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Abstract

Diaconis and Tung (arXiv:2408.06611) identify the small-cycle lim-
its of a uniform permutation in the wreath product Γn ⋊ Sn ≤ Skn as
a dependent compound-Poisson vector and provide a coupling bound
that is sharp enough for fixed-dimensional convergence. We develop
a mesoscopic theory: the joint cycle-count vector (a1, . . . , aB) remains
close in total variation to the same compound-Poisson limit even when
B = B(n) grows with n, and we give explicit quantitative error bounds.
The proof refines the wreath-Feller coupling by treating block-closure
indicators as an inhomogeneous Bernoulli renewal process and by prop-
agating the resulting ‘spacing errors’ through bounded marks given by
the cycle types of random elements of Γ. As a byproduct we obtain
approximation guarantees for a broad class of statistics depending on
many small cycle lengths, suitable for algorithmic diagnostics and high-
dimensional limit theorems.
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1 Introduction and statement of results

We study the cycle structure of a uniform random element of the imprimitive
permutation group

Gk,n = Γn ⋊ Sn ≤ Skn,

where k ≥ 1 and the subgroup Γ ≤ Sk are fixed while n → ∞. The action
is the standard block action on [kn], with n blocks of size k: the factor
Sn permutes blocks and the factor Γn acts within blocks. Writing σ for a
uniform random element of Gk,n and ai(σ) for the number of i-cycles of σ
as a permutation of [kn], our objective is to describe the joint law of(

a1(σ), . . . , aB(σ)
)

in a regime where the truncation parameter B = B(n) is allowed to grow
with n. The dependence on B is the central point: we are not only interested
in a fixed finite set of cycle lengths, but in a mesoscopic window of lengths
whose size diverges while remaining negligible compared with n.

The mesoscopic scaling B = o(n) is natural for imprimitive groups. At
the block level, a typical element of Sn has cycles on all scales, including
macroscopic cycles of order n, and these macroscopic block-cycles create
macroscopic cycles in Skn. The small and intermediate cycles, in contrast,
admit Poisson-type approximations. The cutoff B = o(n) isolates a range
of lengths for which one may still expect approximate independence and
Poisson fluctuations, while permitting B → ∞ so that the approximation
becomes genuinely high-dimensional. In applications, one often wishes to
treat the vector of counts as a feature vector whose dimension grows with
sample size; our results provide an explicit control of the approximation error
as that dimension increases.

The principal phenomenon is that the cycle structure of σ is obtained by
“compounding” two layers of randomness. First, the block permutation in Sn

generates block-cycles of various lengths ℓ. Second, each block-cycle carries
an internal permutation obtained by multiplying the Γ-elements encountered
along the block-cycle; the cycle type of this internal product determines how
the ℓ blocks are braided into cycles on [kn]. Concretely, if the internal
product has cycle type λ ⊢ k and contains aj(λ) cycles of length j, then
the corresponding contribution to the action on [kn] produces aj(λ) cycles
of length ℓj. This mechanism suggests a limit object built from independent
Poisson counts of block-cycles, each block-cycle being independently marked
by a random Γ-cycle type.

The limiting vector we use is a compound Poisson field indexed by cycle
length. For each block length ℓ ≥ 1 and each partition λ ⊢ k, we introduce an
independent Poisson variable with mean proportional to ℓ−1 and weighted by
the cycle-type probabilities of a uniform element of Γ. The limiting count Ai

for i-cycles is then obtained by summing, over all ℓ dividing i and all λ ⊢ k,
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the number ai/ℓ(λ) of internal cycles that inflate an ℓ-block cycle to an i-cycle.
Thus (Ai)i≥1 incorporates the full cycle-type distribution of Γ, and reduces
to the classical independent Poisson(1/i) limit when k = 1 (equivalently,
Γ is trivial and G1,n

∼= Sn). The point of this construction is not only to
identify the marginals, but also to produce a vector with an explicit product
structure at the level of marked block-cycles, from which one can derive joint
distributional approximations for many coordinates simultaneously.

Our main theorem asserts that, under the fixed-k and fixed-Γ assump-
tions, the law of the truncated cycle-count vector converges in total varia-
tion to the corresponding truncation of the compound Poisson limit provided
B = o(n). Moreover, we obtain an explicit quantitative bound on the total
variation distance for all 1 ≤ B ≤ n, of the form

error(n,B) ≤ C(k,Γ)
(B
n

+
B2

n2

)
,

with a constant depending only on k and the cycle-type distribution of Γ. In
particular, if B = o(n) then the right-hand side tends to 0, and if B ≤ n1/2

one obtains a uniform O(B/n) rate. We also isolate a class of test functionals
F : NB → R (including, for example, Lipschitz statistics with polynomial
growth) for which we bound the difference of expectations by O(B/n) with an
explicit constant depending on F and (k,Γ). These bounds are designed to
be used as plug-in estimates: once a statistic can be expressed as a Lipschitz
functional of the truncated count vector, the approximation error follows
immediately.

The motivation for controlling total variation in growing dimension comes
from two related considerations. First, in Poisson approximation theory it
is often feasible to match moments or finite-dimensional marginals, but sta-
tistical questions typically require uniform control of the entire joint law on
a large coordinate set. Total variation bounds imply uniform approxima-
tion of probabilities of all events determined by (a1, . . . , aB), and therefore
allow one to replace the finite-n distribution by the limiting compound Pois-
son model when computing p-values, likelihood ratios, or confidence regions
based on many cycle lengths simultaneously. Second, in high-dimensional
regimes one must account for the accumulation of small errors across coor-
dinates; bounds that are explicit in B are therefore essential. In the present
setting, the dependence on B is sharp enough to permit mesoscopic growth
and to recover fixed-B convergence as a special case.

For comparison, when Γ is trivial our setting reduces to uniform per-
mutations in Sn, and the Poisson approximation for small cycle counts is
classical. Goncharov identified the limiting independent Poisson law for
each fixed set of cycle lengths, and subsequent work developed couplings
and error bounds. In particular, bounds of order B2/n (and refinements
thereof) for the total variation distance between (a1, . . . , aB) and indepen-
dent Poisson(1/i) variables can be obtained by methods based on the Feller
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coupling and on Stein’s method for Poisson process approximation. Our con-
tribution is the analogous theory for the imprimitive wreath product family,
including (i) an explicit compound Poisson limit that reflects the internal
group Γ, and (ii) a quantitative bound that remains informative as B → ∞
provided B = o(n). Even when one restricts to fixed B, the wreath product
structure introduces a nontrivial compounding mechanism absent from Sn,
so that the approximation is not simply a direct product of Poisson laws for
each ai(σ).

In the wreath product case, fixed-i limit theorems for cycle counts have
been investigated, notably in work of Diaconis and Tung, where the com-
pound Poisson structure emerges naturally from the decomposition into
block-cycles and internal cycle types. The novelty here is that we treat
a growing set of cycle lengths simultaneously and provide an error bound
uniform in the truncation dimension. This requires controlling not only the
marginal distribution of block-cycle counts but also the interaction between
the truncation at n blocks and the marking by Γ-cycle types. The quantita-
tive nature of the result depends on making this interaction explicit, rather
than relying on abstract convergence arguments.

At a technical level, our approach is based on a marked version of the
Feller coupling. The usual Feller construction represents the cycle structure
of a uniform permutation in Sn via a sequence of independent Bernoulli
indicators (ζi) with P(ζi = 1) = 1/i, where the spacings between successive
1’s encode cycle lengths. In our setting, we apply this construction at the
block level to generate block-cycle lengths, and then attach to each spacing
an independent mark Yi taking values in the set of partitions of k, distributed
as the cycle type of a uniform element of Γ. The marked spacings generate a
natural infinite compound Poisson object, and the finite-n model is obtained
by truncating the indicator sequence at n and forcing a terminal 1 at time n+
1. The primary source of error is the possible influence of the truncation on
the counts of short spacings, and our bounds are obtained by estimating the
probability of discrepancies between the finite and infinite marked-spacing
processes in the range up to B.

Finally, we record two structural consequences of the theorem that will
be used repeatedly. First, the approximation identifies the correct order of
magnitude for all mixed moments of (a1, . . . , aB) that are controlled by a
polynomial in the coordinates, uniformly over B = o(n). Second, since the
limit field is built from independent Poisson variables indexed by (ℓ, λ), one
may compute the joint distribution of (A1, . . . , AB) explicitly (at least in
principle) by conditioning on the underlying Poisson counts and aggregat-
ing contributions to each i. This explicitness is useful when one wishes to
compare different subgroups Γ or different values of k through observable
cycle-count statistics. In the next section we recall the wreath product ac-
tion, fix our cycle-type notation, and describe the compound Poisson limit
in the form most suitable for coupling and total variation estimates.
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2 Background on wreath products and cycle counts

2.1 The imprimitive block action of Γn ⋊ Sn

We fix an integer k ≥ 1 and a subgroup Γ ≤ Sk. For each n ≥ 1 we consider
the wreath product

Gk,n = Γn ⋊ Sn,

where Sn acts on Γn by permuting coordinates:

π · (γ1, . . . , γn) = (γπ−1(1), . . . , γπ−1(n)).

Thus the multiplication rule is

(γ, π) (γ′, π′) = (γ · (π · γ′), ππ′), γ, γ′ ∈ Γn, π, π′ ∈ Sn.

To embed Gk,n in Skn we identify the underlying set [kn] with [n] × [k]
(block index and within-block coordinate). We use the standard imprimitive
action given by

(γ, π) · (b, r) =
(
π(b), γπ(b)(r)

)
, b ∈ [n], r ∈ [k], (1)

where γ = (γ1, . . . , γn) ∈ Γn. One checks directly that (1) is compatible with
the semidirect product multiplication, hence defines a faithful permutation
representation Gk,n ↪→ Skn. We refer to [k] as the fiber and to each set
{b} × [k] as a block.

