and nonnegative finitely supported f, the dyadic
decomposition above yields the equivalence

1fllpns = S 2F B 23,

kEZ

again with absolute implicit constants (the sum is finite when f is finitely
supported and bounded). We will invoke this equivalence as the mechanism
that replaces Bloom-style truncations: whenever we apply Minkowski to
|14 * fl|gs after decomposing f into Y, 2¥1p, , the coefficient Y, 2F|Ej,|%/3
is exactly the £3/21 size of f.

Two simple computations will be used repeatedly. First, for a finite set
B C G, the rearrangement of 1p is 15(n) = 1 for 1 < n < |B| and 0
thereafter, hence

|B]
118|321 = Zn—1/3 - |B|2/3,
n=1

Second, the quasi-triangle inequality for £>! gives (for nonnegative finitely
supported functions) a bound of the form

HZ fszpvl < CPZ Hfj”em,
J J

with €, depending only on p; we will not need sharp dependence, only that
the constants are absolute once p is fixed.

Lorentz—Holder inequalities

Finally, we record the Lorentz refinements of Holder that allow us to pair a
strong Lorentz function with a weak Lorentz function. If 1 < p < oo and p’
is the conjugate exponent, then for finitely supported f, g we have

(£:9) < Collfllerr 1191l gp.00

where C), is an absolute constant depending only on p. This inequality is
the discrete form of the standard Lorentz-space duality (¢71)* = ¢2°° (up
to constants), and it is exactly what is needed when one factor is naturally
controlled by level-set estimates.

We will also implicitly use that weak-#P control follows from level-set
bounds: if p4(t) < MPt7P for all t > 0, then ||g|[pp.c0 < M. In the symmetry-
set context, such estimates arise when one controls the size of {z : (14 o
14)(z) > t} at various thresholds ¢, and then pairs the resulting weak bounds
with an /! quantity produced by a weighted convolution.

The preceding definitions and inequalities are the only analytic input
we require. In the next section we apply them to the convolution operator



Ta(f) = 14 * f, isolating the precise operator norm that is equivalent to
Bloom’s L3-control and is stable under the dyadic manipulations described
above.

3 The Lorentz control constant C(A)

Fix a finite set A C G. We view convolution by 14 as a linear operator
Ty: f — 14 % f,

and we package its relevant endpoint mapping properties by the normalized
Lorentz operator norm

114 * flle )
720, 120 [AP3 (| fll 372

C(A) =

The normalization by |A|?/3 = ||14] ;32 is chosen so that the trivial Young

bound becomes scale-free, and so that C(A) coincides (in the next section)
with Bloom’s L3-control parameter to the 1/3 power. Since we restrict to
f >0, C(A) is tailored to applications in which cancellation plays no role;
signed variants follow by inserting absolute values at the cost of harmless
constants.

Basic bounds and invariances

We first note that C(A) is always finite and in fact bounded by an absolute
constant. Indeed, Young’s inequality with exponents (3/2,3/2,3) gives

1ax flle < [allgelfllan = 1AP2 1 £llee,

and the continuous embedding £3/21 < £3/2 (equivalently, || f|l,3/2 < ||f|ls3/2.1)
yields
_ax flle
|APB fllgza
Thus
0<Ca) <1 1)

A complementary lower bound (useful only as a sanity check) is obtained by
testing on a point mass: if dp is the indicator of {0}, then 14 * dp = 14 and
160ls/20 =1, so

1a _
) > S = e )

The quantity C(A) is invariant under the obvious symmetries of the

group. If x € G and A+ x :={a+z:a € A}, then 144, * f is a translate
of 14 * f, hence has the same ¢3-norm; also |A + x| = |A|. Therefore

C(A+ 1) = C(A). (3)



Similarly, if —A := {—a : a € A}, then 1_4 x f = 14 = f, and reflection
preserves ¢P-norms, so C(—A) = C(A). More generally, any group automor-
phism ¢ preserves C provided we identify f with f o ¢~ !; we will only use
the translation invariance .

Monotonicity in A

The operator T4 is monotone with respect to set inclusion in the sense ap-
propriate to our normalization.

Lemma 3.1 (Monotonicity). If A C A" are finite then
[ATIN2B -
A) < A').
) < () cw)
In particular, if |A| = |A'| and A C A" then C(A) < C(A').

Proof. For any f > 0 we have pointwise 14 % f < 14/ % f, hence |14 * f||;s <
HlA’ * f||€3. Dividing by ‘A|2/3Hf”gs/2,1 gives

Laxflle <|A'|)2/3 1147 * fllgs
LA fllgs2n — VA |A[2/3] £l /2.0

Taking the supremum over f yields the claim. O

We emphasize that monotonicity without the factor (|4’|/|A])%*/? is not
the natural statement here, since |A| is built into the normalization of C(A).

Subadditivity under disjoint unions

A key structural property, mirroring Bloom’s decomposition steps, is subad-
ditivity of C under disjoint unions.

