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Abstract

The Freiman categories FRy and FRg introduced by Blanco-Haghverdi
provide a categorical home for finite additive sets and Freiman ho-
momorphisms; in FRg one has genuine limits and colimits, including
pushouts. The source paper initiates a quantitative study of these
(co)limits via the doubling constant but obtains only coarse cardinal-
ity bounds for pullbacks/quotients. We develop a quantitative “gluing
theory” for £k = 2: under a natural non-degeneracy hypothesis that
the interface C' is syndetic in each of A and B (bounded translate-
covering), we prove that the pushout P of A «— C' — B has doubling
constant bounded polynomially in the original doubling parameter.
Equivalently, bounded doubling is stable under categorical amalgama-
tion along a large structured interface. The proof combines the explicit
pushout model in FRY (as a quotient inside G @ H) with Ruzsa cov-
ering and Pliinnecke-type inequalities, and reduces the general case
to the subgroup case via passage to universal ambient groups. This
provides a reusable quantitative tool for assembling approximate ad-
ditive structure by categorical constructions, a prerequisite for functo-
rial/categorical formulations of Freiman-type structure theorems.
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1 Introduction and statement of results

A recurring operation in additive combinatorics is to “glue” two structured
finite sets along a common structured subconfiguration. In the most concrete
form one has finite sets A C G and B C H with small doubling, together
with a third set C' C L and Freiman maps i: C — A, j: C — B describing
an “interface” by which elements of A and B are to be identified. One would
like a canonical object P that represents the result of identifying i(c) € A
with j(c) € B for each ¢ € C, and to understand how additive parameters
of P (notably doubling) depend on those of A, B, C.
The appropriate universal construction is the pushout of the cospan

(A4,G) & (¢,L) L (B, H)

computed in the normalized Freiman category FRg. In this category, ob-
jects are finite normalized sets (containing 0) inside some ambient abelian
group, and morphisms are Freiman homomorphisms of order 2 preserving
0. The pushout P is characterized by the usual categorical property: it
comes equipped with morphisms A — P and B — P that agree on C' (via i
and j), and it is universal among such amalgamations. From the additive-
combinatorial point of view, the value of having P is that it is intrinsic: it
depends only on the Freiman-2 data and not on arbitrary choices of coordi-
nates or ambient groups. In particular, one can meaningfully ask whether
additive stability properties (e.g. polynomial bounds in the doubling con-
stant) are preserved under this gluing operation.

However, without a non-degeneracy hypothesis on the interface C, small
doubling is not stable under pushouts. The mechanism is transparent already
in the easiest case: if the interface is trivial, then the pushout essentially
forms a “wedge” of A and B inside a direct sum ambient group, and mixed
sums create a large Cartesian product. Concretely, when C' = {0} and the
maps are forced, the pushout set is

P=(Ax{0}))u({0} xB)CG®H.

Then
P+PD2O(Ax{0})+ ({0} x B)=AXx B,

and so |P + P| > |A||B| even when |A+ A| < |A| and |B+ B| < |B|. If A
and B are, say, long arithmetic progressions, then o(A) and o(B) are O(1)
while o(P) grows like min{|A|, |B|}. Thus, any general statement asserting
that o(P) is bounded solely in terms of o(A), o(B),o(C) is false.

This failure indicates that the interface must control the mixed sumset
contribution. In the wedge example, the mixed term (A x {0})+ ({0} x B) is
unconstrained and is responsible for the blow-up. Conceptually, to prevent
such behavior the set C' must be “large inside” both A and B, so that every



element of A (respectively B) can be reached from i(C') (respectively j(C))
by adding one of few possible offsets. We formalize this by assuming that
i(C) is syndetic in A and j(C) is syndetic in B, in the concrete covering
sense: A is contained in at most K translates of i(C), and likewise B is
contained in at most K translates of j(C). This assumption is checkable
and robust, and it is precisely what is needed to control mixed sums after
amalgamation.

Under this hypothesis, our main result is that pushouts preserve small
doubling up to a polynomial loss. More precisely, when A, B, and C' each
have doubling at most K, and when A and B are each covered by O(K)
translates of the corresponding copy of C, the pushout P has doubling at
most K€ for an absolute exponent ¢ > 0. In addition, the same exponent
controls the first nontrivial sum and difference sets of P: the quantities
|P + P| and |P — P| are bounded by K€¢|P|. These estimates express a
form of “polynomial stability under categorical amalgamation” that does not
appear in the classical sumset toolkit, because the pushout operation is not
visible at the level of ordinary subsets in a fixed ambient group.

The proof strategy is guided by an explicit model for the pushout. Writ-
ing A := A x {0} and B := {0} x B inside G & H, we form the subgroup

N :=((i(c),—j(c)): c€e C) < G® H

and the quotient map ¢: G ® H — (G @ H)/N. Then the pushout set may
be represented as o
P =q(AUB).

This model allows us to study P =+ P by splitting into three contributions:
g(A+A), qB+B), qA+B)

The first two terms inherit small doubling from A and B (since taking quo-
tients cannot create more additive relations among elements already in A or
B than those coming from NN, and the relevant images remain controlled by
|A+ A| and |B + B|). The central difficulty is the mixed term ¢(A) + ¢(B),
which, in the degenerate interface case, produces A x B.

Here the syndetic covering assumption becomes decisive. If A C X +i(C)
and B CY + j(C) for small sets X C G, Y C H, then after embedding into
G'® H and passing to the quotient one obtains translate-covering information
of the form

g(A) C g(X x{0}) +q(i(C),  a(B) € q({0} x V) +q(§(C)),

-~ ~

where q(z(/C\)) = q(]/(C\)) by construction of N. Thus both ¢(A) and ¢(B) lie

in few translates of a common “backbone” subset in the quotient. A direct

-~ ~

sumset calculation then shows that the mixed sum ¢(A) + ¢(B) lies in few

—_—

translates of ¢(i(C')) +¢(i(C)), giving a bound that is polynomial in K once



we know that q(z@) itself has small doubling in the quotient. In this way,
the mixed term is controlled by the same structural object along which we
glue.

The preceding outline is cleanest in the subgroup-interface regime, where
C is itself a subg@up and the maps ¢ and j are restrictions of homomor-
phisms; then ¢(i(C)) is a subgroup of the pushout ambient group, and the
pushout set becomes a union of few cosets of this subgroup. In that case
one can bound |P + P| in terms of the number of cosets involved by elemen-
tary considerations, and obtain explicit dependence on the translate-covering
numbers of A and B by the interface subgroup.

In the general Freiman setting, C' need not be a subgroup, and the maps
1, 7 need not extend to homomorphisms on the ambient groups. We address
this by replacing the given diagram in FRg by an equivalent diagram in
universal ambient groups. This replacement turns the Freiman-2 morphisms
into genuine homomorphisms at the level of ambient groups while preserving
the relevant sumset cardinalities at order 2. After this step, quotient argu-
ments and subgroup methods apply as if we were in the subgroup-interface
model case, at the cost of polynomial losses that are absorbed into K¢. We
then transfer the estimates back to the original pushout using the invariance
properties built into the universal ambient group construction.

The resulting theorem may be viewed as a categorical analogue of famil-
iar stability phenomena: small doubling is stable under taking images by
homomorphisms, under passing to large subsets, and under many forms of
controlled union. The pushout combines several such operations at once: it
is simultaneously a quotient in an ambient direct sum and a union of two
embedded pieces. The novelty is that the gluing relation introduces new ad-
ditive coincidences between A and B, and syndeticity is precisely what pre-
vents these new coincidences from generating an uncontrolled mixed sumset.

Finally, we note that the syndetic covering formulation is not merely
convenient but necessary at the level of hypotheses. Alternative “regularity”
conditions that quantify expansion of i(C) inside A can be vacuous in the
normalized setting, since 0 € i(C') implies X C i(C) + X for every X. The
translate-covering condition avoids this pitfall: it enforces that i(C') and j(C)
are large enough inside A and B to serve as genuine interfaces, and it excludes
precisely the degenerate pushouts that exhibit large mixed sumsets. With
this non-degeneracy in place, pushouts in FRY become a controlled operation
from the point of view of doubling, and one can treat them as a legitimate
tool for constructing new approximate additive objects from old ones.

