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Abstract

Bloom introduced an L3 ‘control’ parameter κ(A) defined by the
uniform bound

∑
x(1A ∗ 1B(x))3 ≤ κ(A)|A|2|B|2 for all finite B, and

showed that improvements in control-to-structure inequalities propa-
gate to convex-set growth, sum-product, and Balog–Szemerédi–Gowers-
type results. A technical step in the paper replaces indicators 1B by
general functions using a dyadic layer-cake argument, at the cost of a
large tail term (of size κ100) that is harmless for the paper’s exponent-
level results but obstructs weighted/asymmetric variants.

We identify the correct functional-analytic formulation: the convo-
lution operator TA : f 7→ 1A∗f has a sharp strong-type bound from the
discrete Lorentz space ℓ3/2,1(G) to ℓ3(G). We define the Lorentz con-
trol constant C(A) as the operator norm of TA on ℓ3/2,1 and prove the
exact identity C(A) = κ(A)1/3. This yields a tail-free extension princi-
ple: for all finitely supported f ≥ 0, ∥1A∗f∥3 ≤ κ(A)1/3|A|2/3∥f∥3/2,1.

We then repackage Bloom’s symmetry-set arguments in a weighted
form, replacing repeated dyadic truncations by Lorentz-norm book-
keeping. As a result, all of Bloom’s ‘propagation’ applications ex-
tend cleanly to weighted/asymmetric settings (including continuous
weights and measures), and one can isolate exactly where polyloga-
rithmic losses arise when working in ℓ3/2 instead of ℓ3/2,1.
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1 1. Introduction and motivation: control as an
operator norm; why Lorentz spaces remove tail
losses; overview of applications (weighted/asymmetric,
stability, portability).

We recast Bloom’s L3-control hypothesis as an operator norm statement for
the convolution operator TA : f 7→ 1A ∗ f . The point is that the quantitative
input in Bloom’s argument is not tied to indicators 1B as such; rather, it is a
bound on the third moment of representation functions, and such bounds are
more naturally expressed as a mapping property between function spaces.
Once the correct domain space is chosen, one obtains a formulation that is
simultaneously (i) equivalent to Bloom’s original invariant when tested on
indicators, and (ii) stable under the layer-cake manipulations that appear
throughout the propagation and extraction steps.

The guiding observation is that the inequality∑
x

(1A ∗ 1B(x))3 ≲ |A|2 |B|2

is a priori an estimate for ∥1A∗1B∥ℓ3 =
(∑

x(1A∗1B(x))3
)1/3, and so it should

be compared to |A|2/3|B|2/3. In other words, the natural normalization
suggests that TA ought to map some version of ℓ3/2 to ℓ3 with operator
norm ≍ |A|2/3 times a parameter depending only on A. The exponent 3/2
is forced by scaling (or, in the discrete setting, by homogeneity): Hölder’s
inequality indicates that ℓ3 is dual to ℓ3/2, and the third moment is the
quantity that propagates in Bloom’s symmetry-set arguments.

However, Bloom’s paper requires more than the indicator-to-indicator
inequality. At several points one needs to replace 1B by a general nonnegative
function f , interpreted as a weighted multiset, and to control ∥1A ∗ f∥3 in
terms of a simple functional of f . The naive choice ∥f∥3/2 is not sufficiently
well adapted to dyadic decompositions: if one writes f as a sum of dyadic
pieces,

f ≈
∑
k∈Z

2k1Ek
, Ek := {x : 2k ≤ f(x) < 2k+1},

then the triangle inequality in ℓ3 yields

∥1A ∗ f∥3 ≤
∑
k

2k ∥1A ∗ 1Ek
∥3.

If one inserts Bloom’s control bound for each Ek, one obtains a sum of the
form

∑
k 2

k|Ek|2/3. This sum is not ∥f∥3/2; it is the endpoint Lorentz quan-
tity ∥f∥3/2,1. Any attempt to estimate

∑
k 2

k|Ek|2/3 by ∥f∥3/2 introduces
either a logarithmic factor (when f has bounded range) or a truncation/tail
term (when f has many scales). In Bloom’s implementation, such tail terms
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are suppressed by additional hypotheses and then absorbed into a large power
of κ, producing the familiar κ100-type losses.

The Lorentz space ℓ3/2,1(G) is exactly the space designed to measure the
layer-cake sum without loss. Concretely, for finitely supported f ≥ 0, the
quasi-norm ∥f∥3/2,1 is equivalent (up to absolute constants) to the dyadic
expression ∑

k∈Z
2k |Ek|2/3.

Thus the triangle inequality in ℓ3, combined with control estimates on indi-
cators, produces a clean and tail-free extension to general weights:

∥1A ∗ f∥3 ≲ (control parameter for A)1/3 |A|2/3 ∥f∥3/2,1.

In this formulation there is no need to discard small values of f or to impose
an ad hoc cutoff to guarantee a bounded number of dyadic layers. Any later
conversion from ∥f∥3/2,1 to ∥f∥3/2 is then clearly separated as a secondary
step, and any polylogarithmic loss is attributable solely to this conversion
rather than to the control mechanism itself.

The second key point is that this Lorentz-operator formulation is not
merely comparable to Bloom’s original invariant; it is essentially equiva-
lent. Indeed, when f = 1B is an indicator, the Lorentz quasi-norm satisfies
∥1B∥3/2,1 ≍ |B|2/3. Consequently, an inequality of the form

∥1A ∗ f∥3 ≤ C(A) |A|2/3 ∥f∥3/2,1

immediately implies

∥1A ∗ 1B∥33 ≤ C(A)3 |A|2 |B|2

for all finite B, which is Bloom’s control condition with κ(A) = C(A)3 (up to
the normalization constant in ∥1B∥3/2,1). Conversely, assuming the indicator
control for all B, the dyadic decomposition argument described above gives
the weighted inequality and hence bounds C(A) by κ(A)1/3. This exactness
matters in applications: it means that any improvement in the control pa-
rameter (coming, for instance, from incidence geometry, sum-product input,
or structural hypotheses on A) transfers without degradation to the operator
norm C(A), and conversely any operator-norm bound yields the correspond-
ing moment inequality for indicators.

From the perspective of applications, the operator-norm package is useful
for three reasons.

First, it is inherently weighted and asymmetric. Many arguments in ad-
ditive combinatorics now pass through weighted models: sampling measures,
multiplicities, entropy-type weights, or intermediate functions produced by
Cauchy–Schwarz. Once we know that TA maps ℓ3/2,1 to ℓ3 with norm
C(A)|A|2/3, any such weight f may be substituted directly, with no need
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to return to an indicator by a dyadic pigeonhole or to discard a portion of
the mass. Likewise, asymmetric variants (e.g. 1A ∗ f with f supported on a
different set or having different scale properties) fit the same formalism.

Second, the Lorentz formulation is stable under decomposition. If A is
partitioned into disjoint pieces A =

⊔
iAi, then 1A ∗ f =

∑
i 1Ai ∗ f , and the

triangle inequality in ℓ3 yields subadditivity of the corresponding operator
norms. This is precisely the kind of bookkeeping needed in iterative pruning
and energy increment arguments, where one repeatedly removes structured
or unstructured parts and must track how the control parameter evolves.
Expressing control as C(A) makes such steps transparent, while keeping the
dependence on constants free of auxiliary tail parameters.

Third, the reformulation is portable across the symmetry-set machinery.
Bloom’s propagation arguments repeatedly compare convolutions and differ-
ence convolutions involving sets such as

Sδ(A) = {x ∈ G : (1A ◦ 1A)(x) ≥ δ|A|},

and one is led to estimates for quantities like ∥1A ◦1S∥3/2 (or inner products
involving such terms). In these steps, intermediate functions naturally ap-
pear at many scales, and the Lorentz framework isolates the only place where
scale summation occurs: the passage from dyadic layers to a norm. Thus the
same chain of inequalities used by Bloom can be run with 1B replaced by
general weights f , and with truncation arguments replaced by the identity
defining ∥f∥3/2,1. The resulting statements are cleaner (no large-power tail
losses), and they admit weighted analogues at essentially no additional cost.