Lemma 3.2 (Disjoint-union subadditivity). If A = |_|§:1 A; is a disjoint
union of finite sets, then

Proof. For f > 0 we have the decomposition 14 * f = Zﬁzl(lAi x ). By
Minkowski in £3,

¢ ¢
Iasfle < S as fle < S0 CAD AP | Fllae.
i=1 i=1
Since |A;| < |A| for each i, we have |A;]%/3 < |A|*/3, hence
t
Itax flles < JAPA (30 €A )1l
i=1
Dividing and taking the supremum over f gives the result. O
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In later arguments, C(A) will therefore behave well under iterative prun-
ing and decomposition: splitting off structured or sparse pieces increases C
by at most an additive error, rather than forcing the introduction of auxiliary
cutoffs.

Evaluation on indicators and the indicator-testing principle

The definition of C(A) is designed so that (i) it controls all indicator convo-
lutions 14 % 15 uniformly in B, and (ii) conversely, testing only on indicators
already captures C(A) up to absolute constants. The first direction is imme-
diate: for any finite B C G,

Ila*1plles < CA) AP 1plm/20. (4)

By the explicit computation of the Lorentz norm of an indicator,

|B|
Iallpen = > n ' < |BPS,
n=1
we deduce the convenient form
114 %15l < C(A)|A*3 B[/, (5)

with an absolute implied constant depending only on the normalization of

I Mlear2a
For the converse, we record the corresponding lower bound obtained by
restricting the supremum in the definition of C(A) to indicators.

Lemma 3.3 (Indicator testing). There is an absolute constant ¢ > 0 such
that for every finite A C G,

|14 % 1B|les
C(A) > c- sup —_— .
(4) 0#£BCG finite |A|?/3 | B|?/3

Proof. Fix B # @ and set f = 1p in the definition of C(A). Then

1L Lol
C(A) > .
SV T

Using ||15||,3/21 < |B|*? yields the claim. O

Thus C(A) simultaneously governs the weighted regime (general f > 0)
and contains, as a special case, the classical unweighted regime (indicators
1p). The substantive point, proved in the next section, is that the upper
bound is not merely a consequence of the definition: it is exactly equiv-
alent to Bloom’s L3-control inequality when the latter holds uniformly over
all indicators 1p. Put differently, passing from 1p to general f incurs no
truncation loss once one works in the correct domain space £3/2(Q).

11



4 4. Equivalence theorem C(A) = x(A)'/3: (a) indi-
cator control implies Lorentz bound; (b) Lorentz
bound implies indicator control; discussion of when
polylog losses appear (only when converting (3/>!

0317,
Equivalence with Bloom’s L?-control parameter

We now identify the operator norm C(A) with Bloom’s control parameter.
Recall that x(A) is the minimal £ € (0, 1] such that for every finite B C G
one has

> (Lax1p(@)’ < x|AP[BP, (6)

zeG

or equivalently |14 * 15|/ < &/3|A|?/3|B|?/3.

Theorem 4.1 (Equivalence of C(A) and x(A)Y3). For every finite A C G
we have

C(4) = w(A)"?,

up to an absolute multiplicative constant depending only on the normalization
of the Lorentz quasi-norm ||-||ss/2.1. In particular, after fixing the convention
for || - |32, the two quantities determine one another by r(A) =< C(A)3.

Proof. We prove the two implications separately.

(a) Indicator control = Lorentz bound. Assume A satisfies (6) with constant
k. We claim that for every finitely supported f > 0,

ax flle < &2 JAPP | fllgen (7)
Let (E))rez be the disjoint dyadic level sets
Ep = {xeG:2F < flx) <281}

Since f is finitely supported, only finitely many Ej, are nonempty. Pointwise

f < Z2k+11Ekv

k

we have

hence by positivity and linearity of convolution,

Laxf < D 2" (1axlg,).
k

Applying Minkowski’s inequality in £3 gives

ILas flle < 025 114 % 1 [lga. (8)
k

12



For each k, the hypothesis @ with B = Fj, yields

axlg i = Y (axlp (@) < s|AP|ESP,

T

and therefore

Ilax1glles < &3 [APP B2, (9)
Substituting @ into gives
1Ta* flles < 2612 AP2Y 2% By PR, (10)
k

Finally, the Lorentz layer-cake identity for ¢3/21 (in the discrete setting)
asserts that

1Fllran =Y 28 [Bx2, (11)
k

with absolute implied constants. Combining and yields ([7)). Taking
the supremum over f > 0 in the definition of C(A) gives C(A) < &!/>.

(b) Lorentz bound = indicator control. Conversely, assume C(A) < oco. For
any finite B C G we may test the defining inequality with f = 15, obtaining

Ia*1plles < CA AP 1pl p/20-

Using the explicit evaluation ||15]|s/21 < |B[*® (again with an absolute
constant depending only on normalization), we deduce

Itax1sls < C(A)|AP B,
Cubing both sides yields

Y (Laxlp(@)?® = [llax1plp < C(A)*|AP|BP,

T

so k(A) < C(A)3, equivalently x(A)'/3 < C(A).

Putting (a) and (b) together gives C(A) =< x(A)'/3. If one fixes the nor-
malization of || - ||;/21 so that |[15]|;3/21 = |B|?/? holds (up to the harmless
endpoint convention for the rearrangement sum), then the implicit constants

in the above comparison may be taken to be 1, yielding the stated identifi-
cation C(A) = k(A)Y/3. O

On the appearance of polylogarithmic losses

We emphasize that the equivalence in Theorem is tail-free at the level
of £3/21: no truncation of small values of f is needed in the passage from
indicators to general weights. Any polylogarithmic losses arise only when
one insists on expressing results in terms of || f||,s/2 rather than || f||;s/2.1.