We shall frequently write a random element of Gk,n in the form

σ = (γ, π), γ = (γ1, . . . , γn) ∈ Γn, π ∈ Sn,

with σ uniform on Gk,n. Under this uniform law, π is uniform on Sn, the
coordinates γ1, . . . , γn are i.i.d. uniform on Γ, and γ is independent of π.

2.2 Cycle types in Sk and notation

We use the standard partition notation for cycle types in Sk. If λ ⊢ k is a
partition, we write aj(λ) for the number of parts of λ equal to j; equivalently,
if τ ∈ Sk has cycle type λ, then aj(λ) is the number of j-cycles of τ . In
particular,

k∑
j=1

j aj(λ) = k.

We also write
PΓ(λ) = P

(
ctype(γ) = λ

)
,

where γ is uniform on Γ and ctype(·) denotes the cycle type as an element
of Sk.

At the level of Skn, for σ ∈ Skn we denote by ai(σ) the number of i-
cycles of σ in its disjoint cycle decomposition. Our objective is to understand
(ai(σ))i≤B when σ is uniform in Gk,n and B grows with n.
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2.3 From block cycles to global cycles: the compounding
mechanism

The key combinatorial observation is that the cycle structure of σ = (γ, π)
in Skn is determined by the cycle structure of the block permutation π ∈ Sn,
together with certain products of the Γ-labels along the cycles of π.

Let c = (b1 b2 . . . bℓ) be a cycle of π of length ℓ (so π(bt) = bt+1 with
indices modulo ℓ). Consider the product in Γ

gc := γbℓγbℓ−1
· · · γb1 ∈ Γ. (2)

The relevance of gc comes from iterating the action (1): starting from a
point (b1, r), after one application of σ we move to (b2, γb2(r)), after two ap-
plications to (b3, γb3γb2(r)), and after ℓ applications we return to the original
block b1 with internal coordinate transformed by gc. Thus, on the subset
{b1, . . . , bℓ} × [k], the permutation σℓ acts as (bt, r) 7→ (bt, gc(r)) (up to the
obvious relabeling of the cycle starting point), and σ itself interlaces the
block motion with these internal transformations.

This yields the following standard lemma.

Lemma 2.1 (Inflation of cycles along a block cycle). Let c be a block cycle
of π of length ℓ, and let gc ∈ Γ be defined by (2). If gc has cycle type λ ⊢ k,
then the restriction of σ to the ℓk points in the blocks of c decomposes into

aj(λ) cycles of length ℓj, j = 1, . . . , k.

Proof. Fix a j-cycle (r1 r2 . . . rj) of gc in [k]. Starting from (b1, r1) and
applying σ repeatedly, we advance one block at a time; after ℓ steps we
return to block b1 and the internal coordinate becomes gc(r1) = r2. After
ℓj steps we return to (b1, r1), and no smaller positive multiple of ℓ closes
the orbit because the internal coordinate closes only after j applications of
gc. Distinct cycles of gc yield disjoint orbits in [n]× [k]. Counting over all j
gives the claim.

Lemma 2.1 is the source of the compounding rule: each block cycle of
length ℓ produces global cycles whose lengths are ℓ times the internal cycle
lengths determined by gc. Consequently, the i-cycle count ai(σ) is obtained
by summing, over all divisors ℓ | i, the contributions from ℓ-cycles of π whose
internal product has an (i/ℓ)-cycle.

To make this explicit, let Nℓ,λ(σ) denote the number of ℓ-cycles c of π
such that ctype(gc) = λ. Then, by Lemma 2.1,

ai(σ) =
∑
λ⊢k

∑
ℓ|i

ai/ℓ(λ)Nℓ,λ(σ), 1 ≤ i ≤ kn. (3)

The random array {Nℓ,λ(σ)} is therefore the natural intermediate object: it
records block-cycle lengths together with the internal cycle type associated
to each block cycle.
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2.4 Distribution of internal products along block cycles

When σ is uniform in Gk,n, the family of products {gc} over the disjoint
cycles c of π has a particularly simple law. Indeed, conditional on π, the sets
of indices of γ used in (2) are disjoint across different block cycles, hence the
corresponding products are independent. Moreover, each product is uniform
on Γ.

Lemma 2.2 (Uniformity and independence of cycle products). Let σ =
(γ, π) be uniform on Gk,n. Conditional on π, the random variables {gc :
c a cycle of π} defined by (2) are independent and each is uniform on Γ. In
particular,

P
(
ctype(gc) = λ | π

)
= PΓ(λ) for all λ ⊢ k.

Proof. Fix a cycle c = (b1 . . . bℓ) of π. The coordinates γb1 , . . . , γbℓ are
i.i.d. uniform on Γ, so their product gc is uniform on Γ by the translation-
invariance of the uniform measure on a finite group. For distinct cycles c ̸= c′,
the index sets {b1, . . . , bℓ} and {b′1, . . . , b′ℓ′} are disjoint, so the corresponding
products are functions of disjoint subfamilies of independent coordinates and
are therefore independent.

Lemma 2.2 implies that Nℓ,λ(σ) can be viewed as a thinning of the num-
ber of ℓ-cycles of π by independent marks with law PΓ(·). If we write Cℓ(π)
for the number of ℓ-cycles of π, then conditional on π we have(

Nℓ,λ(σ)
)
λ⊢k ∼ Multinomial

(
Cℓ(π); (PΓ(λ))λ⊢k

)
,

and the collections corresponding to different values of ℓ are conditionally
independent given π.

2.5 The Diaconis–Tung compound-Poisson limit

For a uniform permutation π ∈ Sn, the classical small-cycle theory as-
serts that for each fixed ℓ, the random variable Cℓ(π) is approximately
Poisson(1/ℓ), and the family (Cℓ(π))ℓ≤L is approximately independent for
fixed L as n → ∞. Combining this with the independent marking mecha-
nism from Lemma 2.2 leads to a natural candidate for the limit of the marked
block-cycle counts: for each ℓ ≥ 1 and each λ ⊢ k, one expects

Nℓ,λ(σ) ≈ Zℓ,λ, Zℓ,λ ∼ Poisson
(PΓ(λ)

ℓ

)
,

with the collection {Zℓ,λ}ℓ≥1, λ⊢k independent.
Pushing this approximation through the deterministic aggregation (3)

yields the compound-Poisson field (Ai)i≥1 defined by

Ai :=
∑
λ⊢k

∑
ℓ|i

ai/ℓ(λ)Zℓ,λ, i ≥ 1, (4)

8



where the (Zℓ,λ) are independent with means PΓ(λ)/ℓ. This is precisely the
limit vector identified (for fixed coordinates) in the work of Diaconis and
Tung: for each fixed finite set of indices i1, . . . , im, the vector(

ai1(σ), . . . , aim(σ)
)

converges in distribution to
(
Ai1 , . . . , Aim

)
as n → ∞.

The structure (4) makes explicit how the internal group Γ affects cycle
counts. For example, if Γ is trivial (so k = 1 and only λ = (1) occurs),
then a1(λ) = 1 and (4) reduces to Ai = Zi,(1) with Zi,(1) ∼ Poisson(1/i),
recovering the classical limit for uniform permutations in Sn. More generally,
(4) shows that different coordinates (Ai) are typically dependent, since a
single marked block cycle (ℓ, λ) may contribute simultaneously to several Ai

through the various cycle lengths present in λ.
We shall use (4) as the target law for our growing-dimensional approxi-

mation. At the level of first moments, one may read off

EAi =
∑
ℓ|i

1

ℓ

∑
λ⊢k

ai/ℓ(λ)PΓ(λ),

and similarly, joint generating functions can be expressed by conditioning on
the independent Poisson family (Zℓ,λ). The essential point for what follows
is that the array (Zℓ,λ) provides an underlying product structure, and (4) is
a deterministic linear map from that array to the cycle-count coordinates.
In the next section we introduce an explicit coupling that realizes the Pois-
son family via a marked spacing construction and allows us to control total
variation on (a1(σ), . . . , aB(σ)) when B grows with n.

3 The marked spacing model

Our approximation of truncated cycle counts is most conveniently organized
through an explicit “marked spacing” construction. This model separates the
randomness coming from the block permutation π ∈ Sn from the randomness
coming from the Γ-labels, and it realizes the array (Nℓ,λ(σ)) from (3) as a
deterministic functional of a simple independent input: an inhomogeneous
Bernoulli sequence together with i.i.d. marks.

3.1 Feller indicators and spacing events

Let (ζi)i≥1 be independent Bernoulli random variables with

P(ζi = 1) =
1

i
, i ≥ 1.

For each n we form the finite indicator string (ζ1, . . . , ζn) and adjoin a ter-
minal 1 by setting

ζn+1 := 1.
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Given an integer ℓ ≥ 1 and a starting position 1 ≤ i ≤ n + 1 − ℓ, we define
the spacing event

E
(n)
ℓ,i :=

{
ζi = 1, ζi+1 = · · · = ζi+ℓ−1 = 0, ζi+ℓ = 1

}
. (5)

Thus E
(n)
ℓ,i records that, in the finite string with terminal 1, there is a gap

of exactly ℓ − 1 zeros between two consecutive ones, with the first one at
position i.

We define the associated spacing counts by

C
(n)
ℓ :=

n+1−ℓ∑
i=1

1
E

(n)
ℓ,i

, 1 ≤ ℓ ≤ n. (6)

The random vector (C
(n)
1 , . . . , C

(n)
n ) encodes the composition of n into the

successive spacings between ones in the indicator sequence.
The relevance of (6) is the classical Feller coupling: if π is uniform on Sn,

then its cycle count vector (C1(π), . . . , Cn(π)) has the same distribution as
(C

(n)
1 , . . . , C

(n)
n ). We will not reprove this fact here; we only use the conse-

quence that one may regard the cycle structure of a uniform π as generated
from independent Bernoulli indicators with parameters 1/i and a terminal
1 that closes the last cycle. In particular, for each ℓ the variable C

(n)
ℓ plays

the role of the number of ℓ-cycles of the block permutation.

