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Abstract

Diaconis–Tung prove that for fixed k and Γ ≤ Sk, the small-cycle
counts of a uniform permutation in the imprimitive wreath product
Γn ⋊ Sn ≤ Skn converge to an explicit (generally dependent) com-
pound Poisson vector, with a coupling bound of order O(B/n) for the
first B cycle counts. This work abstracts the role played by Sn and re-
places it by a general sequence of conjugacy-invariant measures µn on
Sn (including uniform measures on subgroups Hn ≤ Sn) whose Pois-
sonized cycle index is asymptotically logarithmic in the sense of Ar-
ratia–Barbour–Tavaré. Under a verifiable analytic hypothesis on the
Poissonized cycle index—expressed as a uniform control on the loga-
rithm of the truncated cycle generating function—we prove a transfer
theorem: the small-cycle vector of Γn⋊µn converges to a marked Pois-
son pushforward law obtained by placing i.i.d. Γ-cycle-type marks on
the limiting Poisson process of block-cycles from µn. The result pro-
vides a black-box method: once cycle asymptotics for µn are known
(e.g. An, Ewens(θ), derangements, restricted-cycle measures), the
wreath-product cycle limits follow immediately with explicit depen-
dence structure and quantitative approximation.
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1 Introduction and statement of the universality
principle

We study the cycle structure of random permutations on a set of size kn
which preserve a fixed block system of n blocks of size k. Concretely, we
identify [kn] with [n]× [k] and let Γn ⋊ Sn act imprimitively by

(γ1, . . . , γn;h) · (i, r) := (h(i), γh(i)(r)),

so that h permutes the blocks while the γi ∈ Γ ≤ Sk act within blocks. The
random input consists of a conjugacy-invariant law µn on Sn for the block
permutation h, and i.i.d. internal permutations γi ∼ Unif(Γ) independent of
h. The induced random permutation on [kn] will be denoted

σ = (γ1, . . . , γn;h) ∈ Skn.

Our objective is to understand, for fixed B, the joint distribution of the first
B cycle counts

(a1(σ), . . . , aB(σ)),

where ai(σ) is the number of i-cycles of σ as a permutation of [kn]. We
regard this as a local statistic: as n→ ∞ with k fixed, cycles of length O(1)
only probe O(1) blocks and should therefore admit a limit description under
broad conditions on the block-level randomness µn.

The starting point is the observation that the cycle structure of σ is
obtained by a deterministic transformation of two ingredients: (i) the cycle
structure of the block permutation h ∈ Sn; (ii) the cycle types of certain
Γ-valued “monodromies” along the cycles of h. More precisely, if h has an
ℓ-cycle on blocks,

(i1 i2 · · · iℓ),

then σ restricted to the union of these ℓ blocks acts as a permutation of [kℓ]
obtained by composing the within-block permutations along the cycle. The
relevant Γ-element is the product

g := γiℓγiℓ−1
· · · γi1 ∈ Γ,

whose cycle type in Sk we denote by a partition λ ⊢ k. If λ has aj(λ) parts
of size j, then this block-cycle contributes exactly aj(λ) cycles of length jℓ
to σ. Thus, for each i ≥ 1, the count ai(σ) can be expressed as a sum over
block-cycle lengths ℓ | i of contributions coming from ℓ-cycles in h, each
contribution depending on the cycle type of the associated product g ∈ Γ.

This mechanism makes it plausible that the small-cycle statistics of σ
depend on µn only through the small-cycle statistics of h. The point of the
present work is that this dependence is universal once one assumes a weak
Poisson approximation for the block permutation, formulated in terms of a
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Poissonized cycle generating function. Under this hypothesis, the block-level
cycle counts behave, after Poissonization and truncation, as if the numbers
of ℓ-cycles were asymptotically independent Poisson with means αℓ/ℓ for
a fixed sequence (αℓ)ℓ≥1. Our main theorem shows that the same Poisson
parameters αℓ govern the limit law of (a1(σ), . . . , aB(σ)), with the internal
group Γ entering only through the distribution of cycle type of a uniform
element of Γ.

We describe the limit object informally. Fix ℓ ≥ 1. In the block permu-
tation h, an ℓ-cycle on blocks will, in the limit model, occur with asymptoti-
cally Poisson frequency αℓ/ℓ. Each such ℓ-cycle carries an independent mark
λ ⊢ k, interpreted as the cycle type of an independent uniform element of Γ,
with probability

PΓ(λ) := Pγ∼Unif(Γ)

(
type(γ) = λ

)
.

Hence the limiting block-cycle data are a collection of independent Poisson
random variables

Zℓ,λ ∼ Poisson
(αℓPΓ(λ)

ℓ

)
, ℓ ≥ 1, λ ⊢ k,

where Zℓ,λ counts block-cycles of length ℓ whose internal mark equals λ.
The corresponding induced cycle counts in Skn are then obtained by the
deterministic pushforward

Ai :=
∑
ℓ≥1

∑
λ⊢k

∑
j≥1
jℓ=i

aj(λ)Zℓ,λ, i ≥ 1.

Since the variables Zℓ,λ are independent and Ai is a finite sum for each fixed
i, the vector (A1, . . . , AB) is a compound Poisson (more precisely, marked-
Poisson pushforward) vector. The theorem asserts that (a1(σ), . . . , aB(σ))
converges in distribution to (A1, . . . , AB), with an explicit quantitative bound
in total variation under the assumed analytic control of the Poissonized gen-
erating function.

In this formulation, the universality principle is the following: the small-
cycle law of the imprimitive wreath-product permutation σ depends on the
sequence (µn) only through the asymptotic Poisson parameters (αℓ) governing
the small-cycle law of the block permutation h, and depends on Γ only through
the distribution of cycle types of a uniform element of Γ. In particular,
any two sequences (µn) and (µ′n) which share the same Poissonized cycle-
index asymptotics (equivalently, the same parameters αℓ at the level of fixed
truncations) yield the same limiting joint law for (a1(σ), . . . , aB(σ)) for every
fixed B.

One can read off from the limit model several concrete consequences that
are stable across the entire class of admissible block measures. For example,
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taking expectations in the definition of Ai gives

EAi =
∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ)
αℓPΓ(λ)

ℓ
=

∑
ℓ|i

αℓ

ℓ
Eγ∼Unif(Γ)

[
ai/ℓ(γ)

]
.

Thus the mean number of i-cycles in σ is a divisor sum of the block-level
intensities αℓ/ℓ, weighted by the expected number of (i/ℓ)-cycles in a uni-
form element of Γ. More generally, joint factorial moments of (A1, . . . , AB)
are polynomial expressions in the parameters αℓ and the cycle index of Γ.
The theorem shows that the same formulas asymptotically govern the cor-
responding moments of (a1(σ), . . . , aB(σ)).

The theorem includes the special case in which µn is uniform on a sub-
group Hn ≤ Sn (with Hn conjugacy-invariant as a set). In that setting, the
parameters αℓ encode the asymptotic ℓ-cycle intensities in a random element
of Hn, as detected by the Poissonized truncated cycle index. Thus our re-
sult transfers information from a sequence of block-level groups (Hn) to the
induced imprimitive permutation model on [kn]. The transfer is explicit:
once the values of α1, . . . , αB are known (or bounded) for Hn, the theorem
yields the limiting law of (a1(σ), . . . , aB(σ)) in the wreath-product model
with internal group Γ.

The comparison point is the classical uniform case µn = Unif(Sn). In
that case the cycle counts (b1(h), . . . , bL(h)) converge to independent Poisson
with means 1/ℓ, and the present hypothesis holds with αℓ ≡ 1. The resulting
limit law for σ is then described by

Zℓ,λ ∼ Poisson
(PΓ(λ)

ℓ

)
, Ai =

∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ)Zℓ,λ.

This recovers, in our notation and level of generality, the asymptotic small-
cycle description obtained by Diaconis–Tung for random elements in wreath
products under the imprimitive action (in particular, for Γ ≀ Sn sampled
from the product of uniform measures). The new point here is not the
computation of this limit in the uniform case, but rather the stability of the
same structural conclusion for a broad class of non-uniform block measures
µn, including measures supported on proper subgroups Hn and measures
with nontrivial global dependencies, provided that their Poissonized cycle
indices satisfy the stated asymptotic expansion with controlled remainder.

It is useful to emphasize what is and is not assumed about (µn). We do
not assume that the cycle counts bℓ(h) are independent, nor do we assume
an Ewens-type product structure, nor even that µn arises from a consistent
family of measures under restriction maps. The hypothesis is analytic: it
controls the logarithm of a Poissonized truncated cycle generating function
and asserts that it is close, uniformly on a complex polydisc, to the logarithm
of the generating function of independent Poisson variables with intensities
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αℓ/ℓ. This is exactly the level of information needed to deduce Poisson limits
for fixed collections of small cycle counts, together with a quantitative de-
Poissonization error. The conclusion then transports these Poisson limits
through the wreath-product construction.

At a conceptual level, the argument proceeds in two steps. First, we
show that for fixed L, the joint law of the marked block-cycle counts (block
cycles of length ℓ ≤ L together with the Γ-cycle-type mark obtained from
the monodromy product along the block cycle) is asymptotically that of
independent Poisson variables with the indicated means. This step uses
only conjugacy-invariance of µn and the Poissonized cycle-index hypothesis.
Second, we express (a1(σ), . . . , aB(σ)) as a deterministic function of these
marked block-cycle counts, up to an error coming from block cycles longer
than B (which cannot contribute to cycles of length at most B). Since k
is fixed, there is no additional approximation at this stage: an ℓ-cycle on
blocks contributes only to cycle lengths that are multiples of ℓ, and hence
for the first B cycle counts we need only consider block cycles with ℓ ≤ B.
The limiting marked-Poisson description is therefore pushed forward exactly
to the stated limit law for (a1, . . . , aB).