13



Indeed, from the embedding ¢3/%! C ¢3/2 we always have | fllgsre <
| flls3/21, and therefore the Lorentz control bound implies the (formally
weaker) estimate

Iax flls < CAY AP lgen = CA) AP (1f /e

However, reversing this comparison—bounding || f|| ;3/2.1 in terms of || f|[ 32—
necessarily depends on how many dyadic scales occur in f. Concretely, if
f=>,2"1p, with disjoint Ej, then by Holder,

Z2k’Ek|2/3 < (Z(2k)3/QyEk|)2/3<#{k : By, #@})1/3 = || fllg/2 (#scales)1/3
k k

Thus whenever f is supported on at most m dyadic scales (for instance,
when f is bounded between 1 and 2™), we have || f|| /21 < m'/3| f||;3/2. In
applications, m is typically comparable to log(1/n) for an auxiliary cutoff
1 used to ignore very small values of f; the point is that Lorentz control
removes the need to introduce such 7 in the first place, and therefore avoids
the large tail terms that otherwise dominate when k(A) is small.

5 5. Tail-free function extension principle: replace
Bloom’s Lemma 2 with a Lorentz-strong estimate;
derive clean corollaries for dyadic layer sets with-
out x'% terms.

Tail-free function extension principle

A recurring technical step in Bloom’s arguments is to pass from an ¢3 es-
timate for convolutions with indicators 1g to an estimate for convolutions
with general nonnegative weights f. In Bloom’s formulation this passage is
implemented by a truncation-and-pigeonhole device (his Lemma 2), which
introduces an auxiliary lower cutoff to discard small values of f; the dis-
carded tail is then bounded crudely and re-enters later as a large power of
k1 (of the schematic form x!% in the denominator). For our purposes it is
preferable to replace this mechanism by a statement which is (i) linear in f,
(ii) stable under arbitrary superpositions of dyadic layers, and (iii) exact up
to absolute constants. The Lorentz formulation of control provides precisely
this.

Proposition 5.1 (Tail-free extension to weights). For every finite A C G
and every finitely supported f > 0 we have

114 fllesiey < CAAY AP Fllsrznay: (12)
Equivalently, if A satisfies Bloom control @ with constant k, then
1ax* fleg < &2 AP2 (1 flsmae). (13)

14



This is immediate from the definition of C(A), and is the same statement
after invoking Theorem to identify C(A) =< !/ (with normalization-
dependent absolute constants). We isolate as a “principle” because it
is the exact replacement for every occurrence of Bloom’s function-extension
lemma: whenever an argument uses x-control only through bounds of the
form ||14 * 1p||3 and then extends from 1p to a weight, one may instead
work directly with £3/21 and insert without any cutoff.

The point is not merely aesthetic: the Lorentz quasi-norm is the nat-
ural bookkeeping device for dyadic layer-cake decompositions, and so the
extension is compatible with arbitrary superpositions of scales, with no
remainder terms. We record this explicitly.

Corollary 5.2 (Dyadic superposition bound). Let (Ey)rez be pairwise dis-
joint finite subsets of G, and let (A )rez be nonnegative coefficients with only
finitely many nonzero terms. Set

f o= Zx\k 1g,-
k

Then
[1a* fllee < CLAY AP Fllsrza < CA)Y AP AL B[P (14)
k

In particular, for the dyadic choice A, = 2% and Ej, = {z : 28 < f(x) < 21}
one has

Ilax flls < CA)YAP?PY 2B = C(A) JAP | fllpraa.  (15)
k

The second inequality in is simply the Lorentz estimate [|fl|3/21 <
S M| Ex[?/3, which is a direct consequence of the definition of || - || /2,1 by
decreasing rearrangement (or, equivalently, of the layer-cake identity
when \; are dyadic). The crucial feature of is that the contribution of
each layer is additive, and there is no need to locate a “dominant scale” by
pigeonholing, nor to throw away the smallest layers by truncation.

A convenient way to phrase the elimination of tail errors is to note that
¢3/21 is designed so that truncations are controlled monotonically: if 0 <
f1 < f2 pointwise, then || fi[|3/2,1 < || f2ll3/2,1- Consequently, every truncated
version of Bloom’s lemma that bounds [|14 * (f 1{s>y)[l3 for some cutoff
n > 0 is subsumed by , without any need to track how the complementary
part f1lisopy is treated. For example, for any n > 0,

Ia* (F Lipog)lls < ILax flls < CA AP | fllsjon,  (16)

and similarly

Ia* (f Lpenplls < CCAP IS Lipamyllazan < CCA) AP fllajaq-
(17)
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Thus the small values of f are never problematic at the level of £3/%1; they
are accounted for exactly in the norm. This is the precise sense in which the
Lorentz formulation is tail-free.

We also note that is insensitive to replacing additive convolution
by difference convolution, up to the harmless reflection f~(z) := f(—=x).
Indeed, for any g > 0,

laog = laxyg~,

and [|g™|l3/2,1 = [lgll3/2,1 by rearrangement invariance. Hence
ITacglls < CA)AP lglls/21- (18)

We will use systematically when estimating weighted symmetry expres-
sions.