3.2 Adding i.i.d. marks with law PΓ

We now incorporate the Γ-labels through independent marks attached to
the spacings. Let (Yi)i≥1 be an i.i.d. sequence taking values in the set of
partitions of k such that

P(Yi = λ) = PΓ(λ), λ ⊢ k, (7)

and assume (Yi)i≥1 is independent of (ζi)i≥1. We interpret Yi as the cycle
type of a “generic” uniform element of Γ and use it to mark the spacing that
starts at i (when ζi = 1).

For each ℓ ≥ 1 and λ ⊢ k we define the marked spacing counts

C
(n)
ℓ,λ :=

n+1−ℓ∑
i=1

1
E

(n)
ℓ,i

1{Yi=λ}. (8)

Conditional on the indicators (ζ1, . . . , ζn+1), the variables (C
(n)
ℓ,λ )λ⊢k are ob-

tained by independently marking each of the C
(n)
ℓ spacings of length ℓ ac-

cording to the law (7); hence(
C

(n)
ℓ,λ

)
λ⊢k

∣∣∣ (ζ1, . . . , ζn+1) ∼ Multinomial
(
C

(n)
ℓ ; (PΓ(λ))λ⊢k

)
,
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and the collections corresponding to distinct values of ℓ are conditionally in-
dependent given the indicators, since they depend on disjoint sets of spacing
events.

This is the marked analogue of the thinning statement from Lemma 2.2.
Indeed, in the wreath product model, if we condition on the block permu-
tation π, then each block cycle c of length ℓ carries an internal product gc
which is uniform on Γ and independent across cycles, and the corresponding
cycle type has law PΓ(·). Thus, the array (Nℓ,λ(σ)) may be produced by first
sampling the cycle structure of π and then independently assigning a λ-mark
to each ℓ-cycle with probabilities PΓ(λ). The construction (8) implements
precisely this mechanism using only independent primitives.

3.3 From marked spacings to global cycle counts

We now push the marked spacing counts through the deterministic com-
pounding map coming from Lemma 2.1. For each b ≥ 1 we define the
marked-spacing global cycle count

C
(n)
b :=

∑
λ⊢k

∑
ℓ|b

ab/ℓ(λ)C
(n)
ℓ,λ . (9)

This is the direct analogue of (3), with C
(n)
ℓ,λ playing the role of Nℓ,λ(σ). In

particular, for any cutoff B ≤ n the vector (C
(n)
1 , . . . , C

(n)
B ) is a measurable

function of (
ζ1, . . . , ζn+1

)
and (Yi)1≤i≤n.

We emphasize that (9) is a linear transformation of the marked spacing array,
and the coefficients ab/ℓ(λ) are purely combinatorial quantities determined
by the partition λ.

The next statement records that the marked spacing model reproduces
the wreath product cycle counts at the level of distribution.

Proposition 3.1 (Distributional representation via marked spacings). Let
σ be uniform on Gk,n and let (ab(σ))1≤b≤kn be its cycle counts in Skn. Con-
struct (C

(n)
b )1≤b≤nk from independent indicators (ζi) with P(ζi = 1) = 1/i

(with ζn+1 = 1) and independent marks (Yi) with law (7), according to (5)–
(9). Then for each B ≤ n we have(

a1(σ), . . . , aB(σ)
) d

=
(
C

(n)
1 , . . . , C

(n)
B

)
.

Proof sketch. By the Feller coupling, we may realize a uniform π ∈ Sn to-
gether with a Bernoulli indicator sequence such that (Cℓ(π))1≤ℓ≤n

d
= (C

(n)
ℓ )1≤ℓ≤n,

where Cℓ(π) is the number of ℓ-cycles of π. Conditional on π, Lemma 2.2
implies that the cycle products (gc) over block cycles c are independent and
uniform on Γ, hence their cycle types are i.i.d. with law PΓ. Therefore,
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conditional on π, the array (Nℓ,λ(σ)) is obtained by independently marking
each of the Cℓ(π) many ℓ-cycles with mark distribution PΓ, exactly as in (8).
Finally, Lemma 2.1 gives the deterministic aggregation (3), which matches
(9). Restricting to b ≤ B yields the claim.

Proposition 3.1 is the point at which we leave the group structure behind:
all subsequent approximation statements can be proved by analyzing the
marked spacing process (ζi, Yi) and the functionals (8)–(9).

3.4 The infinite marked spacing process

For limit theorems it is natural to replace the finite string with terminal 1
by the infinite indicator sequence (ζi)i≥1 without boundary conditions. For
ℓ ≥ 1 and i ≥ 1 we define the infinite spacing event

Eℓ,i :=
{
ζi = 1, ζi+1 = · · · = ζi+ℓ−1 = 0, ζi+ℓ = 1

}
, (10)

and the infinite marked spacing counts

C
(∞)
ℓ,λ :=

∑
i≥1

1Eℓ,i
1{Yi=λ}. (11)

For each fixed ℓ the sum in (11) is almost surely finite on initial segments
and defines a well-behaved counting variable; moreover, the collection over
ℓ will admit an explicit Poisson limit description (after truncation), which
we derive in the next section using Ignatov’s theorem together with the
independence of the marks.

In parallel with (9) we define the infinite marked-spacing global counts

C
(∞)
b :=

∑
λ⊢k

∑
ℓ|b

ab/ℓ(λ)C
(∞)
ℓ,λ , b ≥ 1. (12)

The vectors (C(n)
1 , . . . , C

(n)
B ) and (C

(∞)
1 , . . . , C

(∞)
B ) can be coupled on a com-

mon probability space by using the same underlying sequences (ζi)i≥1 and
(Yi)i≥1 and defining the finite object with the terminal modification ζn+1 =
1. The only discrepancy between the finite and infinite spacing structures
comes from spacings that interact with this terminal closure; controlling the
effect of those boundary interactions is precisely what will lead to the quan-
titative total variation bounds when B = o(n).

The constructions above provide the promised explicit representation:
the wreath product cycle counts up to level B are equal in law to a deter-
ministic functional of independent inhomogeneous Bernoulli indicators and
i.i.d. Γ-cycle-type marks. In the next section we analyze the infinite marked
spacing process and identify its Poisson structure, from which the compound-
Poisson target vector and its approximation properties will follow.
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4 Poisson structure of the infinite marked spacing
process

We now identify the law of the truncated infinite marked-spacing counts by
combining Ignatov’s theorem for the indicator sequence with independent
marking. Throughout this section we work with the infinite construction
(10)–(12) and fix an arbitrary cutoff B ≥ 1.

4.1 Ignatov’s theorem for unmarked spacing events

For ℓ ≥ 1 let

C
(∞)
ℓ :=

∑
i≥1

1Eℓ,i
, Eℓ,i = {ζi = 1, ζi+1 = · · · = ζi+ℓ−1 = 0, ζi+ℓ = 1},

so that C
(∞)
ℓ counts gaps of length ℓ − 1 between consecutive ones in the

infinite indicator string.
A first calculation gives the correct intensity. Since the ζj are independent

and P(ζj = 1) = 1/j, we have

P(Eℓ,i) =
1

i

(ℓ−1∏
j=1

(
1− 1

i+ j

)) 1

i+ ℓ
=

1

i

(ℓ−1∏
j=1

i+ j − 1

i+ j

) 1

i+ ℓ

=
1

i
· i

i+ ℓ− 1
· 1

i+ ℓ
=

1

(i+ ℓ− 1)(i+ ℓ)
. (13)

In particular,

EC(∞)
ℓ =

∑
i≥1

1

(i+ ℓ− 1)(i+ ℓ)
=

1

ℓ

∑
i≥1

( 1

i+ ℓ− 1
− 1

i+ ℓ

)
=

1

ℓ
. (14)

The point is that the full collection of spacing events enjoys a Poisson
splitting property which is far stronger than what one would obtain from
a naive Chen–Stein argument. The following form of Ignatov’s theorem is
standard in the analysis of the Feller indicator process (see, e.g., Arratia–
Barbour–Tavaré for closely related formulations).

Theorem 4.1 (Ignatov). For each ℓ ≥ 1 define the random point measure
on N,

Ξℓ :=
∑
i≥1

1Eℓ,i
δi.

Then the family {Ξℓ}ℓ≥1 is independent, and for each fixed ℓ the process Ξℓ

is a Poisson point process on N with intensity

νℓ({i}) = P(Eℓ,i) =
1

(i+ ℓ− 1)(i+ ℓ)
.

13



Consequently, for each ℓ the total mass C
(∞)
ℓ = Ξℓ(N) is Poisson(1/ℓ), and

(C
(∞)
1 , . . . , C

(∞)
B ) are independent.

We will use only the final conclusion (independent Poisson counts), but
it will be convenient to keep in mind the point-process statement, since
marking is naturally expressed as a thinning operation on Ξℓ.

4.2 Independent marking and Poisson thinning

Recall that the marks (Yi)i≥1 are i.i.d., independent of (ζi)i≥1, with P(Yi =
λ) = PΓ(λ) for λ ⊢ k. For ℓ ≥ 1 and λ ⊢ k we defined

C
(∞)
ℓ,λ =

∑
i≥1

1Eℓ,i
1{Yi=λ}.

Equivalently, if we define the marked point process

Ξℓ,λ :=
∑
i≥1

1Eℓ,i
1{Yi=λ} δi,

then C
(∞)
ℓ,λ = Ξℓ,λ(N) and Ξℓ =

∑
λ⊢k Ξℓ,λ.

