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Abstract

The Freiman categories FRy, and FRY organize additive sets and
Freiman k-homomorphisms into a categorical framework. The normal-
ized category FR% is complete and cocomplete but excludes transla-
tions—morphisms central to additive combinatorics—because transla-
tions do not preserve the identity. Meanwhile FR; admits translations
but fails to have basic limits and colimits: equalizers and pullbacks
may be empty, and coequalizers and pushouts can fail due to subgroup-
closure issues. We construct an explicit “pointed completion” FRy of
FRy by adjoining a distinguished basepoint element to every object and
requiring morphisms to preserve this basepoint (without forcing it to
be the ambient identity). This yields a finitely complete and finitely co-
complete category in which translations extend to isomorphisms, and
in which FR) embeds reflectively as the full subcategory of objects
whose basepoint is 0. We also formulate a universal property: I*:l\%k
is the minimal finite-(co)limit setting in which the weak initial behav-
ior of singletons in FRy becomes genuinely initial. The construction
provides an infrastructure layer for a modern categorical additive com-
binatorics program, enabling spans and cospans, diagrammatic gluing,
and descent-type arguments without sacrificing translation symmetry.
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1 1. Motivation and overview: why FR; lacks lim-
its and colimits, why FRg loses translations, and
what a completion should accomplish.

The Freiman category FRy is meant to isolate the combinatorial content of
a finite additive set A C G up to the relations detected by k-term additive
configurations. Concretely, a Freiman k-homomorphism is only required to
respect those additive equalities

a4 +ap=d 4+ +a,

which hold inside the ambient group, and this looseness is precisely what
makes FRy convenient for additive-combinatorial arguments. At the same
time, this looseness has a categorical cost: many universal constructions
that are routine for algebraic categories are not available without additional
structure. Our purpose is to explain why FRjy is not well behaved with
respect to finite limits and colimits, why the usual “normalization” trick
repairs some constructions but destroys translation symmetry, and why a
pointed completion is the appropriate remedy.

A first obstruction already appears at the level of equalizers. Given
parallel morphisms f, g : (4,G) — (B, H) in FRy, the set-theoretic equalizer

E:={acA: f(a) = gla)}

need not be nonempty. In a category of all sets one simply allows ¥ = @&, but
by definition objects of FRy are finite nonempty subsets of abelian groups.
Hence (F,G) may fail to be an object. This is not a minor technicality:
once equalizers fail to exist, finite limits fail in general, and many familiar
constructions (kernels, pullbacks along diagonals, and so forth) are no longer
guaranteed.

Dually, coequalizers suffer from an analogous nonexistence phenomenon.
If f,g:(A,G) — (B, H) are parallel, a would-be coequalizer should identify
points of B forced equal by the relation generated from f(a) ~ g(a). In a
purely set-theoretic setting one forms a quotient set B/~. In FRy we must
additionally realize the result as a finite nonempty subset of some abelian
group and ensure that the quotient map is a Freiman k-homomorphism.
Even when a quotient set can be formed, there is generally no canonical
way to choose an ambient group and embedding that makes the coequalizer
universal among Freiman k-homomorphisms. Put differently, FR; does not
come with a built-in notion of “Freiman quotient” which is stable under the
required universal property.

A separate, more conceptual obstruction concerns coproducts and pushouts.
In FRy, the object (A, G) is invariant under translations in the ambient group:
for any g € G, translation 74 : A —+ A+ g is a Freiman k-isomorphism. Con-
sequently, A has no distinguished “origin” or “zero element” intrinsic to its



isomorphism class. However, colimit constructions typically require choos-
ing how to place multiple pieces relative to each other. For instance, to
model a coproduct of (A,G) and (B, H), one would like a disjoint union
in some ambient group so that there are canonical inclusion morphisms. If
we attempt to realize such a disjoint union inside a single abelian group by
translating one component far away from the other, then different translation
choices are a priori different objects of FRy, and there is no canonical choice.
Moreover, Freiman morphisms are sensitive to additive relations, so placing
two components too close can create unintended k-term relations spanning
both components, which obstructs universality. Thus, even if coproduct-like
models can be engineered case-by-case, FRy lacks a functorial construction
compatible with the universal property.

One might try to resolve this by imposing a normalization condition,
thereby passing to the category FR% of additive sets containing 0 and Freiman
morphisms preserving 0. In that setting, a copy of A is always positioned
so that its “distinguished” element is 0, and this rigidifies certain colimit
constructions: when gluing along maps that preserve 0, there is at least a
fixed point at which identifications may occur. However, the normalization
comes at the expense of an essential symmetry. Translating A inside G is
no longer a morphism unless the translation fixes 0, i.e. unless it is trivial.
From the perspective of additive combinatorics, this loss is significant: many
natural operations are affine rather than linear, and arguments frequently
treat A and A+ g as indistinguishable. The category FR% forces us to choose
a specific translate and then forbids moving away from it.

We therefore seek a completion which simultaneously addresses the two
issues: it should enforce nonemptiness in limit/colimit constructions (so that
equalizers, pullbacks, coequalizers, and pushouts exist), and it should pre-
serve translation symmetry in a controlled way. The guiding analogy is the
passage from sets to pointed sets. In pointed sets, one adjoins a basepoint so
that constructions that would otherwise be empty can be represented by the
basepoint alone, and coproducts become wedge sums formed by identifying
basepoints. The basepoint does not erase information; rather, it supplies a
canonical element that can absorb degeneracies (such as an empty equalizer)
while remaining functorial.

In our Freiman setting, the basepoint plays two intertwined roles. First,
it serves as a canonical “fallback” element, ensuring that when a limit would
otherwise be empty (e.g. an equalizer), we still obtain a nonempty object by
taking the basepoint alone. Second, it provides a distinguished point with
respect to which we can glue objects in colimits without committing to a rigid
ambient origin. Intuitively, instead of forcing each additive set to contain 0
inside its ambient group, we adjoin a new formal point which is declared to
be preserved by morphisms. This basepoint behaves like the unique element
of a singleton object, but unlike normalization it does not pick out a translate
inside GG and hence does not destroy the ability to translate the rest of the



set.

This approach also clarifies why we insist on & > 2. When k£ = 1, every
set map is a Freiman 1-homomorphism, so the category forgets essentially all
additive structure; the distinction between “structured” and “unstructured”
embeddings collapses, and categorical pathologies become artifacts of having
chosen a weak notion of morphism. For k& > 2, additive relations are gen-
uinely constrained, and the presence of a basepoint-preservation condition
becomes meaningful: it enforces a minimal rigidity needed to make universal
constructions canonical while still permitting the affine symmetries that are
natural for additive sets.

The completion we develop can thus be viewed as the minimal modifi-
cation of FRy that achieves finite completeness and cocompleteness with-
out abandoning translation invariance. We do not aim to impose a full
ambient-group homomorphism structure (which would be too rigid for many
combinatorial applications). Rather, we keep Freiman k-homomorphisms as
morphisms, but we enrich objects by a marked point and require morphisms
to respect it. With this small change, the missing limits and colimits can
be constructed in a manner parallel to pointed sets, and translations remain
available because they can be implemented as basepoint-preserving isomor-
phisms after a suitable canonical pointing. In the subsequent development
we make these claims precise by defining the based category and exhibiting
explicit constructions of finite limits and colimits within it.