Finally, we emphasize how interfaces with later arguments. In prop-
agation and symmetry-set manipulations one repeatedly encounters weights
obtained by multiplying or summing indicators across several scales (for in-
stance, functions like w = >, 1p, or w = >, 2¥1, arising from dyadic
decompositions of representation functions). The estimate shows that,
as long as ||w||3/2,1 is controlled, the £* norm of 14w is controlled with no
additional bookkeeping. In particular, there is no analogue of a xk!%-type
penalty attached to the number of dyadic scales present in w; any depen-
dence on scale complexity enters only if one insists on expressing [|w/|3/2,; in
terms of |lwl|3/2, as discussed previously.

We will treat f as the basic replacement rule for Bloom’s function-
extension lemma. In the next section we apply this replacement to the
symmetry-set machinery, where the relevant weights are naturally produced
by thresholding and dyadic decompositions of convolutions, and where the
absence of tail terms materially simplifies the dependence on auxiliary cut-
offs.

6 6. Weighted symmetry-set machinery: define
weighted symmetry sets via thresholds on 14 o
w; prove Lorentz versions of the key bounds on
|14 0 15|32 and the auxiliary inner-product in-
equalities.

Weighted symmetry-set machinery

In the symmetry-set portion of Bloom’s argument one isolates a set of shifts
on which a difference convolution is popular, and then exploits this popu-
larity through an inner-product identity and an ¢3 bound for a secondary
convolution. The Lorentz formulation lets us run the same mechanism with
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general weights, and we record the basic templates in a form we will use
later.
Let w : G — [0,00) be finitely supported. We write

u = lpow, so that u(z) = Zw(x—i—a).
acA

For a parameter 0 € (0, 1] we define the weighted symmetry set at level 6 by
Ss(A;w) == {z€G: (laow)(z) > & ||ng1(G)}. (19)

When w = 14 this recovers the usual symmetry set Ss(A), up to the harmless
normalisation [[14])1 = |A|.

The starting point is the adjointness of difference convolution under the
¢? pairing. We will use it in the form below.

Lemma 6.1 (Adjointness identity). For finitely supported f,g,h > 0 one
has

<1Aof7 g> = <1Aoga f>
In particular, for S C G finite and w > 0,
(lacw, 1g) = (laolg, w). (20)

Proof. Expanding and changing order of summation,

(Laof,9) =D > Lale+y)f(W)g(x) =D f) Y lale+y)g(z) = (1aog, f).

T

The specialisation is immediate. ]

Popularity on S5(A;w) converts directly into a lower bound for this inner
product.

Lemma 6.2 (Popularity lower bound). Let S = Ss(A;w) as in (19). Then
(Laow, 1g) 2 6wl S| (21)

Proof. By definition of S, we have (14 ow)(x) > §||w||; for all x € S. Hence
(Laow,1s) =Y (Laow)(x) = Y dllwlh = dlwl]S].
z€S xeS

O

The point of is that it moves the set S into the second factor 1401g,
which is exactly where the ¢3 control input applies. For the lower bound,
we combine — with Holder (or Lorentz—Holder, if one wishes to work
with weak spaces).
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Proposition 6.3 (£3/2 lower bound for 14 o 1g). Let w > 0 be finitely
supported and suppose w € £3(G). Let S = Ss(A;w). Then

0 flwll1 5]
1aolslpr@ = : (22)
£7G) [wlls
In particular, taking w = 14 gives
1140 1g,0ayllse = 8 |A[73[S5(A)]. (23)

Proof. By Lemma [6.1] and Lemma [6.2]
SllwlliS] < (Taow,1s) = (Laols,w).
Applying Holder with exponents (3/2,3) yields
(laolg,w) < |1aolslss[lw]s,

which implies (22). For w = 14, we have |w|; = |A| and ||w|j3s = |A|'/3,
giving . O

A variant that is occasionally convenient is to replace ||wl||s by a weak
norm, using the Lorentz Holder template (Lemma 4 in the global context).
Namely, from (F,w) < [[F[3/21/w]|3,00 We obtain

8 [Jwll |S]

lpolg >
H H3/2,1 ||u)”3’oo 9

which is useful when w is a superposition of indicators. We will not emphasise
this further, but it fits seamlessly with the same bookkeeping.

We next record the complementary 2 bound for 1401, which is the exact
point where Lorentz control replaces Bloom’s truncation-based extension
lemma. This is simply the difference-convolution version specialised to
indicators.