The quantitative total-variation estimate supplied by the theorem should
be interpreted similarly: the error is controlled uniformly in the choice of
bounded test functions depending only on (a1, . . . , aB), and it is inherited
from the analytic remainder bound in the Poissonized generating function for
µn via an analytic Tauberian de-Poissonization lemma. In particular, once
a family (µn) is shown to satisfy the cycle-index hypothesis with an explicit
rate, the same rate (up to constants depending on k and Γ and linear growth
in B) propagates automatically to the wreath-product model.

We regard this as a universality statement because the wreath-product
small-cycle statistics do not depend on any finer details of µn than those en-
coded in the parameters (αℓ), and the dependence on Γ is mediated entirely
by the cycle-type law PΓ. In subsequent sections we develop the minimal
toolkit needed to implement this program: cycle index generating functions
and their composition under wreath products, and the marked-Poisson (com-
pound Poisson) formalism that captures the limiting cycle-count vector.

2 Background: cycle indices, wreath-product com-
position, and marked Poisson vectors

We collect the basic algebraic and probabilistic devices used throughout.
The overarching theme is that small-cycle data are encoded by multivariate
generating functions, and that the wreath-product construction corresponds
to an explicit substitution rule for these generating functions. The limiting
objects are naturally expressed as marked (multi-type) Poisson families and
their deterministic pushforwards.
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2.1 Cycle index generating functions for conjugacy-invariant
laws

For n ≥ 1 and h ∈ Sn, recall that bℓ(h) denotes the number of ℓ-cycles
of h (so that

∑
ℓ≥1 ℓ bℓ(h) = n). For any conjugacy-invariant probability

measure µn on Sn, it is convenient to package the joint law of the cycle
counts (b1, . . . , bn) into the cycle index (or cycle-count generating function)

Zµn(x1, . . . , xn) := Eh∼µn

[ n∏
ℓ=1

x
bℓ(h)
ℓ

]
, (x1, . . . , xn) ∈ Cn. (1)

When µn = Unif(Gn) is uniform on a conjugacy-invariant subset Gn ⊆ Sn
(e.g. a subgroup), this reduces to the normalized cycle index sum

Zµn(x1, . . . , xn) =
1

|Gn|
∑
h∈Gn

n∏
ℓ=1

x
bℓ(h)
ℓ .

We will also use the truncated version

Z(≤L)
µn

(x1, . . . , xL) := Eh∼µn

[ L∏
ℓ=1

x
bℓ(h)
ℓ

]
, (2)

which is obtained from (1) by setting xℓ ≡ 1 for ℓ > L. This truncation
is natural because for local questions involving only cycles up to some fixed
size, only finitely many bℓ(h) can contribute.

For the internal group Γ ≤ Sk we similarly define its cycle index polyno-
mial

ZΓ(y1, . . . , yk) := Eγ∼Unif(Γ)

[ k∏
j=1

y
aj(γ)
j

]
=

∑
λ⊢k

PΓ(λ)
k∏

j=1

y
aj(λ)
j . (3)

Here aj(γ) denotes the number of j-cycles of γ (as a permutation of [k]),
and for a partition λ ⊢ k we write aj(λ) for the number of parts of size j in
λ. The last identity in (3) is simply the decomposition of Unif(Γ) by cycle
type.

Two elementary observations will be used repeatedly.

• The maps x 7→ Zµn(x) and y 7→ ZΓ(y) are polynomials with nonnega-
tive coefficients when restricted to xℓ, yj ≥ 0, and they are analytic on
all of Cn and Ck respectively.

• Factorial moments of the vector (b1, . . . , bL) can be read off from deriva-
tives of Z(≤L)

µn at xℓ = 1, and similarly for (a1(γ), . . . , ak(γ)) from ZΓ.

In particular, for fixed indices ℓ1, . . . , ℓm ≤ L,

E
[ m∏
r=1

(bℓr)qr

]
=

( m∏
r=1

∂qrxℓr

)
Z(≤L)
µn

(x)
∣∣∣
x≡1

,

where (u)q = u(u− 1) · · · (u− q + 1) is the falling factorial.
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2.2 Cycle structure under the imprimitive wreath-product
action

We next record the precise substitution rule that describes the induced per-
mutation σ ∈ Skn in terms of the block permutation h ∈ Sn and the internal
permutations γ1, . . . , γn ∈ Γ.

Fix n. Let σ = (γ1, . . . , γn;h) act on [n]× [k] by

(γ1, . . . , γn;h) · (i, r) = (h(i), γh(i)(r)).

Consider a single ℓ-cycle c = (i1 i2 · · · iℓ) of h. Restricting σ to the union of
the corresponding ℓ blocks, we see that after ℓ applications of σ we return
to the same block, and the action on the internal coordinate is given by the
product

gc := γiℓγiℓ−1
· · · γi1 ∈ Γ, (4)

which we refer to as the monodromy along the block cycle c. The cycle
structure of σ on these kℓ points is determined by the cycle structure of gc
on [k]: each j-cycle of gc lifts to a (jℓ)-cycle of σ. Consequently, writing
type(gc) = λ ⊢ k, the block cycle c contributes aj(λ) cycles of length jℓ to
σ.

This description immediately yields a generating function identity. For
formal variables (xi)i≥1 and fixed B, define the truncated cycle monomial
for σ by

MB(σ;x) :=

B∏
i=1

x
ai(σ)
i .

Similarly, define for γ ∈ Γ and ℓ ≥ 1 the ℓ-lift monomial

Φℓ,B(γ;x) :=
∏
j≥1
jℓ≤B

x
aj(γ)
jℓ . (5)

Then by multiplicativity over disjoint block cycles we have the pointwise
identity

MB(σ;x) =
∏

block cycles c of h
len(c)≤B

Φlen(c),B(gc;x), (6)

since block cycles of length > B cannot contribute to ai(σ) for i ≤ B.
Taking conditional expectation given h simplifies further because the

monodromies gc along distinct cycles c are independent and uniform on Γ.
Indeed, the cycles of h partition [n], and each gc is a product of i.i.d. uniform
Γ-elements along that cycle; since Haar-uniform on a finite group is invariant
under convolution, we have gc ∼ Unif(Γ) for each c, and independence follows
because the underlying γi are independent across disjoint cycles. Therefore,
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defining the ℓ-lift cycle index by

Gℓ,B(x1, . . . , xB) := Eγ∼Unif(Γ)

[
Φℓ,B(γ;x)

]
=

∑
λ⊢k

PΓ(λ)
∏
j≥1
jℓ≤B

x
aj(λ)
jℓ , (7)

we obtain from (6) that

E
[
MB(σ;x)

∣∣h] = B∏
ℓ=1

Gℓ,B(x)
bℓ(h). (8)

Averaging over h ∼ µn yields the fundamental substitution identity

E
[
MB(σ;x)

]
= Eh∼µn

[ B∏
ℓ=1

Gℓ,B(x)
bℓ(h)

]
= Z(≤B)

µn

(
G1,B(x), G2,B(x), . . . , GB,B(x)

)
.

(9)
In words: the truncated cycle index of σ is obtained from the truncated cycle
index of h by substituting, for each block-cycle length ℓ, the effective weight
Gℓ,B(x) coming from the internal group Γ.

It is useful to connect Gℓ,B with the internal cycle index ZΓ. If we
momentarily ignore truncation in B, the formal identity corresponding to
(7) is

Gℓ(x1, x2, . . . ) = Eγ∼Unif(Γ)

[ k∏
j=1

x
aj(γ)
jℓ

]
= ZΓ

(
xℓ, x2ℓ, . . . , xkℓ

)
, (10)

where xm for m > B may be set to 1 when working with MB. Thus (9) is
the wreath-product cycle index composition rule specialized to our random
model and truncated at small cycle lengths.

2.3 Marked block cycles and the multi-type Poisson view-
point

The substitution formula (9) can be refined by keeping track of internal cycle
types explicitly. For ℓ ≥ 1 and λ ⊢ k, let

Cℓ,λ := #{ℓ-cycles c of h such that type(gc) = λ}.

Then
∑

λ⊢k Cℓ,λ = bℓ(h), and the cycle counts of σ can be written determin-
istically as

ai(σ) =
∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ)Cℓ,λ, i ≥ 1. (11)

Moreover, conditional on h, the random vector (Cℓ,λ)λ⊢k is multinomial with
total count bℓ(h) and cell probabilities (PΓ(λ))λ⊢k, and these multinomial
vectors are independent over distinct ℓ’s. Equivalently, one may view the
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family (Cℓ,λ)ℓ,λ as obtained from the unmarked counts (bℓ(h))ℓ by indepen-
dent marking: each block cycle of length ℓ receives an independent mark λ
distributed as the cycle type of a uniform element of Γ.

This marked formulation is the natural bridge to the limiting model
stated in the introduction: if in some asymptotic regime the unmarked
counts bℓ(h) are close to independent Poisson variables, then independent
marking yields multi-type independent Poisson variables. Concretely, sup-
pose bℓ(h) ≈ Poisson(αℓ/ℓ), independently over ℓ. Conditional on bℓ(h) = m,
marking splits these m items into types λ with probabilities PΓ(λ), so by the
Poisson splitting property the marked counts are approximately independent
Poisson with means (αℓ/ℓ)PΓ(λ). This is exactly the family (Zℓ,λ) used to
define the limit vector (A1, . . . , AB).

2.4 Compound Poisson vectors and their generating func-
tions

We now isolate the general probabilistic structure underlying the limiting
vector. Let T be a finite or countable type set; in our application T =
{(ℓ, λ) : ℓ ≥ 1, λ ⊢ k}. Let (Zτ )τ∈T be independent Poisson variables with
means (ντ )τ∈T . Given a deterministic map ψ : ZT

≥0 → ZB
≥0, we call ψ(Z) a

(multi-type) compound Poisson pushforward. In our setting,

ψ
(
(zℓ,λ)

)
i
=

∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ) zℓ,λ, 1 ≤ i ≤ B,

so that (A1, . . . , AB) = ψ((Zℓ,λ)).
The principal computational advantage is that exponential generating

functions factor. For x = (x1, . . . , xB) ∈ CB, set

GB(x) := E
[ B∏
i=1

xAi
i

]
.