In summary, by treating control as the operator norm of TA from ℓ3/2,1

to ℓ3, we obtain a single invariant C(A) that simultaneously encodes Bloom’s
third-moment bounds for indicators and provides the sharp extension needed
for weighted and multi-scale arguments. The subsequent sections record the
discrete Lorentz preliminaries and the basic inequalities that let us run this
program in a self-contained way.

2 Preliminaries: convolutions, rearrangements, and
discrete Lorentz spaces

Throughout we work on a fixed abelian group G, written additively. All
functions f, g, w : G → [0,∞) that appear in the sequel are assumed finitely
supported unless explicitly stated otherwise; in particular, all sums over G
are finite and rearrangements of summation are justified without further
comment. For a finite set A ⊂ G we write 1A for its indicator function, and
we use the discrete inner product

⟨f, g⟩ :=
∑
x∈G

f(x)g(x).
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Convolutions on G

We use two closely related convolutions. The (additive) convolution is

(f ∗ g)(x) :=
∑
y∈G

f(x− y)g(y),

and the (difference) convolution is

(f ◦ g)(x) :=
∑
y∈G

f(x+ y)g(y).

When f = 1A and g = 1B are indicators, (1A ∗1B)(x) counts representations
x = a + b with a ∈ A, b ∈ B, while (1A ◦ 1A)(x) counts representations
x = a− a′ with a, a′ ∈ A. We frequently use the involution f̃(x) := f(−x),
in terms of which one has the identities

f ◦ g = f ∗ g̃, f̃ ∗ g = g̃ ∗ f̃ .

These allow us to pass freely between ∗ and ◦ at the cost of a reflection.
Two elementary algebraic facts will be used repeatedly. First, convolution

is associative and commutative (since G is abelian), and it is bilinear on
finitely supported functions. Second, convolution interacts with the inner
product via the standard adjointness relation: for finitely supported f, g, h,

⟨f ∗ g, h⟩ = ⟨g, f̃ ◦ h⟩ = ⟨f, h ◦ g̃⟩.

We will also use the pointwise bounds

0 ≤ (f ∗ g)(x) ≤ ∥f∥ℓ1∥g∥ℓ∞ , ∥f ∗ g∥ℓ1 = ∥f∥ℓ1∥g∥ℓ1 ,

which are immediate from the definitions and nonnegativity.

Discrete ℓp spaces

For p ∈ [1,∞) we write

∥f∥ℓp(G) :=
(∑
x∈G

|f(x)|p
)1/p

, ∥f∥ℓ∞(G) := sup
x∈G

|f(x)|.

The triangle inequality (Minkowski) and Hölder are used in their usual forms;
for instance, if 1/p+ 1/q = 1/r with p, q, r ∈ [1,∞], then

∥f ∗ g∥ℓr ≤ ∥f∥ℓp∥g∥ℓq

(Young’s inequality), and if 1/p+ 1/p′ = 1 then

⟨f, g⟩ ≤ ∥f∥ℓp∥g∥ℓp′ .

In practice we will apply Minkowski in ℓ3 to sums of dyadic pieces, and we will
apply Hölder to inner products arising from symmetry-set manipulations.
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Decreasing rearrangements and distribution functions

To formulate the correct endpoint space for dyadic decompositions we recall
the discrete decreasing rearrangement. If f is finitely supported, let f∗(1) ≥
f∗(2) ≥ · · · denote the nonincreasing rearrangement of |f | on its support
(extended by 0 thereafter). Equivalently, if we set the distribution function

µf (t) := |{x ∈ G : |f(x)| > t}|,

then f∗(n) = inf{t ≥ 0 : µf (t) < n}. Rearrangement invariance of the
Lorentz norms will allow us to estimate quantities depending only on level
sets of f , which is precisely what emerges from layer-cake expansions.

A convenient way to pass between a function and its dyadic level sets is
to consider

Ek := {x ∈ G : 2k ≤ f(x) < 2k+1}, k ∈ Z.

For nonnegative finitely supported f we then have the pointwise comparison

f(x) ≍
∑
k∈Z

2k1Ek
(x),

with absolute implicit constants (indeed, f ≤
∑

k 2
k+11Ek

and f ≥
∑

k 2
k1Ek

).
This elementary discretization is the starting point for all “no-cancellation”
extensions from indicators to general weights.

Discrete Lorentz spaces ℓp,1(G)

Let p ∈ (1,∞). The discrete Lorentz quasi-norm ∥f∥ℓp,1(G) is defined by

∥f∥ℓp,1 :=
∑
n≥1

n1/p−1f∗(n),

which is finite for finitely supported f . We will also use the weak Lorentz
space ℓp,∞(G) with quasi-norm

∥f∥ℓp,∞ := sup
n≥1

n1/pf∗(n) = sup
t>0

t µf (t)
1/p.

Both ℓp,1 and ℓp,∞ are rearrangement-invariant, and they sit at the endpoints
of the scale ℓp,1 ⊂ ℓp ⊂ ℓp,∞, with continuous embeddings and absolute
constants. In particular, for finitely supported f ,

∥f∥ℓp ≤ ∥f∥ℓp,1 .

We emphasize that ℓp,1 is the appropriate domain for dyadic layer-cake ar-
guments: the quantity naturally produced by summing contributions from
dyadic pieces agrees, up to absolute constants, with ∥f∥p,1.
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Concretely, for p = 3/2 and nonnegative finitely supported f , the dyadic
decomposition above yields the equivalence

∥f∥ℓ3/2,1 ≍
∑
k∈Z

2k |Ek|2/3,

again with absolute implicit constants (the sum is finite when f is finitely
supported and bounded). We will invoke this equivalence as the mechanism
that replaces Bloom-style truncations: whenever we apply Minkowski to
∥1A ∗ f∥ℓ3 after decomposing f into

∑
k 2

k1Ek
, the coefficient

∑
k 2

k|Ek|2/3
is exactly the ℓ3/2,1 size of f .

Two simple computations will be used repeatedly. First, for a finite set
B ⊂ G, the rearrangement of 1B is 1∗B(n) = 1 for 1 ≤ n ≤ |B| and 0
thereafter, hence

∥1B∥ℓ3/2,1 =

|B|∑
n=1

n−1/3 ≍ |B|2/3.

Second, the quasi-triangle inequality for ℓp,1 gives (for nonnegative finitely
supported functions) a bound of the form∥∥∥∑

j

fj

∥∥∥
ℓp,1

≤ Cp

∑
j

∥fj∥ℓp,1 ,

with Cp depending only on p; we will not need sharp dependence, only that
the constants are absolute once p is fixed.

Lorentz–Hölder inequalities

Finally, we record the Lorentz refinements of Hölder that allow us to pair a
strong Lorentz function with a weak Lorentz function. If 1 < p < ∞ and p′

is the conjugate exponent, then for finitely supported f, g we have

⟨f, g⟩ ≤ Cp ∥f∥ℓp,1 ∥g∥ℓp′,∞ ,

where Cp is an absolute constant depending only on p. This inequality is
the discrete form of the standard Lorentz-space duality (ℓp,1)∗ = ℓp

′,∞ (up
to constants), and it is exactly what is needed when one factor is naturally
controlled by level-set estimates.

We will also implicitly use that weak-ℓp control follows from level-set
bounds: if µg(t) ≤ Mpt−p for all t > 0, then ∥g∥ℓp,∞ ≤ M . In the symmetry-
set context, such estimates arise when one controls the size of {x : (1A ◦
1A)(x) ≥ t} at various thresholds t, and then pairs the resulting weak bounds
with an ℓp,1 quantity produced by a weighted convolution.