Proposition 6.4 (£3 control for symmetry convolutions). For every finite

S Ca@G,
Iaolslog < CA) AP Nsllmaig = C(A) AP ISP (24)
More generally, for any finitely supported v > 0,
Ilacvlls < CA) AP [[o]ls/z,1. (25)

The pair of estimates and is the basic symmetry-set input: the
popularity condition forces 14 o0 1g to be large in ¢3/2_ while Lorentz control
bounds the same function in ¢3. The remaining steps in the symmetry-set
machine consist of inserting these two bounds into whatever interpolation or
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Cauchy—Schwarz estimate is relevant at the given stage. For instance, since
|14 01g]l1 = |A]|S|, Cauchy—Schwarz gives

114015132 = 3" (1a015)(@) (Lao1s) (@) < [[Lao sl }/? [ LaoLsla, (26)

T

hence 3/2
H1A015H3/2

Lyolglly > w2032 27

Haetsle = sy 0

Combining with yields an explicit lower bound on ||14 o 1g;4)ll2
in terms of §, |A|, and |Ss(A)|; in the weighted setting one obtains the
same conclusion with |A| replaced by |lw||3/||wl[3 via (22)). These are exactly
the kinds of inner-product manipulations that occur repeatedly in Bloom’s
propagation steps, and they require no truncation once is available.

Finally, we note that is only one convenient normalisation. In appli-
cations we will sometimes define S by a threshold of the form (140w)(z) > 7
for an absolute 7 (or for 7 depending on other parameters). The same formal
argument gives

TS| < (laocw,1s) = (laolg,w) < |[1aolglz|wls,

and hence [|14 0 15|[3/2 > 7]5|/||w||3, with the ¢* upper bound for 14 0 1g
still furnished by . Thus the symmetry-set machinery is stable under
arbitrary weighted choices, provided we measure the weights in spaces com-
patible with the Lorentz control inequality.

7 7. Propagation results in weighted/asymmetric
form: restate Bloom’s main applications (energy,
sum /difference sets, BSG extraction, convex-function
decomposition) with weights /measures and Lorentz
control.

Propagation results in weighted /asymmetric form

We now record a convenient way to package Bloom’s propagation outputs
so that (a) weights are permitted from the outset, and (b) the only input
is Lorentz control, with no auxiliary truncation parameters. The guiding
principle is that every time Bloom invokes his function-extension lemma
(which replaces an indicator 1p by a general f at the cost of a large tail
term), we instead apply the sharp Lorentz bound

1a* flls < CA) AP I fllsy21,

and then proceed through the same symmetry-set and interpolation steps as
in the unweighted argument.
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For flexibility it is useful to allow a general nonnegative weight a : G —
[0,00) in place of 14. Accordingly we define the (normalised) Lorentz control
constant of a by

C(a) := sup \2\73*—st. (28)
7120, 720 [lall " £ 1372,

When a = 14 this recovers C(A). Moreover, by testing on indicators and
using Lemma 1, one obtains the weighted analogue of Bloom’s cubic moment
control:

la*1g)3 < C(a)®|lal|3|B|*  for all finite B C G, (29)

with the same normalisation constants as in the indicator case. Thus, wher-
ever Bloom’s arguments are expressed in terms of x(A), we may equivalently
work with C(a) via the identity x(a) = C(a)® (up to the fixed normalisation
constant coming from Lemma 1).

Energy and sum/difference bounds with weights. Bloom’s main quan-
titative outputs bound the additive energy and force growth of sumsets and
difference sets. In weighted form, it is most natural to phrase the conclusions
in terms of the weighted energy

E(a) == [laxal3 = ) (axa(@))?
x
and the associated “effective support sizes”

lall}

lax all3’

lall}

s (30)
la o all3

la + alegr = la —aleg =

which coincide with |A+A| and |[A—A| when a = 14 (up to the usual Cauchy—
Schwarz comparison between support size and L? mass). The propagation
mechanism in Bloom’s proof uses only: (i) popularity bounds of the type
recorded in the previous subsection, (ii) Cauchy—Schwarz/Hélder /interpolation,
and (iii) L3-control for secondary convolutions. Since (iii) is now available in
the exact Lorentz form for arbitrary weights, the entire chain of implications
carries over verbatim.

In particular, substituting x = C? throughout Bloom’s exponents and

keeping track only of the homogeneities forced by the definitions, we obtain
the following template.

Corollary 7.1 (Weighted form of Bloom’s Theorem 1). Let a > 0 be finitely
supported and let € > 0. Then

E(a) < C(@)™7 Jlal [lall, (31)
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and consequently

‘a—’_a‘eﬁ‘ >>8 C(a)*33/19+8 ||CL||1’ |a—a‘eﬁ‘ >>E C(a),7518/4175+€ HCLHl '
l[alloo aloo
(32)

If a = 14 these reduce to Bloom’s bounds stated in terms of C(A) (equiva-
lently k(A)).

The factor |la|lo is the natural scaling correction: under dilation a
ta, one has E(ta) = t*E(a) while C(ta) = t*/3C(a), and is precisely
homogeneous. In typical applications one has ||a||cc < 1 (weights are sub-

indicators or probability measures up to scaling), and then |lal~ may be
suppressed.

Asymmetric consequences. The same propagation steps can be run
asymmetrically once one notices that the only L3 input needed is control
of the form |la * fjs < C(a)Ha||§/3||f||3/2,1, and the remainder of the argu-
ment is bookkeeping with difference convolutions and symmetry sets (which
are inherently asymmetric). For instance, for two weights a,b > 0 we may
consider the mixed energy

E(a,b) := [laxbl3 = Y (axb(@))?