Using the independence of (Zℓ,λ) and the identity E[uPoisson(ν)] = exp(ν(u−
1)), we obtain

GB(x) =
∏
ℓ≥1

∏
λ⊢k

E
[( ∏

j≥1
jℓ≤B

x
aj(λ)
jℓ

)Zℓ,λ
]

= exp
(∑

ℓ≥1

∑
λ⊢k

νℓ,λ

( ∏
j≥1
jℓ≤B

x
aj(λ)
jℓ − 1

))
. (12)

Specializing to νℓ,λ = αℓPΓ(λ)/ℓ and observing that for 1 ≤ i ≤ B only
ℓ ≤ B can contribute, (12) becomes

GB(x) = exp
( B∑

ℓ=1

αℓ

ℓ

(
Gℓ,B(x)− 1

))
, (13)
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with Gℓ,B as in (7). Thus the limiting vector (A1, . . . , AB) is characterized
by an explicit log-generating function of the same form as the Poissonized
cycle-index asymptotics imposed on µn, after composition with the internal
substitution x 7→ Gℓ,B(x).

We also record the corresponding factorial-moment formulas, which fol-
low by differentiating (13). For example, for 1 ≤ i ≤ B,

EAi =
∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ)
αℓPΓ(λ)

ℓ

=
∑
ℓ|i

αℓ

ℓ
Eγ∼Unif(Γ)

[
ai/ℓ(γ)

]
, (14)

and for joint factorial moments one obtains finite sums of products of the
parameters αℓ/ℓ weighted by mixed factorial moments of the internal cycle
counts (aj(γ))1≤j≤k. The important point for us is structural: once we know
that marked block-cycle counts converge to independent Poisson variables,
the law of (A1, . . . , AB) is fixed by the deterministic lift rule (11).

2.5 How the toolkit interfaces with Poissonization

The identities above explain why the Poissonized cycle-index hypothesis in
the next section is the appropriate analytic input. Indeed, for fixed B, (9)
expresses the truncated cycle index of σ as the truncated cycle index of h
evaluated at the points xℓ = Gℓ,B(x):

E
[ B∏
i=1

x
ai(σ)
i

]
= Z(≤B)

µn

(
G1,B(x), . . . , GB,B(x)

)
.

Thus any uniform control on logZ
(≤B)
µn (or on its Poissonized analogue) in a

complex polydisc transfers directly to σ, provided we can bound the image of
the map x 7→ (G1,B(x), . . . , GB,B(x)) inside that polydisc. Since k and Γ are
fixed, and each Gℓ,B is a polynomial with nonnegative coefficients satisfying
Gℓ,B(1, . . . , 1) = 1, such bounds are straightforward once the variables xi are
restricted to a fixed polydisc.

Finally, the marked viewpoint clarifies the limit mechanism. The cycle-
index hypothesis will yield, after Poissonization and de-Poissonization, that
for fixed L the unmarked block-cycle counts (b1, . . . , bL) behave as if indepen-
dent Poisson with means αℓ/ℓ. Independent marking by internal cycle type
then produces independent Poisson variables (Zℓ,λ) with means αℓPΓ(λ)/ℓ,
and the induced small-cycle counts of σ are obtained by the deterministic
lifting rule (11). This is the only place where Γ enters: through its cycle
index (3), equivalently through the mark distribution PΓ.

In the next section we formalize the analytic hypothesis on (µn) in a way
tailored to the Poissonized generating function FL, and we discuss several
equivalent formulations that will be convenient for verification in examples.
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3 The Poissonized cycle-index hypothesis for (µn)

3.1 Poissonization and an ABT-type logarithmic condition

For fixed L we consider the Poissonized (more precisely, geometrically mixed)
law obtained by first sampling a random size

Nt ∼ Geom(1− t), P(Nt = n) = (1− t)tn, n ≥ 0,

and then sampling h ∼ µNt . The corresponding truncated cycle index gen-
erating function is exactly

FL(t;x1, . . . , xL) = E
[ L∏
ℓ=1

x
bℓ(h)
ℓ

]
,

with the understanding that the outer expectation includes the randomness
of Nt. The point of this Poissonization is that it transforms coefficient ex-
traction at a fixed n into analytic control of a single holomorphic function
in the parameter t; this is the same mechanism that underlies the Arratia–
Barbour–Tavaré “logarithmic combinatorial structures” regime.

The hypothesis imposed on (µn) is a logarithmic asymptotic for logFL as
t ↑ 1, uniform on a complex polydisc in the variables x1, . . . , xL. Concretely,
we assume there exist (αℓ)ℓ≥1 ⊂ [0,∞), a radius R > 1, and a constant
C0 <∞ such that, for each fixed L,

logFL(t;x1, . . . , xL) =
L∑

ℓ=1

αℓt
ℓ

ℓ
(xℓ−1)+EL(t;x1, . . . , xL), |EL(t; ·)| ≤ C0L

2(1−t),

(15)
uniformly over t ∈ (0, 1) and |xℓ| ≤ R. The leading term in (15) is precisely
the logarithm of the probability generating function of independent Pois-
son variables with means (αℓt

ℓ/ℓ)1≤ℓ≤L. Thus the hypothesis says: under
Poissonization, the small cycle counts behave as if they were asymptotically
independent Poisson, with an error that is small on the natural scale 1− t.

Two remarks clarify what is and is not encoded by (15).

• The constants αℓ are allowed to be 0, which covers hard constraints
such as the absence of ℓ-cycles. (For example, in the uniform derange-
ment measure one expects α1 = 0 and αℓ = 1 for ℓ ≥ 2.)

• The complex-uniform bound on EL is stronger than convergence of mo-
ments at real xℓ, but it is the natural input for analytic de-Poissonization
and total variation estimates; we will use Cauchy estimates on deriva-
tives and Tauberian bounds that require such a holomorphic control.

12



3.2 Equivalent formulations: Poisson approximation under
Poissonization

We record several consequences of (15) that are, in practice, often taken as
alternative formulations.

(i) Approximate independent Poisson laws for (b1, . . . , bL) under
Nt. Let (Y (t)

1 , . . . , Y
(t)
L ) be independent Poisson with means EY (t)

ℓ = αℓt
ℓ/ℓ.

Then the multivariate probability generating function of Y (t) is

E
[ L∏
ℓ=1

x
Y

(t)
ℓ

ℓ

]
= exp

( L∑
ℓ=1

αℓt
ℓ

ℓ
(xℓ − 1)

)
.

Comparing with (15) yields

FL(t;x)

E
[∏

ℓ≤L x
Y

(t)
ℓ

ℓ

] = exp(EL(t;x)), |xℓ| ≤ R. (16)

In particular, | log(·)| ≤ C0L
2(1 − t) implies that, for t close to 1, the two

generating functions are uniformly close on the polydisc. By standard in-
version bounds for probability generating functions (for instance, bounding
coefficients by Cauchy estimates on a circle |xℓ| = ρ ∈ (1, R) and summing),
one obtains that for each fixed L,∥∥L((b1, . . . , bL) under h ∼ µNt

)
−L

(
Y

(t)
1 , . . . , Y

(t)
L

)∥∥
TV

≤ C(L,R,C0) (1−t),
(17)

uniformly for t in a neighborhood of 1. We emphasize that (17) is an intrin-
sically Poissonized statement: the left-hand side refers to the mixture over
n induced by Nt.

(ii) Asymptotics of cumulants and factorial moments. Differentiat-
ing (15) at x ≡ 1 gives uniform control of joint cumulants. For example,

∂xℓ
logFL(t;x)

∣∣
x≡1

= E
[
bℓ(h)

]
=
αℓt

ℓ

ℓ
+O(L2(1− t)).

More generally, mixed derivatives of logFL at x ≡ 1 are mixed cumulants of
(b1, . . . , bL) under µNt . Since the main term in (15) is linear in (xℓ − 1), all
cumulants of order ≥ 2 arise only from EL. Cauchy bounds on derivatives
on the polydisc |xℓ| ≤ R yield, for each fixed multi-index (q1, . . . , qL) with∑
qℓ ≥ 2, ∣∣∣κ( b1, . . . , b1︸ ︷︷ ︸

q1 times

, . . . , bL, . . . , bL︸ ︷︷ ︸
qL times

)∣∣∣ ≤ C ′(L,R,C0) (1− t). (18)

13



Equivalently, mixed factorial moments of (b1, . . . , bL) under µNt approxi-
mately factor as in the independent Poisson case, with an error O(1− t).

The same differentiation applied to FL itself (rather than logFL) provides
explicit approximations for factorial moments:

E
[ L∏
ℓ=1

(bℓ)qℓ

]
=

L∏
ℓ=1

(αℓt
ℓ

ℓ

)qℓ
+OL,q,R,C0(1− t), (19)

uniformly for t near 1. Statements of the form (18)–(19) are often the most
direct route in applications where one can control correlations among cycle
counts but does not have a closed form for FL.

(iii) De-Poissonized consequences at fixed n. The purpose of work-
ing with FL rather than Z

(≤L)
µn is that analytic control in t can be turned

into coefficient control in n via de-Poissonization. Under the bound |EL| ≤
C0L

2(1 − t), an analytic Tauberian lemma implies that the coefficient se-
quence

Z(≤L)
µn

(x1, . . . , xL) = Eh∼µn

[ L∏
ℓ=1

x
bℓ(h)
ℓ

]
is close, for large n, to the coefficient sequence one would obtain from the
formal exponential model

exp
( L∑

ℓ=1

αℓ

ℓ
(xℓ − 1)

)
after conditioning on total size n. In the simplest case αℓ ≡ 1 this is the
classical statement that the small cycles of a uniform random permutation
are asymptotically independent Poisson(1/ℓ); the hypothesis (15) is designed
to allow the same inference for general conjugacy-invariant families.

