SumProductAtlas 2.0: a proof-producing database
of sum—product pairs up to n < Nyax With
completeness in structural strips

Liz Lemma Future Detective

January 16, 2026

Abstract

We introduce SumProductAtlas 2.0, a public, reproducible, proof-
producing atlas of sum—product data for finite sets. For A C N we
study the pair (|JA + A|,|AA|), where A+ A = {a+b: a,b e A}
and AA = {ab : a,b € A}. Motivated by recent large-scale visual-
izations and conjectures on the geometry of attainable pairs, we treat
computation as a theorem: we release (i) a deterministic verifier with
independently checkable certificates, (i) enumerators based on explicit
structural descriptions for small sumset/product set, and (iii) a ver-
sioned database with provenance.

For each n < Np.x we certify all attainable pairs in the additive
strip |A + A| < 3n — 3 for integer sets, and we certify all attainable
pairs in the multiplicative strip |[AA| < 3n — 3 for sets of positive reals,
producing canonical witnesses in each case. In addition we provide
certified upper bounds for o, := min|4|—,, max{|A + A, |AA]|} for all
n < Npax together with witness sets and verification logs. The atlas
is designed for community extension via a submission-and-validation
protocol. We conclude with a short list of new conjectures suggested
by the verified data, stratified by domain (N versus R,) and robust to
normalization choices.

Table of Contents

1. 1. Introduction and goals: sum—product pairs, motivation from visual
phase diagrams, and what “proof-producing database” means.

2. 2. Notation and domains: SPPx(n) for X € {N,Z,Q4+,R.}; invari-
ances under translation /dilation; canonicalization conventions.

3. 3. Certificates and verification: formal input/output of Check; cer-
tificate format; independent re-checker; reproducibility guarantees and
threat model (how we avoid trusting a single implementation).

. 4. Structural enumeration in the additive strip: the Freiman-type con-
tainer families for |[A + A| < 3n — 3; canonical parameterization; enu-
meration algorithm EnumAdd(n); what is proved vs what is computer-
audited.

. 5. Structural enumeration in the multiplicative strip over R,: geometric-
progression models for |[AA| < 3n — 3; algebraic ratios via sparse-
polynomial constraints; enumeration algorithm EnumMul(n); certifica-
tion of algebraic computations.

. 6. The database: schema, stored artifacts (witness, certificate, prove-
nance, canonical form), compression and indexing by (n,i,j) and by
normalized coordinates; change-log and versioning.

. 7. Main completeness theorems and their computational audits: state-
ments, proof sketches, and audit summaries (counts, hashes, repro-
ducible run scripts).

. 8. Certified bounds on «,, and extremal witness tables: how witnesses
are generated; how certificates are produced; limitations (upper bounds
vs optimality).

. 9. Conjecture mining and ‘River of Ignorance’ benchmarks: derived
statistics (frontiers, gaps, candidate void inequalities), benchmark tasks
for generators, and a roadmap for n > Npax.

1 Introduction and goals

For a finite set A in a commutative semiring (typically an additive subgroup
of R together with the usual multiplication), two derived sets encode the
basic additive and multiplicative complexity of A, namely the sumset A+ A
and the product set AA. The classical sum—product phenomenon asserts that
a set cannot simultaneously exhibit very small additive doubling and very
small multiplicative doubling unless it has substantial algebraic structure. In
quantitative form one asks for lower bounds on max{|A+ A|, |AA|} in terms
of |A], and in structural form one seeks an explicit description of witnesses
that approach extremality.

A convenient way to organize this information is to record, for fixed n,
the collection of sum—product pairs

1A+ Al [44]) (JA]=n),

and to view these pairs as a discrete “phase diagram” in the (i, j)-plane. Even
for moderate n, plotting all realized pairs reveals a characteristic shape: a
dense interior region bounded by an outer envelope, together with sparse
“ridges” and “islands” corresponding to rigid structural families (near arith-
metic progressions, geometric-progression models, and hybrid constructions).
The lower envelope is particularly important: it governs the quantity

oy, := min max{|A + A, |AA|},
|Al=n

and it identifies candidate extremizers whose structure may persist as n

grows. Our aim is to make this diagram concrete, reproducible, and queryable

for all n up to a fixed cutoff Npax.

The present work introduces the SumProductAtlas 2.0, an open, ver-
sioned database of sum—product data together with mechanisms that make
each database claim independently verifiable. The database is not merely a
repository of numerically computed pairs; rather, it is intended to be proof-
producing in the following operational sense. For each stored witness A the
atlas includes, alongside the claimed pair (|A + A, |AA|), a certificate that
a separate checker can verify deterministically to reproduce these cardinal-
ities exactly. This philosophy is guided by a basic constraint: in the range
where exhaustive search is feasible and inverse theorems reduce the space of
candidates to explicit parameter families, we should not ask the reader to
trust a single implementation, a floating-point heuristic, or an opaque com-
putation. Instead we store verifiable artifacts and insist that any published
“completeness” statement be backed by auditable enumeration logs.

The atlas is built to support three complementary uses.

(i) Exact small-doubling atlases in explicit strips. The small-doubling
regimes |A + A| < 3n — 3 and |AA| < 3n — 3 are the first nontrivial regions

beyond the classical 3n — 4 threshold at which inverse theorems provide
strong, finitely parameterized structural descriptions. In these regimes it
becomes realistic to claim strip completeness: for a fixed n we can, in prin-
ciple, generate every witness in the relevant model families (modulo natural
symmetries), compute its sum—product pair, and thereby determine exactly
which pairs occur in the strip. The atlas is designed so that such claims are
explicitly flagged as computer-audited and are accompanied by reproducibil-
ity data (enumerator version, canonicalization conventions, and hashes of the
enumeration output). The mathematical input is an inverse description that
reduces the ambient infinite search space to finitely many parameter fami-
lies; the computational input is an exhaustive traversal of these families and
a deterministic verification of each realized pair.

(ii) Certified upper bounds for «,. Independently of any complete-
ness claim, the atlas records explicit witnesses A, giving certified values of
max{|A, + Ay|,|AnAn|}. This produces certified upper bounds on «,, for
each n < Npax. These witnesses can be mined for patterns (divisor-closed
sets, smooth-number sets, mixed progression models), and they can serve
as starting points for new constructions. The point here is not merely to
provide a list of numerical bounds, but to provide a persistent set of check-
able examples that can be used in subsequent proofs or in falsification-style
searches against conjectured lower bounds.

(iii) A falsifiable framework for structural conjectures. A recurring
difficulty in the sum—product literature is that conjectures about extremal
structure are easy to state but hard to falsify without reliable data beyond
very small n. By storing canonical witnesses and supporting queries over all
realized pairs, the atlas provides a controlled environment in which to test
structural hypotheses. For instance, one may ask whether all points on a
certain boundary component arise from a particular parametric family, or
whether certain “forbidden” pairs never occur in a given domain. Since each
atlas entry carries a certificate and provenance, such investigations become
falsifiable: a single certified counterexample suffices to disprove an overly
rigid conjecture, while the absence of counterexamples within a declared
complete strip has a clear computational meaning.

A central design decision is the separation of responsibilities among three
components.

Deterministic verification. We insist on a deterministic routine that,
given a witness description of A, computes the sets A + A and AA exactly
and produces a certificate sufficient for a second implementation to re-check
the result. This is straightforward for integer witnesses but remains essen-
tial for real witnesses, where algebraic encodings and certified comparisons

are required to avoid numerical ambiguity. The intended workflow is that
atlas entries can be re-verified without reference to the original enumerator,
and (conversely) enumerator outputs can be validated independently of the
enumerator codebase.

Enumerators constrained by inverse structure. Brute-force enumera-
tion of all n-element subsets of a large interval is infeasible well before n = 50.
We therefore restrict attention to regimes where the set of all relevant wit-
nesses is captured by explicit structural theorems (Freiman-type statements
additively, and geometric-progression containment multiplicatively over R.).
The enumerators do not guess; they traverse all admissible parameter in-
stances in these families, reduce each candidate to a canonical representative
to avoid duplicates, and submit it to the verifier. Any claim of equality be-
tween the set of produced pairs and the set of all pairs in a strip is thereby
reduced to the combination of (a) the cited inverse theorem and (b) the ex-
haustiveness of the parameter traversal, the latter being supported by audit
logs.

A versioned, tamper-evident data layer. Since the atlas is intended
as a community resource, it must support incremental contributions while
preserving the integrity of earlier results. We therefore treat the database
as a versioned object: entries are keyed by canonical witnesses, each en-
try includes metadata identifying the verifier version and enumeration run,
and the enumeration outputs are hashed so that independent auditors can
confirm that no witnesses were silently omitted or altered. In this setting,
“proof-producing” should be read as “proof-carrying data”: the mathematical
argument reduces correctness to a finite computation, and the computation
produces artifacts that can be re-checked and re-indexed as the code evolves.

Two further remarks clarify our scope.