T

and the effective sumset size ||a||?||b]|2/|la * b]|3. Whenever Bloom’s proof
treats B as an auxiliary set and uses control of A only through ||14 % 153,
we may replace 1p by an arbitrary b with ||b[|3/2; bounded and obtain the

same conclusions with |B|%? replaced by [b]3/2,1- Concretely, the input
|14 % 1p]]3 < C(A)|A|*/3|B[*/® becomes

ILa#blls < CA) AP [1Bll/a1, (33)

and no other step distinguishes b from an indicator except for this norm con-
version. Thus the asymmetric, weighted variants of all intermediate “prop-
agation inequalities” in Bloom’s Sections 3—6 hold with the same exponents
and with ¢3/21 in place of ¢3/2,

BSG extraction from an L? certificate. Bloom’s “BSG-from-L3” mecha-
nism (Theorem 15-style) starts from a certificate that some convolution has
abnormally large L? mass and then produces a structured subset (or ap-
proximate group) on which additive energy concentrates. In our language,
the hypothesis is naturally phrased as the existence of a weight b > 0 for
which |14 * b||3 is large compared to the normalised scale \A|2/3||bH3/2’1.
The Lorentz framework is particularly well suited here: if one writes b as a
dyadic superposition, then [|b|3/2; captures exactly the relevant layer-cake
sum, and the extraction proceeds without the need to ignore small values
of b by a cutoff depending on k. In other words, any conclusion in Bloom’s
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extraction theorem whose proof previously depended on a truncation lemma
may be re-run with [|b][3/2; replacing [|b]|3/2, yielding the same exponent-
level dependence on C(A) and eliminating the large-x tail losses. If one
insists on an £3/2 hypothesis on b rather than ¢3/21, then the only additional
losses are those incurred when bounding ||b][3/21 by [|b|3/2, which are at
worst polylogarithmic under mild bounded-range hypotheses on b.

Decompositions (convex-function style) and pruning. Finally, Bloom
repeatedly decomposes a set into pieces and propagates control estimates
across the decomposition. In the Lorentz-operator formulation this is ex-
pressed cleanly by subadditivity at the level of C: whenever a = 2221 a;
with supp(a;) pairwise disjoint, we have

t
Cla) < ) Clas),
i=1

which is the weighted analogue of Lemma 3. This is the appropriate in-
terface for convex-function-type decompositions: one isolates components
a; that are individually “geometric” (hence have small C(a;) via incidence
bounds) and controls the remainder by a crude estimate, while keeping a
linear bookkeeping of the control constants rather than suffering powers of
k. In particular, iterative pruning arguments that repeatedly discard a small
portion of mass and re-run the propagation step are stable under weights,
since each iteration only requires applying to the current weight and
using the symmetry-set templates already recorded.

The net effect is that Bloom’s entire propagation apparatus admits a uni-
form weighted /asymmetric restatement with C as the controlling invariant
and £3/21 as the natural domain space. This does not, by itself, improve any
exponent, but it makes the framework robust under weights and removes all
dependence on ad hoc truncation parameters.

8 8. Examples and sharpness: convex sets (Sze-
merédi—Trotter) yield C(A) < |A|7Y/3; unions (sub-
additivity); toy weighted examples where Lorentz
beats (*/?; discussion of limitations (cannot by it-
self improve sumset exponent).

Examples and sharpness

We record a few examples illustrating (i) how geometric information about A
can be injected through upper bounds for C(A), (ii) how the operator view-
point interacts cleanly with decompositions, and (iii) why 03/21 s the correct
domain space if one wants a genuinely tail-free extension from indicators to
general weights.
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Convex sets in R and Szemerédi—Trotter. Let A C R be a finite strictly
convex set (e.g. A ={a1 < --- < a,} with strictly increasing successive dif-
ferences). A standard incidence argument (going back to Elekes—Nathanson—
Ruzsa and refined in many later works) shows that additive representation
counts for such A have strong L3-control. Concretely, one obtains an in-
equality of the form

> (laxlp(x))® < |A[|B]  for all finite B C R, (34)

xz

with an absolute implied constant. (One way to view is that solutions
to a; + by = as + bs = az + by with a; € A, b; € B, are controlled by
incidences between the point set B x B and a family of lines determined
by differences in A; strict convexity provides the non-degeneracy needed to
apply Szemerédi-Trotter without large multiplicity losses.)

Comparing with Bloom’s normalisation > (14x15(z))% < k(A) |A|?|B|?,
we read off k(A) < |A|7!. By Theorem A this is equivalent to

C(4) = w(A)YV3 < |A]713, (35)

Thus convexity supplies a small operator norm, and the Lorentz extension
then immediately yields, for all finitely supported f > 0,

1La* flls < JA2 1 fllsj2

We emphasise that is the natural scaling: ||14 * f||3 has the same ho-
mogeneity as |A|2/3||f||3/271, and the additional gain |A|~/3 is exactly what
the incidence estimate provides. In particular, in any propagation argument
whose quantitative output is a negative power of C(A), convexity immedi-
ately forces polynomial growth of sumsets/difference sets as a function of