2 Preliminaries

We fix some basic conventions and recall the universal constructions that will
be used throughout. All ambient groups are abelian and written additively.



For a finite nonempty set .S in an abelian group we write

S+S
a(9) ::| 5] |

for the doubling constant, and we adopt the normalization convention 0 € S
whenever S is an object of our category.

2.1 Freiman 2-maps and the category FR)

Let A C G and B C H be finite subsets of abelian groups with 0 €
A,B. Amap ¢ : A — B is a Freiman homomorphism of order 2 if for
all a1, a9,as,a4 € A with

a1+ a2 = a3+ aq

in GG, we have
¢(ar) + d(az) = ¢(az) + ¢(as)

in H. We say that ¢ is normalized if $(0) = 0. A Freiman 2-isomorphism is a
bijection ¢ : A — B such that both ¢ and ¢! are Freiman homomorphisms
of order 2. In particular, if ¢ is a Freiman 2-isomorphism, then it preserves
all additive relations of the form a; + as = a3z + a4 and hence preserves
cardinalities of sumsets and difference sets at “order 2” (e.g. | A+ A| = |B£B|
after identification).

The normalized Freiman category FRJ has as objects pairs (A, G) where
G is an abelian group and A C G is finite, nonempty, and contains 0. Mor-
phisms (A, G) — (B, H) are normalized Freiman homomorphisms of order 2,
i.e. maps ¢ : A — B with ¢(0) = 0 preserving all relations a; + a2 = asg+ay.
We will freely suppress the ambient group from notation when it is clear,
but it is useful to keep in mind that morphisms are not required to extend
to group homomorphisms between G and H.

For later use we record the elementary but crucial observation that
Freiman 2-maps preserve the structure of “two-term” sum/difference sets:
if ¢ : A — B is a Freiman 2-homomorphism, then ¢(a;) + ¢(a2) depends
only on a; + ag, and similarly ¢(a1) — ¢(a2) depends only on a; — ag. Thus
¢ induces well-defined maps on A + A and A — A, and consequently

[6(A) £ o(A)| < [A+ Al
When ¢ is injective, |¢(A)| = |A, so bounds on |A + A| transfer directly to
$(A).

2.2 Sumset notation

For finite subsets S, T of an abelian group we write

S+T:={s+t:seS, teT}, S—T:={s—t:seS, teT}.



For integers £, m > 0 we use the standard shorthand
(S —mS:={si+--+s—t1——tm: si,t; €5},

with 0S = {0}. In particular, 25 = S + S and 1S —15 = S - 5. We
emphasize that in this paper only the regimes ¢ + m < 2 are directly forced
by Freiman 2-information; higher iterated sumsets will only appear after we
pass to auxiliary ambient groups where genuine homomorphisms exist.

We will repeatedly use the monotonicity of sumsets under homomor-
phisms and quotients: if 7 : G — G’ is a group homomorphism and S,T C G
are finite, then

7(S)+m(T) =n(S+T), w(S)—n(T)==(S-T),

and therefore |7(S +7T)| < |S £ T|. In particular, taking quotients cannot
increase the cardinality of a sumset.

2.3 Explicit pushouts in FR)

We recall the concrete model for pushouts in FRY (Proposition 4.10 in the
source), specialized to the normalized situation. Suppose we are given a
cospan

(A,G) <& (C L)L (B H)

in FRY, where i and j are injective and preserve 0. We form the embedded
copies R R
A=Ax{0} CGaH, B:={0} xBCG®H,

and we consider the subgroup
N = {(i(c),—j(c)): ceC)< G H.

Let ¢g: G® H — (G @ H)/N be the quotient homomorphism. The pushout
ambient group is (G @ H)/N, and the pushout set can be taken to be

P:=q(AUB) C (G& H)/N.

The canonical morphisms A — P and B — P are the restrictions of ¢ to
A and B, respectively. The relation identifying i(c) € A with j(c) € B is
encoded by the fact that

q(i(c),0) = ¢(0,7(c)) for all c € C,

since (i(c),0) = (0,5(c)) = (i(c), —j(c)) € N.

For sumset estimates we will repeatedly use the trivial decomposition

P+PCqA+A) U q(A+B) U q(B+B),



and the corresponding cardinality bound
|P+ P| <|q(A+ A)| +|q(A + B)| + |q(B + B)|.

The terms q(A:I:A) and q(B:I:B) are immediate images of A+ A and B+ B,
and so are bounded by |A + A| and |B + B|. The mixed term g(A + B) is
the main new feature created by the pushout; controlling it is exactly where
non-degeneracy of the interface enters in the next section.

We also record the ide/nt\ity of the glued copy of C' in the quotient. Writing

i(C) == i(C) x {0} and j(C) := {0} x j(C), we have
q(i(C)) = q(3(C)),
and we will denote this common subset by

Q= q(i(C)) = q(4(C)) < (G® H)/N.

In particular, any translate-covering information for A by i(C) or for B by
j(C) descends to translate-covering information for q(A) and ¢(B ) by the
same set Q.

2.4 Ruzsa distance and covering tools

We will use standard consequences of small doubling in the form of Ruzsa-
type inequalities. For finite nonempty sets S, T in an abelian group, the
(logarithmic) Ruzsa distance is

S =T

d(S7T) =1 |S|1/2|T|1/2

It satisfies the triangle inequality
d(S,U) < d(S,T) + d(T,U),

which is equivalent to the Ruzsa triangle inequality

|S =TT —U|

1S -U| <
7]

In the special case S = T = U this yields no information, but in combination
with small doubling hypotheses it allows one to convert bounds on one sumset
into bounds on related sumsets.

We also recall the Ruzsa covering lemma in a form tailored to our later
applications. If A, B are finite nonempty subsets of an abelian group with

[A+ Bl < K[A],



then there exists a subset X C B with | X| < K such that
BCX+(A-A).

We will use this both in ambient groups and in quotient groups; the state-
ment is invariant under homomorphisms in the sense that if 7w is a homo-
morphism then |7(A) + 7(B)| < |A + B, so any covering obtained upstairs
yields a covering downstairs after applying .

Finally, we will use basic Pliinnecke-Ruzsa estimates to control low-order
iterated sumsets. For example, if |[A + A| < K|A|, then

A— A < KA
and more generally (by standard Pliinnecke inequalities)
WA —mA| < K™ A|

for fixed ¢, m when the ambient setting supports the usual combinatorial
graph argument. Since our primary setting is FRg, we will only invoke such
bounds either for £ + m < 2 directly, or after passing to auxiliary ambient
groups in which the relevant Freiman maps become genuine homomorphisms.
In particular, the reader may safely interpret any appearance of K9 ag
arising from repeated applications of these classical inequalities together with
the fact that quotient maps do not increase sumset cardinalities.

These preliminaries reduce most of our later work to two tasks: (i) ex-
pressing the pushout set P and its first sum /difference sets inside the quotient
(G@® H)/N, and (ii) converting structural hypotheses (translate coverings
and small doubling) into explicit bounds on the mixed sumset contribution.
The second task is where the non-degeneracy conditions on the interface will
enter.

3 Non-degeneracy hypotheses for the interface

The pushout construction necessarily creates a “mixed” contribution q(A+B)
to P+ P. Without further assumptions on how C sits inside A and B, this
mixed term can be as large as |A||B| (cf. Proposition D), and there is no
hope for a polynomial bound on o(P) in terms of o(A),o(B),o(C) alone.
We therefore impose a non-degeneracy hypothesis on the embeddings i, j
which formalizes the idea that C' is a large “backbone” inside each of A and
B. In this paper we adopt a translate-covering (syndeticity) condition, which
is simple to verify and behaves well under quotients, and we briefly compare
it with other possible regularity notions.



3.1 Translate coverings and syndetic embeddings

Let S, T be finite subsets of an abelian group G with 0 € T. We define the
translate-covering number of S by T to be

&(S;T) == min{|X|: XCG, SCX+T}.

Thus x(S;T) < M means that S is covered by at most M translates of
T. When T = i(C) (or T' = j(C)) we interpret this as a quantitative non-
degeneracy of the embedding.