First, we do not aim to resolve the asymptotic sum—product problem;
rather, we aim to provide a reliable finite atlas in a range where the bound-
ary between theory and computation is well understood. The cutoff Npax
is chosen so that exhaustive enumeration inside the relevant model families
is computationally expensive but feasible with careful engineering and au-
diting. The atlas should be viewed as an infrastructure layer: it supports
experimentation, suggests conjectures, and provides certified finite evidence
that can be incorporated into rigorous arguments.

Second, the choice of ambient domain matters. Over N and Z, additive
structure is rigid and exact enumeration in a small-sumset strip is meaning-
ful. Over R, multiplicative structure admits geometric-progression models
with algebraic ratios, and the small-product-set strip becomes the natural
counterpart. The atlas is therefore intrinsically multi-domain: it records
which pairs are realized in which domain, and it stores witnesses in a repre-

sentation suitable for deterministic checking in that domain.

In summary, the SumProductAtlas 2.0 is designed to make the finite
sum—product landscape up to Npyax explicit in a way that is both mathe-
matically grounded (via inverse theorems) and computationally trustworthy
(via deterministic verification and auditable enumeration). The remaining
sections formalize the notation, domains, and normalization conventions that
allow us to state these claims precisely and to store witnesses without re-
dundancy.

2 Notation and domains

We work throughout with finite sets in commutative semirings, and we em-
phasize from the outset that our objects are sets (no multiplicity). For a
finite set A in an ambient domain X we write |A| = n, and we form the
associated sumset and product set

A+A:={a+b: a,be A}, AA:={ab: a,be A}.
Their cardinalities will be denoted
|A+ A| =1, |AA| = j,

and we refer to (i,j) as the sum—product pair of A. For a fixed ambient
domain X and fixed n we record all realized pairs via

SPPx(n) = {(|[A+A|,|AA]): AC X, |A|=n]}.

When X = N we abbreviate SPP(n) := SPPy(n). We will frequently move
among the domains

X e {ZvNa Q+aR+}7

where Q4 denotes the positive rationals and R the positive reals. The
restriction to positive elements in the multiplicative domains is not cosmetic:
it eliminates sign ambiguities and permits geometric-progression models (and
hence algebraic encoding of witnesses) without additional bookkeeping.

Two elementary bounds will be used implicitly. For any torsion-free
additive setting (in particular for X C R) one has

2n—1§|A+A|§7WZ+D,

where the lower bound is realized by arithmetic progressions and the up-
per bound is realized by sets with all unordered pairwise sums distinct (for
instance, geometric progressions with large ratio). The same inequalities
hold for |AA| over X C R, with arithmetic progressions replaced by ge-
ometric progressions on the lower end. Our atlas records the full range of

realized pairs, but the completeness statements we make are confined to the
small-doubling “strips” discussed in the introduction.

A central organizational choice is to separate existence questions (which
pairs occur) from representation questions (how we store witnesses without
redundancy). This separation is enabled by invariances of (|A + A|,|AA|)
under simple transformations. On the additive side, for A C Z and t € Z we
have translation invariance

(A4t)+(A+t) = (A+A)+2t, hence |(A+t)+(A+t)| = |A+Al

On the multiplicative side, for any d > 0 in the relevant domain we have
dilation invariance

(dA)(dA) = d*(AA), hence |(dA)(dA)| = |AA]

and similarly (dA)+(dA) = d(A+A) gives |[dA+dA| = |A+ A|. Thus scaling
by a positive factor preserves both cardinalities, while translation preserves
the additive cardinality and is used primarily to normalize integer witnesses.
Over N we cannot translate arbitrarily without leaving the domain, but for
any finite A C N we may translate it into Z, apply a normalization, and then
translate back into N by adding a sufficiently large constant; since only the
cardinalities of A + A and AA matter, this domain management does not
affect which pairs occur.

It is therefore natural to store witnesses only up to these trivial symme-
tries. Concretely, for integer data we fix a canonicalization convention that
collapses all translates and integer dilates of a set to a single representative.
Given a nonempty A C Z we define Can(A) by the following steps:

1. translate by —min A so that the minimum element becomes 0;
2. divide by gcd(A) so that the resulting set has ged = 1;
3. sort the resulting set increasingly and regard it as an ordered n-tuple.

In the event of any remaining ambiguity (for example, if two different inputs
lead to the same normalized set), we break ties by lexicographic order of
the sorted tuple; in practice this simply means that we store the unique
normalized, sorted tuple. When we wish to store a witness as a subset of
N rather than Z, we optionally apply an additional shift by +1 so that the
minimum element is 1 instead of 0. This final shift is a presentational choice
only; it plays no role in the combinatorial invariances.

The purpose of Can(A) is twofold. First, it makes enumeration auditable:
an enumerator can list canonical representatives and hash them, and an au-
ditor can confirm that the list contains no duplicates arising from translation
or scaling. Second, it makes the database key stable: a witness is stored un-
der a canonical key, so that independent contributors cannot inadvertently

create distinct entries for the same configuration. The mathematical justifi-
cation for using canonical representatives is immediate from the invariances
above: for existence questions about pairs in SPPz(n) (or about the restric-
tion ¢ < 3n — 3 in SPP(n)) it suffices to consider canonical witnesses.

For rational or real witnesses we employ analogous normalizations, but
we distinguish carefully between arbitrary finite subsets of Ry and those
described by structured encodings. In the multiplicative-strip regime our
enumeration and storage are based on the geometric-progression contain-
ment forced by small multiplicative doubling. Thus, rather than storing an
arbitrary list of floating-point numbers, we store a witness in the form

A={rt, ... ;r"} C Ry, 0<e<---<e, <L,

where r > 1 is an algebraic real and {ej,...,e,} is a set of integers. The
normalizations in this model are the multiplicative analogues of translation
and dilation: scaling A by a constant corresponds to adding a constant to
the exponent set if we also adjust by a power of r, and replacing r by r9
corresponds to dividing all exponents by ¢ when possible. Accordingly, we
impose the exponent-side conditions

min{ey,...,e,} =0, ged(er, ... en) =1,

which mirror the integer convention min A = 0 and ged(A4) = 1. We then
represent the witness by the pair (r;eq,...,e,) together with a fixed alge-
braic specification of (minimal polynomial and an isolating interval), and
we regard two such descriptions as identical if they agree under these normal-
izations. This is the sense in which our multiplicative witnesses are ‘“canon-
ical”: we do not attempt to canonically represent all subsets of R, but we
do canonically represent all those produced by our structured enumeration
in the small-product strip.

We stress that SPP x(n) depends on the domain X in a genuine way. For
example, in N there are integrality constraints on products, and collisions
in AA may be forced by factorization structure; over R, one can choose
algebraic ratios that create additive collisions inside a geometric progression
in ways that have no integer analogue. For this reason we keep the ambient
domain explicit in the notation and we state completeness theorems domain-
by-domain: the additive strip is treated over N (where inverse theorems yield
explicit integer model families), while the multiplicative strip is treated over
R4 (where containment in a short geometric progression yields a tractable
search space of algebraic ratios).

Finally, we record the extremal quantity that motivates much of the atlas:

ap = min max{|A+ 4], [AA|}.
ACN, |Al=n
The database is not designed to certify that a stored witness attains au;
rather, it is designed so that any stored witness A,, provides an upper bound

apn < max{|A, + An|, |AnAn|}, and the supporting data can be checked in-
dependently. The notions introduced in this section—the domain-dependent
phase diagram SPP x(n), the invariances under translation and dilation, and
the canonicalization map Can(A) (together with its geometric-progression
analogue in Ry)—are the basic ingredients that make such storage and
querying meaningful at scale.

In the next section we formalize the verifier interface and the certifi-
cate objects that allow each stored claim to be re-checked deterministically,
independently of the enumerators and independently of the particular im-
plementation used to construct the atlas.

3 Certificates and verification

The atlas is intended to be usable without trusting the particular codebase
that produced it. To that end we separate the generation of candidate wit-
nesses (which may be heuristic, distributed, or domain-specific) from the
verification of any claimed sum—product pair. The verification layer consists
of a deterministic routine Check, together with a certificate object Cert(A)
that contains enough information for an independent implementation to re-
check the claim.

The verifier interface

The verifier is specified as a pure function on structured inputs. In its sim-
plest integer form the input is a finite set A C Z (represented by a list of
integers with duplicates allowed at the transport level but ignored at the
mathematical level), and the output is a triple

Check(A) = (i,j,Cert(A)), where i=]|A+A], j=|AAl.

We require that Check be deterministic and total on all supported inputs:
it must either return the triple above or return a structured error indicating
that the encoding is invalid (e.g. non-integral data in an integer mode).
In particular, there is no randomness, no floating-point arithmetic, and no
dependence on external state.

For A C Q4 we treat the input as a list of reduced fractions and compute
A+ A and AA inside Q using exact rational arithmetic. For A C R, in the
multiplicative-strip regime we use a structured encoding: a witness is given
as

A={re, ... reng 0<e < - <ep,

together with an algebraic specification of r (a squarefree integer polynomial
p € Z[x] with p(r) = 0 and an isolating interval (a,b) C Q containing
and no other real root of p). In this mode the verifier treats all elements as
algebraic numbers in the number field Q(r), and again the output is a triple
(4,7, Cert(A)) with exact cardinalities.