Al

Disjoint unions and subadditivity (sharpness of the linear book-
keeping). Suppose A = |_|1£:1 A; is a disjoint union. Then 14 *x f =
>, 14, % f, and by the triangle inequality in 3 we obtain

t t
Iasflls < 3 a= flls < (30 CCAD) AP [ £llsja,
=1 =1

after the harmless renormalisation ||1A1:H?/3 < ||1A||?/3. Taking the supre-
mum over f yields

t
C(4) < ZC(A,-), equivalently /<;(A)U3 < ZH(Ai)l/g- (36)
i=1

i=1

This inequality is frequently close to sharp. For instance, if the pieces A;
are widely separated in the ambient group so that the functions 14, * f
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have essentially disjoint supports for the class of test functions f relevant
to a given application, then || 37,14, * f||3 behaves like (3|14, * f[13)'/3,
and the linear bound is the correct robust statement one can guarantee
without further structural input. In particular, this linear bookkeeping is
precisely what one wants in iterative pruning/decomposition schemes: each
step can be analysed at the level of C without introducing artificial powers
of k.

It is instructive to contrast with what one would obtain by working
only with x(A) directly: since k = C3, a linear bound for C corresponds to
a cubic-type bound for x, and keeping the argument at the operator-norm
level is what prevents such nonlinearities from accumulating uncontrollably
across many decomposition steps.

A toy weighted example: why ¢3/2! is the tail-free endpoint. The
Lorentz norm || - [|3/2,; is genuinely stronger than || - [[3/2, and this strength
is not an artefact: it is exactly what eliminates tail bookkeeping. We spell
this out with a simple dyadic construction.

Fix pairwise disjoint sets By, ..., B, C G and a large parameter N, with

Bj| ~ N2792 (1< j<m),

so that the sizes decay geometrically. Define a weight

m -
fo=> 21p,
j=1

A direct computation gives
m

IFIE2 = S2@)2By| ~ S 292 N29I2 o

j=1 j=1

and hence || f|l3/2 ~ (mN)?/3. On the other hand, Lemma 2 (or a one-line
rearrangement computation) yields

m m
[ fll3/21 = Z2j|Bj\2/3 ~ Z2j~(N2/32*J') ~ m N2/3
J=1 =1

Therefore

I £ll3/2,1 N m N2/3 13
||f”3/2 (mN)2/3 .

Thus || f||3/2 undercounts the dyadic complexity by a factor ml/3. If one
attempted to replace the Lorentz bound |14 * fljs < C(A)|A|2/3||f||3/271

by an £3/2-based inequality with the same constant C(A), then (B7) shows
that one would necessarily lose a factor > m!/3 on this class of examples

(37)
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unless one introduces additional hypotheses (bounded range, truncations, or
a priori control of the number of active dyadic scales). This is exactly the
phenomenon behind Bloom-style tail terms: the truncation parameter is, in
effect, a proxy for the number of relevant scales, whereas £3/21 records the
scale sum intrinsically.

In applications where the weight f is known to be essentially bounded,
say 0 < f < M, one can of course trade Lorentz for Lebesgue at polylog-
arithmic cost (since only < log M dyadic levels occur). The point is that
such losses come from external information about the range of f, not from
the convolution estimate itself.

Limitations and what is (not) made sharper. The passage from x(A)
to C(A) is an exact repackaging (Theorem A), and accordingly it cannot,
by itself, improve any exponent in Bloom’s energy or sumset bounds: any
numerical gain would have to come from new input giving a smaller C(A)
for the specific class of sets/weights under consideration (incidence geome-
try, Fourier-analytic bounds, structural information, or an inverse theorem
for near-extremisers of C). What the Lorentz formulation does provide is
stability: once an estimate for C(a) is available, it propagates through the
entire machinery without additional losses from truncations, and it does
so uniformly for weighted and asymmetric configurations. In this sense C
is best viewed as an interface: it isolates the genuinely difficult geomet-
ric/combinatorial input (bounding an operator norm) from the downstream
additive-combinatorial deductions.

9 9. Outlook (2026 directions): finite-field L! ana-
logues; automated inequality search with Lorentz
primitives; potential stability /inverse theory for
Lorentz control.

Outlook (directions for 2026)

We conclude by indicating three directions where the Lorentz-operator for-
mulation seems particularly well suited: (a) higher-moment analogues (no-
tably an ¢ theory over finite fields), (b) semi-automated proof search and
optimisation once truncations are eliminated at the axiomatic level, and (c)
a stability /inverse theory for near-extremisers of Lorentz control.

1. Finite-field /* analogues and higher moments. The passage from
Bloom’s L3-certificate to the operator norm C(A) suggests an obvious gen-
eralisation: for ¢ > 2 one may define a g-moment control parameter

kq(A) = inf {n >0: Z(lA*lg(:v))q < k|AJ97YB|?7t for all finite B},

25



and the corresponding Lorentz control constant

114 * fllea(a q
Cy,(A) := sup ) q = .
1 >0, f20 |A[I1/4 1 lleor 1) q—1

At the level of formal manipulations, the proof of Theorem A is not special
to ¢ = 3: the same dyadic layer-cake argument gives C4(A) = mq(A)l/ d
(up to the normalisation constant coming from ||1p|y1). What changes,
and where new input is needed, is in obtaining nontrivial upper bounds for
kq(A) (equivalently C,(A)) in concrete settings.