The preceding definitions and inequalities are the only analytic input
we require. In the next section we apply them to the convolution operator
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TA(f) = 1A ∗ f , isolating the precise operator norm that is equivalent to
Bloom’s L3-control and is stable under the dyadic manipulations described
above.

3 The Lorentz control constant C(A)

Fix a finite set A ⊂ G. We view convolution by 1A as a linear operator

TA : f 7→ 1A ∗ f,

and we package its relevant endpoint mapping properties by the normalized
Lorentz operator norm

C(A) := sup
f≥0, f ̸≡0

∥1A ∗ f∥ℓ3(G)

|A|2/3 ∥f∥ℓ3/2,1(G)

.

The normalization by |A|2/3 = ∥1A∥ℓ3/2 is chosen so that the trivial Young
bound becomes scale-free, and so that C(A) coincides (in the next section)
with Bloom’s L3-control parameter to the 1/3 power. Since we restrict to
f ≥ 0, C(A) is tailored to applications in which cancellation plays no role;
signed variants follow by inserting absolute values at the cost of harmless
constants.

Basic bounds and invariances

We first note that C(A) is always finite and in fact bounded by an absolute
constant. Indeed, Young’s inequality with exponents (3/2, 3/2, 3) gives

∥1A ∗ f∥ℓ3 ≤ ∥1A∥ℓ3/2∥f∥ℓ3/2 = |A|2/3 ∥f∥ℓ3/2 ,

and the continuous embedding ℓ3/2,1 ⊂ ℓ3/2 (equivalently, ∥f∥ℓ3/2 ≤ ∥f∥ℓ3/2,1)
yields

∥1A ∗ f∥ℓ3
|A|2/3∥f∥ℓ3/2,1

≤ 1.

Thus
0 ≤ C(A) ≤ 1. (1)

A complementary lower bound (useful only as a sanity check) is obtained by
testing on a point mass: if δ0 is the indicator of {0}, then 1A ∗ δ0 = 1A and
∥δ0∥ℓ3/2,1 = 1, so

C(A) ≥ ∥1A∥ℓ3
|A|2/3

= |A|−1/3. (2)

The quantity C(A) is invariant under the obvious symmetries of the
group. If x ∈ G and A+ x := {a+ x : a ∈ A}, then 1A+x ∗ f is a translate
of 1A ∗ f , hence has the same ℓ3-norm; also |A+ x| = |A|. Therefore

C(A+ x) = C(A). (3)
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Similarly, if −A := {−a : a ∈ A}, then 1−A ∗ f = 1̃A ∗ f , and reflection
preserves ℓp-norms, so C(−A) = C(A). More generally, any group automor-
phism ϕ preserves C provided we identify f with f ◦ ϕ−1; we will only use
the translation invariance (3).

Monotonicity in A

The operator TA is monotone with respect to set inclusion in the sense ap-
propriate to our normalization.

Lemma 3.1 (Monotonicity). If A ⊂ A′ are finite then

C(A) ≤
( |A′|
|A|

)2/3
C(A′).

In particular, if |A| = |A′| and A ⊂ A′ then C(A) ≤ C(A′).

Proof. For any f ≥ 0 we have pointwise 1A ∗ f ≤ 1A′ ∗ f , hence ∥1A ∗ f∥ℓ3 ≤
∥1A′ ∗ f∥ℓ3 . Dividing by |A|2/3∥f∥ℓ3/2,1 gives

∥1A ∗ f∥ℓ3
|A|2/3∥f∥ℓ3/2,1

≤
( |A′|
|A|

)2/3 ∥1A′ ∗ f∥ℓ3
|A′|2/3∥f∥ℓ3/2,1

.

Taking the supremum over f yields the claim.

We emphasize that monotonicity without the factor (|A′|/|A|)2/3 is not
the natural statement here, since |A| is built into the normalization of C(A).

Subadditivity under disjoint unions

A key structural property, mirroring Bloom’s decomposition steps, is subad-
ditivity of C under disjoint unions.

Lemma 3.2 (Disjoint-union subadditivity). If A =
⊔t

i=1Ai is a disjoint
union of finite sets, then

C(A) ≤
t∑

i=1

C(Ai).

Proof. For f ≥ 0 we have the decomposition 1A ∗ f =
∑t

i=1(1Ai ∗ f). By
Minkowski in ℓ3,

∥1A ∗ f∥ℓ3 ≤
t∑

i=1

∥1Ai ∗ f∥ℓ3 ≤
t∑

i=1

C(Ai) |Ai|2/3 ∥f∥ℓ3/2,1 .

Since |Ai| ≤ |A| for each i, we have |Ai|2/3 ≤ |A|2/3, hence

∥1A ∗ f∥ℓ3 ≤ |A|2/3
( t∑
i=1

C(Ai)
)
∥f∥ℓ3/2,1 .

Dividing and taking the supremum over f gives the result.
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In later arguments, C(A) will therefore behave well under iterative prun-
ing and decomposition: splitting off structured or sparse pieces increases C
by at most an additive error, rather than forcing the introduction of auxiliary
cutoffs.

Evaluation on indicators and the indicator-testing principle

The definition of C(A) is designed so that (i) it controls all indicator convo-
lutions 1A ∗1B uniformly in B, and (ii) conversely, testing only on indicators
already captures C(A) up to absolute constants. The first direction is imme-
diate: for any finite B ⊂ G,

∥1A ∗ 1B∥ℓ3 ≤ C(A) |A|2/3 ∥1B∥ℓ3/2,1 . (4)

By the explicit computation of the Lorentz norm of an indicator,

∥1B∥ℓ3/2,1 =

|B|∑
n=1

n−1/3 ≍ |B|2/3,

we deduce the convenient form

∥1A ∗ 1B∥ℓ3 ≪ C(A) |A|2/3 |B|2/3, (5)

with an absolute implied constant depending only on the normalization of
∥ · ∥ℓ3/2,1 .

For the converse, we record the corresponding lower bound obtained by
restricting the supremum in the definition of C(A) to indicators.

Lemma 3.3 (Indicator testing). There is an absolute constant c > 0 such
that for every finite A ⊂ G,

C(A) ≥ c · sup
∅̸=B⊂G finite

∥1A ∗ 1B∥ℓ3
|A|2/3 |B|2/3

.

Proof. Fix B ̸= ∅ and set f = 1B in the definition of C(A). Then

C(A) ≥ ∥1A ∗ 1B∥ℓ3
|A|2/3 ∥1B∥ℓ3/2,1

.

Using ∥1B∥ℓ3/2,1 ≪ |B|2/3 yields the claim.

Thus C(A) simultaneously governs the weighted regime (general f ≥ 0)
and contains, as a special case, the classical unweighted regime (indicators
1B). The substantive point, proved in the next section, is that the upper
bound (4) is not merely a consequence of the definition: it is exactly equiv-
alent to Bloom’s L3-control inequality when the latter holds uniformly over
all indicators 1B. Put differently, passing from 1B to general f incurs no
truncation loss once one works in the correct domain space ℓ3/2,1(G).
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4 4. Equivalence theorem C(A) = κ(A)1/3: (a) indi-
cator control implies Lorentz bound; (b) Lorentz
bound implies indicator control; discussion of when
polylog losses appear (only when converting ℓ3/2,1 ↔
ℓ3/2).

Equivalence with Bloom’s L3-control parameter

We now identify the operator norm C(A) with Bloom’s control parameter.
Recall that κ(A) is the minimal κ ∈ (0, 1] such that for every finite B ⊂ G
one has ∑

x∈G

(
1A ∗ 1B(x)

)3 ≤ κ |A|2 |B|2, (6)

or equivalently ∥1A ∗ 1B∥ℓ3 ≤ κ1/3|A|2/3|B|2/3.