What a certificate contains

A certificate is not merely the list A itself; it is a reproducible transcript
of the computation that allows an independent checker to confirm the out-
put without relying on any hidden implementation choices. Concretely, a
certificate contains at least the following components.

1. Witness payload. An unambiguous encoding of A:

o for integer and rational inputs, the sorted list of distinct elements;

e for real inputs in geometric-progression form, the polynomial p,
isolating interval (a,b) for r, and the exponent list (eq,...,e,).

2. Normalization metadata. The canonical key under which the wit-
ness is stored (e.g. Can(A) in the integer domain, or the normalized
exponent tuple with mine; = 0 and ged(e;) = 1 in the GP model).
This is used for database integrity and deduplication, but also as a
consistency check that the stored entry is stable under the intended
invariances.

3. Derived-set commitments. A commitment to the computed sets
A+ A and AA. When the derived sets are small enough, the certifi-
cate may include their explicitly sorted lists. When they are larger, we
store a chunked hash commitment: the sorted list is split into fixed-size
blocks, each block is hashed, and a top-level hash commits to the or-
dered list of block hashes. This yields a tamper-evident representation
while keeping the certificate size manageable.

4. Cardinality claims. The integers ¢ and j claimed to equal |A + A
and |AA|, together with the obvious consistency checks (e.g. 2n — 1 <
i,7 <n(n+1)/2 in torsion-free settings).

5. Verifier transcript. A minimal description of the deterministic steps
that were executed, sufficient to ensure that a re-checker reconstructs
the same intermediate objects. At the level of abstraction relevant here,
this consists of (a) the sorting order used on the ambient domain, (b)
the canonical encoding used for hashing elements of A + A and AA,
and (c) the exact arithmetic backend (integers, reduced rationals, or
algebraic numbers with certified comparisons).

We emphasize that the certificate does not ask the reader to trust a
hash as a substitute for correctness. The hash commitments serve to de-
tect tampering and to permit efficient storage; correctness is established by
recomputation of the derived sets (or, when the certificate includes explicit
derived lists, by recomputation and equality testing against those lists).

10

Independent re-checking

We specify an independent routine ReCheck whose only purpose is to validate
certificates. Its contract is:

ReCheck(Cert(A)) = accept <= the certificate implies i = |A+A| and j = |AA|.

Operationally, ReCheck parses the witness payload, reconstructs the domain
elements exactly, recomputes A+ A and AA using the deterministic ordering
and encoding rules declared in the transcript, and confirms that the recom-
puted commitments match those stored in the certificate (either by direct list
equality or by verifying the hash tree). It then checks that the recomputed
cardinalities equal the claimed (3, j).

In the algebraic-real mode, the only additional issue is comparison and
deduplication. Two algebraic numbers may be equal or ordered in a way
that is not evident from floating approximations, and the entire enterprise
fails if deduplication is done approximately. Accordingly, ReCheck requires
certified comparisons: given two algebraic numbers represented in Q(r), we
decide equality and ordering by exact field operations together with root
isolation (or, equivalently, by refining isolating intervals until disjointness is
certified). This ensures that the set operations defining A + A and AA are
performed in a mathematically meaningful way.

Reproducibility guarantees

The atlas is versioned, and each entry stores: (i) the canonical key, (ii) the
verifier version identifier, and (iii) a content hash of the certificate object. Re-
producibility is then understood in the following concrete sense: any party
can download the certificate, run an independently written ReCheck, and
obtain the same accept/reject outcome. The determinism requirement elim-
inates the common failure modes of scientific computation (random seeds,
platform-dependent floating point, and nondeterministic iteration orders).

We also enforce deterministic ordering conventions at the serialization
layer. For example, integer sets are always stored as increasing tuples; ratio-
nal numbers are stored in reduced form with positive denominators; algebraic
numbers are stored by a fixed choice of primitive element (the designated r)
and by a fixed normal form for elements of Q(r) (e.g. reduced coordinates in
the power basis modulo the minimal polynomial). These conventions ensure
that two independent producers do not obtain incompatible encodings for
the same mathematical object.

Threat model and non-goals

Our primary threat model is untrusted generation and implementation di-
versity. Contributors may submit incorrect witnesses (accidentally or ma-
liciously), enumerators may be buggy or incomplete, and a single verifier

11

implementation may contain subtle errors. The certificate layer is designed
to make such failures detectable: a malicious or incorrect submission must
pass ReCheck, which can be implemented independently. We therefore avoid
any feature that would force trust in the producer, such as floating-point
comparisons, undocumented heuristics, or opaque binary formats.

We do not attempt to protect against adversaries who can compromise
the distribution channel for both certificates and re-checkers, nor do we at-
tempt to provide cryptographic proofs in the sense of succinct arguments.
The certificates are intended to be straightforward, mechanically checkable
transcripts whose verification cost is commensurate with recomputing A+ A
and AA for the relevant n < Npy.x. This is appropriate for our scale: the at-
las is a finite, publicly auditable dataset rather than an indefinitely growing
ledger.

With these verification and certification conventions in place, we may
treat any accepted atlas entry as a mathematically valid witness for its
recorded sum—product pair, independently of how that witness was found.
In the subsequent sections we exploit this separation: the structural theo-
rems restrict the search space in the small-doubling strips, the enumerators
exhaust that space up to canonicalization, and the verifier—certificate layer
turns the resulting computational claims into independently checkable math-
ematical data.

4 Structural enumeration in the additive strip

Fix n with 3 < n < Npax. In this section we explain the mechanism behind
EnumAdd(n), the enumerator responsible for the additive-strip claim, i.e. the
regime

|A| = n, |A+ Al <3n—3, ACN.

The goal of EnumAdd(n) is not to search arbitrarily through (i]), but to ex-
haust, up to canonicalization, the finite set of structural possibilities forced
by small doubling. The mathematical input is a Freiman-type inverse the-
orem in dimension one (recorded abstractly as Lemma 2), which places
every such A inside an explicitly describable container family. The enu-
merator ranges over those containers and the relevant parameters, produces
canonical representatives, and passes them to Check to obtain certified pairs

(1A + Al [AA]).

Freiman-type container families at the 3n — 3 threshold

We work in the torsion-free integer setting, so small doubling forces one-
dimensional structure. Concretely, Lemma 2 asserts that if A C Z has
|A] =n and |A+ A| < 3n — 3, then A lies in a finite union of model families
admitting an explicit parameterization. For the purposes of enumeration

12

we treat the theorem as providing a list of containers C' C Z of bounded
complexity and bounded size (on the order of 2n), together with constraints
that ensure A C C and |A| = n.

Operationally, the relevant containers are all of “progression-like” type.
The dominant family is containment in a short arithmetic progression,

AcP={z,x+d,...,z+ Ld}, L <2n-—2,

with d > 1, and with additional constraints on how many points of P are
omitted. At the 3n — 3 level, further families occur in which A is the union
of two short progressions with the same common difference (equivalently,
a progression with a single long gap), or a small list of explicitly bounded
exceptional configurations. We do not need to reproduce the full classifica-
tion here; what matters for the construction is that the theorem reduces the
ambient infinite search to a finite search over parameter tuples whose ranges
depend only on n.

Two features of this reduction are critical for computation. First, the
containers are of size O(n), so subsets can be handled by bitmask-style rep-
resentations when needed. Second, the parameterization isolates a small
number of integer degrees of freedom (lengths of progressions, positions of
gaps, and similar), so that enumeration can be performed systematically and
audited.

Canonical parameterization and removal of trivial symmetries

Enumeration must avoid producing the same witness many times through
translation, dilation, or through redundant parameter choices. We therefore
build canonicalization into the parameterization stage.

On the witness side we ultimately store A in the integer canonical form
Can(A): translate so min A = 0, divide by ged(A) to obtain ged 1, and then
(when working in N) apply the fixed positivity convention. On the container
side we impose compatible normalizations. For an arithmetic progression
container we may take x = 0 and d = 1 without loss of generality for
existence questions in Z, since dilation by d and translation by x preserve
|A + A| and do not affect the subset pattern inside the progression. Thus,
in the normalized model we reduce to

Ac{o,1,...,L}, L<2n-2,

with |A] = n, and we enumerate subsets by their increasing index sets E =
{e1 < -+~ < ep} € {0,...,L}. The resulting A = {e1,...,e,} is already
translated; the remaining normalization step is the gcd reduction, which we
perform after subset selection. (When ged(A) > 1, the witness is discarded in
normalized enumeration since it would canonicalize to a smaller set already
encountered.)

13

For two-progression containers (or progression-with-gap containers) we
similarly enforce a unique encoding, e.g. by ordering the blocks by their
minimum element, fixing the common difference 1 in the normalized world,
and recording the gap position and block lengths as a tuple with a prescribed
inequality convention. The essential requirement is that each model instance
corresponds to exactly one container in normalized coordinates, so that audit
logs can be keyed by parameter tuples.

Enumeration algorithm EnumAdd(n)

We describe EnumAdd(n) at the level necessary to justify the completeness
statement in Theorem B.