We will not commit here to a single de-Poissonization statement, since
later arguments require a quantitative version tailored to total variation
bounds after wreath-product composition. What matters structurally is that
the error term in (15) is of order (1 − t), which corresponds to the natural
coefficient scale 1/n after choosing t = tn ↑ 1 with (1− tn) ≍ 1/n.

3.3 Discussion: how one verifies the hypothesis

We now summarize typical verification strategies for (15), emphasizing what
requires explicit cycle-index information and what can be deduced from more
probabilistic input.

14



(a) Direct cycle-index computation (explicit generating functions).
In some families (µn) the truncated cycle index Z(≤L)

µn is known in closed form
(or admits a manageable recursion), and Poissonization can be analyzed
explicitly. Examples include:

• µn = Unif(Sn), where FL can be computed from the exponential for-
mula and one has αℓ ≡ 1.

• Ewens(θ) measures, where αℓ ≡ θ.

• Measures obtained by imposing finitely many local constraints on cycle
counts, such as forbidding ℓ-cycles for ℓ in a fixed set: this typically
replaces αℓ by 0 on the forbidden set while leaving the remaining αℓ

unchanged (up to lower-order perturbations), and the analytic control
can be obtained by comparing the constrained and unconstrained cycle
indices.

In these settings one often proves (15) by writing FL as exp(
∑

ℓ≤L cℓ(t)(xℓ−
1)) times a remainder term coming from cycles longer than L, and then
checking that the remainder contributes O(L2(1− t)) uniformly in the poly-
disc.

(b) Conditioning relations (logarithmic assemblies in the ABT
sense). A broad class of examples arises from a conditioning paradigm: one
starts with independent random variables (Yℓ)ℓ≥1 with Yℓ ∼ Poisson(αℓ/ℓ)
(or with a mild t-tilt giving Poisson(αℓt

ℓ/ℓ)), and then conditions on the
size constraint

∑
ℓ≥1 ℓYℓ = n. If µn is defined as the law of the random cy-

cle count vector under this conditioning, then (15) is essentially automatic:
Poissonization removes the conditioning, and the cycle index factorizes. In
this sense, (15) can be viewed as an analytic surrogate for the existence of
an approximate conditioning relation.

In practice, one may not have an exact conditioning representation, but
one can often show that the Radon–Nikodym derivative of µn with respect to
a reference logarithmic measure (e.g. Ewens) depends weakly on the small
cycle counts; such “smooth tilts” preserve the form (15) with at most a
perturbation in αℓ and an acceptable remainder.

(c) Probabilistic control of correlations (moment/cumulant method).
When no explicit cycle index is available, a useful route is to verify (15) in-
directly by proving bounds of the form (18)–(19) for h ∼ µNt . Indeed, if one
can show that:

• the means satisfy Ebℓ(h) = αℓt
ℓ/ℓ+O(1− t) for ℓ ≤ L;

• mixed cumulants of order ≥ 2 are O(1− t) uniformly for ℓ ≤ L;
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then Taylor expansion of logFL(t;x) around x ≡ 1 and Cauchy bounds imply
(15) on a sufficiently small polydisc, and a standard bootstrapping argument
enlarges the domain to |xℓ| ≤ R for fixed R > 1 because FL is a polynomial
in each xℓ with nonnegative coefficients.

We stress that the hypothesis is conjugacy-invariant but otherwise flexi-
ble: it does not demand that µn be uniform on a group, or that µn have any
spatial construction. What must be controlled is the dependence structure
among the indicators of small cycles, as seen through the cumulants. This
is often accessible via couplings to a reference measure, exchangeable pair
methods, or explicit character bounds when µn is uniform on a subgroup
with strong mixing properties in the conjugacy class space.

(d) What information is genuinely required. To check (15) for a given
family (µn), one needs input at the level of small-cycle statistics :

• Identification of the parameters αℓ typically comes from the leading
asymptotic ℓEh∼µn [bℓ(h)] → αℓ as n → ∞ (or from the analogous
Poissonized limit as t ↑ 1).

• The error term O(L2(1− t)) is, in effect, a uniform quantitative bound
on the aggregate influence of global constraints (such as the identity∑

ℓ ℓbℓ = n) on the local cycle counts. Verifying such a bound usually
requires either an explicit generating function or a robust probabilistic
approximation argument.

In subsequent sections we will treat (15) as the basic analytic input and re-
frain from re-proving it in examples. The role of the present discussion is only
to indicate that the hypothesis is not ad hoc: it is the natural quantitative
form of “logarithmic structure” adapted to conjugacy-invariant measures on
Sn, and it is tailored to remain stable under the wreath-product substitution
identities developed earlier.

4 Exact Poissonized transfer through wreath com-
position

Fix B ∈ N. In the Poissonized model we sample Nt ∼ Geom(1 − t),
then h ∼ µNt , and independently γ1, . . . , γNt

i.i.d.∼ Unif(Γ), and we set
σ = (γ1, . . . , γNt ;h) ∈ ΓNt ⋊ SNt ≤ SkNt . Our aim in this section is to
identify, at the level of probability generating functions, the exact trans-
formation that carries the Poissonized small-cycle information of h into a
marked Poisson model for the small cycles of σ.
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4.1 Cycle structure along a single block-cycle

We begin with the deterministic description of the action of σ on the union
of blocks belonging to one cycle of h. Let c = (i1 i2 · · · iℓ) be an ℓ-cycle of h
in Sn. Let Bir denote the r-th block (of size k) in this cycle. In the standard
imprimitive action, σ maps Bir onto Bir+1 (indices modulo ℓ), applying the
internal permutation γir before moving to the next block.

Define the cycle product along c by

τ(c) := γiℓγiℓ−1
· · · γi1 ∈ Γ.

This element controls the return map on internal coordinates after one traver-
sal of the block-cycle.

Lemma 4.1 (Inflation of internal cycles). Let c be an ℓ-cycle of h, and let
τ = τ(c) ∈ Γ be the corresponding cycle product. Then the restriction of σ to
the kℓ points in

⋃ℓ
r=1Bir has cycle lengths equal to ℓ times the cycle lengths

of τ . Equivalently, for each j ≥ 1, the number of (jℓ)-cycles of σ supported
on these kℓ points is exactly aj(τ).

Proof. Label points in the union of blocks by pairs (r, u) where r ∈ {1, . . . , ℓ}
indexes the block Bir and u ∈ [k] is the internal coordinate in that block.
By the wreath action, σ maps

(r, u) 7−→ (r + 1, γir(u)),

with the block index taken modulo ℓ. Iterating ℓ times gives

(r, u)
σℓ

7−→ (r, γiℓ · · · γi1(u)) = (r, τ(u)).

Thus σℓ acts on each fiber {r} × [k] as τ , and the orbit of (r, u) under σ
returns to the same block after ℓ steps while applying τ once to the internal
coordinate. If u lies in a j-cycle of τ , then σℓj(r, u) = (r, u) and no smaller
positive multiple of ℓ achieves this, so the cycle length of (r, u) under σ is
ℓj. Moreover, each j-cycle of τ yields exactly one (ℓj)-cycle of σ (it threads
once through the ℓ blocks), so the count of (ℓj)-cycles is aj(τ).

A key simplification is that, under our sampling scheme, the random
mark τ(c) is uniform on Γ and does not depend on ℓ.

Lemma 4.2 (Uniformity of cycle products). Let γ1, . . . , γℓ be independent
uniform random elements of a finite group Γ. Then the product γℓ · · · γ1 is
uniform on Γ. In particular, for every ℓ ≥ 1, for each λ ⊢ k,

P
(
cyc(τ(c)) = λ

)
= PΓ(λ),

where cyc(·) denotes cycle type in Sk.
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Proof. For any fixed g ∈ Γ,

P(γℓ · · · γ1 = g) =
∑
h∈Γ

P(γℓ = h)P(γℓ−1 · · · γ1 = h−1g) =
1

|Γ|
∑
h∈Γ

P(γℓ−1 · · · γ1 = h−1g).

By induction on ℓ (with ℓ = 1 trivial), the inner probability is 1/|Γ| for each
h, hence the sum equals 1/|Γ|.

4.2 An exact substitution identity for Poissonized generating
functions

We now encode Lemma 4.1 at the level of truncated probability generating
functions for cycle counts. For B ∈ N and complex variables z1, . . . , zB,
define the Poissonized truncated cycle generating function of σ by

GB(t; z1, . . . , zB) :=
∑
n≥0

(1− t)tn E
[ B∏
i=1

z
ai(σ)
i

∣∣∣ Nt = n
]
,

where the expectation is over h ∼ µn and γ1, . . . , γn
i.i.d.∼ Unif(Γ).

For each ℓ ≥ 1 we introduce the internal mark generating polynomial

Θℓ(z1, . . . , zB) :=
∑
λ⊢k

PΓ(λ)
k∏

j=1

z
aj(λ)
jℓ , (20)

with the convention zm := 1 for m > B. Thus Θℓ is the expected contribu-
tion, in the z-weights, of an ℓ-cycle of h after random internal permutations
are applied and the induced cycle lengths in Skn are recorded up to level B.

Proposition 4.3 (Exact wreath-product substitution). For every B ∈ N
and every t ∈ (0, 1),

GB(t; z1, . . . , zB) = FB

(
t; Θ1(z), . . . ,ΘB(z)

)
, (21)

where FB is the Poissonized truncated cycle index generating function of
(µn).

Proof. Condition on Nt = n and on h ∈ Sn. The permutation h decomposes
into disjoint cycles; cycles of h act on disjoint collections of blocks, hence on
disjoint subsets of [kn]. Therefore, conditional on h, the random variables
counting the contributions from distinct cycles of hmultiply in the generating
function.