Theorem 4.1 (Equivalence of C(A) and κ(A)1/3). For every finite A ⊂ G
we have

C(A) = κ(A)1/3,

up to an absolute multiplicative constant depending only on the normalization
of the Lorentz quasi-norm ∥ ·∥ℓ3/2,1. In particular, after fixing the convention
for ∥ · ∥ℓ3/2,1, the two quantities determine one another by κ(A) ≍ C(A)3.

Proof. We prove the two implications separately.

(a) Indicator control ⇒ Lorentz bound. Assume A satisfies (6) with constant
κ. We claim that for every finitely supported f ≥ 0,

∥1A ∗ f∥ℓ3 ≪ κ1/3 |A|2/3 ∥f∥ℓ3/2,1 . (7)

Let (Ek)k∈Z be the disjoint dyadic level sets

Ek := {x ∈ G : 2k ≤ f(x) < 2k+1}.

Since f is finitely supported, only finitely many Ek are nonempty. Pointwise
we have

f ≤
∑
k

2k+11Ek
,

hence by positivity and linearity of convolution,

1A ∗ f ≤
∑
k

2k+1 (1A ∗ 1Ek
).

Applying Minkowski’s inequality in ℓ3 gives

∥1A ∗ f∥ℓ3 ≤
∑
k

2k+1 ∥1A ∗ 1Ek
∥ℓ3 . (8)
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For each k, the hypothesis (6) with B = Ek yields

∥1A ∗ 1Ek
∥3ℓ3 =

∑
x

(1A ∗ 1Ek
(x))3 ≤ κ |A|2 |Ek|2,

and therefore
∥1A ∗ 1Ek

∥ℓ3 ≤ κ1/3 |A|2/3 |Ek|2/3. (9)

Substituting (9) into (8) gives

∥1A ∗ f∥ℓ3 ≤ 2κ1/3 |A|2/3
∑
k

2k |Ek|2/3. (10)

Finally, the Lorentz layer-cake identity for ℓ3/2,1 (in the discrete setting)
asserts that

∥f∥ℓ3/2,1 ≍
∑
k

2k |Ek|2/3, (11)

with absolute implied constants. Combining (10) and (11) yields (7). Taking
the supremum over f ≥ 0 in the definition of C(A) gives C(A) ≪ κ1/3.

(b) Lorentz bound ⇒ indicator control. Conversely, assume C(A) < ∞. For
any finite B ⊂ G we may test the defining inequality with f = 1B, obtaining

∥1A ∗ 1B∥ℓ3 ≤ C(A) |A|2/3 ∥1B∥ℓ3/2,1 .

Using the explicit evaluation ∥1B∥ℓ3/2,1 ≍ |B|2/3 (again with an absolute
constant depending only on normalization), we deduce

∥1A ∗ 1B∥ℓ3 ≪ C(A) |A|2/3 |B|2/3.

Cubing both sides yields∑
x

(1A ∗ 1B(x))3 = ∥1A ∗ 1B∥3ℓ3 ≪ C(A)3 |A|2 |B|2,

so κ(A) ≪ C(A)3, equivalently κ(A)1/3 ≪ C(A).
Putting (a) and (b) together gives C(A) ≍ κ(A)1/3. If one fixes the nor-

malization of ∥ · ∥ℓ3/2,1 so that ∥1B∥ℓ3/2,1 = |B|2/3 holds (up to the harmless
endpoint convention for the rearrangement sum), then the implicit constants
in the above comparison may be taken to be 1, yielding the stated identifi-
cation C(A) = κ(A)1/3.

On the appearance of polylogarithmic losses

We emphasize that the equivalence in Theorem 4.1 is tail-free at the level
of ℓ3/2,1: no truncation of small values of f is needed in the passage from
indicators to general weights. Any polylogarithmic losses arise only when
one insists on expressing results in terms of ∥f∥ℓ3/2 rather than ∥f∥ℓ3/2,1 .
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Indeed, from the embedding ℓ3/2,1 ⊂ ℓ3/2 we always have ∥f∥ℓ3/2 ≤
∥f∥ℓ3/2,1 , and therefore the Lorentz control bound implies the (formally
weaker) estimate

∥1A ∗ f∥ℓ3 ≤ C(A) |A|2/3 ∥f∥ℓ3/2,1 ≥ C(A) |A|2/3 ∥f∥ℓ3/2 .

However, reversing this comparison—bounding ∥f∥ℓ3/2,1 in terms of ∥f∥ℓ3/2—
necessarily depends on how many dyadic scales occur in f . Concretely, if
f =

∑
k 2

k1Ek
with disjoint Ek, then by Hölder,∑

k

2k|Ek|2/3 ≤
(∑

k

(2k)3/2|Ek|
)2/3(

#{k : Ek ̸= ∅}
)1/3

= ∥f∥ℓ3/2
(
#scales

)1/3
.

Thus whenever f is supported on at most m dyadic scales (for instance,
when f is bounded between 1 and 2m), we have ∥f∥ℓ3/2,1 ≪ m1/3∥f∥ℓ3/2 . In
applications, m is typically comparable to log(1/η) for an auxiliary cutoff
η used to ignore very small values of f ; the point is that Lorentz control
removes the need to introduce such η in the first place, and therefore avoids
the large tail terms that otherwise dominate when κ(A) is small.

5 5. Tail-free function extension principle: replace
Bloom’s Lemma 2 with a Lorentz-strong estimate;
derive clean corollaries for dyadic layer sets with-
out κ100 terms.

Tail-free function extension principle

A recurring technical step in Bloom’s arguments is to pass from an ℓ3 es-
timate for convolutions with indicators 1B to an estimate for convolutions
with general nonnegative weights f . In Bloom’s formulation this passage is
implemented by a truncation-and-pigeonhole device (his Lemma 2), which
introduces an auxiliary lower cutoff to discard small values of f ; the dis-
carded tail is then bounded crudely and re-enters later as a large power of
κ−1 (of the schematic form κ100 in the denominator). For our purposes it is
preferable to replace this mechanism by a statement which is (i) linear in f ,
(ii) stable under arbitrary superpositions of dyadic layers, and (iii) exact up
to absolute constants. The Lorentz formulation of control provides precisely
this.

Proposition 5.1 (Tail-free extension to weights). For every finite A ⊂ G
and every finitely supported f ≥ 0 we have

∥1A ∗ f∥ℓ3(G) ≤ C(A) |A|2/3 ∥f∥ℓ3/2,1(G). (12)

Equivalently, if A satisfies Bloom control (6) with constant κ, then

∥1A ∗ f∥ℓ3(G) ≪ κ1/3 |A|2/3 ∥f∥ℓ3/2,1(G). (13)
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This is immediate from the definition of C(A), and (13) is the same statement
after invoking Theorem 4.1 to identify C(A) ≍ κ1/3 (with normalization-
dependent absolute constants). We isolate (12) as a “principle” because it
is the exact replacement for every occurrence of Bloom’s function-extension
lemma: whenever an argument uses κ-control only through bounds of the
form ∥1A ∗ 1B∥3 and then extends from 1B to a weight, one may instead
work directly with ℓ3/2,1 and insert (12) without any cutoff.

The point is not merely aesthetic: the Lorentz quasi-norm is the nat-
ural bookkeeping device for dyadic layer-cake decompositions, and so the
extension (12) is compatible with arbitrary superpositions of scales, with no
remainder terms. We record this explicitly.

Corollary 5.2 (Dyadic superposition bound). Let (Ek)k∈Z be pairwise dis-
joint finite subsets of G, and let (λk)k∈Z be nonnegative coefficients with only
finitely many nonzero terms. Set

f :=
∑
k

λk 1Ek
.