1. Generate normalized containers. Using the structural theorem, we
generate the finite list of container types relevant for |A + A| < 3n — 3,
and for each type we iterate over all admissible parameter tuples (e.g.
L < 2n — 2 for progression length; allowable gap lengths/positions for
two-block models; and the finite exceptional list). Each container is
realized concretely as a subset C' C {0,1,..., M} for some M = O(n).

2. Enumerate n-subsets inside containers. For each container C,
we enumerate all n-element subsets A C C satisfying the side condi-
tions attached to the container family (for example, conditions that
ensure the Freiman description is not redundant, or that certain end-
points are included). This enumeration is done in a deterministic order
(lexicographic in the exponent/index list) so that the output list is re-
producible and admits a stable hash.

3. Canonicalize and deduplicate. Each candidate A is mapped to
Can(A), and we discard any candidate whose canonical form has al-
ready been produced. This step is essential because distinct containers
(or distinct parameter tuples within a family) can produce the same A;
the atlas is indexed by canonical witnesses, not by model provenance.

4. Compute and record sum—product data. For each new canonical
witness we call Check(A) to obtain (i, j, Cert(A)) with i = |A+ A| and
j = |AA|. We retain only those with i < 3n — 3 (this is automatic for
correctly generated model instances, but we enforce it as a consistency
check). We then register the realized pair (i, j) and, for atlas purposes,
store one witness and certificate for each pair.

The output of EnumAdd(n) is thus a list of canonical integer witnesses,

together with enough provenance information to audit the enumeration: con-
tainer type, parameter tuple, and the canonical key Can(A).

14

What is proved and what is computer-audited

There are two logically distinct components behind the additive-strip com-
pleteness claim.

Mathematical reduction (proved, conditional only on cited the-
orems). Assuming Lemma 2 (the Freiman-type container theorem), we
obtain that every A C Z with |A| = n and |A 4+ A| < 3n — 3 lies in one of
the finitely parameterized model families. Together with Lemma 1 (invari-
ance under translation and dilation), this justifies the normalized container
enumeration: it suffices to enumerate subsets of normalized containers and
then canonicalize.

Within this framework we also prove the soundness of EnumAdd(n): ev-
ery witness it outputs indeed has |A| = n and satisfies |[A + A|] < 3n — 3,
because each candidate arises from a container certified by the structural
theorem and is filtered by an explicit recomputation of |A + A| via Check.

Exhaustiveness for specific n (computer-audited). The statement
that the atlas contains ezactly all pairs (i,j) € SPPn(n) with ¢ < 3n — 3
is, at the end of the day, an exhaustive-finitary claim for each n < Npax.
Even given the structural theorem, there remains a large but finite enu-
meration over parameter tuples and subsets, and correctness depends on
the absence of implementation gaps (missed parameter ranges, duplicate-
elimination bugs, and similar). We therefore treat completeness in the strip
as a computer-audited result: the released artifacts include (i) deterministic
audit logs listing all enumerated canonical keys Can(A), (ii) hashes commit-
ting to these logs, and (iii) cross-check scripts verifying internal consistency
(e.g. that every stored pair in the strip has at least one witness, and every
witness satisfies the strip bound).

In particular, the equivalence

{(JA+A|,|AA]) : ACN, |A| =n, |[A+A| <3n-3} = {(|A+A4]|,|AA]) : A € W,aa(n)}

is asserted as an audited computational conclusion, not as a purely handwrit-
ten derivation. The role of the mathematics is to make this audit feasible:
without the container theorem, the left-hand side would not be effectively
enumerable.

Finally, we stress that the additive-strip computation is designed to be in-
dependently reproducible. Given the published container specification (fam-
ily list and parameter ranges), an independent implementation can regen-
erate Wyaq(n), apply Check or any independent verifier, and compare the
resulting canonical keys and realized pairs against the atlas and its audit
hashes. This is the sense in which the additive-strip portion of the atlas is
meant to be a verifiable mathematical dataset rather than an opaque table
of numbers.

15

5 Structural enumeration in the multiplicative strip
over R,

Fix n with 3 <n < Npax. In this section we explain the mechanism behind
EnumMul(n), the enumerator responsible for the multiplicative-strip claim
over R, i.e. the regime

|Al=n, |AA|<3n-3, ACR,.

Unlike the additive strip, where we insist on integer completeness, here we de-
liberately work over R in order to access geometric-progression models and
to avoid integrality constraints that would artificially restrict the set of real-
izable pairs. The structural input is the multiplicative small-doubling inverse
statement recorded abstractly as Lemma 3, which places every such A in-
side a short geometric progression after scaling. The enumerator ranges over
the resulting finite exponent patterns and, when necessary, over a finite set
of algebraic ratios forced by additive collisions among geometric-progression
elements.

Geometric-progression containers and exponent models

By Lemma 3, if A C Ry has |A| =n and |AA| < 3n — 3, then after scaling
by a positive constant we may assume that

Ac{l,rr ...t}

for some r > 0 and some L < 2n — 2. Thus, in normalized coordinates we
represent a candidate witness by a pair (E,r) where

E={e1<---<ey}C{0,1,...,L}, AE,r) = {re,...,r}.

Two immediate observations make this model computationally effective. First,
the length bound L < 2n — 2 makes the search over exponent patterns E

finite and explicitly bounded in terms of n. Second, for r # 1 the multi-

plicative structure is essentially combinatorial: products in A(E,r)A(E,r)

correspond to exponent sums in E + F, and positivity prevents accidental

equalities coming from signs. Concretely, for any fixed E and any fixed r > 0

with r # 1,

|A(E,r)A(E,r)| = |E + E|.

In particular, the strip constraint |AA| < 3n — 3 becomes the purely discrete
condition |E 4 E| < 3n — 3, which we can test without any real-arithmetic.

The role of the ratio r is therefore not to control |AA| (which is deter-
mined by E), but to control |A + A|. For generic r > 1, the sums r® + r%
are pairwise distinct for 1 <14 < j < n, hence |A+ A| =n(n+1)/2. Smaller
values of |A 4+ A| can occur only when there are nontrivial collisions among
such sums, and these collisions force r to be algebraic of explicitly bounded
complexity.

16

Sparse-polynomial constraints from sum collisions

Suppose that for fixed E the witness A(F,r) has a strict sum collision, i.e.
there exist (not necessarily distinct) indices with

ro 4t = ¢ 4,

where {a,b} # {c,d} and a,b,c,d € E. After dividing by the smallest
occurring power of r we reduce to an equation of the form

1+r) =k 44t

with integers 0 < k < ¢ < j < L. Rearranging yields a sparse polynomial
constraint ‘
p(r)=ri —rf —rF+1=0.

This is the basic mechanism behind Lemma 3: additive non-genericity inside
a geometric progression forces the ratio to be a root of a {0, £1}-polynomial
of degree at most L < 2n — 2. For the purposes of exhaustive enumeration
in the multiplicative strip, two finiteness consequences are decisive.

e For a fixed bound L, there are only finitely many exponent quadruples
(k,¢,7) (and hence finitely many such sparse polynomials) to consider.

e For any such polynomial p, there are only finitely many positive real
roots. Each root can be uniquely specified for verification by a minimal
polynomial (a factor of p) together with an isolating interval.

We emphasize that we do not attempt to classify all algebraic relations
among GP sums. Rather, we exploit the contrapositive: if |A + A| is not
maximal, then at least one collision exists, hence r satisfies at least one sparse
polynomial constraint of bounded degree and bounded sparsity. Enumerat-
ing these constraints is therefore sufficient to capture all non-generic sumset
sizes that can occur within the multiplicative strip.

In implementation we also impose normalization conventions to avoid
duplications coming from trivial transformations of the GP model. We fix
r > 1 (replacing r by 1/r reverses exponent order but does not change
the induced pair (|4 + A|,|AA|)), we shift exponents so that min F = 0
(equivalently 1 € A after scaling), and we require ged(E) = 1 to exclude
redundant powering (if ged(E) = g > 1 then A(E,r) = A(E/g,79) and the
latter is the canonical representation).

Enumeration algorithm EnumMul(n)

We now describe EnumMul(n) at the level needed to justify the multiplicative-
strip completeness statement in Theorem C. The algorithm is finite because
both the exponent range and the family of sparse constraints are bounded
explicitly in terms of n.

17

1. Enumerate exponent patterns. For each L € {0,1,...,2n — 2} we
enumerate all n-element subsets £ C {0,1,..., L} with min £ = 0 and
ged(E) = 1. For each such E we compute jg := |E + E|. We keep
only those with jr < 3n — 3, since these are the only ones capable of
producing witnesses in the multiplicative strip.

2. Generate candidate ratios. For each retained E we assemble a
finite set of candidate ratios R(F), consisting of:

e one generic placeholder ratio rgen (used to realize the maximal
sumset value |[A + A| = n(n +1)/2 for that E), and

e all positive real algebraic numbers » > 1 that arise as roots of
sparse polynomials 7/ — 7 — 7% + 1 with 0 < k < ¢ < j < L
and with exponent indices consistent with E in the sense that
the corresponding collision can occur among elements of A(FE,r).