Definition 3.1 (Syndetic embedding). An injective normalized Freiman 2-
map i : (C,L) — (A, G) is K-syndetic if k(A;i(C)) < K, i.e. if there exists
X C G with |X| < K such that A C X +¢(C). Similarly j is K-syndetic if
k(B;j(C)) < K.
We emphasize two basic features of this condition.

(i) It prevents collapse to the coproduct regime. If C' = {0} then i(C) = {0}
and k(A;i(C)) = |A|, so K-syndeticity forces |A| < K; in particular it rules
out precisely the degenerate gluing in which the mixed sumset dominates.

(i1) 1t is stable under the operations used in the pushout argument. If A C
X +i(C) then automatically

AC (X x{oh+i(C)CGaH,

and applying the quotient map ¢: G ® H — (G @ H)/N yields the covering

-~

q(A) € ¢(X x {0}) + @,

where @ = ¢q(i(C)) = q(m) This is exactly the form needed to control
q(ﬁ + E) by Lemma 3. In particular, the non-degeneracy hypothesis is
designed to descend cleanly to the quotient group where P lives.

We record a few immediate consequences which will be used implicitly.

If AC X +4(C) with | X| < K, then
Al < [X]-[i(O)] < K|C]. (1)
Moreover, for any choice of signs one has the crude containment
A+ A C (X +X)+ (i(0)£i(0)), (2)
and hence
A+ Al < | X£X]| ]i(C)£i(C)].

Since | X + X| < |X|? < K? and |i(C) +£i(C)| < |C £ C|, the small-doubling
hypothesis on C' yields bounds of the form |A + A] < KOW|C|, consistent
with 0(A) < K. These estimates are not sharp and are not used as input;
they simply illustrate that syndeticity ties the sizes of A and C' together and
prevents extremely sparse embeddings.

10



3.2 Equivalent viewpoints and quick tests

The definition x(A4;i(C)) < K is the most direct and is the one we assume.
Nevertheless, it is useful to keep in mind several equivalent or near-equivalent
formulations.

(1) Coset-index intuition in the subgroup case. Ifi(C) < G happens
to be a subgroup and A is a union of M cosets of i(C), then x(A;i(C)) = M.
Thus in the subgroup-interface model case, K-syndeticity simply means that
A meets only Ok (1) cosets of the glued subgroup. This is the regime treated
explicitly in the next section, where one can replace translate coverings by
genuine quotient considerations.

(2) A partial converse: large intersections with some translate. If
A C X 4 i(C) with | X| = M, then by pigeonhole there exists x € X with
4]

AN (@ +i(0)] = T

Thus syndeticity implies that A has a translate of i(C') capturing a positive
proportion (> 1/K) of its elements. This is a convenient quick sanity check
in examples: if every translate of i(C) intersects A in o(|A|) points, then
k(A;i(C)) must be large.

(3) Relative growth tests. A commonly occurring regularity condition
in additive combinatorics is that a pair (A, T') has small sumset, e.g. |[A+T| <
MI|A| or |A+T| < M|T|. Such conditions do not literally imply A C X +T,
but they often lead to coverings after passing to difference sets. For instance,
if |A+1i(C)| < M|i(C)|, then by the Ruzsa covering lemma there exists
X C A with | X| < M such that

A C X+ (i(C)—i(C)).

If ¢(C) is a subgroup then i(C) — i(C) = i(C) and this recovers syndeticity.
In general i(C) —i(C') may be larger than i(C), but under o(C) < K we still
have |i(C) —i(C)| < KOW|C|, so coverings by i(C) — i(C) can sometimes
be upgraded to workable bounds in the quotient. We do not pursue this
systematically here, preferring the simpler direct hypothesis A C X + i(C),
but it is worth noting that syndeticity can often be verified by establishing
a suitable small relative growth estimate.

(4) A quotient-size heuristic. Even outside the subgroup case, one may
think of k(A;i(C)) as a proxy for the size of a quotient A/i(C): a small
covering number means that the “transversal complexity” of A mod the i(C)-
direction is bounded. This is precisely the information required to control
mixed sums in the pushout, since mixed sums are sensitive to how many
different translates of the glued piece are present in A and B.

11



3.3 Comparison with alternative regularity notions

We briefly discuss other possible non-degeneracy assumptions and explain
why we choose syndeticity.

Density assumptions. One might require that i(C') has positive density
inside A, e.g. |i(C)| > 0| A| for some 6 = §(K) > 0. This is weaker than syn-
deticity: a dense subset need not cover A by few translates. In particular,
density does not prevent A from splitting into many far-separated trans-
lates of i(C'), which is exactly what feeds the mixed term in the pushout.
Moreover, density is not stable under Freiman isomorphisms in any useful
quantitative sense, whereas translate coverings are.

Energy assumptions. Another option is to assume large additive energy
between A and i(C'), for example

E(A,i(0)) == [{(a1,az,c1,¢2) € A*XC?: ar+i(er) = asti(co)}| > %]A|2]C|
for some M = KOM) . Such a hypothesis does encode that A correlates
additively with i(C'), and by Balog-Szemerédi—-Gowers type arguments it
can yield structured subsets and translate-coverings. However, invoking BSG
introduces additional layers (passing to large subsets, losing parameters, and
tracking the interaction with the pushout quotient). Since our aim is a robust
polynomial bound under transparent hypotheses, we avoid an energy-based
formulation.

Small relative growth and “regularity” in the original formulation.
One may attempt to impose conditions of the form |i(C)+X| > | X|/K for all
X C A, meant to prevent collapse. In our normalized setting this condition
is vacuous: since 0 € i(C'), we always have X C i(C') + X and hence |i(C) +
X| > |X|. More generally, any regularity notion must genuinely constrain
how many i(C)-translates are needed to cover A, not merely prevent i(C')
from shrinking sets.

Why syndeticity is the right hypothesis for pushouts. The pushout
glues i(c) and j(c) and then allows sums across the two sides. The resulting
mixed term is controlled precisely by knowing that each side lies in few
translates of the glued subset @) after passing to the quotient. Syndeticity is
exactly the minimal hypothesis that provides this control with no additional
machinery: it is checkable on the nose in the original ambient groups and
descends immediately to the quotient where the pushout is computed.
Having fixed syndeticity as our non-degeneracy condition, we now turn to
the most rigid setting, namely the subgroup-interface model case, where C'is

12



a subgroup and i, j arise from homomorphisms. In that regime the translate-
covering numbers become literal coset counts, and one can compute the
pushout inside the ambient quotient group (G @ H)/N with explicit bounds.

4 The subgroup-interface model case

We now isolate the most rigid regime, in which the interface is an actual
subgroup and the Freiman data comes from honest homomorphisms. In
this case the pushout ambient group is the usual abelian pushout, and the
pushout set can be controlled by elementary coset combinatorics.

4.1 Standing hypotheses in the model case

Assume that C < L is a subgroup, and that i, j are restrictions of injective
group homomorphisms on C. In particular i(C) < G and j(C) < H are
subgroups, and the subgroup

N = {(i(c),—j(c): ceC) < GoH

is exactly the image of C' under the homomorphism ¢ — (i(c), —j(c)). We
continue to write ¢ : G® H — (G @ H)/N for the quotient map and

P := q(AUB), A= Ax{0}, B={0}x B,

for a concrete model of the pushout set.
A key simplification in this regime is that the quotient does not “collapse”
either side internally.

Lemma 4.1 (No internal collapse on each side). In the subgroup-interface
case one has

NN(Gx{0}) ={(0,0)},  NN{0}xH)={(0,0)}.

Consequently, g is injective on G x {0} and on {0} x H, and in particular
on A and on B.

Proof. Suppose (z,0) € N. Then (z,0) = > (i(er), —j(er)) = (i(c), —j(c))
where ¢ := ) ¢, € C. The second coordinate gives j(c) = 0, hence ¢ = 0 by
injectivity of j|¢, and therefore z = i(0) = 0. The argument for (0,y) € N
is identical. ]

One immediate consequence is that sumsets on each side pass through
the quotient without distortion:

A+ A)| = |A+A] = [A£4], |¢(B£B)| = [B£B. (3

Thus the only genuinely new term in P &£ P is the mixed contribution q(le\ +
B), as anticipated.