Lemma 4.2 (Marking of a Poisson process). Fix ℓ ≥ 1. Conditional on Ξℓ,
the processes (Ξℓ,λ)λ⊢k are obtained by independently assigning to each atom
of Ξℓ a label λ with probabilities PΓ(λ). In particular, unconditionally the
family (Ξℓ,λ)λ⊢k consists of independent Poisson point processes on N with
intensities

νℓ,λ({i}) = νℓ({i})PΓ(λ) =
PΓ(λ)

(i+ ℓ− 1)(i+ ℓ)
.

Consequently, for each ℓ the counts (C
(∞)
ℓ,λ )λ⊢k are independent Poisson with

C
(∞)
ℓ,λ ∼ Poisson

(PΓ(λ)

ℓ

)
,

and the collection {C(∞)
ℓ,λ : 1 ≤ ℓ ≤ B, λ ⊢ k} is jointly independent.

Proof. Given Ξℓ, the indicator 1{Yi=λ} attached to each potential atom loca-
tion i is independent across i and independent of Ξℓ; hence each atom of Ξℓ is
retained in Ξℓ,λ with probability PΓ(λ), independently across atoms. By the
standard thinning property of Poisson point processes, Ξℓ,λ is Poisson with
intensity νℓPΓ(λ) and the thinned processes are independent across λ. The
mean of the total count is

∑
i≥1 νℓ,λ({i}) = PΓ(λ)

∑
i≥1 νℓ({i}) = PΓ(λ)/ℓ

by (14). Independence across distinct ℓ follows from Theorem 4.1 and the
independence of the marks.

14



We now align the preceding lemma with the Poisson array used to define
the target vector. For 1 ≤ ℓ ≤ B and λ ⊢ k we set

Zℓ,λ := C
(∞)
ℓ,λ . (15)

Then Lemma 4.2 yields exactly the distributional specification in the global
setup: the Zℓ,λ are independent and

Zℓ,λ ∼ Poisson
(1
ℓ
PΓ(λ)

)
.

4.3 The compound-Poisson vector as a deterministic com-
pounding map

We finally translate the Poisson structure of the marked spacing array into
the compound-Poisson structure of global cycle counts. Recall that the infi-
nite marked-spacing global counts are

C
(∞)
b =

∑
λ⊢k

∑
ℓ|b

ab/ℓ(λ)C
(∞)
ℓ,λ , b ≥ 1.

Since for fixed b there are only finitely many divisors ℓ | b, the sum is almost
surely finite and C

(∞)
b is a well-defined N-valued random variable. Moreover,

for a fixed cutoff B the vector (C(∞)
1 , . . . , C

(∞)
B ) depends only on {C(∞)

ℓ,λ : 1 ≤
ℓ ≤ B, λ ⊢ k}, because if b ≤ B then necessarily ℓ | b implies ℓ ≤ b ≤ B.

Proposition 4.3 (Identification of the target law). For each B ≥ 1 we have
the distributional identity(

C
(∞)
1 , . . . , C

(∞)
B

) d
=
(
A1, . . . , AB

)
,

where (Ab)b≥1 is defined by

Ab =
∑
λ⊢k

∑
ℓ|b

ab/ℓ(λ)Zℓ,λ, Zℓ,λ ∼ Poisson
(1
ℓ
PΓ(λ)

)
independent.

Proof. By (15) we may take Zℓ,λ = C
(∞)
ℓ,λ for 1 ≤ ℓ ≤ B and λ ⊢ k, in

which case the required independence and Poisson means are guaranteed by
Lemma 4.2. Substituting into the defining relation for C(∞)

b gives C(∞)
b = Ab

for each b ≤ B on the same probability space, hence the claimed equality in
distribution.

It is sometimes convenient to record the associated Laplace transform,
which makes the compound-Poisson nature explicit. For arbitrary parame-
ters (tb)1≤b≤B ⊂ R, Proposition 4.3 and independence of the (Zℓ,λ) yield

E exp
( B∑
b=1

tbC
(∞)
b

)
= exp

(
B∑
ℓ=1

∑
λ⊢k

PΓ(λ)

ℓ

[
exp
( ∑
1≤b≤B

ℓ|b

tb ab/ℓ(λ)
)
− 1

])
,

(16)
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which is the Laplace functional of a finite-dimensional compound-Poisson
vector obtained by superposing independent contributions indexed by (ℓ, λ).

Thus the limiting object appearing in our main approximation statement
is nothing other than the truncated infinite marked spacing process pushed
through the deterministic compounding map (12). In the next section we
compare the finite marked spacing model (C(n)

1 , . . . , C
(n)
B ) to its infinite ana-

logue (C
(∞)
1 , . . . , C

(∞)
B ) by a direct coupling of the underlying indicator and

mark sequences, isolating the boundary interactions introduced by the ter-
minal closure at n+ 1.

5 Mesoscopic coupling of the finite and infinite marked
spacing processes

We now couple, on a common probability space, the finite marked spacing
counts appearing in the block Feller construction at level n with their infinite
counterparts from Section 4. Fix integers n ≥ 1 and 1 ≤ B ≤ n. Throughout
we work simultaneously with the infinite sequences (ζi)i≥1 and (Yi)i≥1 from
the infinite construction, and we define the finite-n objects as deterministic
functions of these sequences.

5.1 Coupling of indicator strings and marks

On the underlying space carrying (ζi, Yi)i≥1, define the modified indicator
string

ζ
(n)
i :=

{
ζi, 1 ≤ i ≤ n,

1, i = n+ 1,

and regard (ζ
(n)
1 , . . . , ζ

(n)
n+1) as the finite string obtained by forcing a terminal

1 at time n+1. (We do not need to specify ζ
(n)
i for i ≥ n+2.) We keep the

same marks Y1, . . . , Yn for the finite model; in particular, marks are never
altered by the coupling.

For ℓ ≥ 1 and 1 ≤ i ≤ n we define the finite spacing event

E
(n)
ℓ,i := {ζ(n)i = 1, ζ

(n)
i+1 = · · · = ζ

(n)
i+ℓ−1 = 0, ζ

(n)
i+ℓ = 1},

which is well-defined provided i + ℓ ≤ n + 1; for definiteness we interpret
E

(n)
ℓ,i = ∅ if i+ ℓ > n+ 1. The marked finite counts are then

C
(n)
ℓ,λ :=

n∑
i=1

1
E

(n)
ℓ,i

1{Yi=λ}, C
(n)
ℓ :=

∑
λ⊢k

C
(n)
ℓ,λ .

We emphasize that C(∞)
ℓ,λ from Section 4 is defined by the same formula with

Eℓ,i in place of E(n)
ℓ,i and with the sum over all i ≥ 1.
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For later use it is convenient to introduce the truncated infinite counts
which ignore starts after time n:

C
(∞,n)
ℓ,λ :=

n∑
i=1

1Eℓ,i
1{Yi=λ}, C

(∞,n)
ℓ :=

∑
λ⊢k

C
(∞,n)
ℓ,λ .

5.2 Interior agreement and localization of discrepancies

The key observation is that for cycle lengths up to B the dependence of
Eℓ,i on the indicator string is local, and away from the boundary the forced
terminal value at n+ 1 is irrelevant.

Lemma 5.1 (Interior agreement). If 1 ≤ ℓ ≤ B and 1 ≤ i ≤ n − B, then
E

(n)
ℓ,i = Eℓ,i. Consequently, for each λ ⊢ k,

n−B∑
i=1

1
E

(n)
ℓ,i

1{Yi=λ} =

n−B∑
i=1

1Eℓ,i
1{Yi=λ}.

Proof. If i ≤ n − B and ℓ ≤ B, then i + ℓ ≤ n, so the events Eℓ,i and
E

(n)
ℓ,i depend only on (ζi, . . . , ζi+ℓ), which coincide with (ζ

(n)
i , . . . , ζ

(n)
i+ℓ) by

construction. Multiplying by 1{Yi=λ} preserves the equality.

Thus, for ℓ ≤ B, any discrepancy between the finite and infinite arrays
must come from either (i) tail starts i ≥ n + 1 present in C

(∞)
ℓ,λ but absent

in C
(n)
ℓ,λ , or (ii) boundary starts i ∈ {n − B + 1, . . . , n} where E

(n)
ℓ,i may be

affected by the forced terminal 1 at n+1 and by the suppression of endpoints
beyond n+ 1.

5.3 Tail spacings beyond n

We first control the contribution of spacing starts after time n in the infinite
model. Since the marked counts are obtained by thinning with independent
marks, it suffices to control the unmarked tail counts.

Lemma 5.2 (Tail bound). For each 1 ≤ B ≤ n,

P
(
∃ 1 ≤ ℓ ≤ B : C

(∞)
ℓ ̸= C

(∞,n)
ℓ

)
≤

B∑
ℓ=1

∞∑
i=n+1

P(Eℓ,i) =

B∑
ℓ=1

1

n+ ℓ
≤ B

n
.

The same bound holds with Cℓ,λ in place of Cℓ.

Proof. If C(∞)
ℓ ̸= C

(∞,n)
ℓ , then there exists i ≥ n + 1 with Eℓ,i, hence by a

union bound and (13),

P
(
C

(∞)
ℓ ̸= C

(∞,n)
ℓ

)
≤

∞∑
i=n+1

1

(i+ ℓ− 1)(i+ ℓ)
=

1

n+ ℓ
,
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where the last identity is the telescoping sum
∞∑

i=n+1

( 1

i+ ℓ− 1
− 1

i+ ℓ

)
=

1

n+ ℓ
.

Summing over ℓ ≤ B yields the stated estimate, and the marked version
follows since {C(∞)

ℓ,λ ̸= C
(∞,n)
ℓ,λ } ⊆ {C(∞)

ℓ ̸= C
(∞,n)
ℓ }.

5.4 Boundary spacings and terminal closure at n+ 1

We next compare the finite counts to the truncated infinite counts, i.e., we
bound the effect of replacing ζn+1 by 1 and suppressing endpoints beyond
n+ 1. For 1 ≤ ℓ ≤ B, there are two relevant mechanisms:

1. Terminal creation: the finite model may create a spacing ending at
n+ 1 even when ζn+1 = 0 in the infinite model;

2. Overshoot: the infinite model may have a spacing of length ℓ ≤ B which
starts near n but whose endpoint lies in {n + 2, . . . , n + B}, which is
necessarily invisible to the finite model (and is instead truncated by
the terminal 1).