Concretely, we enumerate the relevant triples (k, ¢, j), form the polyno-
mial p(z) = 27 — zf — 2% + 1, isolate its real roots > 1, and record each
such root by a minimal polynomial together with an isolating interval.

3. Verify and record pairs. For each (E,r) € |Jp{E} X R(E) we form
the witness A(F,r) and call Check to compute (i,7) together with
Cert(A). By construction j should equal jg; we treat any discrepancy
as an error. We retain only those with 7 < 3n — 3 (again, this should
be automatic once E passes the filter, but we enforce it as a consis-
tency check). For atlas purposes we store one certified witness for each
realized pair (i, 7).

4. Canonicalize and deduplicate. Distinct descriptions can lead to
the same realized witness data, especially when multiple sparse con-
straints define the same algebraic ratio or when a collision constraint
is redundant for a given E. We therefore assign a canonical key to
each real witness: the sorted exponent list F, together with a canoni-
cal algebraic encoding of r (primitive minimal polynomial with integer
coefficients, a specified root index, and a rational isolating interval),
and we deduplicate by this key.

The output of EnumMul(n) is thus a finite list Wi,,1(n) of canonical real
witnesses in geometric-progression form, each accompanied by provenance
metadata (the exponent pattern, the defining sparse polynomial(s) used to
discover the ratio, and hash references to the enumeration run) and by a
deterministic certificate from Check.

Certification of algebraic computations

Because the witnesses live in Ry and may involve algebraic ratios, certifica-
tion must address two distinct issues: exact arithmetic on algebraic numbers,

18

and exact deduplication of sums and products.

Following Lemma 4, we encode r by a minimal polynomial m,(x) € Z[z]
together with an isolating interval I, C @Q that contains exactly one real
root of m, and is contained in (1,00). The witness itself is encoded as the
exponent list £ = {ejy,...,e,}, so that A = {r ... ,r°*}. The verifier
Check then performs the following operations deterministically and in a re-
checkable manner: compute algebraic representations of r¢ for each e € E
(as elements of Q(r)), enumerate all n(n + 1)/2 sums and products, and
deduplicate them by certified equality testing. Equality and ordering com-
parisons among algebraic numbers are certified via standard exact methods
(e.g. squarefree factorization, isolating intervals refined by Sturm sequences),
and the certificate includes enough data to reproduce each deduplication de-
cision.

In particular, Cert(A) contains (i) the algebraic specification of r and the
exponent list E, (ii) hashed encodings of the deduplicated lists representing
A+ A and AA, (iii) the resulting counts (,7), and (iv) a transcript of the
comparison steps used to certify that two algebraic expressions are equal
or unequal. An independent checker ReCheck can therefore reconstruct the
same deduplicated sets and confirm that the published values satisfy i =
|A+ A| and j = |AA|.

Finally, as in the additive strip, the claim that the atlas contains ezactly
all pairs in the multiplicative strip for each n < Ny is treated as computer-
audited: the released artifacts include deterministic logs of all enumerated
exponent patterns and ratio encodings (with stable canonical keys), together
with hashes that commit to the full enumeration output. The mathematics
ensures finiteness and provides the sparse-polynomial mechanism that makes
enumeration feasible; the audit logs ensure that the finite search has in fact
been carried out exhaustively and reproducibly.

6 The database: schema, stored artifacts, indexing,
and versioning

We package the atlas as a versioned database whose primary purpose is to
make each recorded sum—product pair reproducible from first principles: a
user should be able to retrieve a witness A, re-run ReCheck on the stored
certificate, and recover the asserted pair (|A + A|,|AA|) without appealing
to any unpublished computation. Consequently, our unit of storage is not
merely the pair (n,i,j), but an atlas entry containing (a) a canonical wit-
ness description, (b) a machine-checkable certificate, and (c¢) provenance and
audit metadata linking the entry to a specific enumerator run and verifier
version.

19

Entry schema and canonical identifiers
Each entry is conceptually a tuple
Entry = (n, X, 1, 7, wit, cert, meta),

where X € {N,Z,Q4,R.} is the ambient domain, |A| = n, (¢,5) = (|[A +
Al,|AA]), wit is a domain-appropriate witness encoding of A, cert = Cert(A)
is the certificate produced by Check, and meta collects all remaining non-
mathematical information.

To ensure stable deduplication across runs and across contributions, we
assign each entry a canonical key and derive from it a content hash used as an
immutable identifier. For integer-domain witnesses (X C Z) the canonical
key is Can(A) in the sense fixed earlier (translate to min A = 0 and divide
by ged(A), with deterministic tie-breaking). For multiplicative-strip real
witnesses (X = R in geometric-progression form) we store a canonical key
of the form

Keyg, (4) = (E, my(z), I, root_index),

where E = {e; < --- < e, } is the exponent set with min £ = 0 and gcd(E) =
1, and r is specified by a primitive squarefree minimal polynomial m, € Z[z]
together with a rational isolating interval I, C (1, 00) containing exactly one
real root; the additional root index fixes the intended root if m, has multiple
real roots in (1,00) after interval refinement.

We emphasize that the canonical key is chosen to be independent of
auxiliary discovery data (e.g. which sparse polynomial produced 7). Such
auxiliary data are recorded in meta, but the key depends only on the witness
itself. We then define an entry identifier

ID := SHA256 (Serialize(Key)),

so that identical witnesses (under canonicalization) always receive the same
identifier, and any change in encoding is detectable. The database enforces
the uniqueness constraint that, for fixed (n, 1, j, X), at most one active entry
is designated as the atlas representative; if multiple witnesses realize the
same pair, only one is selected as representative, but the others may be
stored as non-representative aliases keyed by their own ID.

Witness payloads
We store witnesses in a compact, exact format tailored to the ambient do-

main.

Integer witnesses. For A C N or A C Z, the payload is the sorted list
(a1 < --+ < ayp) of the canonical representative Can(A), encoded by delta-
compression:

(a1, ag —ay, ..., ap — ap—_1),

20

with variable-length integers. This format is lossless, stable under re-serialization,
and efficiently supports reconstruction, hashing, and sanity checks (mono-
tonicity, gcd = 1, min = 0). When the atlas additionally stores a positive
shift (e.g. to place A C N), this shift is treated as derived metadata and is
not part of the canonical witness key.

R, geometric-progression witnesses. For A C Ry represented as A =
{rer,...,r¢}, the witness payload consists of (i) the exponent list E and
(ii) the algebraic specification of r described above. We do not store float-
ing approximations of the elements of A as authoritative data; numerical
approximations may be included for convenience, but the certificate and all
re-checking logic are based on exact algebraic-number computations in Q(r).

Certificates as first-class stored artifacts

A certificate Cert(A) is stored as an immutable object, separate from the
witness payload, because it can be substantially larger. Its role is to allow
an independent checker to reproduce |A+ A| and |AA| exactly, including the
deduplication decisions.

In the integer setting, the certificate contains enough information to re-
construct the enumerated multisets

{ap—l-aq:lgpﬁqgn}, {apaq31§p§QSn}a

and to verify the deduplicated cardinalities. In practice we store (a) the
witness list, (b) the computed values (i, 7), and (c) a deterministic digest of
the deduplicated sumset and product set (e.g. a sorted list for small sizes,
or a Merkle-tree commitment of a sorted sequence for larger sizes). The re-
checker recomputes the full sets and confirms that their digests match the
committed digests.

In the algebraic-real setting, the certificate additionally contains a tran-
script sufficient to certify comparisons of algebraic numbers used in sorting
and deduplication (e.g. isolating interval refinements and the decisions they
justify). We separate the certificate into a compact header (witness specifica-
tion, (7, 7), and global digests) and a comparison log whose content-addressed
chunks can be streamed during verification. This allows re-checking to be
performed with bounded memory while remaining fully deterministic.

Provenance metadata and audit linkage

The field meta is not logically necessary for correctness, but it is necessary
for accountability and reproducibility of the completeness claims. For each
entry we store:

21

e the producing routine (EnumAdd or EnumMul) and its parameter record
(e.g. m, strip bound, and any internal pruning settings that are logically
redundant but operationally relevant);

e the exact verifier identity (semantic version and source commit hash)
that produced Cert(A);

e the enumerator identity (semantic version and source commit hash)
and a run identifier;

e timestamps and the submitter/source label (human contributor, auto-
mated pipeline, or imported legacy dataset);

e optional discovery information, such as the sparse polynomial(s) that
led to a candidate ratio r in the Ry setting.

Most importantly, each enumerator run publishes an audit manifest listing
(in canonical order) the keys of all candidates enumerated before filtering
by realized pairs, together with hashes committing to that list. Individual
entries link back to the manifest via run identifiers and hash references, so
that a reader can verify that an entry was not produced by ad hoc search
but by the declared exhaustive procedure.

Indexing, compression, and normalized-coordinate views

The atlas is indexed primarily by the triple (n,,7), since this is the natu-
ral coordinate system for SPPx(n). Concretely, we maintain per-n indices
mapping each realized pair (i, j) to the representative entry identifier, with
secondary indices mapping (n, i) to all realized j (and vice versa) for efficient
strip queries.