13



4.2 The glued subgroup and a size formula for P

Let . o
Q = qi(C) = q(i(C)).
In this subgroup-interface case, @ is a subgroup of (G® H)/N, and |Q| = |C|
by Lemma (since g is injective on z@) C G x{0}).
Moreover, the intersection g(A) N ¢(B) is exactly Q.

Lemma 4.2 (Intersection is the glued part). One has q(g) N q(ﬁ) =Q. In
particular,

1P| = [a(A) Ua(B

B)| = |4]+|B| - C|.
Proof. The inclusion Q C ¢(A) Ng(B) is clear from 2(C) C Aand j(C) C B.
q(0,
)

Conversely, suppose ¢(a,0) = b) with @ € A and b € B. Then
(a,—b) € N, so (a,—b) = (i(c),—j(c)) for some ¢ € C. Hence a = i(c) and
b = j(c), so the common value is ¢(i(c),0) € Q.

The cardinality identity follows from Lemma which implies |q(A)| =
[A] and g(B)| = | B, together with |g(4) N g(B)] = |Q| = |C|. .

While we will not rely heavily on the explicit formula |P| = |A|+|B|—|C],
it is useful as a sanity check: in the subgroup case, the pushout set has the
“expected” size, and the quotient map does not introduce large identifications
beyond the intended gluing along C'.

4.3 Syndeticity becomes a coset-count, and P is a union of
few cosets

Because i(C) < G is a subgroup, a translate covering A C X +i(C) may be
interpreted as saying that A lies in the union of | X| cosets of i(C). Let

My = /i(sz(C)% Mp = /i(Baj(C))v
and fix witnesses X C G, Y C H with |X| = My, |Y| = Mp such that
AC X +i(C), BCY +j(0).

Pushing this information into the quotient gives a particularly transparent
description of P.

—

Lemma 4.3 (Coset description in the pushout quotient). With Q = q(i(C)),
one has

g(A) Ca(X x {0} +Q,  q(B) Cq({0} xY) +Q,
and hence

P C T+Q, T = q(X x{0}) U ¢({0} xY),
with |T| < Ma + Mg.
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Proof. 1If a € A then a = z + i(c) for some x € X and ¢ € C. Hence

q(a,0) = q(z+i(c),0) = q(z,0) +4q(i(c),0) € ¢(X x{0})+Q.

~

The argument for ¢(B) is the same. The final claim follows by taking unions.
O

Thus, in the subgroup-interface case, P is contained in the union of
at most M4 + Mp cosets of the subgroup ). Since @ is a subgroup, it
has doubling constant 1, and coset combinatorics immediately control the
doubling of any set contained in few cosets of Q.

4.4 Doubling bounds for P in the subgroup-interface case

We now give an explicit estimate for o(P) in terms of the translate-covering
numbers, thereby proving the model-case bound advertised earlier.

Proposition 4.4 (Subgroup-interface pushouts are stable). Assume the
subgroup-interface hypotheses. Let M = k(A;i(C)) and Mp = k(B;j(C)).
Then

[P+ P| < (Ma+ Mp)*|Q < (Ma+ Mp)*|P|,

and similarly

|P—P| < (Ma+ Mgp)*|Q| < (Ma+ Mg)*|P|
In particular,
P+ P
o(P) = | P | < (My+ Mgp)2.

Under the standing K -syndeticity hypothesis (so Ma, Mp < K ) this yields
o(P) < (2K)2.

Proof. By Lemma [4.3) we have P C T+ Q with |T'| < M4 + Mp. Since Q is
a subgroup, (T'+ Q)+ (T + Q) = (T + T) + @, whence

P+P C (T+Q)+(T+Q) = (T+T)+Q.
Therefore

P+P| < |[(T+T)+Q| < |T+T|-1Q] < ITPIQ| < (Ma+Mgp)*|Q|.

— ~

Because @ C P (indeed @ C ¢q(i(C)) C q(A) C P), we have |Q| < |P|, giving
the stated bound in terms of |P|. The estimate for P — P is identical, using
P-PC(T-T)+Qand |T-T|<|T] O
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Several remarks are in order.

First, the argument uses only the covering information and the fact
that @ is a subgroup; it does not require the small-doubling hypotheses on
A, B,C. This reflects the fact that in the subgroup case the dominant ob-
struction to small doubling of P is transversal complexity (how many cosets
occur), not internal additive structure within each coset.

Second, Lemma and Lemma [4.2] highlight why this model case is
substantially cleaner than the general Freiman setting: there is no collapse
of A or B in the quotient, so the only nontrivial bookkeeping concerns the
mixed term, which is handled by the coset-covering description.

Finally, the coset computation abO\Le\is the template for the general case.
Outside the subgroup regime, @ = ¢(i(C)) need not be a subgroup and the
quotient map ¢ may identify many points even within A or B. In the next
stage of the argument we will therefore develop quotient-stability tools that
bound |¢(S + T')| and control the size of fibers of ¢ using syndeticity and
small doubling.

5 Quotient stability lemmas

We now return to the general Freiman setting, where C' need not be a sub-
group and 7,7 need not extend to homomorphisms on the ambient groups.
The quotient homomorphism

g:GoH— (G H)/N

is always a genuine group homomorphism, but unlike the subgroup-interface
model case it may have large fibers on AorB. In particular, even if |A+ A| is
small, the image ¢(A) may be much smaller than A, and we must understand
how such “collapse” can and cannot occur under our syndeticity and small-
doubling hypotheses.

The guiding principle is that the only identifications we can afford are

those controlled by the glued part q(z@)) = q(@) We therefore isolate
several elementary lemmas that bound sizes of quotient-images by track-
ing fiber multiplicities, and we formulate a bounded-collapse criterion under
which the desired polynomial doubling estimates follow formally.

5.1 Fibers of a quotient map

Let I be an abelian group, let N < T be a subgroup, and let ¢ : I' — I'/N
be the quotient map. For a finite set S C I" we define the (maximal) fiber
multiplicity

S) = Sng 'yl = SN (z+N).
Hg(S) = max |SN(y)] = max]90 (z+ N

16



Then trivially
5]

fiq (S

The following simple observation relates p,(.S) to the intersection of N with
the difference set S — S.

lg(S)] = - (4)

~—

Lemma 5.1 (A fiber sits in a translate of (S —S)NN). Let S C T be finite.
Then
4e(8) < [(S—8) NN

Proof. Fix a coset 4+ N, and let F' := SN(x+ N). If F' = () there is nothing
to prove. Otherwise choose sy € F. For any s € F we have s — sg € N
(since s,890 € x + N) and also s —sp € S — S. Thus the map s — s — sg
sends F' injectively into (S —S)NN. Hence |F| < [(S —S)N N|. Taking the
maximum over cosets gives the claim. O

In our application I' = G @ H, and S will be one of E,E,i(fC\),@
or a sumset built from them. Lemma [5.1| provides a convenient, purely
set-theoretic way to measure collapse: large fibers force many differences of
elements of S to lie in V.

5.2 Propagation of multiplicity through translate coverings

The syndeticity hypothesis gives translate coverings A C X +i(C) and B C
Y +j(C) with | X|,|Y| < K. We will repeatedly use the fact that bounded
multiplicity on the backbone i(C') propagates to bounded multiplicity on all
of A.

Lemma 5.2 (Multiplicity under a translate cover). Let S, R,U C T be finite,
and suppose S C U + R. Then

,Uq(S> < |U’Nq(R)~

Proof. Fix a coset x + N. Then

SN(z+N) C (U+R)N(z+N) = U((u+R)ﬂ(a:+N)).
uelU

For each fixed u, we have (u+ R) N (z + N) = u+ (RN ((z — u) + N)),
whose cardinality is at most p,(R) by definition. Therefore |S N (z + N)| <
|U| pq(R). Taking the maximum over z yields the claim. O

Specializing to our situation (with I' = G & H), we will apply this to
S=AR= i(C), and U = X x {0}, and similarly on the B-side. Thus, any
quantitative control on 14(i(C)) immediately yields quantitative control on

~

q(A), and likewise for B.
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5.3 A bounded-collapse hypothesis and its consequences

We record a convenient hypothesis that isolates precisely what we will need
from the quotient map gq.