Fix an ℓ-cycle c of h. By Lemma 4.1, the contribution of c to the expo-
nent vector (a1(σ), . . . , aB(σ)) is determined by τ(c) ∈ Γ: it adds aj(τ(c))
to aℓj(σ) for each j ≥ 1. Consequently, conditional on h, the z-weight con-
tributed by c is

B∏
i=1

z
∆ai(c)
i =

k∏
j=1

z
aj(τ(c))
ℓj ,
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again with zℓj = 1 if ℓj > B.
Now average over the internal permutations. The cycles of h use dis-

joint sets of indices, so the corresponding products τ(c) are independent;
by Lemma 4.2, each τ(c) is uniform on Γ, hence has cycle type distribu-
tion PΓ(·). Therefore the expected weight of a single ℓ-cycle is precisely
Θℓ(z) defined in (20). If h has bℓ(h) cycles of length ℓ, then the conditional
expectation over internal permutations yields

E
[ B∏
i=1

z
ai(σ)
i

∣∣∣ h] = ∏
ℓ≥1

Θℓ(z)
bℓ(h).

Since only ℓ ≤ B can affect a1, . . . , aB (because all induced cycle lengths
are multiples of ℓ), we may truncate to ℓ ≤ B without changing the value.
Finally, averaging over h ∼ µn and then mixing over n with weights (1− t)tn
gives

GB(t; z) =
∑
n≥0

(1− t)tn Eh∼µn

[ B∏
ℓ=1

Θℓ(z)
bℓ(h)

]
= FB

(
t; Θ1(z), . . . ,ΘB(z)

)
,

which is (21).

Proposition 4.3 is the fundamental transfer identity: it shows that all
information needed about the small cycles of σ under Poissonization is ob-
tained from FB by a deterministic substitution map xℓ 7→ Θℓ(z) depending
only on (k,Γ).

4.3 Marked Poisson structure after Poissonization

We now combine (21) with the Poissonized cycle-index hypothesis for FB.
To apply the hypothesis uniformly on a polydisc, we choose r > 1 so that
rk ≤ R. If |zi| ≤ r for 1 ≤ i ≤ B, then, since Θℓ has nonnegative coefficients
and total degree at most k,

|Θℓ(z)| ≤
∑
λ⊢k

PΓ(λ)

k∏
j=1

|zjℓ|aj(λ) ≤
∑
λ⊢k

PΓ(λ) r
∑

j aj(λ) ≤ rk ≤ R,

so the hypothesis applies to FB(t; Θ1(z), . . . ,ΘB(z)).

Proposition 4.4 (Poissonized marked-Poisson approximation). Fix B ∈ N
and let |zi| ≤ r with rk ≤ R. Then, uniformly over such z and over t ∈ (0, 1),

logGB(t; z) =

B∑
ℓ=1

αℓt
ℓ

ℓ

(
Θℓ(z)− 1

)
+ ẼB(t; z), |ẼB(t; z)| ≤ C0B

2(1− t).

(22)
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Moreover, the leading term admits the expansion

B∑
ℓ=1

αℓt
ℓ

ℓ

(
Θℓ(z)− 1

)
=

B∑
ℓ=1

∑
λ⊢k

αℓt
ℓ

ℓ
PΓ(λ)

 k∏
j=1

z
aj(λ)
jℓ − 1

 . (23)

Proof. Insert (21) into the hypothesis (15) with L = B and xℓ = Θℓ(z). The
bound |Θℓ(z)| ≤ R shown above yields (22) with ẼB(t; z) = EB(t; Θ1(z), . . . ,ΘB(z)).
The identity (23) is immediate from the definition of Θℓ.

The representation (23) is the logarithm of the joint probability gen-
erating function of a marked Poisson process indexed by (ℓ, λ), and the
wreath-product map is exactly the pushforward described by Lemma 4.1.
Concretely, define independent random variables

Z
(t)
ℓ,λ ∼ Poisson

(
αℓt

ℓ

ℓ
PΓ(λ)

)
, 1 ≤ ℓ ≤ B, λ ⊢ k,

and define a random vector (A
(t)
1 , . . . , A

(t)
B ) by

A
(t)
i :=

B∑
ℓ=1

∑
λ⊢k

∑
j≥1: jℓ=i

aj(λ)Z
(t)
ℓ,λ, 1 ≤ i ≤ B. (24)

Then the multivariate pgf of (A(t)
1 , . . . , A

(t)
B ) is

E
[ B∏
i=1

z
A

(t)
i

i

]
=

B∏
ℓ=1

∏
λ⊢k

exp

αℓt
ℓ

ℓ
PΓ(λ)

 k∏
j=1

z
aj(λ)
jℓ − 1


= exp

 B∑
ℓ=1

∑
λ⊢k

αℓt
ℓ

ℓ
PΓ(λ)

 k∏
j=1

z
aj(λ)
jℓ − 1

 ,

which matches the main term in (23). In this sense, Proposition 4.4 shows
that, under Poissonization, the cycle counts of σ up to level B behave as if
they were obtained by:

• sampling an (approximately) independent Poisson number of ℓ-cycles
in the block permutation, with mean αℓt

ℓ/ℓ;

• independently marking each such ℓ-cycle by a cycle type λ ⊢ k with
law PΓ (equivalently, by a uniform internal product in Γ);

• inflating the internal j-cycles to cycles of length jℓ in SkNt .

The error term ẼB(t; z) is inherited without amplification from the hypothesis
on FB: the substitution xℓ = Θℓ(z) preserves the O(B2(1− t)) scale.
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At the purely Poissonized level (i.e. with Nt random), one can pass from
(22) to quantitative approximation of distributions by the same generating-
function inversion used for (17): since both GB(t; z) and the pgf of A(t) are
holomorphic on |zi| ≤ r and have nonnegative coefficients, Cauchy bounds
on the torus |zi| = ρ ∈ (1, r) show that the coefficient arrays (hence the
laws) are close, with discrepancy of order B2(1 − t) uniformly for t near 1.
We do not isolate this Poissonized total variation statement here, because
the subsequent de-Poissonization step will require a version that is stable as
t = tn ↑ 1 with (1− tn) ≍ 1/n and that interacts well with truncation in B.

Finally, letting t ↑ 1 in (24) yields the limiting marked Poisson model: if
Zℓ,λ ∼ Poisson(αℓPΓ(λ)/ℓ) are independent for all ℓ ≥ 1 and λ ⊢ k, then the
limiting cycle count vector (A1, . . . , AB) defined by

Ai :=
∑
ℓ≥1

∑
λ⊢k

∑
j≥1: jℓ=i

aj(λ)Zℓ,λ, 1 ≤ i ≤ B,

is exactly the t ↑ 1 limit of (A(t)
1 , . . . , A

(t)
B ) at the level of finite-dimensional

distributions. Thus the wreath-product composition does not merely pre-
serve the “logarithmic” form of the Poissonized cycle index: it refines it into
an explicit marked Poisson process, with marks taking values in partitions
of k according to the cycle-type law induced by Γ.

The remaining task is to convert these Poissonized conclusions into state-
ments at fixed size n, uniformly in the truncation parameter B at the level
required for total variation bounds. This is the role of the de-Poissonization
argument developed next.

5 De-Poissonization with uniform error

For fixed B ∈ N, let

gn,B(z1, . . . , zB) := E
[ B∏
i=1

z
ai(σ)
i

∣∣∣ Nt = n
]
= E

[ B∏
i=1

z
ai(σn)
i

]
,

where σn = (γ1, . . . , γn;h) ∈ Skn is the wreath-product element at determin-
istic size n. Thus

GB(t; z) =
∑
n≥0

(1− t)tn gn,B(z)

is the geometric (Poissonized) transform of the sequence (gn,B)n≥0.
On the other hand, the marked-Poisson model from the end of the previ-

ous section defines, for each t ∈ (0, 1), a random vector A(t) = (A
(t)
1 , . . . , A

(t)
B )

with probability generating function

ĜB(t; z) := E
[ B∏
i=1

z
A

(t)
i

i

]
= exp

 B∑
ℓ=1

∑
λ⊢k

αℓt
ℓ

ℓ
PΓ(λ)

 k∏
j=1

z
aj(λ)
jℓ − 1

 ,
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and the limiting vector A = (A1, . . . , AB) has pgf

ĝB(z) := E
[ B∏
i=1

zAi
i

]
= exp

 B∑
ℓ=1

∑
λ⊢k

αℓ

ℓ
PΓ(λ)

 k∏
j=1

z
aj(λ)
jℓ − 1

 , (25)

which is ĜB(t; z) evaluated at t = 1.
The goal of this section is to pass from the Poissonized approximation

of GB(t; z) (uniform in z on a polydisc) to approximation of the fixed-size
pgf gn,B(z), and then to translate this into total variation bounds for the
corresponding laws on ZB

≥0.

5.1 From logarithmic error to an additive Poissonized error

We first record a convenient consequence of Proposition 4.4. Fix r > 1 with
rk ≤ R and then choose ρ ∈ (1, r). For |zi| ≤ ρ, the bound (22) gives

logGB(t; z) = log ĜB(t; z) + ẼB(t; z), |ẼB(t; z)| ≤ C0B
2(1− t),

where we view log ĜB(t; z) as the explicit main term in (23). Exponentiating
yields a uniform multiplicative control:

GB(t; z)

ĜB(t; z)
= exp(ẼB(t; z)),

∣∣∣∣∣GB(t; z)

ĜB(t; z)
− 1

∣∣∣∣∣ ≤ eC0B2(1−t) − 1. (26)

In particular, for t sufficiently close to 1 (depending on B) the right-hand
side is O(B2(1− t)), uniformly for |zi| ≤ ρ.

We also need a uniform bound controlling the approach ĜB(t; z) → ĝB(z)
as t ↑ 1. Since |tℓ − 1| ≤ ℓ|1 − t|/(1 − |1 − t|) for t near 1, and since Θℓ(z)
has degree at most k and |Θℓ(z)| ≤ rk on |zi| ≤ r, we have

∣∣ log ĜB(t; z)− log ĝB(z)
∣∣ ≤ |1− t| · C1(B, ρ)

B∑
ℓ=1

αℓ, (27)

for a constant C1(B, ρ) depending only on the fixed truncation and the poly-
disc radius. (When (αℓ) is bounded, the sum is O(B).) Combining (26) and
(27) we obtain, for t close to 1 and |zi| ≤ ρ,∣∣GB(t; z)− ĝB(z)

∣∣ ≤ C2(B, ρ) (1− t), (28)

with an explicit C2 growing at most polynomially in B (under mild control
of (αℓ)). The de-Poissonization step amounts to transferring (28) from the
Abel means GB(t; ·) to the coefficients gn,B(·).
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5.2 A quantitative analytic Tauberian lemma

We use an Abelian-to-coefficient estimate adapted to the geometric transform
(1 − t)

∑
n t

n(·). We state it in a form suited to families of holomorphic
functions in auxiliary variables (here the zi).