For cross-n analysis we also store derived normalized coordinates as exact
rationals. The database includes, for each entry, the values

_ A+ A _ |A4]

ky(A) == pa— kx(A) = —

together with optional alternative normalizations (e.g. division by n—1) used
in plotting or heuristic searches. These derived coordinates are indexed to
support range queries such as “all witnesses with x4 € [1.7,1.9] and Ky €
[1.8,2.0]” independently of n, while retaining (n,,j) as the authoritative
exact record.

All large objects (certificates, audit manifests, and optionally large wit-
ness lists) are stored in a content-addressed object store and compressed
(e.g. using a deterministic compressor configuration). The main database
file stores only small fixed-size records and hash pointers to objects. This
design yields two benefits: (i) identical objects are deduplicated automati-
cally across releases, and (ii) the integrity of each entry is reducible to hash
verification.

22

Change-log policy and release versioning

We treat each atlas release as an immutable snapshot identified by a top-level
manifest hash. A release consists of (a) a manifest enumerating all active
representative entries, (b) the full object store addressed by hash, and (c)
the source identities (commit hashes) of the verifier and enumerators used to
produce the snapshot. The manifest includes, for each active representative
pair (n,1,j, X), the corresponding entry identifier ID, so that completeness
statements can be phrased as comparisons between a mathematically defined
set of pairs and the manifest content.

Corrections are handled by explicit supersession: if an error is found in
an entry (or in a verifier version), the entry is not silently modified. Instead
we (i) deprecate the entry by marking it inactive in the next release, (ii) add
a replacement entry with its own identifier and certificate, and (iii) record
a change-log record explaining the reason for supersession and the affected
release range. This preserves the ability to reproduce past results exactly
while still converging to a correct atlas.

Finally, we impose a stability requirement on canonicalization and seri-
alization: within a major version, the canonical key computation and the
byte-level serialization used for hashing are fixed. Any change that would
alter ID values for previously stored witnesses triggers a major-version in-
crement, accompanied by a migration document that maps old identifiers to
new ones via explicit key equivalences. This policy ensures that database
citations and external audit scripts remain valid across minor releases while
still allowing principled evolution of the infrastructure.

7 Main completeness theorems and their computa-
tional audits

We now state the completeness claims that the atlas is intended to certify,
and we describe precisely what is (and is not) meant by “proved” in each
case. Conceptually, each completeness statement has two components:

1. a mathematical reduction placing all witnesses in a finite union of
explicitly parameterized model families, and

2. an exhaustive computation over those parameter families, with deter-
ministic logging sufficient for an independent party to audit exhaus-
tiveness and to re-check every recorded pair.

The second component is unavoidably computational; we therefore treat it
as a computer-audited theorem, and we make the audit artifacts part of the
release.

23

Verifier correctness (Theorem A) and the role of certificates

The logical foundation of every stored pair is the verifier correctness state-
ment. In our setting, “verifier correctness” means the following: given a
witness description in a supported domain, the routine Check deterministi-
cally produces

(i,5) = (|4 + A, [A4])

together with a certificate Cert(A), and an independent routine ReCheck ac-
cepts Cert(A) if and only if the asserted sizes are correct. The atlas does not
ask the reader to trust any enumerator logic to compute sizes; the enumera-
tors merely propose candidates, while the verifier and certificate mechanism
are the only authority for the counts.

The key design constraint is that certificates must be re-checkable with-
out hidden state. For integer witnesses this is straightforward: ReCheck
reconstructs A from the stored list, enumerates the (";1) sums and prod-
ucts (with p < ¢), deduplicates them deterministically, and compares the
resulting digests to the committed digests. For algebraic-real witnesses the
only additional subtlety is comparison: sorting and deduplication require
certified decisions of the form

? X ?
rfe 4 peo = ’I"e°—|-7“ed, réapes — Tec’l“ed,

which are resolved via exact arithmetic in Q(r) and certified isolating-interval
refinements. The certificate records the minimal polynomial and an isolat-
ing interval for r, together with the comparison transcript required to justify
every equality /inequality used by the deterministic deduplication routine.
Consequently, the statement “the entry (n,i,j) exists in the atlas” is re-
ducible to running ReCheck on the stored objects.

Additive-strip completeness over N (Theorem B): reduction
and audit

Fix n with 3 < n < Npax. Let
P<sn—s(n) :={(4,j) € SPP(n) : i <3n — 3}.

Theorem B asserts that our additive-strip enumerator EnumAdd(n) produces
witnesses realizing exactly the set P<3,—3(n), and that the atlas stores one
certified representative for each pair.

The mathematical input is a Freiman-type description of integer sets with
small doubling at the threshold 3n — 3: every A C Z with |A| =n and |A+
A| < 3n—3 lies in a finite union of explicit model families, parameterized by
bounded-complexity data (progression-like containers together with a small
number of exceptional elements). We do not re-prove the inverse theorem
here; we treat it as a cited structural lemma (Lemma 2) and implement its
parameter families verbatim.

24

The computation then consists of the following deterministic pipeline.

1. Family enumeration. For each model family and each admissible pa-
rameter tuple, we generate a candidate set A, canonicalize it (via
Can(A)), and keep it if it has size n and satisfies the syntactic family
constraints.

2. Size verification. For each retained candidate, we call Check to obtain
(|JA+Al,|AA]) and Cert(A), and we discard candidates with |A+ A| >
3n — 3.

3. Pair aggregation. We aggregate realized pairs (i, 7), select one repre-
sentative witness per pair (by a fixed deterministic tie-break rule on
canonical keys), and store the representative entry together with its
certificate.

The crucial point is how we audit ezhaustiveness of Step (1) and non-
duplication across overlapping families. Each enumerator run produces an
audit manifest consisting of:

e the exact model-family identifiers and the discrete parameter ranges
used (which are logically forced by the cited inverse theorem and by
n);

e the canonical keys Can(A) of all generated candidates before filtering
by realized pairs, listed in a deterministic total order;

e the total candidate count Cygq(n), the number of candidates surviving
|A+ A| < 3n — 3, and the number of distinct realized pairs P,qq(n);

e a content hash H,qq(n) = SHA256(Serialize(Manifest,gq(n))) commit-
ting to the entire list.

The atlas release manifest includes the values Cyqq(n) and P,gq(n) as exact
integers and includes the hash H,qq(n) as an immutable reference. The
audit logic is then: an independent auditor re-runs EnumAdd(n), recomputes
the manifest, checks that the hash matches, and verifies that every stored
representative entry for a pair with ¢ < 3n — 3 appears among the verified
candidates for that run.

Multiplicative-strip completeness over R, (Theorem C): re-
duction and audit

Fix n with 3 < n < Npax and define

Q<3n—3(n) :=={(4,7) € SPPg, (n) : j < 3n —3}.

25

Theorem C is the multiplicative analogue: EnumMul(n) produces witnesses
in Ry realizing exactly Q<s,—3(n), and the atlas stores one certified repre-
sentative per pair.

Here the structural reduction has two steps. First, by a multiplicative
small-doubling inverse statement, any A C Ry with |A| = n and |AA| <
3n — 3 is, after scaling, contained in a geometric progression

{1,r,72 ... rl}, L<2n-2,

so the witness is determined by an exponent set E C {0,...,L} of size n
together with the ratio » > 1. Second, if |A + A] is not maximal (i.e. there
are nontrivial additive collisions among the r¢), then Lemma 3 implies the
existence of indices producing a sparse-polynomial constraint

f_rk41=0,

r—r
with bounded exponents. Thus, potential ratios r are algebraic of controlled
complexity, and candidates can be enumerated by bounded exponent pat-
terns.

Algorithmically, EnumMul(n) enumerates:

e all admissible exponent containers of length L < 2n — 2 (up to the
normalization min £ = 0 and gcd(E) = 1),

e all bounded sparse-polynomial patterns forced by potential sum col-
lisions, and hence a finite list of candidate minimal polynomials for
T?

e all real roots r > 1 of these polynomials (specified by isolating inter-
vals), and all exponent subsets E consistent with the intended collision
pattern,

and then calls Check (with algebraic-number arithmetic) to compute and cer-
tify (|A + A[,|AA|) for each candidate A = {r¢: e € E}. The multiplicative
strip filter is |[AA| < 3n — 3.

The audit artifacts parallel the additive case but must additionally com-
mit to the algebraic specification of r. Each run produces a manifest con-
taining:

e the complete list of enumerated canonical keys Keyg, (A) (exponent

set, minimal polynomial, isolating interval, and root index), in deter-
ministic order;

e the total candidate count Ci,y1(n), the number surviving |AA| < 3n—3,
and the number of realized pairs Py (n);

e a content hash Hp,,(n) committing to the manifest.

Independently of the enumerator, an auditor can re-check each representative
entry by running ReCheck on its certificate; the manifest hash is used only
to audit exhaustiveness of the candidate generation.