Definition 5.3 (Bounded collapse along the interface). Let

—

Q = q(i(C) = q(§(C)) C (G & H)/N.

We say that the interface collapses by at most M if

— —

wG(C) < M and  p,(G(C) < M.

In the subgroup-interface model case, Lemma [£.1] gives M = 1. In gen-
eral, M need not be 1, but the point of the next lemma is that once M is
known to be KM the desired polynomial bounds for P + P follow by a
formal computation.

Lemma 5.4 (Size and doubling of the glued part under bounded collapse).

—

Assume pg(i(C)) < M. Then

Cl

Q] > R Q+Q| < |C+C| < K|C| and hence o(Q) < KM.

The same conclusions hold with i replaced by j.

— —_

Proof. Since |i(C)| = |C| and ¢(i(C)) = Q, (4) gives |Q[ > [C|/M.

_ Moreover @ + @ = ¢(i(C)) + ¢q(i(C)) = q(i(C) +i(C)), s0 |[Q + Q| <
[i(C) +i(C)| = [i(C) +i(C)|. Because ¢ is a Freiman-2 homomorphism
and injective on C, we have |i(C) +i(C)| < |C + C| < K|C|. Dividing by
Q| > |C|/M yields 0(Q) < KM. O

Next we relate |P| to |A| and |B| under the same bounded-collapse hy-
pothesis.

-~

Lemma 5.5 (Lower bounds for |¢(4)| and |¢(B)|). Assume A C X +i(C)
and B C'Y + j(C) with | X|,|Y| < K, and assume pq(i(C)) < M and
#a(G(O)) < M. Then

4] 5 o 1B

W@ > S B >

. ‘ Al B
d ticul Pl > { }
and in particular |P| > max M KM

Proof. We view A C (X x {0}) + z@) By Lemma we have ,uq(g) <

—

|X| 11q(i(C)) < KM. Applying (@) gives |q(A)| > |A]/(KM) = |A|/(KM).

~

The argument for ¢(B) is identical. Finally P = ¢(A U B) contains both

-~

q(A) and ¢(B), giving the stated lower bound for |P|. O

18



We now combine these ingredients to obtain quotient-stable bounds for
P + P. The proof is the same decomposition as in the subgroup-interface
case, except that we keep track of multiplicities via Lemmas and

Proposition 5.6 (Doubling of the pushout under bounded collapse). As-
sume the standing hypotheses (small doubling for A, B,C and K -syndeticity
of i,7), and assume in addition that the interface collapses by at most M in
the sense of Definition|5.5. Then

|P+ P| < KO(l) MO(l) ‘p’ and |P _ P‘ < KO(l) MO(l) ’P’
In particular o(P) < KOMW oW,

Proof. Write Q = q(z(C\')) = q(@) By syndeticity and the quotient-
covering observation (Lemma 2 in the global list), we may choose Ua,Up C
(G® H)/N with |Ua|, |Ug| < K such that

-~

g(A) CUA+Q, qB)CUs+Q.

For the mixed term we then have

¢(A) +q(B) € (Ua+Us)+(Q+Q),
SO R R
la(A) +a(B)| < [Ua+UsllQ+Q| < K*|Q+Q|. (5)
By Lemma 5.4 |Q + Q| < KM |Q| < KM |P|, since Q C P. Substituting
into () gives R ~
la(A) +¢(B)| < K°M|P)|.

For the pure terms we use only small doubling of A and B, together with

the lower bound |P| > |A|/(KM) from Lemma Indeed,

lg(A+A)| < JA+4] = [A+4] < Kl4] < KM |P),
and similarly |¢(B + B)| < K2M |P|. Since
P+P C q(A+A) U q(A+B) U ¢(B+ B),

we obtain |P + P| < KW M |P|, which is of the asserted form.

The bound for P — P is identical: we replace + by — throughout, use
|A — Al < KOW|A| and |B — B| < K°M|B| (a standard consequence of
0(A),0(B) < K), and use Lemma to bound |Q — Q| <x |Q + Q| <
KM|Q| < KM|P). O

Proposition [5.6| reduces the main problem to establishing a polynomial
bound M < KOO for the interface collapse. In the subgroup-interface model
case we have M = 1 by direct inspection of the kernel on each side, whereas
in the general Freiman setting we do not have such rigidity in the given
ambient groups. The next step is therefore to replace the entire cospan by
a Freiman-isomorphic diagram in universal ambient groups, where the maps
extend to honest homomorphisms and the quotient behaves as in the model
case. We carry this out in the next section.
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6 Reduction to the subgroup case via universal am-
bient groups

In the preceding section we isolated a purely “quotient-stability” obstruction
to bounding the doubling of the pushout: one needs polynomial control
on the fiber multiplicities of the quotient map on the glued backbone. In
the subgroup-interface model case this control is automatic (indeed p, =
1 on each side), but in the general Freiman setting the maps i, j are not
assumed to extend to homomorphisms on the given ambient groups, and the
corresponding quotient may collapse large portions of Aor B.

We now explain how to remove this difficulty by replacing the entire
cospan by a Freiman-isomorphic cospan in universal ambient groups, in
which the maps do extend to honest homomorphisms. The key point is that
pushouts in FRY are invariant under such replacements (up to Freiman iso-
morphism), and the sum/difference-set cardinalities [{P—mP| with {+m < 2
are preserved. Consequently, any doubling estimate proved in the universal
model transfers back to the original pushout.

6.1 Universal ambient groups as a diagram-level replacement

For each normalized additive set (S,T') in FRY there is a universal ambient
group U(S) and an embedding

ng:S‘—)U(S)

such that ng is a Freiman-2 isomorphism onto its image and U(S) is gener-
ated by 7g(S). The universal property we use is the following: if ® : S — A
is any Freiman-2 homomorphism into an abelian group A with ®(0) = 0,
then there exists a unigue group homomorphism ®:U (S) — A such that
do ng = ®. In particular, any morphism f : (S,T) — (T, A) in FRY induces
a group homomorphism

U(f):US)—U(T) with U(f)ons =nrof.

Applying this construction objectwise to our cospan (A, G) & (C,L) EN
(B, H) gives a new cospan

(A, U(4)) < (C',U(C) 2 (B, U(B),
where A’ :=n4(A), B' :=np(B), C' :=nc(C), and
i =naociongt O — A, i i=npojon;t:C'— B.

By construction, 14, np,nc are Freiman-2 isomorphisms of normalized sets,
so the new cospan is isomorphic to the original cospan in FRY.
Two basic features are immediate and will be used implicitly:
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e Small doubling is preserved: since Freiman-2 isomorphisms preserve

the size of S+.5, we have 0(A’) = 0(A), o(B') = o(B), o(C") = o(C).
e Syndeticity is preserved: if A C X +i(C) with | X| < K, then
A" =na(A) Cna(X) +(C)
and |na(X)| = |X| < K. Similarly B’ is covered by < K translates of
J(C").
Thus all standing hypotheses remain true after replacement. The ad-

vantage of this replacement is that the maps 4/, j’ now arise from group
homomorphisms on the ambient groups:

UG):U(C) = U((A), U@j):U(C)—U(B),

whose restrictions to C’ coincide with ¢, j’ respectively.

6.2 Pushouts commute with Freiman-isomorphic replacement

Let P be the pushout of the original cospan and let P’ be the pushout of
the replaced cospan. We claim that P and P’ are Freiman-2 isomorphic in
a manner compatible with the structure maps from A, B and from A’, B’.
Concretely, the pushout is characterized by its universal property in FRY, and
Freiman isomorphisms are isomorphisms in this category; therefore pushouts
are invariant under replacing a diagram by an isomorphic diagram.