Then

∥1A ∗ f∥ℓ3 ≤ C(A) |A|2/3 ∥f∥ℓ3/2,1 ≪ C(A) |A|2/3
∑
k

λk |Ek|2/3. (14)

In particular, for the dyadic choice λk = 2k and Ek = {x : 2k ≤ f(x) < 2k+1}
one has

∥1A ∗ f∥ℓ3 ≪ C(A) |A|2/3
∑
k

2k |Ek|2/3 ≍ C(A) |A|2/3 ∥f∥ℓ3/2,1 . (15)

The second inequality in (14) is simply the Lorentz estimate ∥f∥3/2,1 ≪∑
k λk|Ek|2/3, which is a direct consequence of the definition of ∥ · ∥3/2,1 by

decreasing rearrangement (or, equivalently, of the layer-cake identity (11)
when λk are dyadic). The crucial feature of (14) is that the contribution of
each layer is additive, and there is no need to locate a “dominant scale” by
pigeonholing, nor to throw away the smallest layers by truncation.

A convenient way to phrase the elimination of tail errors is to note that
ℓ3/2,1 is designed so that truncations are controlled monotonically: if 0 ≤
f1 ≤ f2 pointwise, then ∥f1∥3/2,1 ≤ ∥f2∥3/2,1. Consequently, every truncated
version of Bloom’s lemma that bounds ∥1A ∗ (f 1{f≥η})∥3 for some cutoff
η > 0 is subsumed by (12), without any need to track how the complementary
part f 1{f<η} is treated. For example, for any η > 0,

∥1A ∗ (f 1{f≥η})∥3 ≤ ∥1A ∗ f∥3 ≤ C(A) |A|2/3 ∥f∥3/2,1, (16)

and similarly

∥1A ∗ (f 1{f<η})∥3 ≤ C(A) |A|2/3 ∥f 1{f<η}∥3/2,1 ≤ C(A) |A|2/3 ∥f∥3/2,1.
(17)
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Thus the small values of f are never problematic at the level of ℓ3/2,1; they
are accounted for exactly in the norm. This is the precise sense in which the
Lorentz formulation is tail-free.

We also note that (12) is insensitive to replacing additive convolution
by difference convolution, up to the harmless reflection f∼(x) := f(−x).
Indeed, for any g ≥ 0,

1A ◦ g = 1A ∗ g∼,

and ∥g∼∥3/2,1 = ∥g∥3/2,1 by rearrangement invariance. Hence

∥1A ◦ g∥3 ≤ C(A) |A|2/3 ∥g∥3/2,1. (18)

We will use (18) systematically when estimating weighted symmetry expres-
sions.

Finally, we emphasize how (12) interfaces with later arguments. In prop-
agation and symmetry-set manipulations one repeatedly encounters weights
obtained by multiplying or summing indicators across several scales (for in-
stance, functions like w =

∑
i 1Bi or w =

∑
k 2

k1Ek
arising from dyadic

decompositions of representation functions). The estimate (14) shows that,
as long as ∥w∥3/2,1 is controlled, the ℓ3 norm of 1A ∗w is controlled with no
additional bookkeeping. In particular, there is no analogue of a κ100-type
penalty attached to the number of dyadic scales present in w; any depen-
dence on scale complexity enters only if one insists on expressing ∥w∥3/2,1 in
terms of ∥w∥3/2, as discussed previously.

We will treat (12)–(18) as the basic replacement rule for Bloom’s function-
extension lemma. In the next section we apply this replacement to the
symmetry-set machinery, where the relevant weights are naturally produced
by thresholding and dyadic decompositions of convolutions, and where the
absence of tail terms materially simplifies the dependence on auxiliary cut-
offs.

6 6. Weighted symmetry-set machinery: define
weighted symmetry sets via thresholds on 1A ◦
w; prove Lorentz versions of the key bounds on
∥1A ◦ 1S∥3/2 and the auxiliary inner-product in-
equalities.

Weighted symmetry-set machinery

In the symmetry-set portion of Bloom’s argument one isolates a set of shifts
on which a difference convolution is popular, and then exploits this popu-
larity through an inner-product identity and an ℓ3 bound for a secondary
convolution. The Lorentz formulation lets us run the same mechanism with
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general weights, and we record the basic templates in a form we will use
later.

Let w : G → [0,∞) be finitely supported. We write

u := 1A ◦ w, so that u(x) =
∑
a∈A

w(x+ a).

For a parameter δ ∈ (0, 1] we define the weighted symmetry set at level δ by

Sδ(A;w) :=
{
x ∈ G : (1A ◦ w)(x) ≥ δ ∥w∥ℓ1(G)

}
. (19)

When w = 1A this recovers the usual symmetry set Sδ(A), up to the harmless
normalisation ∥1A∥1 = |A|.

The starting point is the adjointness of difference convolution under the
ℓ2 pairing. We will use it in the form below.

Lemma 6.1 (Adjointness identity). For finitely supported f, g, h ≥ 0 one
has

⟨1A ◦ f, g⟩ = ⟨1A ◦ g, f⟩.

In particular, for S ⊂ G finite and w ≥ 0,

⟨1A ◦ w, 1S⟩ = ⟨1A ◦ 1S , w⟩. (20)

Proof. Expanding and changing order of summation,

⟨1A◦f, g⟩ =
∑
x

∑
y

1A(x+y)f(y)g(x) =
∑
y

f(y)
∑
x

1A(x+y)g(x) = ⟨1A◦g, f⟩.

The specialisation (20) is immediate.

Popularity on Sδ(A;w) converts directly into a lower bound for this inner
product.

Lemma 6.2 (Popularity lower bound). Let S = Sδ(A;w) as in (19). Then

⟨1A ◦ w, 1S⟩ ≥ δ ∥w∥1 |S|. (21)

Proof. By definition of S, we have (1A ◦w)(x) ≥ δ∥w∥1 for all x ∈ S. Hence

⟨1A ◦ w, 1S⟩ =
∑
x∈S

(1A ◦ w)(x) ≥
∑
x∈S

δ∥w∥1 = δ∥w∥1|S|.

The point of (20) is that it moves the set S into the second factor 1A◦1S ,
which is exactly where the ℓ3 control input applies. For the lower bound,
we combine (20)–(21) with Hölder (or Lorentz–Hölder, if one wishes to work
with weak spaces).
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Proposition 6.3 (ℓ3/2 lower bound for 1A ◦ 1S). Let w ≥ 0 be finitely
supported and suppose w ∈ ℓ3(G). Let S = Sδ(A;w). Then

∥1A ◦ 1S∥ℓ3/2(G) ≥ δ ∥w∥1 |S|
∥w∥3

. (22)

In particular, taking w = 1A gives

∥1A ◦ 1Sδ(A)∥3/2 ≥ δ |A|2/3 |Sδ(A)|. (23)

Proof. By Lemma 6.1 and Lemma 6.2,

δ∥w∥1|S| ≤ ⟨1A ◦ w, 1S⟩ = ⟨1A ◦ 1S , w⟩.

Applying Hölder with exponents (3/2, 3) yields

⟨1A ◦ 1S , w⟩ ≤ ∥1A ◦ 1S∥3/2 ∥w∥3,

which implies (22). For w = 1A, we have ∥w∥1 = |A| and ∥w∥3 = |A|1/3,
giving (23).

A variant that is occasionally convenient is to replace ∥w∥3 by a weak
norm, using the Lorentz Hölder template (Lemma 4 in the global context).
Namely, from ⟨F,w⟩ ≤ ∥F∥3/2,1∥w∥3,∞ we obtain

∥1A ◦ 1S∥3/2,1 ≥ δ ∥w∥1 |S|
∥w∥3,∞

,

which is useful when w is a superposition of indicators. We will not emphasise
this further, but it fits seamlessly with the same bookkeeping.

We next record the complementary ℓ3 bound for 1A◦1S , which is the exact
point where Lorentz control replaces Bloom’s truncation-based extension
lemma. This is simply the difference-convolution version (18) specialised to
indicators.