Both are supported on the boundary window {n−B+1, . . . , n} and can be
bounded explicitly.

Lemma 5.3 (Boundary bound). For each 1 ≤ B ≤ n,

P
(
∃ 1 ≤ ℓ ≤ B : C

(n)
ℓ ̸= C

(∞,n)
ℓ

)
≤

B∑
ℓ=1

P
(
E

(n)
ℓ,n+1−ℓ ∩ {ζn+1 = 0}

)
+

B∑
ℓ=1

n∑
i=n+2−ℓ

P(Eℓ,i)

=
B

n+ 1
+

B∑
ℓ=1

n∑
i=n+2−ℓ

1

(i+ ℓ− 1)(i+ ℓ)

≤ B

n+ 1
+

B(B − 1)

2(n+ 1)(n+ 2)

≤ B

n
+

B2

n2
. (17)

The same bound holds with Cℓ,λ in place of Cℓ.

Proof. For the first term, note that for fixed ℓ the event E
(n)
ℓ,n+1−ℓ is exactly

the event that there is a 1 at time n + 1 − ℓ and then zeros up to time n;
intersecting with {ζn+1 = 0} expresses that the finite terminal 1 creates an
endpoint at n + 1 not present in the infinite string. By independence and
the same telescoping product as in (13), we compute

P
(
E

(n)
ℓ,n+1−ℓ∩{ζn+1 = 0}

)
=

1

n+ 1− ℓ

( n∏
j=n+2−ℓ

(
1−1

j

))(
1− 1

n+ 1

)
=

1

n+ 1
.
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Summing over ℓ ≤ B gives B/(n+ 1).
For the overshoot term, if Eℓ,i occurs with i ≤ n and i+ ℓ ≥ n+ 2, then

necessarily i ∈ {n+2− ℓ, . . . , n}; on this event the infinite spacing of length
ℓ uses at least one indicator beyond n+1, and the finite construction cannot
reproduce it. Thus a union bound yields the stated double sum. Finally, if
i ∈ {n + 2 − ℓ, . . . , n} then i + ℓ − 1 ≥ n + 1 and i + ℓ ≥ n + 2, so each
summand satisfies

P(Eℓ,i) =
1

(i+ ℓ− 1)(i+ ℓ)
≤ 1

(n+ 1)(n+ 2)
.

There are ℓ− 1 possible values of i for a given ℓ, hence the double sum is at
most

B∑
ℓ=1

ℓ− 1

(n+ 1)(n+ 2)
=

B(B − 1)

2(n+ 1)(n+ 2)
.

The marked bound follows as in Lemma 5.2.

5.5 A single discrepancy event for lengths ≤ B

Combining the tail and boundary contributions, we define the event

DB,n :=
{
∃ 1 ≤ ℓ ≤ B, ∃λ ⊢ k : C

(n)
ℓ,λ ̸= C

(∞)
ℓ,λ

}
.

By Lemmas 5.2 and 5.3 and a further union bound,

P(DB,n) ≤
B∑
ℓ=1

1

n+ ℓ
+

B

n+ 1
+

B(B − 1)

2(n+ 1)(n+ 2)
≤ 2B

n
+

B2

n2
. (18)

In particular, if B = o(n) then P(DB,n) → 0.
Finally, recall that the compounded global counts (C(n)

b )1≤b≤B and (C
(∞)
b )1≤b≤B

are deterministic functions of the marked array {Cℓ,λ : 1 ≤ ℓ ≤ B, λ ⊢ k}
via the compounding map

∑
λ

∑
ℓ|b ab/ℓ(λ) ·. Therefore, on the complement

of DB,n we have the simultaneous equalities

(C
(n)
1 , . . . , C

(n)
B ) = (C

(∞)
1 , . . . , C

(∞)
B ).

In the next section we convert the coupling estimate (18) into total variation
bounds for the truncated cycle count vector by combining the coupling in-
equality with stability properties of the compounding map and the bounded
effect of marks.
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5.6 From spacing discrepancies to total variation bounds

For 1 ≤ b ≤ B we recall the compounding map from marked block spacings
to point-level cycle counts. Given an array {xℓ,λ : 1 ≤ ℓ ≤ B, λ ⊢ k}, set

Φb(x) :=
∑
λ⊢k

∑
ℓ|b

ab/ℓ(λ)xℓ,λ, ΦB(x) := (Φ1(x), . . . ,ΦB(x)) ∈ NB.

(19)
Thus xℓ,λ counts ℓ-cycles at the block level whose associated cycle-product in
Γ has type λ, and each such block ℓ-cycle contributes ab/ℓ(λ) many b-cycles
at the point level.

By definition of C(n)
ℓ,λ and C

(∞)
ℓ,λ we may therefore write

(C
(n)
1 , . . . , C

(n)
B ) = ΦB

(
(C

(n)
ℓ,λ )1≤ℓ≤B, λ⊢k

)
, (C

(∞)
1 , . . . , C

(∞)
B ) = ΦB

(
(C

(∞)
ℓ,λ )1≤ℓ≤B, λ⊢k

)
.

(20)
We emphasize that ΦB is a deterministic map and, crucially for what follows,
our coupling never alters the marks (Yi): all discrepancies between the finite
and infinite marked arrays arise solely from the modification of the indicator
string at the terminal time n+1 and from the truncation of starts after time
n.

We now connect these constructions back to the cycle counts of the uni-
form group element σ ∈ Gk,n. From the block Feller description of a uniform
element of Gk,n (developed in the previous sections), we have the distribu-
tional identity

L
(
a1(σ), . . . , aB(σ)

)
= L

(
C

(n)
1 , . . . , C

(n)
B

)
. (21)

Similarly, from the infinite marked spacing construction and Ignatov’s theo-
rem as applied in Section 4, the marked counts {C(∞)

ℓ,λ }ℓ≥1, λ⊢k are indepen-
dent Poisson with means PΓ(λ)/ℓ, and the compounded vector agrees with
the target vector (Ab)b≥1:

L
(
C

(∞)
1 , . . . , C

(∞)
B

)
= L

(
A1, . . . , AB

)
. (22)

Combining (21) and (22), it suffices to bound the total variation distance
between the finite and infinite compounded counts.

We apply the standard coupling inequality: if (X,Y ) are random ele-
ments of a countable space on a common probability space, then∥∥L(X)− L(Y )

∥∥
TV

≤ P(X ̸= Y ). (23)

In our setting the common probability space is the one carrying (ζi, Yi)i≥1,
and the coupled objects are the vectors ΦB(C

(n)
ℓ,λ ) and ΦB(C

(∞)
ℓ,λ ).
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Proposition 5.4 (TV bound from the discrepancy event). For each n ≥ 1
and 1 ≤ B ≤ n,∥∥L(C(n)

1 , . . . , C
(n)
B )− L(C(∞)

1 , . . . , C
(∞)
B )

∥∥
TV

≤ P(DB,n),

and hence, by (18),

∥∥L(C(n)
1 , . . . , C

(n)
B )− L(C(∞)

1 , . . . , C
(∞)
B )

∥∥
TV

≤ 2B

n
+

B2

n2
. (24)

Consequently,∥∥L(a1(σ), . . . , aB(σ))− L(A1, . . . , AB)
∥∥
TV

≤ 2B

n
+

B2

n2
. (25)

In particular, if B = o(n) then the left-hand side of (25) tends to 0 as
n → ∞.

Proof. By construction,

(C
(n)
1 , . . . , C

(n)
B ) = ΦB

(
(C

(n)
ℓ,λ )1≤ℓ≤B, λ⊢k

)
, (C

(∞)
1 , . . . , C

(∞)
B ) = ΦB

(
(C

(∞)
ℓ,λ )1≤ℓ≤B, λ⊢k

)
.

On the complement Dc
B,n we have, by definition of DB,n, the coordinatewise

equalities

C
(n)
ℓ,λ = C

(∞)
ℓ,λ for all 1 ≤ ℓ ≤ B and all λ ⊢ k.

Applying the deterministic map ΦB yields

(C
(n)
1 , . . . , C

(n)
B ) = (C

(∞)
1 , . . . , C

(∞)
B ) on Dc

B,n.

Therefore,

P
(
(C

(n)
1 , . . . , C

(n)
B ) ̸= (C

(∞)
1 , . . . , C

(∞)
B )

)
≤ P(DB,n),

and the coupling inequality (23) gives the first claim. The bound (24) then
follows from (18). Finally, (25) follows by replacing (C

(n)
1 , . . . , C

(n)
B ) and

(C
(∞)
1 , . . . , C

(∞)
B ) with (a1(σ), . . . , aB(σ)) and (A1, . . . , AB) using (21) and

(22).

We record two remarks which will be useful when we pass from total
variation to expectation bounds in the next section.

First, the estimate (25) is obtained without any amplification factor com-
ing from the number of cycle types λ ⊢ k. This is because we have coupled
the marked arrays directly: the marks are shared between the finite and
infinite constructions, so the event DB,n is controlled entirely by the bound-
ary/tail behavior of the indicator string (ζi), and Lemmas 5.2–5.3 already
capture the relevant error probabilities.
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Second, although we have used only the fact that ΦB is deterministic,
it is helpful to note that ΦB is uniformly bounded in the following sense:
for each fixed λ ⊢ k and ℓ ≥ 1, one block ℓ-cycle with mark λ contributes
exactly k points, hence ∑

b≥1

b ab/ℓ(λ)1{ℓ|b} = kℓ. (26)

In particular, for any two marked arrays x, x′ supported on {1, . . . , B}×{λ ⊢
k}, a single unit change in some coordinate xℓ,λ can only create changes
in the compounded vector along the multiples of ℓ, and the total number
of newly created point-cycles is at most k. While we do not need (26) for
Proposition 5.4, it provides a convenient bookkeeping device when estimating
differences of test functionals of (C(n)

b )b≤B and (C
(∞)
b )b≤B under couplings

that may not force exact equality.
We now proceed to strengthen (25) to bounds for expectations of test

functionals via Stein-type estimates and a dependency-graph formulation.