More explicitly, denote the embeddings in the original pushout by

a:A— P, B8:B— P,
and similarly for the replaced pushout
o A= P, g B — P.
Since ng : A - A, np : B = B, n¢ : C — (' form an isomorphism
of cospans in FRg, the universal property of the pushout yields a unique
morphism
©O:P— P

such that @ oa = a’ong and O o § = ' onp. Applying the same argument
to the inverse cospan isomorphism gives a morphism ¥ : P’ — P, and
uniqueness forces Wo® = idp and ©® oV = idp,. Hence O is an isomorphism

in FRY, i.e. a Freiman-2 isomorphism of normalized sets.
In particular, for £ + m < 2 we have cardinality preservation

P —mP| = (P —mP|,

since Freiman-2 isomorphisms preserve all additive relations of length at most
2 and therefore preserve the size of each set £S — mS with £ +m < 2. This
is the precise sense in which colimits (here, pushouts) “respect” universal
ambient group replacement for the purposes of doubling estimates.
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6.3 The quotient model in universal ambient groups and the
subgroup-interface behavior

To connect with the quotient-stability framework, we recall the concrete
model for the pushout. In the replaced diagram, consider the abelian group

I := U(A) @ U(B),
the subsets A’ 1= A’ x {0}, B = {0} x B’, and the subgroup
N = <(U(i)(u), —U()(u) : ue U(C)> < T

Let ¢ : TV — I'/N’ be the quotient homomorphism. As in the general
construction of pushouts in FRg, we may take the underlying subset of P’
to be P
P = JAuB).
The crucial point is that, unlike the original ambient groups, the gluing data
now comes from homomorphisms. This forces the interface to behave as in
the subgroup case with respect to collapse.
To make this precise, define the glued subset
Q" = ¢@#(C) = J(/(C") CT'/N".
We will use the following ‘no-collapse along the interface” observation.

Lemma 6.1 (No collapse on the interface in the universal model). In the
universal ambient group replacement, the quotient map ¢’ is injective on
i'(C") and on j'(C"). Equivalently,

pe (i'(C1)) = pg(3'(C7)) = 1.

Proof. We treat i/(C”); the argument for j/(C") is identical. Suppose
q/(i/(cl), 0) = q/(i/(CQ), 0) (Cl, Ccy € C,)

Then (i’(cl - 62),0) € N'. By definition of N’; there exist u; € U(C) and
integers n; such that

(i'(c1=¢2),0) = > me (U ), ~UG) ) = (U meur). ~UG) (D mew)).

t

Comparing second coordinates gives U(j)(u) = 0, where u := >, nyu; €
U(C). Hence also U(i)(u) = i'(c; — ¢2). Since U(C) is generated by C’
and U(j) extends the injective Freiman map j' on C’, the only element of
U(C) mapped to 0 by U(j) is w = 0 (this is the standard faithfulness of
the universal ambient group construction on injective morphisms in FRY).
Therefore u = 0, so i'(¢; — ¢2) = U(i)(u) = 0. Fina/lly\,i’ is injective on C’

and 0 € (', so ¢1 = ¢g, proving injectivity of ¢’ on i/(C"). O
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Lemma [6.1] exactly places us back in the bounded-collapse regime with
M =1 (Definition , applied to the replaced diagram). Combining this
with the preservation of all hypotheses under replacement and the pushout
invariance discussed above, we may henceforth argue in the universal model
whenever we need a subgroup-interface type statement about the quotient.
In particular, any doubling bound for P’ obtained by treating the interface
as non-collapsing transfers immediately to the original pushout P via the
Freiman-2 isomorphism © : P — P’.

The remaining task is therefore purely organizational: we apply the
quotient-stability machinery to P’, obtain polynomial bounds for |P’ + P’|
in terms of K, and transport them back to P. This assembly is carried out
in the next section.

7 Proof of the main theorem in the general inter-
face case

We now assemble the reductions and estimates from the previous sections
to complete the proof for an arbitrary normalized interface C, assuming
only that o(A),0(B),0(C) < K and that 7,5 are K-syndetic embeddings.
The only remaining issue after the quotient-stability discussion is that, in
the original ambient groups G, H, L, the Freiman maps ¢, j need not extend
to homomorphisms, so the quotient model of the pushout may exhibit un-
controlled collapse. The universal ambient group replacement removes this
obstruction and reduces us to an essentially subgroup-interface behavior on
the glued backbone.

7.1 Reduction to the universal model

Let
(A4, U(A)) & (' u©e) L (B, UB))

be the universal ambient group replacement of our cospan, with pushout P’,
as constructed previously. We retain the notation

I":=U(A) @ U(B), N’ := ((U(i)(u), =U(j)(w)) : w € U(C)),

and let ¢’ : TV — IY/N’ be the quotient map. As before, we realize the
underlying set of the pushout as

P = J@AUB), A=A x{0}, B :={0} x B

By pushout invariance under Freiman-isomorphic replacement, there is
a Freiman-2 isomorphism © : P — P’ compatible with the structure maps
from A, B. Consequently, for £ + m < 2 we have

P —mP| = [(P" —mP'|. (6)
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In particular, any bound of the form [(P' — mP'| < KOW|P'| transfers
immediately to P, since also |P| = |P'| (take (¢,m) = (1,0) in (6)). Thus it
suffices to prove the desired polynomial estimates for P’.

7.2 A common backbone in the quotient and translate cov-
erings

Define the glued backbone in the quotient by
Q" = ¢@(C)) = ¢(5'(C)) € IT'/N".

By the no-collapse lemma in the universal model, the restriction of ¢ to
i'(C") (and to j/(C")) is injective. Hence ¢’ o’ : C! — @’ is a bijection of
normalized sets. Moreover, since 7’ is a Freiman-2 homomorphism and q is a
group homomorphism, the composition ¢’ o4’ is a Freiman-2 homomorphism;
bijectivity then implies that it is a Freiman-2 isomorphism. Therefore the
order-2 additive statistics of Q" agree with those of C’, and in particular

o(@Q) = o(C") = o(C) < K, Q' +Q'| = |C'+C'| < K|C'| = K|Q'|.
(7)
Next we exploit syndeticity. Choose X C G with |X| < K such that
A C X +4(C), and transport it to U(A) via the Freiman embedding 74,
obtaining X’ :=na(X) CU(A) with |X'| = |X| < K and

A C X +(C).

Passing to the quotient and using that ¢’ is a homomorphism, we obtain the
translate covering

¢(A) C (X' x{0})+d@(C) = Un+Q,

where we set Uy := ¢/(X’ x {0}) and note |Us| < |X’| < K. Similarly, from
B CY +j(C) with |Y| < K, we get
((B) C Up+Q
with |[Ug| < K. Since P’ = q’(ﬁ\’ U @), we conclude that
P C (UsUUp)+ Q. (8)

Let T := Ua U Ug; then |T| < 2K and (8) reads P' C T + Q.
Two immediate size comparisons will be used repeatedly. First, Q" C P’
since ' (C") C A’ and hence /(C") C A’, giving

Q' < |P]. 9)
Second, implies the crude upper bound
P < IT+Q < |IT1Q'| < 2KIQ|- (10)

Combining (9) and (10)), we have |P'| <k || with explicit losses bounded
by 2K.
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7.3 Uniform control of /P — mP’ for { +m < 2

From the translate covering P’ C T + @’ and the elementary containment
T+ (T+Q) € (T+T)+(Q £Q),
we obtain
PP+P C (T+T)+(Q +£Q"). (11)
Taking cardinalities and using the trivial bound | X + Y| < | X||Y| for finite
sets in an abelian group gives

[PPEP| < ITHT]Q +Q| < ITP|Q Q| < 2K)*|Q"+Q'|. (12)

Now apply (7)) to bound |Q’ +£Q'| < K|Q'|, and then (9) (or if we prefer
to eliminate |Q'| in favor of |P’|). We get

|P'+ P| < 4K?* - K|Q'| < 4K3|P|. (13)

This proves the desired polynomial bound for both P'+ P’ and P'— P’. More
generally, for any (¢,m) € {(2,0),(1,1),(0,2)} we have the same argument
with Q' &= Q' and T & T, yielding

[P —mP'| < 4K*|P'|. (14)

In particular,
B |Pl + Pl‘

o(P) = < 4K3,

L

so the pushout has polynomially bounded doubling in the universal model.

7.4 Transfer back to the original pushout

Finally, we return to the original pushout P. By @ and , for each
(¢,m) € {(2,0),(1,1),(0,2)} we have

0P —mP| = [(P' —mP'| < 4K3|P'| = 4K3|P)|.