2 2. The category ﬁ{k of based additive sets: ob-
jects (A, G, ap), basepoint-preserving Freiman mor-
phisms, and the role of basepoints in preventing
emptiness.

We introduce a pointed variant of the Freiman category in which each addi-
tive set carries a distinguished element. Fix k > 2. An object of the based
Freiman category FRy is a triple

(A, G, CL(]),

where G is an abelian group, A C G is a finite nonempty subset, and ag € A
is a chosen basepoint. A morphism

f : (A, G,ao) — (B,H,bo)

is a Freiman k-homomorphism f : A — B (in the usual sense) such that
f(ag) = by. Thus the additional structure is minimal: we do not impose
that ap = 0 in the ambient group, nor do we require morphisms to arise from
ambient group homomorphisms; we merely insist that the marked point be
preserved.



Since the Freiman k-condition will be used repeatedly, we record the
convention. A map f : A — B between subsets of abelian groups is a
Freiman k-homomorphism if for every choice of ay,...,ax,al,...,a) € A
satisfying

a1+ +ap=ay+--+aj in G,

we have

flar) + -+ flag) = f(a}) +--- + f(a})  in H.

Identities and compositions of basepoint-preserving Freiman k-homomorphisms
are again basepoint-preserving Freiman k-homomorphisms, so FRy, is a well-
defined category. There is also a forgetful functor FRy — FRy discarding the
basepoint; we emphasize, however, that the based category is not merely a
rephrasing of FRg: the basepoint constraint changes which diagrams admit
universal cones. .

The principal reason for passing to FRy is that the distinguished point
prevents the “emptiness” pathologies that obstruct finite limits in FRx. The
equalizer example becomes completely transparent. Suppose we have parallel
morphisms in the based category,

f’g : (AaGaa()) = (BaHabO)'

Because f(ag) = bp = g(ap), the basepoint is automatically an element on
which f and g agree. Consequently the set-theoretic equalizer

E:={acA: f(a) = gla)}

is nonempty, and indeed a9 € E. Hence (F, G, ap) is automatically an object
of F/‘l\{k, with the evident inclusion F < A a morphism preserving basepoints.
In other words, the very condition that morphisms respect the basepoint
forces the equalizer subset to contain the basepoint, so the obstruction en-
countered in FRy (namely F = @) cannot occur. We regard this as the most
basic instance of the “fallback element” role of the basepoint: whenever an
otherwise-defined subobject might be empty, the basepoint condition forces
at least one element to survive.

The same mechanism propagates to other limit constructions built from
iterated equalizers. For instance, in forming a pullback of

(A, G, a0) L (C, K, o) & (B, H, by),

we look at the set of pairs (a,b) € A x B with f(a) = ¢g(b). Even before
worrying about ambient groups, the basepoint condition gives a canonical
pair (ag, by) satisfying f(ag) = co = g(bg). Thus the pullback subset is again
automatically nonempty. More generally, any finite limit diagram in which
each object carries a chosen point and each morphism preserves it has a



distinguished compatible family of points; this family lies in the underlying
set-theoretic limit and thereby witnesses nonemptiness. What fails in FRy
is not the abstract existence of set-theoretic limits, but the compatibility
between those limits and the requirement that our objects be finite and
nonempty; basepoints enforce that compatibility.

The basepoint is equally important for colimits, but for a different rea-
son. Colimit constructions in FRy suffer not only from potential empty
identifications but also from non-functorial “placement” issues: without a
distinguished element, there is no canonical way to position two additive
sets inside a common ambient group without making arbitrary translation
choices. In FRy the basepoint provides a canonical anchor for gluing. Con-
cretely, when we form a coproduct-like object, the role of the basepoint is to
specify where the two components meet: we may insist that the images of the
basepoints coincide, while the remaining elements are placed in a way that
avoids introducing unintended k-term relations across components. This is
formally analogous to wedge sums in pointed sets: we glue along the dis-
tinguished points and treat everything else as separate. The key categorical
point is that the universal property then refers to maps that already preserve
basepoints, so the gluing locus is forced and does not depend on arbitrary
choices. -

From this perspective, FRy should be viewed as an “affine” analogue of
the category of pointed sets. The basepoint is not an ambient-group zero;
it is merely a marked element of the finite subset. Thus we do not rigidify
an object by insisting it contain 0 (which would select a preferred translate),
and we do not forbid translations (which is what happens if one demands
that morphisms fix 0 as an ambient element). Instead, we record whatever
element we wish to mark and require maps to respect that marking. This
choice preserves the usual additive-combinatorial practice of treating A and
its translates as essentially equivalent, while still allowing us to perform
categorical constructions functorially. -

It is also useful to isolate the role of singleton objects. In FRy, any
singleton ({ag}, G, ap) admits exactly one morphism to any other based ob-
ject (B, H,by), namely the constant map sending ag to by. For k > 2 this
map is a Freiman k-homomorphism because all k-term additive relations in
a singleton are tautologically preserved, and basepoint preservation forces
uniqueness. Dually, there is exactly one morphism from any (A, G, ap) to
a singleton ({bo}, H,by). Thus singleton objects behave as zero objects in
the pointed sense: they provide canonical absorbing targets and sources
for maps, mirroring how the basepoint functions as a canonical “degenerate
value” when configurations collapse.

We stress that while the basepoint prevents emptiness, it does not col-
lapse the additive information of A. The underlying set A still sits in its
ambient group G, and Freiman k-homomorphisms still record precisely the
k-term additive relations among elements of A. The only additional con-



straint is that each object carries a marked element and each morphism
must send marked element to marked element. This mild rigidity is exactly
what is needed to make the usual finite limit and colimit patterns nondegen-
erate and functorial: limits become nonempty because the compatible family
of basepoints supplies an element of the limit, and colimits become canonical
because the basepoint supplies a forced locus for identifications. Having set
up P/‘\Rk, we next describe a canonical way to pass from an unbased Freiman
object (A, G) to a based one, in a manner compatible with translations and
suited to universal constructions.

3 3. The canonical completion functor (—)* : FR; —
FR;: explicit construction via G®Z, functoriality,
faithfulness, and translation isomorphisms.

We now define a canonical “pointed completion” functor
(—)+ : FRk — F/‘Rk

which adjoins to an unbased Freiman object a distinguished point in a way
that is functorial and compatible with translations. The basic requirement is
that the adjoined point be genuinely new (so that it can serve as a marked ele-
ment for universal constructions) while remaining within an ambient abelian
group.

Let (A, G) be an object of FRy. We set

(A,G)" = (Ax {0} U {x}, GBZ, ), x:=(0,1)eGDZL.

We view A as embedded into G & Z via a — (a,0), and we adjoin the extra
element * with nonzero Z-coordinate. By construction A x {0} U{x} is finite
and nonempty, and * is a distinguished element. The choice x = (0, 1) is not
essential up to canonical isomorphism, but it is convenient: the projection
to the Z-factor will control additive relations involving % in a way that is
uniform across all objects.