26

Reproducibility: deterministic run scripts and cross-checks

Every atlas release includes run scripts that reproduce the manifests and
the representative-entry selection from scratch. Concretely, for each n we
publish a command line of the form

atlas enum-add -n n -sum-bound (3n—3) -emit-manifest
and
atlas enum-mul -n n -prod-bound (3n—3) -emit-manifest,

together with a fixed build recipe (compiler version, exact dependency hashes,
and the verifier /enumerator commit identifiers). No randomness is used; any
pruning is logically redundant and, if present for performance reasons, is
recorded in the manifest and must be verified to be completeness-preserving
by explicit coverage checks (e.g. by logging the pruned parameter regions
and proving they are subsumed by other enumerated regions).

Beyond manifest-hash agreement, we implement three independent san-
ity layers:

1. Small-n brute force. For n in a range where naive enumeration is fea-
sible, we compare the realized pairs from the model-family enumerator
to brute-force enumeration in a bounded ambient interval, after canon-
icalization. Agreement here validates both the implementation and the
intended interpretation of the model families.

2. Cross-implementation agreement. We provide an independent refer-
ence checker for certificates, and we require exact agreement of (i, j)
and digests on a representative sample of witnesses across all n < Npax.

3. Internal consistency invariants. We verify constraints such as 2n—1 <
|A + A, |AA] < n(n + 1)/2, invariance under allowed normalizations
(Lemma 1), and monotonicity/validity conditions on canonical keys.

A completeness theorem in this paper should therefore be read as: assum-
ing the cited inverse theorem(s) and assuming the published manifests are
reproduced by the published deterministic scripts, the atlas contains exactly
the claimed set of pairs, each supported by an independently re-checkable
certificate.

27

8 8. Certified bounds on «,, and extremal witness
tables: how witnesses are generated; how certifi-
cates are produced; limitations (upper bounds vs
optimality).

Certified bounds on «,, and extremal witness tables

The completeness theorems above concern the exact set of realizable pairs
in the additive and multiplicative strips. Independently of those strip state-
ments, we also use the atlas to derive certified upper bounds on the classical
quantity
ap = min max{|A+ A|, |AA|}.
ACN,|A|=n

Our contribution here is not a new lower-bound argument for a,, but a
mechanism for producing, storing, and re-checking explicit witnesses A,, with
small max{|A,+A4,|, |AnA,|}, thereby yielding an unconditional, certificate-
backed inequality oy, < uy, for each 3 < n < Nyax (Corollary D).

How candidate witnesses are generated. For each fixed n, we maintain
a finite pool G(n) of candidate witnesses A C N of size n. This pool is the
union of several deterministically defined sources.

(1) Strip enumerators. Every witness produced by EnumAdd(n) and ev-
ery integer witness arising from the integer-specializations of EnumMul(n)
(when the algebraic ratio happens to be rational and yields an integer set
after scaling) is included in G(n). This source is exhaustive only under the
respective strip constraints, but it is systematic and supplies a large fam-
ily of structured sets (near-progressions, low-dimensional containers, short
geometric-progression traces) that frequently lie close to the lower envelope
of max{|A + A|,|AA|}.

(2) Library constructions. We include a fixed, versioned list of explicit con-

struction templates parametrized by n, such as:

e initial segments {1,2,...,n} and affine images thereof (after canonical
reduction);

e multiplicatively structured sets (e.g. divisors of a smooth number, trun-
cated sets of the form {p{' ---p;* < B} restricted to size n);

e hybrids formed by gluing a short arithmetic progression to a multi-
plicative core, followed by deterministic pruning to size n.

These families are not claimed to be exhaustive in any mathematical sense;
their role is to provide reproducible baselines and to capture constructions
known empirically to balance additive and multiplicative expansion.

28

(3) Deterministic local search seeded by structured inputs. Starting from
seeds in (1)—(2), we run deterministic improvement procedures (with no ran-
domness and with fully logged moves) that attempt to reduce the objective

F(A) == max{]A + A|,|AA[}

subject to |A| = n. Concretely, we implement bounded-depth exchange
moves of the form

A (A\{z}) U fy},

where x ranges over the elements of A and y ranges over a fixed finite pro-
posal set depending only on n and a scale parameter derived from max A.
The acceptance rule is purely greedy with deterministic tie-breaking. We
emphasize that this procedure is a generator rather than a verifier: it pro-
poses candidates that are subsequently certified by Check, and it is included
only to expand the witness pool beyond the strip-enumerated families.

(4) Community submissions. The atlas accepts externally proposed A to-
gether with optional provenance metadata. Submissions enter G(n) only
after canonicalization and successful verification by Check; duplicates are
eliminated by canonical keys. In particular, no trust is placed in the submit-
ter’s computed values of |[A + A| and |AA].

Selection of the bound witness A,. Given G(n), we compute

and we select A, as a deterministic representative attaining this minimum.
To ensure reproducibility across releases, we fix a total order refining the
objective value, for example by comparing triples

(F(A), 1A+ Al can(A))

lexicographically. The chosen A, is then stored as the designated upper-
bound witness for a.,, together with the full verification certificate produced
by Check(A,,).

This definition makes the statement «,, < u,, tautological once F(4,) =
uy, is certified. It also makes clear what is and is not being claimed: u,, is
the best value found within our declared candidate pool, not necessarily the
true minimum defining «,.

Certificate production and what is recorded. For each stored upper-
bound witness A,,, we publish Cert(A,,) in the same sense as for strip entries.
In the integer setting the certificate contains: the sorted list of elements of
A, (in canonical form), deterministic digests of A, + A, and A, A, (com-
puted from the complete lists of (";1) sums/products with p < ¢), and the

29

resulting sizes. The independent checker ReCheck recomputes these lists and
verifies agreement with the committed digests. Thus the inequality a, < uy,
is reduced to a finite re-check with no reliance on enumerator correctness,
heuristic search logic, or unstated pruning.

In addition, for each n we record minimal metadata sufficient to interpret
the bound in context: the witness source tag (strip enumerator / library / lo-
cal search / submission), the atlas version identifiers for Check and ReCheck,
and the canonicalization transcript (translation and dilation applied). This
metadata is not logically necessary for correctness, but it is necessary for
reproducibility and for comparing improvements across releases.

Extremal witness tables beyond «,,. Alongside the single-number bounds
Uy, We maintain extremal witness tables summarizing portions of the Pareto
frontier of SPP(n). The simplest such tables are obtained by fixing a target
sumset size i (or product-set size j) and minimizing the other coordinate
among stored certified entries:

Jmin(n;4) ;= min{ j : (4,7) € SPP(n) and certified in the atlas },

and similarly imin(n;7). In the additive strip, Theorem B implies that
Jmin(n;4) is exact for every ¢ < 3n — 3, because every realizable pair in
that region appears in the atlas with a certificate. Likewise, in the multi-
plicative strip over R, Theorem C implies that imyiy(n;7) is exact for every
7 < 3n—3 in the real domain. These extremal tables are therefore a mixture
of (i) exact frontier data in the strip regions and (ii) best-known data outside
the strips, where completeness is not asserted.

We stress a point of interpretation: the atlas may contain multiple wit-
nesses for the same pair (7,7), but the extremal tables store exactly one
representative per selected extremal criterion, again chosen deterministically
by canonical keys. This policy keeps the tables stable under re-running the
same pipelines, while allowing the underlying database to grow with addi-
tional non-extremal examples.

Limitations: upper bounds versus optimality. The bounds u, are
certified but not in general optimal. There are two distinct reasons.

(1) Incompleteness outside the strips. Theorems B and C are completeness
statements only in the regions |A+ A| < 3n— 3 (integers) and |AA| < 3n—3
(reals). The definition of «,, imposes no such restriction, and it is entirely
possible that an optimal set A for «, lies outside both small-doubling regimes
simultaneously. Our current methods do not provide an inverse-theorem-
based parameterization for this global regime, hence we do not claim to
enumerate all candidates relevant to «,.

(2) Absence of certified lower bounds. To prove o, = u,, one must also
show a, > u,, i.e. a lower bound applying to all A of size n. The atlas

30

infrastructure is not, by itself, a lower-bound mechanism. It can support
lower-bound proofs by providing counterexample searches and exact frontier
data in controlled regions, but any claim of optimality necessarily requires
additional mathematics (or a separate exhaustive enumeration covering all
A up to canonicalization, which is infeasible at n &~ 50 in N without further
structure).

For small n where brute-force enumeration in a bounded interval is fea-
sible, we may optionally include an auxiliary label indicating that the best-
known witness matches the brute-force optimum within that experiment;
however, such labels are explicitly scoped and are not part of the main com-
pleteness theorems. In all cases, the only unconditional statement attached
to A, is the certified inequality oy, < uy,.

Release discipline. Finally, we treat the a, witness table as versioned
data. A new release may improve some u,, by adding new generators or new
submissions, but any change is accompanied by new certificates and updated
provenance metadata. Because ReCheck is deterministic and self-contained,
an independent user can validate the entire table entry-by-entry without re-
running any enumeration. In this way, the atlas separates three logically
distinct components: (i) the truth of computed sizes (certificates), (ii) com-
pleteness in specified strip regions (enumeration plus audit manifests), and
(iii) heuristic progress on global objectives such as «, (best-known witnesses
with certified values but without optimality claims).

9 9. Conjecture mining and ‘River of Ignorance’
benchmarks: derived statistics (frontiers, gaps,
candidate void inequalities), benchmark tasks for
generators, and a roadmap for n > N.y.