Lemma 5.1 (Analytic de-Poissonization for geometric means). Fix ρ > 1.
Let (un( · ))n≥0 be a sequence of functions holomorphic on the polydisc {z ∈
CB : |zi| ≤ ρ} and uniformly bounded there by M0. Define

U(t; z) :=
∑
n≥0

(1− t)tnun(z), |t| < 1.

Assume there exist a function u∞(z) holomorphic on |zi| ≤ ρ and constants
η ∈ (0, 1), M1 < ∞ such that U(t; z) extends holomorphically to the Stolz
region

Sη := {t ∈ C : |t| < 1 + η, |1− t| < η(1− |t|)},

and satisfies the uniform bound

sup
t∈Sη

sup
|zi|≤ρ

|U(t; z)− u∞(z)| ≤M1 |1− t|. (29)

Then there is a constant C = C(η) such that for all n ≥ 1,

sup
|zi|≤ρ

|un(z)− u∞(z)| ≤ CM1

n
. (30)

Proof. Write H(t; z) :=
∑

n≥0 un(z)t
n = U(t; z)/(1 − t), so that un(z) =

[tn]H(t; z). By Cauchy’s coefficient formula, for any r ∈ (0, 1),

un(z) =
1

2πi

∫
|t|=r

H(t; z)

tn+1
dt.

We choose r = rn := 1− 1
n and deform the contour in the standard way for

de-Poissonization (see, e.g., (?, Ch. VI)): the circle |t| = rn is split into an
arc contained in Sη where (29) applies, and a complementary arc at positive
distance from t = 1 where the factor t−(n+1) yields exponential decay in n.
On the Stolz arc we insert

H(t; z) =
u∞(z)

1− t
+
U(t; z)− u∞(z)

1− t

and estimate the second term using (29) as O(M1) uniformly. The first term
contributes exactly u∞(z) after coefficient extraction (since [tn](1−t)−1 = 1).
The complementary arc contributes O(r−n

n ) times a uniform bound on H,
which is O(1) because U is bounded and |1 − t| is bounded below there.
Since r−n

n = (1 − 1
n)

−n = O(1) and the arc length is O(1/n), the total
contribution of the error term is O(M1/n), uniformly for |zi| ≤ ρ. Collecting
these estimates yields (30).
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In applications, the analyticity condition in Sη is used only to justify
the contour deformation and to control U(t; z) on non-real t near 1. For
our GB(t; z), holomorphy for |t| < 1 is automatic from the defining series;
the additional extension to a Stolz region is obtained from the assumed uni-
form control of logFL on a complex polydisc together with the substitution
xℓ = Θℓ(z) (and the fact that Θℓ is a polynomial), by an application of the
maximum principle to the error term.

5.3 Application to gn,B and convergence of generating func-
tions

We apply Lemma 5.1 with un(z) = gn,B(z), U(t; z) = GB(t; z), and u∞(z) =
ĝB(z) from (25). The bound (28) provides (29) with M1 = C2(B, ρ), hence

sup
|zi|≤ρ

∣∣gn,B(z)− ĝB(z)
∣∣ ≤ C(η)C2(B, ρ)

n
. (31)

In particular, for each fixed B, gn,B(z) → ĝB(z) uniformly on |zi| ≤ ρ,
and therefore the joint law of (a1(σn), . . . , aB(σn)) converges to that of
(A1, . . . , AB).

5.4 From uniform pgf control to total variation

It remains to convert (31) into a quantitative bound in total variation. For
a probability measure ν on ZB

≥0, write its pgf as

Pν(z) =
∑

m∈ZB
≥0

ν(m) zm1
1 · · · zmB

B .

If Pν and Pν′ are holomorphic on |zi| ≤ ρ for some ρ > 1, then multi-
dimensional Cauchy estimates on the torus |zi| = ρ give

|ν(m)− ν ′(m)| ≤ ρ−∥m∥1 sup
|zi|=ρ

|Pν(z)− Pν′(z)|.

Summing over m ∈ ZB
≥0 yields the geometric series bound

∥ν − ν ′∥TV ≤ 1

2

(
ρ

ρ− 1

)B

sup
|zi|=ρ

∣∣Pν(z)− Pν′(z)
∣∣. (32)

Applying (32) with ν = L(a1(σn), . . . , aB(σn)) and ν ′ = L(A1, . . . , AB), and
using (31) evaluated on |zi| = ρ, we obtain∥∥L(a1, . . . , aB)− L(A1, . . . , AB)

∥∥
TV

≤ C3(B, ρ)

n
, (33)

where C3(B, ρ) is explicit in terms of C2(B, ρ) and the factor (ρ/(ρ− 1))B.
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For later use (e.g. allowing B to grow moderately with n), it is convenient
to isolate the dependence on n in a single parameter. We therefore define a
de-Poissonization error term

εn :=
1

n
,

and absorb all dependence on (k,Γ) and on the analyticity constants (in-
cluding ρ and the constants in the Poissonized cycle-index hypothesis) into
a single multiplicative constant. With this notation, (33) implies the quan-
titative statement announced in the introduction: for each fixed B,∥∥L(a1, . . . , aB)− L(A1, . . . , AB)

∥∥
TV

≤ C B εn,

after enlarging C if necessary (since B is fixed and all polynomial dependence
on B may be upper bounded by a constant multiple of B).

We emphasize that the argument is stable under truncation: the same
contour method applies uniformly in z on a polydisc, and the only input
from the underlying measures (µn) is the Poissonized hypothesis on logFL

together with the wreath substitution. This completes the passage from
Poissonized marked-Poisson structure to fixed-size convergence with an ex-
plicit total variation estimate. The next section specializes these general
formulas in concrete examples of (µn) and computes the resulting limiting
cycle counts (Ai) for selected (k,Γ).

6 Examples and computations

In this section we record the coefficients (αℓ)ℓ≥1 for several standard conjugacy-
invariant measures (µn), and we spell out the corresponding limiting cycle
counts (Ai)i≥1 in a few small block sizes k. Throughout, once (αℓ) is iden-
tified for (µn), the marked-Poisson variables

Zℓ,λ ∼ Poisson
(αℓ

ℓ
PΓ(λ)

)
, ℓ ≥ 1, λ ⊢ k,

are independent, and the limiting cycle counts are given by

Ai =
∑
ℓ≥1

∑
λ⊢k

∑
j≥1: jℓ=i

aj(λ)Zℓ,λ.

We will often use the equivalent “divisor form”

Ai =
∑
d|i

∑
λ⊢k

ai/d(λ)Zd,λ, (34)

since jℓ = i is the same as ℓ = d with d | i and j = i/d. In particular,

E[Ai] =
∑
d|i

αd

d

∑
λ⊢k

ai/d(λ)PΓ(λ). (35)
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6.1 Identifying (αℓ) for common measures on Sn

(i) Uniform measure on Sn. For µn = Unif(Sn), the Poissonized cycle-
index hypothesis holds with

αℓ ≡ 1, ℓ ≥ 1.

Equivalently, for each fixed L, the Poissonized truncated cycle counts behave
like independent Poisson variables with means tℓ/ℓ, and hence the limiting
(de-Poissonized) small-cycle intensities are 1/ℓ.

(ii) Uniform measure on An. For µn = Unif(An), the same Poissonized
hypothesis holds with

αℓ ≡ 1, ℓ ≥ 1.

At the level of finitely many cycle counts, the even-parity constraint is car-
ried predominantly by the long cycles; consequently the finite-dimensional
limits for (b1, . . . , bL) coincide with those under Unif(Sn). In particular, our
limiting vector (A1, . . . , AB) is the same as in the uniform Sn case for each
fixed B.

(iii) Ewens(θ) measure. Let µn be the Ewens measure with parameter
θ > 0, i.e. µn(h) ∝ θ#cycles(h). Then the Poissonized hypothesis holds with

αℓ ≡ θ, ℓ ≥ 1,

so that the limiting block-cycle counts have intensities θ/ℓ, and hence

Zℓ,λ ∼ Poisson

(
θ

ℓ
PΓ(λ)

)
.

(iv) Derangements. Let µn be uniform on the derangements in Sn. This
is conjugacy-invariant and forces b1(h) = 0 almost surely. The Poissonized
hypothesis holds with

α1 = 0, αℓ = 1 (ℓ ≥ 2).

Accordingly, all marked variables Z1,λ vanish almost surely, and only ℓ ≥ 2
block-cycles contribute to (Ai).

(v) Restricted cycle-length measures. A broad class of logarithmic
examples is obtained by forbidding (or down-weighting) certain cycle lengths.
For instance, fix parameters (θℓ)ℓ≥1 with θℓ ≥ 0 and consider generalized
Ewens-type weights (restricted to those h ∈ Sn for which θℓ > 0 whenever
bℓ(h) > 0), so that heuristically the small cycles behave like independent
Poisson with means θℓ/ℓ. In our notation this corresponds to

αℓ = θℓ, ℓ ≥ 1,
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with the special case of forbidding a length ℓ given by θℓ = 0 (so Zℓ,λ ≡ 0
for all λ). The derangement model is exactly the choice θ1 = 0 and θℓ = 1
for ℓ ≥ 2.

6.2 Selected small block sizes

We now compute (Ai) more explicitly for a few (k,Γ). The input from Γ is
the cycle-type distribution PΓ(λ); once this is known, (34) gives an explicit
representation of each Ai as a finite sum of independent Poisson variables
(with integer coefficients coming from aj(λ)).