In particular, o(P) < 4K3, which establishes the main theorem (with an
explicit exponent in this presentation) and the uniform bounds for P + P
and P — P. Since all steps were stable under the finitely generated/torsion
reductions already absorbed into the universal ambient group framework, no
further case distinctions are required here.

8 Examples and near-sharpness

We record three families of examples illustrating (a) the stability predicted
by the theorem when the interface is genuinely large, (b) the necessity of
a non-degeneracy hypothesis such as syndeticity, and (c) the role of torsion
and what dependence on parameters one should (and should not) expect.
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8.1 Gluing progressions along a long progression

We begin with a torsion-free model in which all objects live in Z. Fix integers
Na,Np > M > 2 and consider

A={0,1,....Ns—1}CZ,  B={0,1,...,Ng—-1}CZ,  C={0,1,.

with , 7 the inclusions. Then o(A),o(B),o(C) < 2. Moreover A is covered
by [Na/M] translates of C, and similarly for B; thus the hypothesis of K-
syndeticity holds with K < max{[Na/M],[Ng/M1}. When M is a fixed
proportion of both N4 and Np, we have K = O(1).

To compute the pushout explicitly, set G = H = L = Z. The sub-
group N < Z @& Z is generated by (¢, —c) for ¢ € C; since 1 € C, we have
N = ((1,-1)), the diagonal copy of Z. Hence (Z & Z)/N = Z via the
homomorphism

O LHL— 7, o(x,y) =z +vy,

which has kernel N. Under this identification,
g(A) = p(Ax{0}) =4,  ¢(B)=9¢({0} x B) = B,
and the glued subset q(z(/C\')) is just C'. Therefore the pushout set is
P=q(AUB)=AUB={0,1,...,max{Na, Ng} — 1},

an interval. In particular o(P) < 2, and likewise |P — P| < 2|P|. This is the
simplest manifestation of the general theorem: once the interface contains a
genuine generator, the quotient forces the two axes to cohere into a single
one-dimensional object.

A slightly less tautological variant, still in Z, is obtained by taking i to be
inclusion and j to be the dilation j(c¢) = dc for some integer d > 2, which is a
Freiman-2 homomorphism on C and preserves 0. We then require B D dC =
{0,d,2d,...,(M — 1)d}; for instance we may take B = {0,1,..., Np — 1}
with Ngp > d(M — 1) + 1. The subgroup N is generated by (1,—d), so
(Za®Z)/N = Z via

(bd(x?y) =dz +y,

which is invariant under (z,y) — (z +t,y — dt). Then
q(A) =dA=1{0,d,2d,...,d(Ny — 1)},  ¢(B) =B,

so P =dAUB C Z. In particular P is the union of one interval and one
d-spaced progression. One checks directly that P + P C [0,2Np — 2] U
d[0,2N4 — 2] U ([0, Ng — 1] 4+ d[0, N4 — 1]), and hence |P + P| = O(|P|)
with an absolute constant as soon as Np is comparable to dN4 (which is
precisely the regime where the covering numbers of A by C' and of B by dC
are bounded). This illustrates that the quotient model can convert a two-
axis union into a one-dimensional set even when the two axes have different
scales, provided the common backbone is sufficiently large.
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8.2 Failure without syndeticity: the coproduct-like pushout
along {0}

We next isolate the basic obstruction. Let C' = {0} and let 7, j be the unique
O-preserving maps. The subgroup N generated by {(i(0),—7(0))} is trivial,
so the quotient is I' = G & H. The pushout set is then simply

P=AUB=(Ax{0})U({0} xB)CG&H.

Even when A and B have very small doubling, the mixed sums force o(P)
to be large. Indeed,

P+ P2 (Ax{0})+ ({0} x B)=Ax B,
so |P + P| > |A||B|. On the other hand |P| = |A| + |B| — 1. Taking, for
example, G = H = 7Z and
A={01,....n—1}, B={0,1,...,n—1},

we have o(A),o(B) <2 but

n2

[Pl=2n-1,  |P+P[>n®  hence o(P)> 5 —F=n
—

Thus no bound of the form o(P) < K O can hold in complete generality
without an assumption preventing the interface from being too small. In
the present formulation, syndeticity fails maximally: A cannot be covered
by O(1) translates of {0} unless |A| = O(1), and similarly for B.

This example also indicates what goes wrong conceptually: the pushout
set P behaves like a coproduct (a disjoint union of axes) rather than an
amalgamated sum, and the mixed sumset A x B has size comparable to
the product of the sizes. Any mechanism that forces q(A) and ¢(B) to sit
inside few translates of a common backbone eliminates precisely this product
growth.

8.3 Torsion examples and parameter dependence

We finally discuss finite ambient groups, where torsion may create additional
identifications in quotients and where it is useful to separate phenomena that
are genuinely torsion-theoretic from those that are already present in Z<.

Cyclic torsion with progression data. Let p be prime and work in
Z/pZ. Take A = B = {0,1,...,n — 1} and C = {0,1,...,m — 1} with
2 < m <n < p. With 4, inclusions, the subgroup N < (Z/pZ)? is generated
by (1,—1) and the quotient is again Z/pZ via ¢(r,y) = x + y. Hence
P=AUB=A,sooc(P)=0(A) <2. Here torsion is irrelevant: even if n
is a positive fraction of p, the doubling of an interval in Z/pZ remains < 2
since |A + A| = min{2n — 1,p}.
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Subgroup backbone and coset-union growth. A more telling torsion
example is the subgroup-interface regime. Let G = H = (Z/pZ)",let C < G
be a fixed subgroup of size |C| = p"~!, and let i, j identify C' with the same
subgroup in G and H. Choose sets T4,Tp C G/C of sizes |Ta| = Ma,
|Tp| = Mp, and set

A=Je+0), B=|J@+0).

teTy teTp

Then o(C) = 1, and o(A) and o(B) are controlled in terms of M4, Mp
(indeed A+ A = (Ta+Ta)+C,s0 0(A) = |Ta+ Tal/|Tal < Ma, and
similarly for B). Moreover A is M 4-syndetic over C' and B is Mp-syndetic
over C. In the pushout quotient, the glued subgroup remains a subgroup,
and P is contained in a union of < M4 4+ Mp cosets of it. Consequently
o(P) is <« M4 + Mp, and this linear dependence is in general sharp: if Ty
is a dissociated set in G/C, then |T4 + Ta| < M3 and o(A) < My, while
o(P) is < M4 as well. This provides a genuine lower bound of order K (up
to constants) for any theorem of the form o(P) < K°.

What torsion can force. In finite groups, additional collapse can occur
if the subgroup generated by {(i(c), —j(c))} is larger than one would pre-
dict from the formal rank of C' as a Freiman object, simply because ambient
torsion introduces relations not visible at order 2. The universal ambient
group replacement is designed precisely to avoid drawing incorrect conclu-
sions from such accidental relations: it upgrades the Freiman data to honest
homomorphisms in a universal setting and only then passes to a quotient.
From the perspective of bounds, the effect of torsion is therefore confined to
bounded factors that can be absorbed into K™ once one reduces to finitely
generated models and separates torsion-free and torsion parts.

8.4 Near-sharpness and possible improvements of exponents

The proof presented earlier yields an explicit bound o(P) < 4K3 in the
universal model by a sequence of worst-case estimates. The examples above
show that one cannot hope, in general, for a bound independent of K: al-
ready in the subgroup-interface regime, o(P) can grow linearly in the cover-
ing numbers (and hence linearly in K under the syndeticity hypothesis). On
the other hand, these same subgroup examples suggest that the exponent 3
is not best possible in structured situations: when P is genuinely a union
of O(K) cosets of a backbone with o < K, one expects o(P) to be at most
KO and often < K.

What obstructs improving the exponent in the general statement is not
the behavior of @)’ (whose doubling is already < K), but the potential inef-
ficiency in passing from a covering P’ C T + Q' to lower bounds on |P’| in
terms of |T||Q’|: heavy overlap among the translates ¢ + Q' may make |P’|
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closer to |Q’| than to |T||Q’|. Any refinement that quantitatively controls
this overlap (for instance, via additional regularity assumptions on the cov-
erings, or via energy bounds for the set of translate representatives) would
feed directly into a better exponent. We leave such improvements to the
applications section and to the open problems listed thereafter.