The key point is that Freiman relations in (A, G)™ split according to the
number of occurrences of x. Indeed, consider a k-term additive relation in
the ambient group G ® Z,

$1+...+$k:$’1+...+x;€’ :L‘i,xg-GAX{O}U{*}.

Applying the projection 7z : G & Z — 7Z, and using that 77(a,0) = 0 and
7z (*) = 1, we obtain

i wy =) = #{i: 2} = %}

Thus a k-term relation can involve x, but it must involve it the same number
of times on both sides. After cancelling these x-contributions (at the level of



equality of sums in G & Z), the relation reduces to a k’-term relation among
elements of A x {0}, where ¥’ = k —m and m is the common number of *’s.
In particular, relations not involving x are precisely the relations in the copy
of A C G sitting in degree 0.

Now let f : (A,G) — (B,H) be a morphism in FRy, i.e. a Freiman
k-homomorphism f: A — B. We define

f+ : (AvG)+ — (BvH)Jr
by the formulas

f(a,0):=(f(a),0) (a€A), FH) =

This is a well-defined set map A x {0} U {x} — B x {0} U {x}, and it is
basepoint-preserving by definition. It remains to check that it is a Freiman
k-homomorphism (in the ambient groups G & Z and H & Z).

Lemma. The map f7 is a Freiman k-homomorphism.

Proof. Suppose

As above, comparing Z-coordinates shows that * occurs the same number
m of times among the x; and the z}. Reordering terms if necessary, we may
write

Ty = =Ty =k, X ==al =k

and Tpy1, ..., 28 € Ax{0}, 27, ¢, ..., 2}, € Ax{0}. Cancelling the common
sum x + - - - + % (with m terms) yields

Since the remaining terms have Z-coordinate 0, this equality is equivalent to
an equality in G among the corresponding elements of A. Applying f and
using that f is a Freiman k-homomorphism (hence also preserves all additive
relations of length < k obtained by repetition), we get the corresponding
equality in H. Reintroducing the m copies of x and observing that fT(x) = %,
we conclude

fra)++ ) =@+ +f(2),) inH®Z,

as required. O
Thus (—)* is well-defined on morphisms. Functoriality is immediate from
the defining formulas: for the identity id4 we have (id4)*T = id(4,G)+, and

for a composable pair A Iy B % ¢ we have (go f)* =gt o f*t because both
sides agree on A x {0} and fix x. Hence (—)* is a functor FRy — FRy.



The functor (—)T is faithful. Indeed, if f,g : (A,G) = (B, H) satisfy
/T =g", then for each a € A we have

(f(a),()) = f+(a70) = g+(a,0) = (g(a),O),

so f(a) = g(a) and hence f = g. In particular, FRy, identifies with a subcat-
egory of ﬁ{k up to the evident embedding on hom-sets. We emphasize that
(=) is not full in general: in F/‘l\%k there are additional basepoint-preserving
Freiman maps (A, G)* — (B, H)" that may collapse elements of A x {0} to
*, & phenomenon which cannot occur in FRy.

On objects, (—)T is injective on isomorphism classes in the following
sense: if ¢ : (A,G)* — (B, H)" is an isomorphism in FRy, then ¢(x) = %
and, since ¢ is bijective, ¢ restricts to a bijection A x {0} — B x {0}.
Identifying A with A x {0} and B with B x {0}, this restriction is a Freiman
k-isomorphism A — B. Thus isomorphisms between pointed completions
do not identify genuinely different unbased objects; they only recover the
expected notion of Freiman isomorphism on the underlying sets.

Finally, the completion functor is designed so that translations become
canonical based isomorphisms. Let A C G and g € G. The translation map
Tg: A—A+g, a— a+ g, is a Freiman k-isomorphism in FR;. Applying
(—)* yields a basepoint-preserving map

7y (AG)T — (A+9,G)F, 7f(a,0) = (a+g,0), T (x)=x,
which is an isomorphism with inverse ng. Since both completions use the
same ambient group G @ Z and the same basepoint * = (0, 1), this identifi-
cation is canonical and does not depend on any choice of where the translate
should “sit”. In particular, different translates of A become canonically iso-
morphic in P/‘Rk via basepoint-preserving morphisms, a feature that will be
used repeatedly when comparing colimit constructions across different am-
bient placements.

3.1 Finite limits in FR,

We next verify that ﬁ{k is finitely complete by exhibiting explicit models for
the terminal object, binary products, equalizers, and pullbacks. Since finite
limits can be built from products and equalizers, it suffices to treat these
constructions and record their interaction with the basepoint condition.

Terminal object. Let 0 denote the trivial abelian group. We claim that
1:= ({0},0,0)

is terminal in FRy. Indeed, given any (A, G, ap) there is exactly one basepoint-
preserving set map A — {0}, namely the constant map a — 0, and it is a
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Freiman k-homomorphism because any k-term additive relation in A is sent
to the tautological equality 0 4+ ---+0 = 0+ --- + 0 in 0. Uniqueness is
immediate. (Any pointed singleton ({bp}, H,bp) is likewise terminal, hence
canonically isomorphic to 1.)

Binary products. Given objects (A, G, ap) and (B, H, by), we define their
product to be

(A,G,a()) X (B,H,bo) = (A X B, GEBH, (ao,b())),

where Ax B is viewed as a subset of G& H via (a,b) — (a,b). The projections
are the evident maps

mA: Ax B— A, wa(a,b) =a, mp: Ax B— B, wpg(a,b) =0,

which preserve basepoints.
We check that 74 is a Freiman k-homomorphism (and similarly 7).
Suppose

(ar,b1) -+ (ag, by) = (a4, b)) + -+ (af, ) in G @ H

with all (a;, b;), (al, b)) € A x B. Equality in the direct sum means equality

(R
in each coordinate, hence

aj+--+ap =ay+--+a, inG  and byt 4bp = b+ +b), in H.

Applying 74 simply extracts the first coordinate, so the required relation in
A holds. Thus 74 and 7w are morphisms in FRy.
Now let (C, K, ¢g) be any object and let

f:(C,K,Co)%(A,G,CL()), gZ(C,K,Co)%(B,H,bo)
be morphisms. Define (f,g) : C — A x B by
(f:9)(c) == (f(c), 9(c)).

This map preserves basepoints and satisfies m40(f, g) = f and mgo(f, g) = g.
To see that (f, g) is Freiman, take a k-term relation ¢1+- - -+cp = ¢{+- - -+¢},
in C (in the Freiman sense, i.e. among elements of C' C K). Since f and g
are Freiman k-homomorphisms, we have

fle)+ A+ flew) = f()++f(c) inG,  gle)+ - +gler) = g(ci)+ - +g(ck)
Combining these equalities gives
(frg)(er) + -+ (fg)(er) = (f.9)(c1) +-- +({f,9)(ck) inGe&H,

so (f, g) is a morphism. Uniqueness follows from the set-theoretic uniqueness
of a map into a Cartesian product determined by its compositions with the
projections. Hence the above object is the categorical product in FRy.