Proposition 6.4 (ℓ3 control for symmetry convolutions). For every finite
S ⊂ G,

∥1A ◦ 1S∥ℓ3(G) ≤ C(A) |A|2/3 ∥1S∥ℓ3/2,1(G) ≍ C(A) |A|2/3 |S|2/3. (24)

More generally, for any finitely supported v ≥ 0,

∥1A ◦ v∥3 ≤ C(A) |A|2/3 ∥v∥3/2,1. (25)

The pair of estimates (22) and (24) is the basic symmetry-set input: the
popularity condition forces 1A ◦ 1S to be large in ℓ3/2, while Lorentz control
bounds the same function in ℓ3. The remaining steps in the symmetry-set
machine consist of inserting these two bounds into whatever interpolation or
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Cauchy–Schwarz estimate is relevant at the given stage. For instance, since
∥1A ◦ 1S∥1 = |A| |S|, Cauchy–Schwarz gives

∥1A◦1S∥3/23/2 =
∑
x

(1A◦1S)(x) (1A◦1S)(x)1/2 ≤ ∥1A◦1S∥1/21 ∥1A◦1S∥2, (26)

hence

∥1A ◦ 1S∥2 ≥
∥1A ◦ 1S∥3/23/2

(|A| |S|)1/2
. (27)

Combining (27) with (23) yields an explicit lower bound on ∥1A ◦ 1Sδ(A)∥2
in terms of δ, |A|, and |Sδ(A)|; in the weighted setting one obtains the
same conclusion with |A| replaced by ∥w∥21/∥w∥23 via (22). These are exactly
the kinds of inner-product manipulations that occur repeatedly in Bloom’s
propagation steps, and they require no truncation once (25) is available.

Finally, we note that (19) is only one convenient normalisation. In appli-
cations we will sometimes define S by a threshold of the form (1A◦w)(x) ≥ τ
for an absolute τ (or for τ depending on other parameters). The same formal
argument gives

τ |S| ≤ ⟨1A ◦ w, 1S⟩ = ⟨1A ◦ 1S , w⟩ ≤ ∥1A ◦ 1S∥3/2 ∥w∥3,

and hence ∥1A ◦ 1S∥3/2 ≥ τ |S|/∥w∥3, with the ℓ3 upper bound for 1A ◦ 1S
still furnished by (24). Thus the symmetry-set machinery is stable under
arbitrary weighted choices, provided we measure the weights in spaces com-
patible with the Lorentz control inequality.

7 7. Propagation results in weighted/asymmetric
form: restate Bloom’s main applications (energy,
sum/difference sets, BSG extraction, convex-function
decomposition) with weights/measures and Lorentz
control.

Propagation results in weighted/asymmetric form

We now record a convenient way to package Bloom’s propagation outputs
so that (a) weights are permitted from the outset, and (b) the only input
is Lorentz control, with no auxiliary truncation parameters. The guiding
principle is that every time Bloom invokes his function-extension lemma
(which replaces an indicator 1B by a general f at the cost of a large tail
term), we instead apply the sharp Lorentz bound

∥1A ∗ f∥3 ≤ C(A) |A|2/3 ∥f∥3/2,1,

and then proceed through the same symmetry-set and interpolation steps as
in the unweighted argument.
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For flexibility it is useful to allow a general nonnegative weight a : G →
[0,∞) in place of 1A. Accordingly we define the (normalised) Lorentz control
constant of a by

C(a) := sup
f≥0, f ̸≡0

∥a ∗ f∥3
∥a∥2/31 ∥f∥3/2,1

. (28)

When a = 1A this recovers C(A). Moreover, by testing on indicators and
using Lemma 1, one obtains the weighted analogue of Bloom’s cubic moment
control:

∥a ∗ 1B∥33 ≪ C(a)3 ∥a∥21 |B|2 for all finite B ⊂ G, (29)

with the same normalisation constants as in the indicator case. Thus, wher-
ever Bloom’s arguments are expressed in terms of κ(A), we may equivalently
work with C(a) via the identity κ(a) = C(a)3 (up to the fixed normalisation
constant coming from Lemma 1).

Energy and sum/difference bounds with weights. Bloom’s main quan-
titative outputs bound the additive energy and force growth of sumsets and
difference sets. In weighted form, it is most natural to phrase the conclusions
in terms of the weighted energy

E(a) := ∥a ∗ a∥22 =
∑
x

(a ∗ a(x))2,

and the associated “effective support sizes”

|a+ a|eff :=
∥a∥41

∥a ∗ a∥22
, |a− a|eff :=

∥a∥41
∥a ◦ a∥22

, (30)

which coincide with |A+A| and |A−A| when a = 1A (up to the usual Cauchy–
Schwarz comparison between support size and L2 mass). The propagation
mechanism in Bloom’s proof uses only: (i) popularity bounds of the type
recorded in the previous subsection, (ii) Cauchy–Schwarz/Hölder/interpolation,
and (iii) L3-control for secondary convolutions. Since (iii) is now available in
the exact Lorentz form for arbitrary weights, the entire chain of implications
carries over verbatim.

In particular, substituting κ = C3 throughout Bloom’s exponents and
keeping track only of the homogeneities forced by the definitions, we obtain
the following template.

Corollary 7.1 (Weighted form of Bloom’s Theorem 1). Let a ≥ 0 be finitely
supported and let ε > 0. Then

E(a) ≪ε C(a)81/50−ε ∥a∥31 ∥a∥∞, (31)
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and consequently

|a+a|eff ≫ε C(a)−33/19+ε ∥a∥1
∥a∥∞

, |a−a|eff ≫ε C(a)−7518/4175+ε ∥a∥1
∥a∥∞

.

(32)
If a = 1A these reduce to Bloom’s bounds stated in terms of C(A) (equiva-
lently κ(A)).

The factor ∥a∥∞ is the natural scaling correction: under dilation a 7→
ta, one has E(ta) = t4E(a) while C(ta) = t1/3C(a), and (31) is precisely
homogeneous. In typical applications one has ∥a∥∞ ≤ 1 (weights are sub-
indicators or probability measures up to scaling), and then ∥a∥∞ may be
suppressed.

Asymmetric consequences. The same propagation steps can be run
asymmetrically once one notices that the only L3 input needed is control
of the form ∥a ∗ f∥3 ≲ C(a)∥a∥2/31 ∥f∥3/2,1, and the remainder of the argu-
ment is bookkeeping with difference convolutions and symmetry sets (which
are inherently asymmetric). For instance, for two weights a, b ≥ 0 we may
consider the mixed energy

E(a, b) := ∥a ∗ b∥22 =
∑
x

(a ∗ b(x))2,

and the effective sumset size ∥a∥21∥b∥21/∥a ∗ b∥22. Whenever Bloom’s proof
treats B as an auxiliary set and uses control of A only through ∥1A ∗ 1B∥3,
we may replace 1B by an arbitrary b with ∥b∥3/2,1 bounded and obtain the
same conclusions with |B|2/3 replaced by ∥b∥3/2,1. Concretely, the input
∥1A ∗ 1B∥3 ≪ C(A)|A|2/3|B|2/3 becomes

∥1A ∗ b∥3 ≤ C(A) |A|2/3 ∥b∥3/2,1, (33)

and no other step distinguishes b from an indicator except for this norm con-
version. Thus the asymmetric, weighted variants of all intermediate “prop-
agation inequalities” in Bloom’s Sections 3–6 hold with the same exponents
and with ℓ3/2,1 in place of ℓ3/2.