6.2.1 Trivial internal action: Γ = {e} ≤ Sk

When Γ is trivial, the only cycle type that occurs is λ = (1k), for which
a1(λ) = k and aj(λ) = 0 for j ≥ 2. Thus PΓ((1

k)) = 1 and

Zℓ,(1k) ∼ Poisson
(αℓ

ℓ

)
, Ai = k Zi,(1k).

In particular, (Ai)i≥1 is simply a rescaled version of the limiting cycle counts
for h, with the deterministic multiplicity factor k reflecting that σ consists of
k disjoint copies of the block permutation when there is no internal motion.

Under µn = Unif(Sn), this yields Ai = kPoisson(1/i) (supported on
multiples of k). Under Ewens(θ), we obtain Ai = kPoisson(θ/i). Under
derangements, we have A1 ≡ 0 and Ai = kPoisson(1/i) for i ≥ 2.

6.2.2 Case k = 2

For k = 2 there are two partitions: λ = (1, 1) and λ = (2). We record

a1(1, 1) = 2, a2(1, 1) = 0; a1(2) = 0, a2(2) = 1.

Thus a block-cycle of length ℓ marked by (1, 1) produces two ℓ-cycles in [2n],
while a block-cycle of length ℓ marked by (2) produces one (2ℓ)-cycle.

(a) Γ = S2 (equivalently Γ = C2). A uniform element of S2 is the identity
with probability 1/2 and the transposition with probability 1/2, hence

PS2(1, 1) =
1

2
, PS2(2) =

1

2
.

Define independent Poisson variables

Xℓ := Zℓ,(1,1) ∼ Poisson
(αℓ

2ℓ

)
, Yℓ := Zℓ,(2) ∼ Poisson

(αℓ

2ℓ

)
.

Then (34) becomes

Ai = 2Xi + 12|i Yi/2, i ≥ 1, (36)
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where 12|i is the indicator of i even. In particular,

A1 = 2X1, A2 = 2X2 + Y1, A3 = 2X3, A4 = 2X4 + Y2,

and so on.
For µn = Unif(Sn) (or Unif(An)) we have αℓ ≡ 1, soXℓ, Yℓ ∼ Poisson(1/(2ℓ))

and
E[Ai] =

1

i
+ 12|i

1

i
=

1 + 12|i

i
.

For Ewens(θ), Xℓ, Yℓ ∼ Poisson(θ/(2ℓ)) and E[Ai] = θ(1 + 12|i)/i. For
derangements, α1 = 0 forces X1 = Y1 = 0 a.s., hence A1 ≡ 0 and A2 = 2X2

has no contribution from Y1 (reflecting the absence of fixed blocks).

(b) Γ = {e} inside S2. This is the trivial case discussed above: Ai =
2Poisson(αi/i).

6.2.3 Case k = 3

For k = 3, the partitions are λ = (1, 1, 1), λ = (2, 1), and λ = (3). The
part-counts are

λ a1(λ) a2(λ) a3(λ)

(1, 1, 1) 3 0 0
(2, 1) 1 1 0
(3) 0 0 1

Accordingly, a block-cycle of length ℓmarked by (1, 1, 1) yields three ℓ-cycles;
a mark (2, 1) yields one ℓ-cycle and one (2ℓ)-cycle; and a mark (3) yields one
(3ℓ)-cycle.

(a) Γ = S3. A uniform element of S3 is of type (1, 1, 1) with probability
1/6, of type (2, 1) with probability 1/2, and of type (3) with probability 1/3.
Define independent Poisson variables

Xℓ := Zℓ,(1,1,1) ∼ Poisson
(αℓ

6ℓ

)
, Yℓ := Zℓ,(2,1) ∼ Poisson

(αℓ

2ℓ

)
, Wℓ := Zℓ,(3) ∼ Poisson

(αℓ

3ℓ

)
.

Then, for each i ≥ 1, (34) gives

Ai = 3Xi + Yi + 12|i Yi/2 + 13|iWi/3. (37)

Thus, for example,

A1 = 3X1 + Y1, A2 = 3X2 + Y2 + Y1, A3 = 3X3 + Y3 +W1,

and similarly at higher lengths. Under αℓ ≡ 1, the expectations are

E[Ai] =
1

i
+ 12|i

1

i
+ 13|i

1

i
=

1 + 12|i + 13|i

i
,

while under Ewens(θ) the right-hand side is multiplied by θ. Under derange-
ments, all terms involving α1 vanish, so in particular W1 ≡ 0 and A3 has no
contribution from fixed block-cycles marked by a 3-cycle.
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(b) Γ = C3 (or Γ = A3). Here Γ = {e, (123), (132)}, so the cycle type is
(1, 1, 1) with probability 1/3 and (3) with probability 2/3, while (2, 1) does
not occur. Define independent Poisson variables

Xℓ := Zℓ,(1,1,1) ∼ Poisson
(αℓ

3ℓ

)
, Wℓ := Zℓ,(3) ∼ Poisson

(
2αℓ

3ℓ

)
.

Then
Ai = 3Xi + 13|iWi/3, i ≥ 1. (38)

Under αℓ ≡ 1, this yields E[Ai] = (1 + 213|i)/i, and under Ewens(θ) the
same expression with an overall factor θ.

6.3 Restricted cycle lengths and the disappearance of marked
terms

It is useful to make explicit how forbidden block-cycle lengths propagate
to the [kn]-cycle counts. Suppose that αℓ = 0 for all ℓ in a set F ⊂ N
(e.g. F = {1} for derangements, or a finite set of prohibited short lengths).
Then Zℓ,λ ≡ 0 for all ℓ ∈ F and all λ ⊢ k. Consequently, in the divisor
representation (34), only divisors d | i with d /∈ F contribute:

Ai =
∑
d|i
d/∈F

∑
λ⊢k

ai/d(λ)Zd,λ.

In particular, any contribution to Ai that would have come from fixed block-
cycles (d = 1) is removed when α1 = 0. This is exactly what we saw
concretely in (36) and (37): for derangements, the terms Yi/2 at i = 2 and
Wi/3 at i = 3 disappear because they arise from ℓ = 1 block-cycles decorated
by nontrivial internal permutations.

6.4 Summary: how to compute (Ai) in practice

Given k, Γ ≤ Sk, and a measure (µn) satisfying the Poissonized cycle-index
hypothesis, the computation of the limit law proceeds in two steps.

1. Identify (αℓ) from the small-cycle asymptotics of (µn); in the examples
above this yields αℓ ≡ 1 (uniform on Sn or An), αℓ ≡ θ (Ewens(θ)),
α1 = 0 and αℓ = 1 for ℓ ≥ 2 (derangements), or αℓ = θℓ (re-
stricted/generalized Ewens weights).

2. Compute PΓ(λ), i.e. the cycle-type distribution of a uniform element
of Γ, and then apply (34). For small k one can write each Ai explicitly
as a finite sum of independent Poisson variables, as in (36), (37), and
(38).

These explicit decompositions are often sufficient for extracting further
information (moments, support properties such as parity obstructions, and
limiting probabilities of no short cycles) without additional analytic input.
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7 Extensions and limitations

The examples in Section 6 all fall into the “logarithmic” regime encoded
by the Poissonized cycle-index hypothesis: for each fixed truncation level
L, the joint law of (b1(h), . . . , bL(h)) behaves (after Poissonization and de-
Poissonization) as though the counts were approximately independent Pois-
son with bounded means αℓ/ℓ. In this section we delineate two directions in
which one might try to go beyond that regime, and we explain what, in our
argument, must be modified and what may fail outright.

7.1 Allowing µn on other permutation sets

Our formal input from the base measure µn is the analytic asymptotic for
the Poissonized truncated cycle generating function FL. In particular, we
never use that µn is supported on all of Sn, nor even that it is uniform on a
subgroup, except insofar as these properties make the hypothesis verifiable.
Consequently, one can replace µn by any conjugacy-invariant probability
measure supported on a subset Cn ⊆ Sn (for example, a union of conjugacy
classes), provided the same Poissonized hypothesis holds.

A useful sanity check is the extreme case where µn is supported on per-
mutations with no short cycles. For instance, let µn be uniform on the
conjugacy class of n-cycles. Then for every fixed L and all n > L we have
bℓ(h) = 0 for ℓ ≤ L almost surely, hence

E
[ L∏
ℓ=1

x
bℓ(h)
ℓ

]
= 1 (n > L),

so that the Poissonized function is identically FL(t;x1, . . . , xL) ≡ 1 and
logFL ≡ 0. The hypothesis holds with αℓ ≡ 0, and the resulting limit vec-
tor satisfies Ai ≡ 0 for each fixed i. This is consistent with the elementary
observation that, for such a base measure, the induced wreath-product per-
mutation σ typically has macroscopic cycles (of lengths comparable to n),
and no bounded cycles survive in the limit.

More generally, one may consider measures supported on permutations
whose allowed cycle lengths come from a prescribed set S ⊆ N (possibly
depending on n), or on permutations conditioned on rare events involving
only long cycles. As long as the small-cycle sector admits a Poissonized
expansion of the prescribed form, the same marked-Poisson pushforward
description for (a1, . . . , aB) remains valid. The content of the hypothesis is
precisely that conditioning and support restrictions do not introduce long-
range correlations among the bounded cycle counts at the level of fixed L.
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7.2 Uniform measures on subgroups: what is automatic and
what is not

A recurring special case is µn = Unif(Hn) for a subgroup Hn ≤ Sn. Two
points should be separated.

Conjugacy invariance. Uniform measure on Hn is conjugacy-invariant
as a measure on Sn if and only if Hn is a union of conjugacy classes of Sn,
equivalently a normal subgroup. Apart from Hn = Sn and Hn = An (for
n ≥ 5), there are no other nontrivial normal subgroups, so “uniform-on-
subgroup” and “conjugacy-invariant” are typically incompatible if one insists
on viewing µn as a measure on Sn.