11
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Equalizers. Let f,g : (A,G,a0) = (B, H,by) be parallel morphisms in
FRj. We define the equalizer object to be

Eq(f.9) = (E,G,a),  E:={acA: fla)=g(a)} CG,

with structure map the inclusion i : E' < A (basepoint-preserving). This is
well-defined because f(ag) = by = g(ap), so ag € F, and thus F is nonempty.

The inclusion i is a Freiman k-homomorphism: if ey + -+ + e = €] +

-+ e} holds in G with e;,e, € E C A, then the same equality holds in
A C G, and applying ¢ does nothing. Moreover, f oi = g o i by definition of
E.

For the universal property, suppose h : (C, K, co) — (A, G,ap) satisfies
foh = goh. Then for each c € C we have f(h(c)) = g(h(c)), hence h(c) € E,
so h factors uniquely as a set map through the inclusion ¢, say h = ioh with
h:C — E. Since i is injective and h is just h with codomain restricted, h
inherits the Freiman property from h: any k-term relation in C' mapped by
h lands in F and remains valid in G. Thus h is a morphism in FR;, and
uniqueness is clear. Hence (F, G, ap) is an equalizer.

Pullbacks. Consider a cospan in F/ﬁk,
(A, G, a0) L5 (O, K, co) <& (B, H, by).
We define its pullback to be
(A,G,a0) X(0,K,c) (B, H,bo) := (P, G® H, (ag,bo)),

where

P:={(ab) € AxB: f(a)=g(b)} CG® H.

This subset is finite, and it is nonempty because f(ag) = cop = g(bo) implies
(ao, b()) e P.

Let p4 : P — A and pg : P — B be the restrictions of the product
projections. The same coordinate argument as for products shows that p4
and pp are Freiman k-homomorphisms. By construction we have fopa =
g o pp as set maps (hence as morphisms).

Now let (T, L,ty) be an object and suppose we have morphisms

U : (T, L,to) — (A,G,a()), v (T,L,to) — (B,H, bo)

with fou = gow. Define w: T — P by w(t) := (u(t),v(t)). The compati-
bility fou = gow ensures w(t) € P for all ¢, and w preserves basepoints. To
check the Freiman property, take a k-term relation ¢; +- - -+t = t{ +-- - +1},
in T. Applying u and v yields the corresponding relations in G and H, and
hence the relation

w(t)) + -4+ w(ty) =wt)) +---+w(t)) inGoH,

12



so w is a morphism. Uniqueness follows because any map T'— P C A X B is
determined by its compositions with p4 and pg. Thus the above construction
is a pullback.

Consequences and comparison with FRy. We have therefore exhibited
a terminal object, binary products, and equalizers in FRy, and hence FRy
has all finite limits. The role of basepoints is not cosmetic: it guarantees
nonemptiness of equalizers and pullbacks. In the unbased category FRy,
the set-theoretic equalizer of two Freiman maps A = B can be empty, and
since objects are required to be nonempty, the equalizer need not exist as
an object of FRy. Likewise, given a cospan A — C < B in FRy, the fiber
product {(a,b) : f(a) = g(b)} can be empty, obstructing pullbacks. In FRy,
the condition that all morphisms preserve basepoints forces ag and by to
map to the same ¢y, producing a canonical point (ag,bg) in the pullback
and a canonical point ag in the equalizer whenever the diagram is parallel.
This is the basic mechanism by which finite completeness is restored without
imposing a normalization such as 0 € A and f(0) = 0, and it will be crucial
when we pass to finite colimits.

3.2 Finite colimits in ﬁ{k

We next verify that ﬁ{k is finitely cocomplete by exhibiting explicit models
for the initial object, binary coproducts, coequalizers, and pushouts. Since
finite colimits can be built from coproducts and coequalizers, it suffices to
treat these constructions and record how the basepoint condition ensures
that the resulting objects remain nonempty and that the universal properties
are witnessed by basepoint-preserving Freiman maps.

Initial object. The terminal object 1 = ({0},0,0) constructed above
is also initial. Indeed, for any (A, G, ag) there is exactly one basepoint-
preserving map {0} — A, namely 0 — ag, and it is a Freiman k-homomorphism
for the same tautological reason as before. Thus ﬁ{k is pointed (it has a
zero object).

Binary coproducts as wedges. Let (A, G,ap) and (B, H,by) be objects.
We define their coproduct to be the wedge obtained by identifying base-
points and keeping the two summands otherwise disjoint at the level of the
underlying finite subset. Set

L=GoH®Z,  r:=(ap,—bo,—1) €L,  L:=LJr),
and let () : L — L be the quotient map. Define a finite subset

W :={(a,0,0): a€ A} U {(0,b,1): be B} CL

13



and take the basepoint to be

wo := (ap,0,0) = (0,bp,1) € W.
We write
(A, G,ao) V (B,H, bo) = (VV, L,’wo).

There are canonical maps

in: A=W, isla)=(a,0,0), ig:B—W, ip(b)=/0,b1),

which preserve basepoints by construction. The map i is a Freiman k-
homomorphism because it is the restriction of a group homomorphism L — L
to the subset A x {0} x {0} (and similarly for ig). Moreover, the only
identification between the two displayed subsets of L is at the basepoint: if
(a,0,0) = (0,b,1), then (a,—b,—1) € (r), forcing (a,—b,—1) = r and hence
a=ap and b = by.

To verify the universal property, let (C, K, cg) be an object and let

f:(A,G,a0) = (C, K, cp), g:(B,H,by) = (C,K,cp)

be morphisms. Since f(ag) = cop = g(by) and since iz(A) Nig(B) = {wo},
there is a unique basepoint-preserving set map h : W — C such that hoiy =
f and hoip = g, namely

h((a,0,0)) := f(a),  h((0,b,1)) := g(b).
It remains to show that h is Freiman of order k. Let
T+ tap=a 4+ 42, inlL

with all z;,2; € W. Choose lifts z;, 7, € L of the form (a,0,0) or (0,b,1).

Then
k

k
Z T — Z Ti=nr
i=1 i=1

for some n € Z. Let m (resp. m’) be the number of B-type terms among the
Z; (resp. among the 7}). Comparing the Z-coordinates gives m —m/ = —n,
i.e. n = m' —m. Writing the G-coordinate equality and rearranging using
n =m' —m yields a k-term relation in A:

g a; + mag = g a; + m'ag in G,
xiZiA(ai) x;-:iA(a;)

where the displayed sums over a; and a involve exactly k — m and k — m’
terms respectively, and the remaining m and m' terms are filled by the
basepoint ag. Since f is a Freiman k-homomorphism, applying f gives

ST fla) + me = Y fla) + me K.

zi=14(a;) z}=i(a})
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Similarly, from the H-coordinate equality we obtain a k-term relation in B
which, after applying g, yields

Z g(bi) + m'cy = Z g(b)) + mecy  in K.

zi=ip(b;) zi=ig(b})
Adding these two equalities cancels the basepoint contributions and gives
() + -+ hlzg) = b))+ + h(y) 0K,

which is exactly the Freiman condition for h. Uniqueness of i as a morphism
follows from uniqueness as a set map. Hence (W, L, wp) is the coproduct of
(A,G,ap) and (B, H,bp) in FRy. (Finite coproducts follow by iteration.)