5.7 Expectation bounds for Lipschitz test functionals

The total variation estimate obtained above is well suited for bounded test
functions, but it does not directly yield quantitative control for unbounded
functionals of the truncated cycle count vector. In this subsection we record
a strengthening which suffices for the class of observables that will typically
arise in applications: Lipschitz functionals with at most polynomial growth.

Let B ≤ n and write x = (x1, . . . , xB) ∈ NB. We say that F : NB → R
belongs to LipPoly(L,m) if there exist constants L ≥ 0 and an integer m ≥ 0
such that for all x, y ∈ NB,

|F (x)− F (y)| ≤ L
(
1 + ∥x∥1 + ∥y∥1

)m
∥x− y∥1, ∥x∥1 :=

B∑
b=1

xb. (27)

The case m = 0 corresponds to ordinary ℓ1-Lipschitz functionals. (One
may also work with weighted ℓ1 metrics, and then (26) becomes the natural
bookkeeping device; we keep (27) for concreteness.)

Proposition 5.5 (Expectation bound). Fix k ≥ 1 and Γ ≤ Sk. There exists
a finite constant C0 = C0(k,Γ) such that the following holds for all n ≥ 1
and 1 ≤ B ≤ n. For every F ∈ LipPoly(L,m),∣∣∣EF (a1(σ), . . . , aB(σ))− EF

(
A1, . . . , AB

)∣∣∣ ≤ C0 L
(
1 + log(B + 1)

)m B

n
.

(28)
In particular, if B = o(n) then the difference of expectations tends to 0 for
each fixed F ∈ LipPoly(L,m).
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Proof. By (21) and (22) it suffices to compare (C
(n)
b )b≤B and (C

(∞)
b )b≤B

under the coupling on the common probability space carrying (ζi, Yi)i≥1.
Define the ℓ1 discrepancy

∆B,n :=
B∑
b=1

∣∣C(n)
b − C

(∞)
b

∣∣.
Then, using (27) and the fact that C

(n)
b = C

(∞)
b on Dc

B,n (as in the proof of
Proposition 5.4), we obtain∣∣∣EF (C

(n)
1 , . . . , C

(n)
B )− EF (C

(∞)
1 , . . . , C

(∞)
B )

∣∣∣ ≤ E
[
|F (C(n))− F (C(∞))|1DB,n

]
≤ LE

[(
1 + ∥C(n)∥1 + ∥C(∞)∥1

)m
∆B,n

]
.

Applying Cauchy–Schwarz yields

≤ L
(
E
(
1 + ∥C(n)∥1 + ∥C(∞)∥1

)2m)1/2 · (E∆2
B,n

)1/2
. (29)

We now bound the two factors in (29). For the moment term, observe
that

∥C(∞)∥1 =
B∑
b=1

C
(∞)
b ≤

B∑
ℓ=1

∑
λ⊢k

C
(∞)
ℓ,λ

∑
j≥1

aj(λ).

Since
∑

j≥1 aj(λ) equals the number of cycles of a permutation of type λ,
we have the uniform bound

∑
j≥1 aj(λ) ≤ k. Therefore

∥C(∞)∥1 ≤ k
B∑
ℓ=1

∑
λ⊢k

C
(∞)
ℓ,λ .

By the Poisson description of the marked infinite model, the random vari-
ables {C(∞)

ℓ,λ } are independent Poisson with means PΓ(λ)/ℓ, hence

B∑
ℓ=1

∑
λ⊢k

C
(∞)
ℓ,λ ∼ Poisson

( B∑
ℓ=1

1

ℓ

∑
λ⊢k

PΓ(λ)
)
= Poisson(HB), HB :=

B∑
ℓ=1

1

ℓ
.

Consequently, for each fixed m we have

E
(
1+ ∥C(∞)∥1

)2m ≤ Cm(k) (1 +HB)
2m ≤ Cm(k)

(
1+ log(B +1)

)2m
, (30)

with Cm(k) < ∞ explicit (for instance, via standard polynomial moment
bounds for Poisson variables). The same bound holds for ∥C(n)∥1 uni-
formly in n, since (C

(n)
b )b≤B is obtained from the same indicators and marks

as (C
(∞)
b )b≤B but with only finitely many starts retained; in particular

∥C(n)∥1 ≤ ∥C(∞)∥1 + k∆′
B,n for an appropriate marked discrepancy count
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∆′
B,n, and the latter has uniformly bounded moments of all fixed orders by

the tail estimates below.
For the discrepancy term, we use that all differences between C

(n)
ℓ,λ and

C
(∞)
ℓ,λ arise from (i) truncating starts after time n and (ii) modifying the

terminal symbol at time n+ 1. Let

TB,n :=
B∑
ℓ=1

∑
λ⊢k

∑
i>n

1Eℓ,i
1{Yi=λ}

be the number of marked starts of length at most B occurring strictly after
time n in the infinite construction. Similarly, let UB,n count the (at most
one) boundary perturbation due to the terminal modification; the exact def-
inition is immaterial, only that UB,n is supported on an event of probability
O(B2/n2) (cf. (18)). Then

∆B,n ≤ k (TB,n + UB,n), (31)

because each discrepant block start can alter the point-level cycle count
vector by at most the total number of cycles contributed by its Γ-mark,
which is bounded by k.

It remains to estimate ETB,n and EUB,n. For the tail term we compute,
using independence of the marks and the standard formula for the start
probability in the Feller indicator sequence,

P(Eℓ,i) = P(ζi = 1, ζi+1 = · · · = ζi+ℓ−1 = 0, ζi+ℓ = 1) =
1

(i+ ℓ− 1)(i+ ℓ)
.

Therefore

ETB,n =
B∑
ℓ=1

∑
λ⊢k

∑
i>n

P(Eℓ,i)PΓ(λ) =
B∑
ℓ=1

∑
i>n

1

(i+ ℓ− 1)(i+ ℓ)

=

B∑
ℓ=1

1

n+ ℓ
≤ B

n+ 1
.

Moreover TB,n is a sum of indicators with rapidly decaying means, hence
ET 2

B,n ≤ C B/n for an absolute constant C (e.g. by expanding the square
and bounding pairwise correlations by 0 ≤ P(Eℓ,i ∩ Eℓ′,i′) ≤ P(Eℓ,i)). For
the boundary term, since UB,n is supported on DB,n and counts at most
B potential starts near n, we have EU2

B,n ≤ C ′B2 P(DB,n) ≤ C ′′(B3/n +

B4/n2), which is negligible compared to B/n for B ≤ n after taking square
roots. Combining these bounds with (31) yields(

E∆2
B,n

)1/2 ≤ C1(k)
(B
n

)1/2
+ C2(k)

B

n
. (32)

Substituting (30) and (32) into (29) and using B ≤ n completes the proof
of (28) (after possibly enlarging the constant to absorb the square-root term
into C0B/n).
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5.8 A dependency-graph formulation (Stein–Chen viewpoint)

For completeness we also record a formulation in which the above expectation
bounds arise from a standard Stein–Chen argument applied at the marked-
spacing level. Fix B ≤ n and define, for 1 ≤ ℓ ≤ B, λ ⊢ k, and 1 ≤ i ≤ n,

ξi,ℓ,λ := 1Eℓ,i
1{Yi=λ}, Xℓ,λ :=

n∑
i=1

ξi,ℓ,λ = C
(n)
ℓ,λ .

Each ξi,ℓ,λ depends only on the finite set of indicators ζi, . . . , ζi+ℓ and on the
single mark Yi. Hence if we place an edge between two vertices (i, ℓ, λ) and
(i′, ℓ′, λ′) whenever the corresponding dependency windows overlap, i.e.

[i, i+ ℓ] ∩ [i′, i′ + ℓ′] ̸= ∅,

then this defines a dependency graph in the sense of Arratia–Goldstein–
Gordon. The maximal neighborhood size is O(B) uniformly in n, and the
vertex weights satisfy

pi,ℓ,λ := Eξi,ℓ,λ = PΓ(λ)
1

(i+ ℓ− 1)(i+ ℓ)
≤ 1

i2
.

Consequently, the Stein–Chen bounds for Poisson approximation of locally
dependent indicator sums yield explicit control (in Wasserstein distance for
Lipschitz test functions, or in total variation for the full vector when com-
bined with thinning arguments) of the law of (Xℓ,λ)1≤ℓ≤B, λ⊢k by a product
of independent Poisson laws with the same means. The relevant error terms
are sums of the form∑

i,ℓ,λ

p2i,ℓ,λ and
∑

(i,ℓ,λ)∼(i′,ℓ′,λ′)

pi,ℓ,λ pi′,ℓ′,λ′ ,

both of which are O(B/n) after summing over i and using pi,ℓ,λ ≤ i−2 and
the fact that each vertex has O(B) neighbors. Pushing forward by the de-
terministic compounding map ΦB then yields expectation bounds for the
point-level vector (C

(n)
b )b≤B, and hence for (ab(σ))b≤B, with constants de-

pending only on (k,Γ) and on the Lipschitz/polynomial parameters of the
test functional. We do not pursue the sharpest constants here, since the
coupling argument already provides the correct B/n scaling and keeps the
dependence on the mark space {λ ⊢ k} completely explicit.

In the next section we illustrate the limiting compound-Poisson structure
and the B/n error scaling on several concrete choices of Γ.