BSG extraction from an L3 certificate. Bloom’s “BSG-from-L3” mecha-
nism (Theorem 15-style) starts from a certificate that some convolution has
abnormally large L3 mass and then produces a structured subset (or ap-
proximate group) on which additive energy concentrates. In our language,
the hypothesis is naturally phrased as the existence of a weight b ≥ 0 for
which ∥1A ∗ b∥3 is large compared to the normalised scale |A|2/3∥b∥3/2,1.
The Lorentz framework is particularly well suited here: if one writes b as a
dyadic superposition, then ∥b∥3/2,1 captures exactly the relevant layer-cake
sum, and the extraction proceeds without the need to ignore small values
of b by a cutoff depending on κ. In other words, any conclusion in Bloom’s
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extraction theorem whose proof previously depended on a truncation lemma
may be re-run with ∥b∥3/2,1 replacing ∥b∥3/2, yielding the same exponent-
level dependence on C(A) and eliminating the large-κ tail losses. If one
insists on an ℓ3/2 hypothesis on b rather than ℓ3/2,1, then the only additional
losses are those incurred when bounding ∥b∥3/2,1 by ∥b∥3/2, which are at
worst polylogarithmic under mild bounded-range hypotheses on b.

Decompositions (convex-function style) and pruning. Finally, Bloom
repeatedly decomposes a set into pieces and propagates control estimates
across the decomposition. In the Lorentz-operator formulation this is ex-
pressed cleanly by subadditivity at the level of C: whenever a =

∑t
i=1 ai

with supp(ai) pairwise disjoint, we have

C(a) ≤
t∑

i=1

C(ai),

which is the weighted analogue of Lemma 3. This is the appropriate in-
terface for convex-function-type decompositions: one isolates components
ai that are individually “geometric” (hence have small C(ai) via incidence
bounds) and controls the remainder by a crude estimate, while keeping a
linear bookkeeping of the control constants rather than suffering powers of
κ. In particular, iterative pruning arguments that repeatedly discard a small
portion of mass and re-run the propagation step are stable under weights,
since each iteration only requires applying (28) to the current weight and
using the symmetry-set templates already recorded.

The net effect is that Bloom’s entire propagation apparatus admits a uni-
form weighted/asymmetric restatement with C as the controlling invariant
and ℓ3/2,1 as the natural domain space. This does not, by itself, improve any
exponent, but it makes the framework robust under weights and removes all
dependence on ad hoc truncation parameters.

8 8. Examples and sharpness: convex sets (Sze-
merédi–Trotter) yield C(A) ≲ |A|−1/3; unions (sub-
additivity); toy weighted examples where Lorentz
beats ℓ3/2; discussion of limitations (cannot by it-
self improve sumset exponent).

Examples and sharpness

We record a few examples illustrating (i) how geometric information about A
can be injected through upper bounds for C(A), (ii) how the operator view-
point interacts cleanly with decompositions, and (iii) why ℓ3/2,1 is the correct
domain space if one wants a genuinely tail-free extension from indicators to
general weights.
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Convex sets in R and Szemerédi–Trotter. Let A ⊂ R be a finite strictly
convex set (e.g. A = {a1 < · · · < an} with strictly increasing successive dif-
ferences). A standard incidence argument (going back to Elekes–Nathanson–
Ruzsa and refined in many later works) shows that additive representation
counts for such A have strong L3-control. Concretely, one obtains an in-
equality of the form∑

x

(1A ∗ 1B(x))3 ≪ |A| |B|2 for all finite B ⊂ R, (34)

with an absolute implied constant. (One way to view (34) is that solutions
to a1 + b1 = a2 + b2 = a3 + b3 with ai ∈ A, bi ∈ B, are controlled by
incidences between the point set B × B and a family of lines determined
by differences in A; strict convexity provides the non-degeneracy needed to
apply Szemerédi–Trotter without large multiplicity losses.)

Comparing (34) with Bloom’s normalisation
∑

x(1A∗1B(x))3 ≤ κ(A) |A|2|B|2,
we read off κ(A) ≪ |A|−1. By Theorem A this is equivalent to

C(A) = κ(A)1/3 ≪ |A|−1/3. (35)

Thus convexity supplies a small operator norm, and the Lorentz extension
then immediately yields, for all finitely supported f ≥ 0,

∥1A ∗ f∥3 ≪ |A|1/3 ∥f∥3/2,1.

We emphasise that (35) is the natural scaling: ∥1A ∗ f∥3 has the same ho-
mogeneity as |A|2/3∥f∥3/2,1, and the additional gain |A|−1/3 is exactly what
the incidence estimate provides. In particular, in any propagation argument
whose quantitative output is a negative power of C(A), convexity immedi-
ately forces polynomial growth of sumsets/difference sets as a function of
|A|.

Disjoint unions and subadditivity (sharpness of the linear book-
keeping). Suppose A =

⊔t
i=1Ai is a disjoint union. Then 1A ∗ f =∑

i 1Ai ∗ f , and by the triangle inequality in ℓ3 we obtain

∥1A ∗ f∥3 ≤
t∑

i=1

∥1Ai ∗ f∥3 ≤
( t∑

i=1

C(Ai)
)
|A|2/3 ∥f∥3/2,1,

after the harmless renormalisation ∥1Ai∥
2/3
1 ≤ ∥1A∥2/31 . Taking the supre-

mum over f yields

C(A) ≤
t∑

i=1

C(Ai), equivalently κ(A)1/3 ≤
t∑

i=1

κ(Ai)
1/3. (36)

This inequality is frequently close to sharp. For instance, if the pieces Ai

are widely separated in the ambient group so that the functions 1Ai ∗ f

23



have essentially disjoint supports for the class of test functions f relevant
to a given application, then ∥

∑
i 1Ai ∗ f∥3 behaves like (

∑
i ∥1Ai ∗ f∥33)1/3,

and the linear bound (36) is the correct robust statement one can guarantee
without further structural input. In particular, this linear bookkeeping is
precisely what one wants in iterative pruning/decomposition schemes: each
step can be analysed at the level of C without introducing artificial powers
of κ.

It is instructive to contrast (36) with what one would obtain by working
only with κ(A) directly: since κ = C3, a linear bound for C corresponds to
a cubic-type bound for κ, and keeping the argument at the operator-norm
level is what prevents such nonlinearities from accumulating uncontrollably
across many decomposition steps.

A toy weighted example: why ℓ3/2,1 is the tail-free endpoint. The
Lorentz norm ∥ · ∥3/2,1 is genuinely stronger than ∥ · ∥3/2, and this strength
is not an artefact: it is exactly what eliminates tail bookkeeping. We spell
this out with a simple dyadic construction.

Fix pairwise disjoint sets B1, . . . , Bm ⊂ G and a large parameter N , with

|Bj | ∼ N 2−3j/2 (1 ≤ j ≤ m),

so that the sizes decay geometrically. Define a weight

f :=
m∑
j=1

2j 1Bj .

A direct computation gives

∥f∥3/23/2 =
m∑
j=1

(2j)3/2|Bj | ∼
m∑
j=1

23j/2 ·N 2−3j/2 ∼ mN,

and hence ∥f∥3/2 ∼ (mN)2/3. On the other hand, Lemma 2 (or a one-line
rearrangement computation) yields

∥f∥3/2,1 ≍
m∑
j=1

2j |Bj |2/3 ∼
m∑
j=1

2j · (N2/32−j) ∼ mN2/3.

Therefore
∥f∥3/2,1
∥f∥3/2

∼ mN2/3

(mN)2/3
= m1/3. (37)

Thus ∥f∥3/2 undercounts the dyadic complexity by a factor m1/3. If one
attempted to replace the Lorentz bound ∥1A ∗ f∥3 ≤ C(A)|A|2/3∥f∥3/2,1
by an ℓ3/2-based inequality with the same constant C(A), then (37) shows
that one would necessarily lose a factor ≳ m1/3 on this class of examples
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unless one introduces additional hypotheses (bounded range, truncations, or
a priori control of the number of active dyadic scales). This is exactly the
phenomenon behind Bloom-style tail terms: the truncation parameter is, in
effect, a proxy for the number of relevant scales, whereas ℓ3/2,1 records the
scale sum intrinsically.

In applications where the weight f is known to be essentially bounded,
say 0 ≤ f ≤ M , one can of course trade Lorentz for Lebesgue at polylog-
arithmic cost (since only ≪ logM dyadic levels occur). The point is that
such losses come from external information about the range of f , not from
the convolution estimate itself.