Coequalizers. Let f,g: (A,G,a9) = (B, H,by) be parallel morphisms.
We construct a coequalizer by presenting an ambient abelian group in which
we impose, as actual equalities, both the k-term additive relations already
holding in B C H and the additional identifications f(a) = g(a) for a € A.

Let
FB = @ Z €p
beB

be the free abelian group on the underlying set B. Let N < Fp be the
subgroup generated by

eyt tep, —ey — o — ey whenever by +---+by = b +---+b}, in H,

together with the generators ef(,) —ey(q) for all a € A. Put H := Fg/N and

let (+): Fp — H be the quotient map. Define a finite subset
B:={g: beB}CH, by ==&, € B,
and let
Coeq(f,g9) = (B, H,b),  q:(B,H,by)— (B,H,bo), q(b)=7,.

By construction, ¢ is basepoint-preserving and coequalizes f and g. It is
a Freiman k-homomorphism because every k-term relation holding in B
becomes an equality among the corresponding elements €, in H. For the
universal property, let h : (B, H,by) — (C,K,cy) be a morphism with
hof = hog. There is a unique group homomorphism ¢ : Fp — K with
o(ep) = h(b). The Freiman property of h implies that ¢ kills each generator
coming from a k-term relation in B, and the condition h o f = h o g implies
that ¢(ef(q) — €g(q)) = 0 for all a. Hence N C ker(¢), so ¢ factors uniquely
through a homomorphism ¢ : H — K. Restricting ¢ to B gives a unique
morphism h:(B,H,by) — (C,K,cy) with hog = h. Thus ¢ is a coequalizer
in FRk
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Pushouts. Given a span
(Av G7a0) <_f_ (Ca K7 CO) i> (B’Ha bO)

we define its pushout by the standard recipe: form the wedge (A4, G, ap) V
(B, H,by) with structure maps i4,ip, and then take the coequalizer of the
parallel pair

Z.Aofa iBOg : (07K>CO) = (A,G,CLO)\/(B,H,Z)()).

Since we have constructed coproducts and coequalizers explicitly, this yields
a concrete pushout object in FRg, together with the induced maps from
(A,G,ap) and (B, H,bg), and the usual universal property follows formally
from the universal properties already verified.

Subgroup-closure and comparison with FR;. A salient point in the
above constructions is that the ambient group of a colimit is obtained as
an explicit quotient of a direct sum or a free abelian group by a subgroup
generated by relations; in particular, no additional “subgroup closure” step is
required to make the universal identifications compatible with the abelian-
group structure. This is in contrast with naive set-level gluings inside a
fixed ambient group, where one typically has to enlarge the ambient group
to accommodate the imposed identifications as actual additive equalities.
The based condition is again essential at the level of existence statements:
FRy has no initial object (since objects are required to be nonempty), and
without a distinguished point there is no canonical wedge-type coproduct
compatible with the Freiman structure. In FRjg, the basepoint both sup-
plies the necessary nonemptiness and provides a canonical locus along which
coproducts and pushouts are formed, restoring finite cocompleteness in a
manner compatible with translation symmetries.

Reflective embedding of FR%. We record the precise relationship be-
tween the normalized Freiman category FR% and the based category P/‘\Rk
Recall that an object of FR% is a pair (4, G) with 0 € A C G, and morphisms
are Freiman k-homomorphisms preserving 0. There is an evident inclusion

functor

J:FRY = FRy,  J(A,G) = (4,G,0),
acting as the identity on the underlying set maps. In particular, if f :
(A,G) — (B, H) is a morphism in FRY, then f(0) = 0, and the same set
map defines a morphism J(f) : (4,G,0) — (B, H,0) in FR;.

We first note that J is fully faithful. Faithfulness is immediate since J
does not change the underlying set map. For fullness, let ¢ : (4,G,0) —
(B, H,0) be a morphism in ﬁ{k Then ¢ is a Freiman k-homomorphism
A — B satisfying ¢(0) = 0, hence it is by definition a morphism (A4,G) —
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(B,H) in FRg. Thus every morphism in F/‘\Rk between objects in the image
of J comes from a unique morphism in FRY, proving that J is fully faithful.
We next define a normalization (or re-basing) functor

R:FR; = FRY,  R(A,G,a0):=(A—ap, G),

where A —ap:={a—ap: a € A} C G. This is well-defined since A is finite
and nonempty and 0 = ap — ag € A — ag, so R(A, G, ap) is indeed an object
of FR%. On morphisms, if

f : (A7 G,(L()) — (BvHvbO)
is a morphism in P/‘\Rk, we define R(f): A — a9 — B — by by the formula
R(f)(a —ap) := f(a) —bo (a€A).

This is well-defined as a set map since for each a € A we have f(a) € B, hence
f(a) —bo € B —bg. It also preserves 0, because R(f)(0) = R(f)(ao —ao) =
flag) — by = bg — bp = 0. It remains to check that R(f) is a Freiman
k-homomorphism. Suppose

(1) + -+ (zg) = (@) + -+ (}) in G,

with each z; = a; — ap and each z} = a} — ag for some a;,a, € A. Adding
kag to both sides yields

a1+ Fap=da, +---+ad in G.
Since f is Freiman of order k, we obtain
fla) + -+ flag) = f(ar) + -+ fa})  in H.
Subtracting kbg from both sides gives
(flar) =bo) + -+ (f(ar) —bo) = (f(a)) —bo) + -+ (f(a}) — bo),

which is exactly the Freiman condition for R(f) on A — ap. Thus R is a
well-defined functor ﬁ{k — FRg.

We now verify that R is left adjoint to J. Concretely, for each (A, G, ag) €
FR;, and each (B, H) € FRY we claim there is a natural bijection

Hompgo (R(A,G,a0), (B, H)) = Homgp ((A,G,a9),J(B,H)).

Given a morphism 9 : (A — ag,G) — (B, H) in FRg, we define a morphism
Y (A,G,a9) = (B, H,0) in FRy, by

Y(a) :=Y(a — ap) (a € A).
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This preserves basepoints since J(ao) = 1(0) = 0, and it is Freiman of order
k because a1+ - -+ay = a}+- - -+aj, implies (a1 —ag)+- - -+ (ar—ag) = (a} —
ap)+- - -+ (aj, —aop), so the Freiman property of v yields the required equality
of sums in H. Conversely, given a morphism ¢ : (4,G,ap) — (B, H,0) in
ﬁ{k, we define @ : A — a9 — B by

ola —ap) := p(a) (a€ A).

This is well-defined as a set map A — a9 — B, it preserves 0 since p(0) =
v(apg) = 0, and it is Freiman of order k by the same translation argument as
above. These two assignments are inverse to each other and are natural in
both variables, giving the desired adjunction R - J.