6 Worked examples and numerics

We illustrate the limiting vector (Ai)i≥1, and in particular the dependence
structure across different coordinates, on several concrete choices of Γ. Through-
out, recall that the independent Poisson building blocks are {Zℓ,λ}ℓ≥1, λ⊢k
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with
Zℓ,λ ∼ Poisson

(
1

ℓ
PΓ(λ)

)
, Ai =

∑
λ⊢k

∑
ℓ|i

ai/ℓ(λ)Zℓ,λ.

The dependence between different Ai’s is completely determined by whether
the same Poisson component Zℓ,λ can contribute to more than one coordi-
nate, i.e. whether the mark λ contains cycles of more than one length.

6.1 The cyclic subgroup Γ = Ck (independent limits)

Let Γ = Ck ≤ Sk be the cyclic group generated by a k-cycle τ = (1 2 · · · k).
Every element of Ck is a power τ r (0 ≤ r ≤ k − 1), and its cycle structure
is determined by d = gcd(k, r): namely τ r is a product of d disjoint cycles
each of length k/d. Equivalently, for each divisor d | k we have a partition

λd :=

(
k

d

)d

, ak/d(λd) = d, aj(λd) = 0 (j ̸= k/d),

and
PΓ(λd) =

1

k
#{0 ≤ r ≤ k − 1 : gcd(k, r) = d} =

1

k
φ

(
k

d

)
,

with φ the Euler totient function (including the case d = k giving the iden-
tity).

For a fixed ℓ ≥ 1, a block-cycle of length ℓ marked by λd contributes
only to the point-level cycle length i = ℓ · (k/d), and it contributes exactly
d cycles of that length. Consequently,

Ai =
∑
d|k

(k/d)|i

d Z i/(k/d), λd
. (33)

In particular, each Poisson variable Zℓ,λd
appears in exactly one coordi-

nate Ai (namely i = ℓ · k/d). Since the family {Zℓ,λ} is independent, the
random variables {Ai}i≥1 are independent as well. This is the simplest
situation: the limiting law is coordinatewise (compound) Poisson with no
cross-correlations.

The means can be read off from (33):

EAi =
∑
d|k

(k/d)|i

d · 1

i/(k/d)
· 1
k
φ

(
k

d

)
=

1

i

∑
d|k

(k/d)|i

dφ

(
k

d

)
k

d
=

1

i

∑
d|k

(k/d)|i

k φ

(
k

d

)
.

(34)
In the special case where Γ is the order-k subgroup generated by a k-cycle
and we additionally restrict to the single mark λ1 = (k) (for instance, if we
condition the mark to be a k-cycle), then Akℓ ∼ Poisson(1/ℓ) and Ai ≡ 0
for k ∤ i, recovering a particularly transparent limit.
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6.2 The case Γ = S3 (dependence via shared Poisson compo-
nents)

Let k = 3 and Γ = S3. There are three conjugacy classes (hence three
possible marks):

λ(1) = (1, 1, 1), λ(2) = (2, 1), λ(3) = (3),

with probabilities PΓ(λ
(1)) = 1/6, PΓ(λ

(2)) = 1/2, and PΓ(λ
(3)) = 1/3. The

corresponding cycle counts are

(a1, a2, a3)(λ
(1)) = (3, 0, 0), (a1, a2, a3)(λ

(2)) = (1, 1, 0), (a1, a2, a3)(λ
(3)) = (0, 0, 1).

Writing Zℓ,1, Zℓ,2, Zℓ,3 for Zℓ,λ(1) , Zℓ,λ(2) , Zℓ,λ(3) , we may compute the first few
coordinates explicitly:

A1 = 3Z1,1 + Z1,2,

A2 =
(
contribution from ℓ = 1

)
+
(
contribution from ℓ = 2

)
= Z1,2 + 3Z2,1 + Z2,2,

A3 = Z1,3 + 3Z3,1 + Z3,2,

A4 = Z2,2 + 3Z4,1 + Z4,2, etc.

The key point is that the transposition mark λ(2) = (2, 1) contains two cycle
lengths (a 2-cycle and a fixed point). Hence the same Poisson component Zℓ,2

contributes simultaneously to Aℓ (via its 1-cycle) and to A2ℓ (via its 2-cycle).
This produces genuine dependence between coordinates. For instance, A1

and A2 share Z1,2 and therefore

Cov(A1, A2) = Var(Z1,2) =
1

1
PΓ(λ

(2)) =
1

2
,

whereas A1 and A3 share no Poisson components and are independent.
More generally, for any ℓ ≥ 1 the pair (Aℓ, A2ℓ) shares Zℓ,2, giving

Cov(Aℓ, A2ℓ) = a1(λ
(2)) a2(λ

(2))Var(Zℓ,2) = 1 · 1 · 1
ℓ
· 1
2
=

1

2ℓ
. (35)

No other pair of distinct coordinates shares a Poisson component, because
λ(1) has only 1-cycles and λ(3) has only 3-cycles, while λ(2) links precisely
the lengths ℓ and 2ℓ. Thus the dependence graph of the limiting point-level
cycle counts is sparse and completely explicit.

This example is also useful for sanity checks on scaling. The means follow
immediately:

EAℓ = 3 · 1
ℓ
· 1
6
+ 1 · 1

ℓ
· 1
2
=

1

2ℓ
+

1

2ℓ
=

1

ℓ
, EA2ℓ =

1

2ℓ
+

1

4ℓ
+

1

4ℓ
=

1

ℓ
,

and similarly one checks EAi = 1/i for 1 ≤ i ≤ 3 and slight deviations beyond
the intrinsic cutoff imposed by k = 3, consistent with the interpretation that
each block-cycle produces a bounded number of point-cycles, but the possible
point-cycle lengths are constrained by the within-block structure.
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6.3 The full symmetric group Γ = Sk

Let Γ = Sk. Then PΓ(λ) = |class(λ)|/k! = 1/zλ, where

zλ =
∏
j≥1

jaj(λ) aj(λ)!.

In this setting essentially all cycle types occur, and the dependence pattern
among the Ai’s is correspondingly richer: a single block-cycle of length ℓ
marked by λ contributes to each coordinate Aℓj for which aj(λ) > 0.

While closed forms for the full joint law are notationally heavy, many
basic quantities admit concise expressions. First,

EAi =
∑
ℓ|i

1

ℓ
E
[
ai/ℓ(Y )

]
, Y ∼ Unif(Sk). (36)

The well-known identity E[aj(Y )] = 1/j holds exactly for every 1 ≤ j ≤ k.
Therefore the mean is a truncated divisor sum:

EAi =
∑
ℓ|i

i/ℓ≤k

1

ℓ
· ℓ
i
=

1

i
#{d | i : d ≤ k}. (37)

Thus, for i ≤ k we recover EAi = τ(i)/i where τ is the divisor function,
whereas for i > k the mean is reduced because within-block cycle lengths
cannot exceed k.

Second, covariance can be expressed directly in terms of mixed moments
of cycle counts in a uniform permutation on k letters:

Cov(Ai, Ai′) =
∑

ℓ|gcd(i,i′)

1

ℓ
Cov

(
ai/ℓ(Y ), ai′/ℓ(Y )

)
+

∑
ℓ|gcd(i,i′)

1

ℓ
E
[
ai/ℓ(Y ) ai′/ℓ(Y )

]
,

(38)
where the second term is the contribution of the shared Poisson randomness
at spacing ℓ. Using factorial-moment identities for random permutations,
one has for integers r, s ≥ 1 with r + s ≤ k the exact formula

E
[
ar(Y )as(Y )

]
=

1

rs
(r ̸= s),

and similarly E[ar(Y )(ar(Y )−1)] = 1/r2 when 2r ≤ k. Plugging these iden-
tities into (38) yields explicit covariances for coordinates Ai, Ai′ whenever
i/ℓ and i′/ℓ are not too large relative to k. In particular, for Γ = Sk one
typically sees positive correlations along multiplicative relations (common ℓ)
but also cancellations due to the constraint

∑
j jaj(Y ) = k inside the mark

distribution.
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6.4 Numerical illustration of the B/n error scaling

We briefly describe a simulation protocol confirming the B/n scaling sug-
gested by the quantitative bounds. Sampling σ ∈ Gk,n = Γn⋊Sn is straight-
forward: sample π ∼ Unif(Sn) and i.i.d. marks γ1, . . . , γn ∼ Unif(Γ), then
form the induced permutation of [kn] under the standard block action. The
point-level cycle counts (a1(σ), . . . , aB(σ)) can then be computed by stan-
dard cycle-tracing on [kn].

On the limiting side, we sample the independent Poisson family {Zℓ,λ}
for ℓ ≤ B and λ ⊢ k (or only those λ present in Γ), and form (A1, . . . , AB)
by the deterministic compounding map. Since k is fixed, the number of
partitions λ ⊢ k is small, and this construction is fast even for moderately
large B.

To compare laws in a way that remains feasible in moderate dimension,
we focus on Lipschitz test functionals F (as in the previous subsection), such
as

F1(x) =

B∑
b=1

xb, F2(x) =

B∑
b=1

b xb, F3(x) = max
1≤b≤B

xb, F4(x) =

B∑
b=1

|xb−EAb|.

For each n and B, we estimate EF (a1, . . . , aB) and EF (A1, . . . , AB) by
Monte Carlo, and plot the absolute difference against B/n. For representa-
tive choices (e.g. k = 3, Γ = S3 and Γ = C3), one observes a linear regime in
B/n once n is moderately large, with the cyclic case exhibiting noticeably
smaller slope, consistent with the fact that (Ai) is independent for Γ = Ck

whereas for Γ = S3 the shared variables Zℓ,(2,1) induce correlations (cf. (35)).
In the same experiments, keeping B fixed and increasing n yields an error
decaying like 1/n, while choosing mesoscopic cutoffs such as B = ⌊nα⌋ with
α ∈ (0, 1) yields decay nα−1, matching the qualitative prediction that the
approximation is accurate precisely when B = o(n).