9 Applications and extensions

We record several directions in which the pushout stability statement (The-
orem A and Corollary B) can be used as a basic “gluing lemma” in additive
combinatorics, and we formulate a number of natural refinements that ap-
pear accessible once one improves the bookkeeping of translate overlap in
the quotient model.

9.1 Pullback analogues and fiber products

The pushout construction amalgamates two sets along a common interface.
A formally dual operation is the pullback (fiber product) of a span

A4,6) L (0, 1) & (B, H)

in FRY, which (when it exists in a suitable ambient category) should model
the set of pairs (a,b) with f(a) = g(b). In the subgroup-interface case, when
C < L is a subgroup and f, g extend to homomorphisms G — L, H — L,
the ambient pullback group is the subgroup

GxpH:={(z,y) eGaH: f(zx)=gy)},

and the underlying pullback set is contained in (A x B) N (G x1 H).

Unlike pushouts, pullbacks can easily be too large even when A and B
have small doubling: if f and g are constant maps, the pullback is essentially
A x B. Thus any pullback stability statement must impose a non-degeneracy
hypothesis of a genuinely different flavor. One natural condition is a bounded
fiber hypothesis: for some M > 1, every ¢ € C' has at most M preimages in
A under f, and at most M preimages in B under g. Another is a co-syndetic
image hypothesis: C C U + f(A) and C CV + g(B) with |U|,|V| < M, so
that f(A) and g(B) cover C up to M translates.

In the subgroup-interface regime one can combine these hypotheses with
the standard estimate |S x T| = |S||T| and the observation that G x H
is the kernel of the homomorphism (z,y) — f(xz) — g(y) to obtain crude
control of the doubling of the pullback set in terms of the doubling of A
and B and the fiber parameters. We record the guiding heuristic as an
informal principle: bounded fibers prevent product growth in the same way
that syndetic interfaces prevent mixed-sum growth in pushouts.
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Problem. Formulate and prove a pullback analogue of Theo-
rem A: find checkable hypotheses on f, g (for instance, bounded
fibers together with small doubling of f(A) and ¢g(B)) under
which the pullback set P* satisfies o(P*) < KOW pOM),

In the general (non-subgroup) setting, the universal ambient group re-
placement (Lemma 5) appears again to be the correct first step: one upgrades
f, g to homomorphisms between universal models and only then forms the
fiber product subgroup. The main technical obstruction is that fiber bounds
are not invariant under arbitrary Freiman isomorphism; one should work
with a diagram-level notion of bounded fibers that is intrinsic to FRY.

9.2 Iterated gluing and complexity control

A standard pattern in additive combinatorics is to build large structured sets
by repeatedly adjoining pieces along substantial overlaps. The categorical
pushout formalizes this procedure. Suppose we have a finite tree of normal-
ized additive sets {(Ay, Gy) }vev and normalized interfaces (Ce, L) on edges
e € E, with injections C, — A, into the incident vertices, each satisfying the
hypotheses of Theorem A with parameter K. Iteratively pushing out along
the edges produces a single object Pr equipped with compatible Freiman
embeddings of each A,.

Two issues arise: (i) whether the resulting object depends on the order
of gluing, and (ii) how the doubling constant propagates. Associativity of
pushouts in a fixed category suggests that different orders yield canonically
isomorphic colimits; in our concrete model P = q(ﬁ U E) this is reflected
by the fact that successive quotients by subgroups generated by interface
relations commute up to canonical isomorphism. Thus the relevant quantity
is the cumulative loss in the doubling constant, not the ambiguity of the
construction.

A naive iteration of Theorem A yields a bound of the form

o(Pr) < K9P

for a constant ¢ > 0, since each gluing step introduces a polynomial loss. In
many applications the number of gluings is itself bounded by a constant (e.g.
bounded-complexity decompositions), and this estimate suffices. When |E| is
large, it becomes important to identify hypotheses under which the losses do
not multiply. In the subgroup-interface case, Proposition C already suggests
a more stable behavior: if each vertex set A, is covered by O(K) cosets
of the glued backbone, then the final colimit remains covered by O(K|V)
cosets of the common image of that backbone, and one expects

o(Pr) < KWy oW
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rather than KOUED Proving such a statement in the general Freiman set-
ting amounts to controlling overlap among many families of translates in a
common quotient.

Problem. Develop an “iterated syndetic gluing lemma” giving
o(Pr) < K9Wpoly(|V]) under additional regularity assumptions
on the translate coverings (for instance, bounded additive energy
among the translate representatives at each stage).

9.3 Functorial Freiman models from colimits

One motivation for introducing categorical pushouts is that many arguments
in additive combinatorics are diagrammatic: one compares several sets linked
by Freiman homomorphisms, passes to quotient models, and deduces struc-
tural information that is not attached to any single set in isolation. The
universal ambient group replacement (Lemma 5) already provides a functo-
rial way to turn a Freiman object (S,T") into a group U(S) together with
a Freiman embedding S < U(S). Pushouts allow one to extend this func-
toriality to diagrams: given a finite diagram D in FRg satisfying synde-
tic interface hypotheses on its morphisms, one may form its colimit object
colim(D) and obtain a single ambient group in which all objects of D embed
compatibly.

In practice, one uses this as follows. Suppose A C G and B C H are
small-doubling sets known to share a large Freiman-structured subset C (for
example, a common progression-like model or a common large energy com-
ponent). The pushout P provides a canonical way to identify A and B along
C while keeping explicit control of doubling in the resulting ambient. Once P
has small doubling, one may apply any available structure theorem to P (for
example, Freiman—Ruzsa type modeling results in torsion-free groups) and
then pull back the obtained structure simultaneously to A and B. The key
point is that this avoids having to choose models for A and B independently
and then check compatibility: compatibility is built into the colimit.

A related use is the construction of functorial approximate group en-
velopes. If one attaches to each small-doubling set S a controlled set E(.S)
(say, a coset progression containing S with bounded rank and bounded size
inflation), then one would like E to behave well with respect to gluing: when-
ever A and B are glued along a large interface, E(P) should be comparable to
the pushout of F(A) and F(B) in an appropriate category of structured sets.
Establishing such functoriality appears to require precisely the kind of poly-
nomial doubling control provided by Theorem A, together with quantitative
stability of the chosen envelope construction under Freiman isomorphism.
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9.4

Open problems and refinements

We close by listing several concrete problems suggested by the proofs and
examples.

1.

Exponent improvement. Determine the optimal growth rate of
o(P) in terms of K under syndeticity. The subgroup-interface ex-
amples force o(P) > K in general, while the present proof yields
o(P) < KW with a non-optimized exponent. It is natural to ask
whether o(P) < K't°(1) holds under additional mild hypotheses on
the coverings.

. Higher sumsets. Extend Corollary B from ¢ 4+ m < 2 to uniform

bounds [{P —mP| < KOtm()|P| for fixed £,m. In the quotient model
P = ¢(A U B), this requires controlling mixed expressions with many

alternations between the two axes, and appears to demand more than
small doubling of A, B, C.

Characterizing non-degeneracy. Syndeticity is sufficient and check-
able, but not necessary. Find an intrinsic condition on the cospan
A + C — B that is equivalent (up to polynomial losses) to small
doubling of the pushout. Any such characterization should rule out
the coproduct-like behavior of Proposition D while allowing interfaces
that are not literally translate-large.

Non-abelian variants. Develop an analogue for non-abelian approx-
imate groups, replacing Freiman-2 homomorphisms by suitable partial
homomorphisms and replacing the quotient (G @ H)/N by an amal-
gamated free product modulo relations. Even formulating the correct
category in which a controlled pushout exists is nontrivial.

Algorithmic questions. In finite ambient groups, compute or ap-
proximate |P| and |P + P| from combinatorial data of A, B, C' and the
coverings X, Y. This is relevant to the empirical search for extremizers
and for testing conjectured sharp exponents.

These problems all share a common theme: Theorem A reduces the sta-
bility of gluing to the control of overlap among a bounded number of trans-
lates in a quotient. Any method that quantifies such overlap more efficiently
than the present worst-case bounds should immediately yield sharper expo-
nents and stronger functorial statements.
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