The case ¢ = 4 over G = F} looks especially promising. Several in-
cidence bounds in finite fields (point—line and point—plane, in the spirit of
Rudnev-type arguments) naturally control fourth moments of representation
functions, and the absence of ordering makes truncation-based arguments
particularly awkward; the endpoint Lorentz formulation avoids this from
the outset. Moreover, #* norms interface more directly with additive energy
through identities such as

E(A) = |lax1al3,  laxipli = Y (lax1p(2),

T

and thus with higher-order energies and certain Gowers-type quantities. A
systematic 4 control theory might therefore provide an alternate route to
(or refinement of) energy increment arguments in characteristic p, where one
often needs to handle weighted convolutions arising from density increments
or random sampling.

Two concrete problems emerge. First, identify natural geometric hy-
potheseson A C Fy (e.g. algebraic curves/surfaces with suitable non-degeneracy,
Cartesian products with expansion properties, or sets avoiding subfield struc-
ture) that force polynomial savings in C4(A) relative to the trivial bound.
Second, understand to what extent C4(A) controls the propagation machin-
ery that is currently organised around ¢3: which parts improve, which become
weaker, and which require hybrid arguments (for instance, combining ¢3 and
¢* bounds via interpolation in Lorentz scales).

2. Automated inequality search with Lorentz primitives. One prac-
tical benefit of replacing truncation lemmas by exact Lorentz norms is that
a large class of arguments becomes a concatenation of a small set of reusable
inequalities:

o dyadic layer-cake identities of the form || f|[,1 = >, 2F[{f ~ 2F}|1/7,

e Lorentz-space Holder templates (e.g. (f,g) < || fllp.1llgllp.00)s

e Young-type convolution bounds at endpoint scales,

e and bookkeeping rules such as subadditivity under disjoint unions at
the C-level.
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Once these are treated as primitives, the dependence on auxiliary cutoff
parameters largely disappears; the remaining quantitative content is encoded
in a graph of inequalities and exponent constraints. This makes the overall
proof architecture amenable to computer assistance in two complementary
ways.

First, one can attempt verification: given a human-written proof that
stays within a prescribed library of Lorentz and convolution inequalities,
a checker can confirm that each step is dimensionally consistent, that all
exponents match, and that implicit constants are tracked correctly (at least
qualitatively). This is not a replacement for mathematical insight, but it is
a guard against the kinds of bookkeeping errors that become common when
a proof contains many truncation thresholds and dyadic pigeonholes.

Second, one can attempt optimisation: many propagation arguments
amount to choosing intermediate parameters (thresholds §, sizes of sym-
metry sets, decomposition depths) to optimise the final exponent. In a
Lorentz-based presentation, these parameters typically appear as exponents
in inequalities rather than as ad hoc cutoffs, and thus the optimisation of-
ten reduces to a constrained minimisation problem (sometimes piecewise-
linear after taking logs). It is plausible that one can recover, and perhaps
improve, certain exponent choices by systematic search over admissible in-
equality chains, with the Lorentz quasi-norm serving as the correct endpoint
that prevents the optimiser from exploiting illegal truncation artefacts.

3. Stability and inverse theorems for Lorentz control. The definition
of C(A) is an operator norm, and operator norms invite an inverse theory: if
C(A) is unusually large or unusually small, what must A look like, and what
do near-extremising test functions f look like?

On the “large” side, one expects that C(A) close to its maximal value
should force substantial additive structure. Indeed, testing f = 14 shows
that C(A) controls ||[14 * 14]/3, hence a third-moment statistic of additive
representations within A. A natural conjectural statement is a stability
version of Balog—Szemerédi-Gowers adapted to the L3 certificate: if C(A) >
n (equivalently x(A) > n%), then A contains a large subset A’ C A with small
doubling, with polynomial dependence on 7. Bloom’s arguments already
move in this direction; what is missing is a sharp understanding of near-
extremisers, which would ideally upgrade polynomial losses to near-optimal
ones and clarify the correct model examples.

On the “small” side, one may ask for structural interpretations of C(A4) <
|A|~% beyond the immediate consequences for energy and sumsets. For in-
stance, for sets coming from geometry (convex sets, points on a curve, sets
with few collinearities), C(A) is small because an incidence bound suppresses
high-multiplicity additive coincidences. It would be valuable to formalise this
as a general principle: small C(A) should be equivalent, in appropriate cat-
egories, to the non-existence of certain local concentration patterns. This
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would amount to an “inverse incidence theorem” phrased purely in additive
terms.

Finally, because C(A) is defined by a supremum over weights f > 0,
one can ask about extremising weights. Are there always near-extremisers
supported on a small number of dyadic levels (or, conversely, can genuine ex-
tremisers require many levels, as suggested by the toy example)? If one could
show that extremisers have additional rigidity (for instance, approximate in-
dicator structure after normalisation), then the passage from weighted to
unweighted statements would become more robust, and one might obtain
cleaner extraction lemmas in the style of BSG without auxiliary regularisa-
tion.

In all three directions, the guiding idea is the same: once the endpoint
space £3/%1 is accepted as the natural domain for tail-free control, the re-
maining difficulties are no longer about truncation bookkeeping but about
genuine combinatorial or geometric input. This is precisely the setting in
which one can hope for both conceptual clarity and quantitative improve-
ment.
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