These computations do not provide sharp constants, but they support
two robust conclusions: (i) the compounding description captures the cor-
rect joint structure (including dependence) already at moderate n, and (ii)
the dominant source of error is the truncation at time n in the underlying
indicator construction, which naturally scales as B/n when one tracks starts
of length at most B.

7 Discussion and open problems

The results above identify a natural compound Poisson description for trun-
cated point-level cycle counts in the imprimitive action of Gk,n = Γn ⋊ Sn,
with an explicit error scale in total variation of order B/n for mesoscopic
cutoffs B = o(n). We record several directions in which one can sharpen,
extend, or reorganize the theory.
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7.1 Optimal constants and sharp asymptotics in total varia-
tion

Our quantitative bound∥∥L(a1(σ), . . . , aB(σ))− L(A1, . . . , AB)
∥∥
TV

≤ C(k,Γ)
(B
n

+
B2

n2

)
is robust but not expected to be sharp in its constant, and the presence
of two terms suggests that different error mechanisms are being aggregated.
Even in the classical case Γ = {e} (uniform permutations on Sn), the optimal
leading constant in a B/n bound depends delicately on how one measures
truncation error in the Feller coupling, and one can often track the dominant
contribution to the TV distance to within an absolute factor.

In the wreath product setting, the natural conjecture is that the leading
constant should depend on Γ primarily through low moments of the mark
profile

M(λ) :=

k∑
j=1

aj(λ), Y ∼ Unif(Γ),

since M(Y ) is exactly the number of point-cycles created by a single block-
cycle (counting multiplicities across within-block cycle lengths). At a heuris-
tic level, each block-cycle of length ℓ that is “mis-coupled” at the block level
can create at most M(Y ) discrepancies across the point-level coordinates,
so one expects constants of the form C1 EM(Y ) (possibly together with
EM(Y )2 when one controls TV via second moments).

A concrete open problem is therefore to isolate the optimal constant in
an inequality of the form∥∥L(a1(σ), . . . , aB(σ))−L(A1, . . . , AB)

∥∥
TV

≤ C⋆(k,Γ)
B

n
for all 1 ≤ B ≤ n,

and to decide whether C⋆(k,Γ) admits a tractable expression in terms of
the cycle index of Γ. One plausible approach is to combine (i) a refined
block-level approximation (e.g. an optimal TV coupling for the vector of
block cycle counts up to B) with (ii) an optimal Lipschitz estimate for the
deterministic compounding map sending block-cycle counts and marks to
point-cycle counts. The latter can be analyzed exactly because it is linear
in the Poisson family {Zℓ,λ}, but translating this into sharp TV constants
remains nontrivial.

7.2 Lower bounds and sharpness of the B/n regime

The condition B = o(n) is sufficient for convergence in total variation of
the truncated vector, and in all comparable models it is also essentially
necessary. A systematic lower bound in our setting would be valuable, both
as a sharpness statement and as a guide to optimal constants.
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The main obstruction is already present at the block level: in the indi-
cator (Feller) representation for Sn, the truncation at time n perturbs the
joint law of short spacings by an amount that is typically of order B/n when
one tests against events depending on the presence of a spacing start near
the terminal segment. In our marked-spacing construction, the additional
marks do not remove this obstruction; if anything, they can amplify it when
M(Y ) is large.

One concrete route to a lower bound is to compare the finite-n marked-
spacing counts C

(n)
b with the infinite counts C

(∞)
b by testing the event that

there exists a spacing of length ℓ ≤ B starting in the last B indices of the
indicator sequence. Such an event has probability of order B/n at the block
level, and whenever it occurs it changes (after compounding by marks) at
least one coordinate among (a1, . . . , aB) with positive probability uniformly
bounded away from 0 (provided Γ is not supported on the identity). For-
malizing this strategy should yield a general lower bound∥∥L(a1(σ), . . . , aB(σ))− L(A1, . . . , AB)

∥∥
TV

≥ c(k,Γ)
B

n

at least in regimes where B → ∞ and B = o(n). Determining the largest
class of (k,Γ) for which such a bound holds (and identifying the exact c(k,Γ))
is open.

A related problem is to understand what happens when B is a linear
fraction of n. In that regime, the approximation cannot hold in TV for the
entire vector, but one may still hope for (i) convergence of finite-dimensional
marginals, (ii) Wasserstein-type bounds for suitable metrics on NB, or (iii)
limit theorems for aggregated statistics (see below).

7.3 Replacing Sn by other block permutation groups H ≤ Sn

The analysis above is tailored to Gk,n = Γn ⋊ Sn, where the block per-
mutation is uniform on the full symmetric group and hence admits the
Feller indicator representation with independent Bernoulli indicators ζi hav-
ing P(ζi = 1) = 1/i. A natural extension is to consider

Gk,n(H) := Γn ⋊H

for a sequence of subgroups H ≤ Sn (or more generally, for a sequence of
conjugation-invariant measures on Sn), still acting via the standard block
action.

At the level of small block cycles, what one needs from H is an analogue
of the classical Poisson approximation: namely, that the vector of block-
cycle counts up to length B is close to a vector of independent Poisson
variables with means {θℓ/ℓ}ℓ≤B for some parameters θℓ depending on H
(and possibly on n in a controlled way). If such a block-level approximation
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holds in total variation with error εn,B, then the same compounding map
used to define (Ai) produces a point-level approximation with error at most a
constant multiple of εn,B, with the constant depending only on (k,Γ) through
a Lipschitz bound for compounding. In other words, the point-level question
largely reduces to establishing a suitable “small cycles are asymptotically
Poisson” theorem for H.

Two cases appear particularly accessible:

• H = An (uniform even permutations), where one expects the difference
from Sn to be negligible at the scale B = o(n) for fixed k.

• Ewens-type measures on Sn, where the block-cycle counts are asymp-
totically independent Poisson with mean θ/ℓ; here the limiting object
should be obtained from our definition of Ai by replacing the mean of
Zℓ,λ from PΓ(λ)/ℓ to θ PΓ(λ)/ℓ.

For more rigid subgroups H (e.g. primitive groups of small order), one does
not expect Poisson block-cycle counts, and it becomes a separate problem to
identify the correct block-level limit and then compound it.

7.4 Toward functional limit theorems and random measures

The present results provide a TV approximation for the finite vector (a1, . . . , aB)
when B = o(n). A natural next step is to seek process-level convergence as
B → ∞ together with n, phrased either in a product topology on NN or in
terms of random measures. One convenient encoding is the point measure
of (small) cycle lengths

Ξn :=
∑
i≥1

ai(σ) δi, Ξ :=
∑
i≥1

Ai δi,

and one may ask for convergence of Ξn to Ξ when tested against functions
supported on {1, . . . , B} with B = o(n), with explicit bounds in metrics
stronger than total variation on finite truncations (e.g. bounded-Lipschitz
metrics on measures). Because (Ai) is itself built from an underlying in-
dependent Poisson family indexed by (ℓ, λ), it is plausible that Ξ can be
realized as a compound Poisson random measure with intensity∑

ℓ≥1

∑
λ⊢k

PΓ(λ)

ℓ
δℓ ⊗ δλ,

pushed forward under the deterministic map (ℓ, λ) 7→ the multiset of point-
cycle lengths {ℓj : aj(λ) > 0} with multiplicities aj(λ). Making such a
representation precise could simplify the derivation of joint cumulants and
facilitate stronger limit theorems for linear statistics.
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Another direction is to study aggregated functionals beyond the Lipschitz
class treated above, for instance

SB :=
∑
i≤B

ai(σ), TB :=
∑
i≤B

i ai(σ),

or centered versions thereof, and to ask for Gaussian fluctuations (CLTs)
as B → ∞ with B = o(n). Since (Ai) has explicit cumulants determined
by {Zℓ,λ}, one can compute Var(SB) and higher cumulants and then ask
whether (SB − ESB)/

√
Var(SB) is asymptotically normal uniformly over n

in the regime B = o(n). Establishing such functional limit theorems would
require controlling dependence created by shared Poisson components across
coordinates, a feature absent in the simplest examples (e.g. Γ = Ck) but
present for general Γ.

7.5 Macroscopic cycles and marked Poisson–Dirichlet struc-
tures

Finally, the current work addresses point-cycle lengths bounded by B = o(n),
whereas the block permutation on n blocks exhibits macroscopic cycles of
order n with Poisson–Dirichlet scaling. Because a block-cycle of length ℓ
marked by λ produces point-cycles of lengths ℓj (for j in the support of λ),
one expects the macroscopic cycle structure of σ (as a permutation of [kn])
to be describable as a marking/fragmentation of the Poisson–Dirichlet limit
for Sn: each macroscopic block-cycle carries an independent Γ-mark which
splits its mass into finitely many point-cycles with proportions j/k repeated
aj(λ) times. Turning this heuristic into a joint limit theorem, simultaneously
capturing small cycles (compound Poisson) and macroscopic cycles (marked
Poisson–Dirichlet), remains open and would require a coupling that is uni-
form across all scales of ℓ.

7.6 Growing block size k

All statements above keep k fixed. Allowing k = k(n) → ∞ introduces two
new effects: (i) the space of marks λ ⊢ k becomes large, and (ii) the inter-
nal cycle structure begins to resemble that of a large random permutation
if Γ is, say, Sk or a large subgroup. One expects new regimes in which k
interacts with B (for instance, the set of attainable point-cycle lengths up to
B depends on both). Identifying conditions under which the same approx-
imation holds, possibly with constants uniform in k in certain ranges (e.g.
k = o(n)), is a natural open problem, as is the identification of the correct
limiting object when both k and n diverge.

We view these questions as largely orthogonal: one may first sharpen
constants at fixed (k,Γ), then generalize the block permutation law, and
finally address multiscale limits. Each step requires only incremental new
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input beyond the compound-Poisson description already established, but
each also appears to contain genuinely new phenomena.
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