Conjecture mining and ‘River of Ignorance’ benchmarks

Beyond serving as a repository of certified witnesses, the atlas is designed
to function as a data source for formulating and stress-testing conjectures
about the geometry of the set

SPPx(n) = {(|A+ A[,|AA[): AC X, |A] = n},

both in regimes where we can prove completeness (the strip regions) and in
regimes where we only have best-known samples. We therefore compute and
publish a collection of derived statistics from the certified entries, together
with benchmark tasks intended to drive the development of better generators
and to guide investigations for n > Npax.

31

Certified frontiers and derived envelopes. For each n < Npya.x we
define the (coordinatewise) Pareto frontier of certified points

Fx(n) = {(i,)) € SPPx(n) : B () € SPPx(n) with#' <, j' <, (1,7) # (i.7)}.

and we compute a certified subset of Fx(n) from the atlas entries by direct
dominance tests. In the additive strip over N, Theorem B upgrades this to
an ezxact frontier in the region ¢ < 3n — 3; similarly, Theorem C yields an
exact frontier in the region j < 3n — 3 over R;. We record, for each feasible
1 in the additive strip, the exact extremal function

Jmin(n;7) := min{j : (,7) € SPPy(n)}, (2n—1<1i<3n-23),

and for each feasible j in the multiplicative strip (real domain) the exact
function

it (n;) ;= min{i : (i,j) € SPPg, (n)}, (2n—1<j<3n—3).
These functions are the primary inputs to conjecture mining, since they are

not sampling artifacts: in the stated strip ranges they are determined by
exhaustive, audited enumeration.

Gap profiles and certified voids inside strips. A recurring phenomenon
in small-doubling regimes is that many integer lattice points (4, j) in the am-
bient rectangle are simply not realizable. We therefore publish, for each n,
the realized set of pairs in the certified strip and the complementary set of
certified void points. Concretely, in the additive strip we define

Vadd(n) = {(Z’]) 11<3n—3, (’Lv.]) ¢ SPPN(”)}

By Theorem B, membership in V,qq(n) is a theorem (computer-audited): it is
not merely “not seen”, but “proven absent” within that strip. We summarize
Vaad(n) by gap profiles, such as the set of missing j-values at each fixed
i, the lengths of consecutive missing intervals, and the minimal observed
increment of jyin(n;i) as ¢ increases. Analogous statistics are recorded for
the multiplicative strip over R..

These void profiles are useful in two ways. First, they provide immediate
falsification tests for would-be constructions: a proposed witness claiming a
forbidden pair must fail ReCheck or must violate the stated strip constraint.
Second, they suggest structural rigidity: if, for example, juyin(n;) only takes
values in a sparse arithmetic progression for many 4, then it is natural to
conjecture that witnesses on the lower envelope belong to a small number of
model families.

32

Candidate void inequalities and extrapolation beyond certified re-
gions. Outside the strip regions we cannot, at present, certify non-realizability.
Nevertheless, we can record candidate void inequalities suggested by the data
and by structural heuristics. A candidate void inequality is an inequality of
the form

B, (i,§) = 0

that holds for all certified points at size n (or for all certified points across a
range of n) and is conjectured to hold for all of SPP(n) (or for all sufficiently
large n). We emphasize that such inequalities are labeled as conjectural
unless they are implied by a proved completeness statement in a region where
®,,(4,5) < 0 would force (7,) into a certified void set.

We find it useful to work in normalized coordinates. One convenient
normalization is

_logm

Kn(m) : K(A) = (Kn(|A + A)), Kn(|AA])),

~ logn’

so that trivial bounds place k(A) in a compact region as n varies. In these
coordinates we can compare different n on the same scale and look for stable
shapes (e.g. a limiting lower envelope). Candidate void inequalities then
take forms such as ko > f(k1) with f inferred empirically and constrained
by certified strip data at small coordinates.

The ‘River of Ignorance’ as a benchmark region. We designate as a
standing benchmark the task of producing certified witnesses whose normal-
ized statistics fall in the empirically sparse region around

k(A) ~ (1.8,1.9) for n = 40,

or more generally in a fixed neighborhood of such points as n varies. Infor-
mally, this is a “river” in the (K, (|A+A|), K, (]AA|)) plane where, despite ex-
tensive structured enumeration in the strips and substantial heuristic search,
the atlas contains few or no entries. The point of naming such a region is
methodological: it prevents us from overfitting generators to regimes already
well-covered by near-progressions or short geometric-progression traces.

We treat this benchmark as follows. For each release we publish the
best-known certified value of

Ap (ko) :== min ||k(A) — Kolloo
|Al=n
for selected targets kg in the river region, where the minimum is taken over
certified atlas entries (hence it is an upper bound on the true minimum).
A generator improves the benchmark by providing a new certified witness
decreasing A, (kop), regardless of whether it improves «,.

33

Benchmark tasks for generators. To make progress reproducible and
comparable, we publish a small collection of benchmark tasks, each posed
as a finite search problem whose outputs are validated solely by certificates.
Typical tasks include:

o (Threshold task) For a given n and target T, produce a certified A C N
with |A| = n and max{|A + A|,|AA|} <T.

e (Boz-hitting task) For a given n and rectangle [i1, i2] X [j1, jo], produce
a certified witness with (JA + A, |AA]) in the box.

o (Frontier-improvement task) For a given n and fixed i (or j), produce
a certified witness improving the current best-known j at that i (or
improving ¢ at that j), with the understanding that in strip regions
the target is exact and outside strips it is “best-known”.

e (Diversity task) Produce M pairwise non-canonically-equivalent wit-
nesses whose (4, j) occupy distinct bins in a coarse grid of normalized
coordinates, to encourage coverage rather than single-objective opti-
mization.

Each task is scored by the verifier outputs and by a deterministic tie-breaker
on Can(A), and each submitted solution must include Cert(A) so that the
scoreboard is checkable without re-running any generation code.

Mining structural conjectures from canonical witnesses. The atlas
entries themselves contain more than just the pair (4, 7): they contain canon-
ical representatives and, in the real multiplicative strip, algebraic ratio data.
We therefore record additional features for each witness, such as container
length in the Freiman model (additive strip), geometric progression length
and defining sparse polynomial (multiplicative strip), and simple arithmetic
invariants (e.g. smoothness of elements, divisor-closure scores, or additive
energy proxies computed exactly from the multiset of sums). Correlating
these features with position on the frontier suggests conjectures of the form:

Frontier points with i < 3n — 3 are realized only by k-parameter
subfamilies of the Freiman models, and the minimizers of jmin(n; 1)
lie in a distinguished subfamily characterized by an explicit com-
binatorial pattern.

We do not attempt to formalize such conjectures within the atlas paper itself;
rather, we supply the certified evidence and an interface for extracting the
relevant subcollections (by parameter tags) so that the conjectures can be
pursued mathematically.

34

Roadmap for n > Nyax. The choice of Nyax € {50,601} reflects a balance
between exhaustive strip enumeration and practical certification sizes. For
n > Npax We envision three complementary extensions.

(1) Extend certification without extending completeness. The verifier and
certificate formats scale to larger n essentially quadratically in n (due to
(”;rl) pairwise operations), and thus can support a growing repository of
best-known witnesses well beyond Npax. This enables meaningful, check-
able progress on global objectives (including c«,, upper bounds and river
benchmarks) even when enumeration is infeasible.

(2) Push the strip boundaries with additional structure. On the additive side,
one may seek to enlarge the provably enumerable regime beyond 3n — 3 by
incorporating stronger inverse results or by stratifying by additive dimen-
sion and enumerating model families with an additional parameter. On the
multiplicative side, one may broaden the ratio enumeration mechanism by
allowing multiple sparse-polynomial constraints simultaneously (arising from
multiple forced sum-collisions) and by systematically managing the resulting
algebraic-number degrees.

(3) Hybrid audited search. Between full enumeration and unrestricted heuris-
tics lies a middle ground: audited searches constrained by provable contain-
ers (e.g. bounded-rank generalized progressions additively, bounded-length
geometric progressions multiplicatively) but without claiming that the con-
straints capture all extremizers. Such searches can still produce certified
void statements conditional on the container hypothesis, and can be used
to test the plausibility of conjectures suggesting that optimizers must lie in
certain model classes.

In all cases, our guiding principle remains the same: we separate (i)
certified truth of individual entries from (ii) completeness claims in explicitly
delimited regions, and we make the boundary between these components
explicit in both the data schema and the published derived statistics.

35

	Introduction and goals
	Notation and domains
	Certificates and verification
	Structural enumeration in the additive strip
	Structural enumeration in the multiplicative strip over R+
	The database: schema, stored artifacts, indexing, and versioning
	Main completeness theorems and their computational audits
	8. Certified bounds on n and extremal witness tables: how witnesses are generated; how certificates are produced; limitations (upper bounds vs optimality).
	9. Conjecture mining and ‘River of Ignorance’ benchmarks: derived statistics (frontiers, gaps, candidate void inequalities), benchmark tasks for generators, and a roadmap for n> N.