For later use it is convenient to write the unit and counit explicitly. For
an object (A, G, ag) of FRy, the unit

N(A,G,a0) * (Aa Ga (10) — JR(Av Ga (10) = (A — aop, Ga 0)

is the translation map 74 ¢ q0)(@) = a — ag. It is basepoint-preserving and
is a Freiman k-homomorphism as it is induced by the group homomorphism
G — G, x — = — ag restricted to A. For an object (B, H) of FRY, we have

RJ(B,H) = R(B,H,0) = (B—0,H) = (B,H),

so the counit e gy : RJ(B,H) — (B, H) is the identity. The triangle
identities reduce to the tautological equalities expressing that translating by
—ag and then re-including does nothing further, and that normalizing an
already normalized object is the identity. -

This adjunction isolates the role of the basepoint: FRj remembers a
chosen point ay € A, while FRg forces that point to be 0 and admits only
maps compatible with that normalization. The reflector R implements the
canonical normalization by translating A so that ap becomes 0. In particular,
any map in FRy can be transported to a map in the normalized category
by subtracting the image of the basepoint, which is precisely the formula
defining R(f). Thus FR% identifies as a full reflective subcategory of FRy,
and the distinction between the two is exactly whether one chooses to rigidify
the translation degree of freedom by fixing the basepoint at 0.

Universal property of the pointed completion. We now justify the
universal property stated in (v), which may be read as saying that FRy is
the “finite limit—finite colimit completion” of FRy, after forcing all singleton
objects to behave as a single initial object. The role of the hypothesis on
singletons is not cosmetic: in FRy the objects ({z},G) are terminal (there
is a unique map from any (A4,G) to ({z},G)), but they are far from initial
since there are many distinct maps ({z}, G) — (B, H), one for each choice
of element of B. In contrast, in ﬁ{k any singleton based object ({bo}, H, bo)
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is a zero object: there is a unique basepoint-preserving map ({bo}, H, by) —
(B, H,bp) and also a unique map (B, H,by) — ({bo}, H,bg), the latter being
constant. Thus, when we pass from FRy to F/ﬁk, all of the “many maps out
of a singleton” are collapsed to the unique map out of an initial object. The
condition in (v) exactly demands that F' already performs this collapse in
D, so that there is no obstruction to extending F' across the completion.

To make this precise, fix a finitely complete and finitely cocomplete cat-
egory D, and a functor F' : FRy — D such that:

1. for every singleton object ({z},G) in FRy, the object F({z},G) is
initial in D, and

2. for every morphism « : ({z},G) — ({y}, H), we have F(«) = id.

By initiality, any two initial objects in D are canonically isomorphic, and
by (2) these canonical identifications are coherent on the nose on the full
subcategory of FRy spanned by singletons. We therefore fix, once and for
all, an initial object Op of D and treat each F({z},G) as specified to be
(canonically) Op.

The key structural input is that F/’Rk is generated, under finite lim-
its and colimits, by the essential image of the pointed completion functor
(—=)" : FRy — FRy. Concretely, two elementary observations suffice. First,
singleton based objects already arise from (—)* by a finite colimit. Indeed,
for a singleton ({z}, @), the object ({z}, G)" has underlying set {(x,0),*}
with basepoint . Consider the endomorphisms

id, c: ({2},G)" — ({z},&)",

where ¢(*) = x and ¢(x,0) = . (This is a morphism in FRy, since it is
basepoint-preserving, and for k > 2 it is Freiman: all k-term sums in the
source have the same image because ¢ is constant on the non-basepoint el-
ement.) The coequalizer of id and c identifies (z,0) with x and is therefore
canonically isomorphic to the singleton based object ({z}, G, x). In symbols,

({z},G,2) = Coeq(id,c: ({z},G)" = ({=},G)T).

Second, an arbitrary based object is obtained from a +-object by forcing
the adjoined basepoint x to coincide with the chosen basepoint ag € A,
again by a finite colimit. Let (A, G, ag) be an object of ﬁ{k, and let 7 :
({ao}, G) — (A, G) denote the evident inclusion morphism in FRy. Passing
to (—)T yields a morphism

it ({ao},G)T — (A,G)7.

Let ¢ : ({ao}, G)* — ({ao}, G, ag) be the canonical morphism in FRy, that
collapses both (ap, 0) and % to ag (equivalently, the coequalizer map described
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above). Then (A, G, ap) is (canonically) the pushout of the span i and ¢:
(A, G ag) = Pushout((A, G)* A ({ao}, )" - ({ao}, G, ao)).

Intuitively, we start with (4,G)T, where % is the basepoint, and we glue
in the singleton based object so as to identify * with the element (ag,0) €
A x {0}; the result is precisely A with basepoint ay.

These two presentations show that every object of ﬁ%k can be built from
objects in the image of (—)T using finite colimits, and hence using both
finite limits and colimits (since we already know FRy, is finitely bicomplete).
Moreover, the additional morphisms in F/‘f{k (those not coming from FRy
via (—)T) are exactly the universal arrows attached to these finite (co)limit
constructions; thus, any functor out of E:l\{k that preserves finite (co)limits
is forced to take these morphisms to the corresponding universal arrows in
the target.

We now construct the extension F : F/’ﬁk — D. On the full subcategory
Im((—)") C FRy, we set

F((A,Q)%) =F(A,G),  F(f*):=F(f).

Next, we define F' on a singleton based object ({z}, G, z) by using the co-
equalizer presentation above:

F({z},G,z) := Coeq(F(id), F(c) : F({z}, @) = F({z},Q)).

Here F({z},G) = Op is initial, so there is a unique endomorphism; hence
ﬁ(id) = ﬁ(c) = idy,,, and the coequalizer is canonically Op. This is exactly
where the singleton hypothesis is used: it guarantees that every morphism
of the form “collapse to a singleton” becomes the unique arrow dictated by
initiality, so that the finite colimit prescriptions are compatible with the
relations in F/‘f{k

Finally, for a general based object (A, G, ag) we define ﬁ(A, G, ap) as the
pushout in D of the image of the pushout span above:

F(4,G, a0) = Pushout (F(A, G) d9 p(fag}, @) = F({ao}, G,a0) ).

Since both F({ag},G) and F({ao}, G, ao) are canonically Op, this pushout
is canonically isomorphic to F(A, G); however, we emphasize that we define
F (A, G, ap) by the universal property of the pushout. Doing so ensures that
F automatically carries the specified pushout squares in P/‘\Rk to pushout
squares in D, and similarly for the coequalizer presentations of singleton
based objects.

At this point, F is defined on a generating class of objects and on the
structural morphisms arising from the above coequalizers and pushouts. We
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then extend to all of F/‘Rk by requiring that F preserve the explicitly con-
structed finite limits and colimits of (i): for example, we set F(X x Y) to be
F(X) x F(Y) using the chosen binary product in D, define F(Eq(f,g)) to
be Eq(f (f), F (9)), and similarly for coproducts, coequalizers, pullbacks, and
pushouts. The only nontrivial verification is that this prescription is well-
defined on morphisms and compatible with composition; but this follows
from the uniqueness clauses in the universal properties of finite (co)limits,
together with the fact that the constructions in (i) were functorial in the
usual sense (any map into a limit or out of a colimit is determined by its
composites with the legs of the cone or cocone).