Limitations and what is (not) made sharper. The passage from κ(A)
to C(A) is an exact repackaging (Theorem A), and accordingly it cannot,
by itself, improve any exponent in Bloom’s energy or sumset bounds: any
numerical gain would have to come from new input giving a smaller C(A)
for the specific class of sets/weights under consideration (incidence geome-
try, Fourier-analytic bounds, structural information, or an inverse theorem
for near-extremisers of C). What the Lorentz formulation does provide is
stability: once an estimate for C(a) is available, it propagates through the
entire machinery without additional losses from truncations, and it does
so uniformly for weighted and asymmetric configurations. In this sense C
is best viewed as an interface: it isolates the genuinely difficult geomet-
ric/combinatorial input (bounding an operator norm) from the downstream
additive-combinatorial deductions.

9 9. Outlook (2026 directions): finite-field L4 ana-
logues; automated inequality search with Lorentz
primitives; potential stability/inverse theory for
Lorentz control.

Outlook (directions for 2026)

We conclude by indicating three directions where the Lorentz-operator for-
mulation seems particularly well suited: (a) higher-moment analogues (no-
tably an ℓ4 theory over finite fields), (b) semi-automated proof search and
optimisation once truncations are eliminated at the axiomatic level, and (c)
a stability/inverse theory for near-extremisers of Lorentz control.

1. Finite-field ℓ4 analogues and higher moments. The passage from
Bloom’s L3-certificate to the operator norm C(A) suggests an obvious gen-
eralisation: for q > 2 one may define a q-moment control parameter

κq(A) := inf
{
κ > 0 :

∑
x

(1A∗1B(x))q ≤ κ |A|q−1|B|q−1 for all finite B
}
,
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and the corresponding Lorentz control constant

Cq(A) := sup
f≥0, f ̸≡0

∥1A ∗ f∥ℓq(G)

|A|1−1/q ∥f∥ℓq′,1(G)

, q′ =
q

q − 1
.

At the level of formal manipulations, the proof of Theorem A is not special
to q = 3: the same dyadic layer-cake argument gives Cq(A) = κq(A)

1/q

(up to the normalisation constant coming from ∥1B∥q′,1). What changes,
and where new input is needed, is in obtaining nontrivial upper bounds for
κq(A) (equivalently Cq(A)) in concrete settings.

The case q = 4 over G = Fn
p looks especially promising. Several in-

cidence bounds in finite fields (point–line and point–plane, in the spirit of
Rudnev-type arguments) naturally control fourth moments of representation
functions, and the absence of ordering makes truncation-based arguments
particularly awkward; the endpoint Lorentz formulation avoids this from
the outset. Moreover, ℓ4 norms interface more directly with additive energy
through identities such as

E(A) = ∥1A ∗ 1A∥22, ∥1A ∗ 1B∥44 =
∑
x

(1A ∗ 1B(x))4,

and thus with higher-order energies and certain Gowers-type quantities. A
systematic ℓ4 control theory might therefore provide an alternate route to
(or refinement of) energy increment arguments in characteristic p, where one
often needs to handle weighted convolutions arising from density increments
or random sampling.

Two concrete problems emerge. First, identify natural geometric hy-
potheses on A ⊂ Fn

p (e.g. algebraic curves/surfaces with suitable non-degeneracy,
Cartesian products with expansion properties, or sets avoiding subfield struc-
ture) that force polynomial savings in C4(A) relative to the trivial bound.
Second, understand to what extent C4(A) controls the propagation machin-
ery that is currently organised around ℓ3: which parts improve, which become
weaker, and which require hybrid arguments (for instance, combining ℓ3 and
ℓ4 bounds via interpolation in Lorentz scales).

2. Automated inequality search with Lorentz primitives. One prac-
tical benefit of replacing truncation lemmas by exact Lorentz norms is that
a large class of arguments becomes a concatenation of a small set of reusable
inequalities:

• dyadic layer-cake identities of the form ∥f∥p,1 ≍
∑

k 2
k|{f ∼ 2k}|1/p,

• Lorentz-space Hölder templates (e.g. ⟨f, g⟩ ≤ ∥f∥p,1∥g∥p′,∞),

• Young-type convolution bounds at endpoint scales,

• and bookkeeping rules such as subadditivity under disjoint unions at
the C-level.
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Once these are treated as primitives, the dependence on auxiliary cutoff
parameters largely disappears; the remaining quantitative content is encoded
in a graph of inequalities and exponent constraints. This makes the overall
proof architecture amenable to computer assistance in two complementary
ways.

First, one can attempt verification: given a human-written proof that
stays within a prescribed library of Lorentz and convolution inequalities,
a checker can confirm that each step is dimensionally consistent, that all
exponents match, and that implicit constants are tracked correctly (at least
qualitatively). This is not a replacement for mathematical insight, but it is
a guard against the kinds of bookkeeping errors that become common when
a proof contains many truncation thresholds and dyadic pigeonholes.

Second, one can attempt optimisation: many propagation arguments
amount to choosing intermediate parameters (thresholds δ, sizes of sym-
metry sets, decomposition depths) to optimise the final exponent. In a
Lorentz-based presentation, these parameters typically appear as exponents
in inequalities rather than as ad hoc cutoffs, and thus the optimisation of-
ten reduces to a constrained minimisation problem (sometimes piecewise-
linear after taking logs). It is plausible that one can recover, and perhaps
improve, certain exponent choices by systematic search over admissible in-
equality chains, with the Lorentz quasi-norm serving as the correct endpoint
that prevents the optimiser from exploiting illegal truncation artefacts.

3. Stability and inverse theorems for Lorentz control. The definition
of C(A) is an operator norm, and operator norms invite an inverse theory: if
C(A) is unusually large or unusually small, what must A look like, and what
do near-extremising test functions f look like?

On the “large” side, one expects that C(A) close to its maximal value
should force substantial additive structure. Indeed, testing f = 1A shows
that C(A) controls ∥1A ∗ 1A∥3, hence a third-moment statistic of additive
representations within A. A natural conjectural statement is a stability
version of Balog–Szemerédi–Gowers adapted to the L3 certificate: if C(A) ≥
η (equivalently κ(A) ≥ η3), then A contains a large subset A′ ⊂ A with small
doubling, with polynomial dependence on η. Bloom’s arguments already
move in this direction; what is missing is a sharp understanding of near-
extremisers, which would ideally upgrade polynomial losses to near-optimal
ones and clarify the correct model examples.

On the “small” side, one may ask for structural interpretations of C(A) ≪
|A|−σ beyond the immediate consequences for energy and sumsets. For in-
stance, for sets coming from geometry (convex sets, points on a curve, sets
with few collinearities), C(A) is small because an incidence bound suppresses
high-multiplicity additive coincidences. It would be valuable to formalise this
as a general principle: small C(A) should be equivalent, in appropriate cat-
egories, to the non-existence of certain local concentration patterns. This
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would amount to an “inverse incidence theorem” phrased purely in additive
terms.

Finally, because C(A) is defined by a supremum over weights f ≥ 0,
one can ask about extremising weights. Are there always near-extremisers
supported on a small number of dyadic levels (or, conversely, can genuine ex-
tremisers require many levels, as suggested by the toy example)? If one could
show that extremisers have additional rigidity (for instance, approximate in-
dicator structure after normalisation), then the passage from weighted to
unweighted statements would become more robust, and one might obtain
cleaner extraction lemmas in the style of BSG without auxiliary regularisa-
tion.

In all three directions, the guiding idea is the same: once the endpoint
space ℓ3/2,1 is accepted as the natural domain for tail-free control, the re-
maining difficulties are no longer about truncation bookkeeping but about
genuine combinatorial or geometric input. This is precisely the setting in
which one can hope for both conceptual clarity and quantitative improve-
ment.
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