Uniqueness is of the same nature. Suppose 131,132 : F/‘l\%k — D preserve
finite limits and colimits and are equipped with natural isomorphisms ﬁj o
(=)t = F. Since every object of P/‘\Rk can be assembled from +-objects and
singleton based objects by finitely many (co)limit operations, preservation
of those operations forces ]51 and ﬁg to agree on objects and morphisms
up to a unique isomorphism, obtained recursively by transporting along the
universal properties. The resulting comparison isomorphisms are unique
because any two maps between (co)limits agreeing on the legs of the defining
cones/cocones are equal. Thus the extension exists and is unique up to
unique isomorphism.

Finally, we stress the “up to isomorphism” aspect: unless one works in a
setting where finite limits and colimits are chosen (so that preservation can
be demanded strictly), the best one can ask for in ordinary category theory
is uniqueness up to unique natural isomorphism. This is exactly the level of
strictness used throughout: the constructions in (i) provide concrete models
of limits and colimits in F/‘l?{k, but any other choice is canonically isomorphic,
and the extension F is determined canonically only in that same sense.

4 Worked examples and sanity checks.

We record a small collection of explicit computations which serve two pur-
poses. First, they confirm that the formal constructions of finite (co)limits
in I*:l\{k behave as one expects from the pointed-set intuition. Second, they
illustrate concretely how adjoining a basepoint repairs the most common
pathologies of FRy (notably, the nonexistence of equalizers coming from
empty underlying sets).

Translations are honest symmetries in the pointed setting. Let
A C G be a finite nonempty subset and let g € G. The translation 7, : A —
A+g, 14(a) = a+g, is always a Freiman k-isomorphism in FRy, (with inverse
T_g), and hence induces a basepoint-preserving isomorphism

7y 1 (A,G)T — (A+9,6)",  7/(a,0)=(a+g,0), 7, (x)=x
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The inverse is Tirg, and the identities Tg+ o Tirg =id and ng
on the nose.

This example is a useful reminder of the conceptual difference between
F/‘f{k and FRg. In the normalized category FR%, a translation 7, : (4,G) —
(A + g,@G) is a morphism only when g = 0, since morphisms must preserve
0. Thus FR% rigidifies additive sets by pinning the identity element, whereas

o 7';_ = id hold

F/‘f{k retains all translation symmetries by allowing the basepoint to be an
arbitrary element. In practice, this means that whenever a construction in
FRy is easiest to describe after translating the basepoint to 0, we may do so
without loss of information and then translate back.

Empty equalizers in FR; and their repair in ﬁ{k In FRg, equalizers
need not exist because the set-theoretic equalizer of two maps can be empty,
and our objects are required to be nonempty. The simplest instance already
occurs for two constant maps with distinct values. Take

A:={0,1} C Z, B:={0,1} C Z,

and define Freiman k-homomorphisms f, g : (A,Z) — (B,Z) by

For k > 2 both maps are Freiman: any additive relation in A is sent to an
additive relation in B because each map has constant image. However, the
set-theoretic equalizer {a € A : f(a) = g(a)} is empty, and there is therefore
no equalizer object in FRy.
Passing to the pointed completion resolves this immediately. Consider
the induced maps
Frgt (A Z)T = (B,2).

By definition f*(x) = gt (%) = %, so the equalizer in FRy, is never empty: it
contains at least the basepoint. In the present example, one checks that

Eq(f",9") = ({x}, Z&Z, %),

since f*(a,0) # g™ (a,0) for a € {0,1}, while fT(x) = g*(%x). Thus the
equalizer exists and is the singleton based object, i.e. the zero object of FRy.
A closely related (and more typical) pointed example is the following.
Let
(A,G,a9) := ({0,1},Z,0), (B,H,by) :=({0,1},Z,0),

and define basepoint-preserving Freiman k-homomorphisms f, g : (4, G, ag) —
(B, H,bo) by
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Then the equalizer in F/‘l\%k is precisely the singleton based subobject

Eq(f,9) = ({0}, Z,0),

since f and ¢ coincide exactly at the basepoint. This is the pointed analogue
of the familiar fact from based topology and based sets that equalizers may
collapse to the basepoint rather than disappearing.

An explicit pushout: the wedge/coproduct of based additive sets.
A basic pushout that appears repeatedly is the amalgamation along a single-
ton basepoint. Let (A, G, ap) and (B, H, by) be objects of FRy, and consider
the span from the singleton based object into each:

({*},0,%) — (A4,G, ap), ({*},0,%) — (B, H, bp),

where each map sends * to the relevant basepoint. (Here we suppress the
ambient group of the singleton, since any choice yields an isomorphic single-
ton based object.) The pushout of this span is, by definition, the coproduct
(A, G, a0) 11 (B, H,b) in FRy.

Concretely, it is convenient to present this coproduct in an ambient direct
sum group with basepoint at the origin. Define a based subset of G & H by

AV B := ((A—ag) x{0}) U ({0} x (B—by)) CG®H,  basepoint (0,0).
The canonical maps
ta: (A,G,a0) = (AV B, G® H, (0,0)), ta(a)=(a— ap,0),

LB (BaHabO) — (A\/B¢ G@Hv (070))7 LB(b) = (Oab_ bO)a

are Freiman k-homomorphisms and preserve basepoints. Moreover, given
any based object (C, K, cg) and morphisms ¢ : (A, G,a9) — (C, K, ¢p) and
Y : (B,H,by) — (C,K,cp), there is a unique morphism 0 : (AV B,G @
H,(0,0)) = (C, K, cp) with oty = ¢ and Qorp = 1), because 0 is forced on
the two distinguished summands and these summands intersect only in the
basepoint. This realizes (AV B,G & H, (0,0)) as the pushout, and hence as
the coproduct, of (A4, G, ag) and (B, H, by).

For a concrete instance, take A = {0,1} C Z with basepoint 0, and
B = {0,2} C Z with basepoint 0. Then

AV B = {(0,0),(1,0),(0,2)} CZ & Z,

with basepoint (0,0), and the coproduct injections are 1 — (1,0) and 2 —
(0,2).
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An explicit pullback: fiber products as equal-sum constraints. Pull-
backs in F/f{k admit an equally concrete description in elementary examples.
Let

(A,G,a0) := ({0,1,2},7Z,0), (C,K,cy) = ({0,2},7Z,0),

(B,H, bO) = ({07 1}7Z? 0)7
and define basepoint-preserving maps f : (4,G,a9) — (B, H,by) and g :
(C,K,co) — (B, H,by) by

f0)=0, f(1) =1, f(2) =0,  g(0)=0, g(2) =0.

(Again, for k > 2 these are Freiman k-homomorphisms by a direct inspection
of the finitely many additive relations in the source sets.) The pullback
P := A xp C has underlying set

P={(a.c) €AxC: f(a) = g(c)}.
Since ¢ is constant 0, this constraint reduces to f(a) = 0, so a € {0,2}. Thus
P ={(0,0),(2,0),(0,2),(2,2)} CZDZ, basepoint (0, 0),

with the evident projections to A and C. In particular, even when the
pullback condition cuts down the underlying set substantially, the basepoint
survives automatically, ensuring nonemptiness.

These examples capture the general pattern: once basepoints are built
into the objects and preserved by morphisms, the universal constructions
that would otherwise produce empty sets are forced instead to land on the
singleton based object. From the categorical perspective, this is precisely the
mechanism by which F/‘f{k becomes finitely complete and finitely cocomplete
while remaining close to the combinatorial content of Freiman homomor-
phisms.

5 Outlook: spans and cospans in FR;, quantitative
decorations, and universal ambient groups.
The availability of finite limits and finite colimits in ﬁk suggests that, be-
yond ordinary morphisms, it is natural to work with correspondences. Con-
cretely, we may form the bicategory of spans Span(FRy) whose 1-morphisms
from (A, G, ap) to (B, H,by) are diagrams
(A7 G7a0) <£ (S7L7 80) i> (B7H7 bO)
in F/‘f{k, with composition defined by pullback:

(S,p,q@) o (T,r,u) == (S xX(Bupy T, ™, 7).
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Since pullbacks exist and are nonempty (indeed contain the basepoint),
the usual coherence data for span composition is available exactly as in
any finitely complete category. Dually, we may form the bicategory of
cospans Cospan(f’f\{k) using pushouts. In practice, spans encode “multi-
valued Freiman maps” and cospans encode amalgamations (gluing along a
common based subobject). The pointed setting is particularly well-suited
for such constructions because the forced survival of the basepoint prevents
degeneracies that would otherwise require ad hoc exclusions.

From the combinatorial viewpoint, spans provide a convenient language
for many ubiquitous operations in additive combinatorics. For example, if
X C A x B is a graph-like subset encoding a relation between A and B (say,
a partial Freiman isomorphism, or a Freiman homomorphism defined on a
large subset), then X can often be promoted to a span

(A, G, ao) — (X, G H, (ao,bo)) — (B,H, bo),

after embedding X into an ambient direct sum group and choosing the evi-
dent basepoint. Composition of such relations is then governed by pullback,
which corresponds to the set-theoretic fiber product of relations. In this
manner, one can model the formal calculus of “changing coordinates” and
“passing to a common refinement” without leaving FRy.

Cospans, on the other hand, organize gluing constructions that resemble
wedge sums and identifications along a shared based subobject. If (C, K, ¢g)
is a common based subobject of (4, G, ap) and (B, H,by), then the pushout

(A7 G7 CL[)) H(C,K,Co) (B7 Ha bO)

is the canonical recipient of compatible maps out of A and B that agree on
C. This is a useful formalization of operations such as adjoining auxiliary
elements, merging two approximate models along a shared “core”, or building
larger configurations from smaller ones while controlling additive relations.
The fact that pushouts exist for arbitrary based morphisms in F/‘f{k makes
it plausible to study inductive constructions (in particular, those driven by
repeated amalgamation) purely categorically.

A further prospect is to impose a quantitative enrichment on ﬁ{k by dec-
orating objects and/or morphisms with additive-combinatorial parameters.
Typical invariants of a finite set A include the doubling constant

A+ A

o(A) : A

and the (unnormalized) additive energy
E(A) = ‘{(al,ag,ag,m) eA*: a1+ a2 =as +a4}|.

While these are not functorial in the strict sense on F/‘f{k (e.g. o can increase
under non-injective maps because the denominator shrinks), they behave
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functorially after one introduces appropriate “distortion data”. For instance,
a Freiman 2-homomorphism f : A — B canonically induces a well-defined
map N N
f:A+A— B+ B, f(a1+a2):f(a1)+f(a2),

and hence a surjection A+ A — f(A) + f(A); thus |f(A) + f(A)] < |A+ A
always holds. This inequality suggests studying morphisms together with
quantitative control of fibers of f and of fv, rather than attempting to make
o strictly monotone.

One reasonable way to formalize such control is to pass from an ordinary
category to a locally ordered or weighted category. For example, one may
attach to each morphism f : (A,G,a9) — (B, H,by) numerical parameters
such as

pi(f) = max [fH0),  ke(f) = max |f@),

bef(A) tef(A)+£(A)
and then record inequalities of the form

AL |A+ A
w1(f)’ ra(f)

Such data can be propagated along composition (with multiplicative bounds),
yielding a quantitative calculus in which qualitative categorical constructions
(pullbacks, pushouts, (co)equalizers) can be accompanied by explicit book-
keeping of combinatorial losses. In applications, one often tolerates bounded
losses (e.g. polylogarithmic or polynomial in o(A)); a weighted formalism is
a natural place to encode this systematically.

Spans and cospans are also well-adapted to quantitative refinements. A
span (A <— S — B) can be regarded as a mechanism for comparing A and B
through a common refinement S, and numerical invariants on S (doubling,
energy, or higher Gowers-type counts) can serve as witnesses of the strength
of the comparison. For example, if S maps to both A and B with controlled
fiber sizes, then estimates for o(S) can be transferred to estimates for o(A)
and o(B). Similarly, a cospan (A — P < B) can be used to construct
a joint model P for A and B; quantitative control of how A and B sit
inside P often underlies “modeling lemmas” in additive combinatorics. The
categorical language does not produce such bounds by itself, but it provides
a fixed scaffold on which quantitative hypotheses and conclusions can be
stated uniformly. -

A final direction concerns the interaction of FRy with universal ambient
group constructions. In Freiman theory one associates to an additive set A a
“universal” abelian group Uy (A) generated by (a copy of) A modulo the rela-
tions expressing all k-term additive relations holding in A. The defining prop-
erty is that any Freiman k-homomorphism f : A — H into an abelian group
H factors uniquely through a group homomorphism Uy(A) — H. In the

[F(A)] = [f(A) + F(A)] =
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pointed setting, it is natural to incorporate the basepoint by imposing that
it maps to the identity, i.e. to form Uy (A, ap) from the translated set A — ag
so that 0 is distinguished. Using the reflector R(A, G, ag) = (A —ag, G), one
can reduce many questions to the normalized situation and then translate
back, and one expects the resulting universal group assignment to be compat-
ible (up to canonical isomorphism) with this normalization /denormalization
procedure.

If such a universal ambient group functor is made explicit at the level
of P/‘f{k, then spans in ﬁ%k can be transported to spans of abelian groups,
where additional algebraic tools become available (kernels, cokernels, ranks,
torsion, and homological invariants). Conversely, algebraic constructions on
universal groups can sometimes be pulled back to ﬁ{k as invariants of based
additive sets. A basic test case is whether pushouts in FR; map to pushouts
(amalgamated sums) of universal groups, or at least admit comparison mor-
phisms that measure the failure of exact preservation. Understanding pre-
cisely how universal group adjunctions interact with finite (co)limits in F/‘f{k
appears to be a promising route toward a conceptual explanation of why
many “approximate group” arguments can be organized around a small set
of universal constructions.
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