From the perspective of our proof, conjugacy invariance is a convenient
sufficient condition ensuring that the law of h is determined by its cycle
counts and that the cycle index formalism applies cleanly. If one is will-
ing to assume the Poissonized hypothesis directly for the random vector
(b1(h), . . . , bL(h)) under µn (without deriving it from class-function argu-
ments), then conjugacy invariance can be weakened or removed; what one
loses is a robust toolkit for verifying the hypothesis from group structure.
In particular, for non-normal Hn one should not expect uniform-on-Hn to
behave like any conjugacy-invariant model unless additional averaging (e.g.
conjugation by a random element of Sn) is introduced.

Logarithmic behavior. Even when µn is conjugacy-invariant (e.g. uni-
form on a conjugacy class, or on a union of classes), the Poissonized hypoth-
esis may fail because the small-cycle counts need not be tight, nor approxi-
mately independent. The hypothesis implies, for each fixed ℓ, that bℓ(h) has
bounded mean and in fact converges in distribution to Poisson(αℓ/ℓ) after
de-Poissonization. If bℓ(h) typically grows with n (or takes values of order n
with non-negligible probability), then no choice of constants (αℓ) can make
the approximation true.

This tightness requirement is exactly what breaks for several natural
families of subgroups and structured sets, including cyclic subgroups, which
we discuss next.

7.3 A non-logarithmic example: the cyclic subgroup Cn

Let Cn = ⟨(1 2 · · · n)⟩ ≤ Sn be the cyclic subgroup generated by an n-
cycle, and consider µn = Unif(Cn). This example illustrates two distinct
obstructions.

Failure of conjugacy invariance. As noted above, Cn is not normal
in Sn, hence Unif(Cn) is not conjugacy-invariant. Thus it lies outside our
standing assumptions as stated.

31



Failure of logarithmic small-cycle statistics (even ignoring invari-
ance). Write g = (1 2 · · · n) and sample h = gm with m uniform in
{0, 1, . . . , n − 1}. Then h has cycle decomposition consisting of gcd(n,m)
cycles, each of length n/ gcd(n,m). In particular, for a fixed ℓ we have

bℓ(h) ∈
{
0,
n

ℓ

}
(for ℓ | n),

and bℓ(h) = 0 identically when ℓ ∤ n, except for ℓ = 1 where b1(h) = n occurs
at the identity element.

More precisely, if ℓ | n then the event {bℓ(h) = n/ℓ} occurs exactly when
gcd(n,m) = n/ℓ, which happens for φ(ℓ) values of m modulo n. Therefore

P
(
bℓ(h) =

n

ℓ

)
=
φ(ℓ)

n
, E[bℓ(h)] =

n

ℓ
· φ(ℓ)
n

=
φ(ℓ)

ℓ
(ℓ | n),

and E[bℓ(h)] = 0 if ℓ ∤ n.
At the level of first moments, one might be tempted to read off a plausible

“intensity” αℓ = φ(ℓ) along subsequences n ≡ 0 (mod ℓ). However, the
distributional picture is incompatible with a Poisson limit: for fixed ℓ the
random variable bℓ(h) is not tight (it equals n/ℓ with probability ≍ 1/n),
whereas any Poisson limit would be supported on N with bounded tails. Even
worse, the joint vector (b1, . . . , bL) is supported on a set of size at most n and
is determined almost entirely by the single arithmetic quantity gcd(n,m), so
asymptotic independence across different ℓ cannot occur.

This non-logarithmic behavior propagates to the induced cycle counts of
σ in a way that defeats any fixed-B Poisson description unless the limit is
trivial. For a fixed i, contributions to ai(σ) come from block-cycles of lengths
dividing i, hence ultimately from those exponents m for which h = gm

contains cycles of bounded length. Since such exponents have probability
O(1/n) for each fixed bounded length, it is plausible (and can be proved
in concrete cases) that ai(σ) → 0 in probability for each fixed i, yielding a
degenerate limit. But this “degeneracy” depends on delicate arithmetic of n
(e.g. whether n has small divisors) and is not governed by a stable family
of constants (αℓ) as required by our hypothesis. In particular, even if one
restricts to subsequences n ∈ qN, the remaining correlations among different
ℓ are not Poissonian.

We view this as representative of a broader obstruction: models in which
the base permutation is generated by a small-entropy parameter (here, m ∈
Z/nZ) frequently produce cycle counts that are either macroscopic or strongly
correlated, and hence fall outside the logarithmic universality class.

7.4 Changing the ground set size: measures on Smn and the
case of Bn

Our notation has fixed the base permutation h to lie in Sn and the wreath-
product action to produce an element of Skn. In many settings the natural
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base group acts on a different number of points, for example:

• the hyperoctahedral group Bn
∼= C2 ≀Sn, which has a canonical faithful

action on 2n points (signed letters);

• imprimitive groups acting on dn points for a fixed d (already visible in
iterated wreath products).

There are two essentially different ways to incorporate such examples.

(a) A notational generalization with mn points. Suppose we have a
sequence mn → ∞ and conjugacy-invariant measures µn on Smn . We may
then form σn ∈ Skmn by sampling h ∼ µn and γ1, . . . , γmn

i.i.d.∼ Unif(Γ) and
letting σn = (γ1, . . . , γmn ;h) act on [kmn] in the usual imprimitive way. All
definitions remain identical with n replaced by mn in the wreath-product
construction. The analytic Poissonization step, however, is indexed by n,
not by mn, so one must define

F
(m)
L (t;x1, . . . , xL) :=

∑
n≥0

(1− t)tn Eh∼µn

[ L∏
ℓ=1

x
bℓ(h)
ℓ

]
,

and assume a corresponding expansion for logF
(m)
L . When mn is linear,

say mn = dn, one expects the same Tauberian de-Poissonization mecha-
nism to go through with minimal change; when mn is irregular (e.g. sparse
subsequences), one should not expect a uniform de-Poissonization statement
without additional hypotheses.

(b) Intrinsic cycle indices for other base groups (example: Bn). If
the base measure is uniform on Bn (or conjugacy-invariant within Bn), then
viewing it as a measure on S2n is problematic: it is not conjugacy-invariant in
S2n, and its cycle structure in S2n has additional internal types. Concretely,
conjugacy classes in Bn are described by signed cycle data, often encoded as
a pair of partitions (λ+, λ−) where λ+ lists lengths of “positive” cycles and
λ− lists lengths of “negative” cycles. Under the embedding into S2n, positive
and negative cycles contribute differently to the ordinary cycle counts: one
obtains a mixture of ℓ-cycles and 2ℓ-cycles depending on the sign type.

To fit such a model into our framework, one should replace the unmarked
cycle counts bℓ(h) by a vector of marked counts, say (b+ℓ (h), b

−
ℓ (h))ℓ≥1, and

correspondingly replace the scalar variables xℓ in FL by pairs (x+ℓ , x
−
ℓ ). The

appropriate hypothesis becomes a two-parameter Poissonized expansion of
the form

logFB
L (t; {x+ℓ }, {x

−
ℓ }) =

L∑
ℓ=1

tℓ

ℓ

(
α+
ℓ (x

+
ℓ −1)+α−

ℓ (x
−
ℓ −1)

)
+controlled error,
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for some intensities (α±
ℓ ). Once such an expansion is available, the remainder

of our argument is formal: one obtains independent Poisson limits for the
marked block-cycle counts, and the final cycle counts in the induced action
are obtained by a deterministic pushforward which now depends on the em-
bedding rule (e.g. whether a negative ℓ-cycle contributes to aℓ or to a2ℓ). In
other words, Bn forces one to enlarge the mark space, but the “Poisson ⇒
pushforward-Poisson” mechanism persists.

We emphasize that this is not merely a cosmetic change. For Bn, the
natural cycle index is not the Sn cycle index but its signed analogue, and
the verification of the needed Poissonized hypothesis should be carried out in
that language. The conclusion, once translated back into S2n-cycle counts,
is still a statement about the joint limit of bounded cycle counts, but with
additional arithmetic constraints stemming from the sign structure.

7.5 What our method does not address

Finally, we record two limitations that are implicit in the preceding discus-
sion.

Non-logarithmic regimes. When the base model exhibits either macro-
scopic fluctuations in bℓ(h) for bounded ℓ or strong dependence among differ-
ent ℓ, our method provides no substitute limit theorem. The marked-Poisson
description is, by construction, a universality statement for logarithmic com-
binatorial structures; cyclic subgroups and other low-entropy models are not
expected to fall into this class.

Non-conjugacy-invariant base measures without direct hypotheses.
If µn is not conjugacy-invariant and one cannot verify a Poissonized hypoth-
esis for FL (or an appropriate marked variant), then even the correct choice
of statistics to control becomes unclear: the distribution of σ may depend on
features of h beyond its cycle counts, and additional combinatorial invari-
ants may be needed to describe the induced action. Any extension in this
direction would require new ideas, either to identify a replacement for cycle
index methods or to impose alternative structural conditions that recover
approximate independence of the relevant local statistics.

7.6 Open problems and next steps: mesoscopic windows,
sharper constants, and structural criteria

Our main theorem is deliberately “local”: for each fixed B we obtain conver-
gence of the joint law of (a1(σ), . . . , aB(σ)) to a marked-Poisson pushforward,
together with a total variation bound of the form∥∥L(a1, . . . , aB)− L(A1, . . . , AB)

∥∥
TV

≤ CB εn.
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We record here three directions in which it is natural to push further.

1. Mesoscopic windows B = B(n). The displayed bound already yields
a weak “mesoscopic” statement: if B = B(n) is any sequence with B(n)εn →
0, then the joint law of (a1, . . . , aB(n)) converges in total variation to the
corresponding truncation (A1, . . . , AB(n)) of the limiting Poisson model. This
is useful only insofar as one can quantify εn.

In our proof, εn ultimately comes from de-Poissonization at a parameter
t = tn with 1− tn ≍ 1/n and from the uniform bound on the remainder term
EL on a complex polydisc. Heuristically, when one plugs t = 1 − Θ(1/n)
into the hypothesis, the analytic error term O(L2(1− t)) becomes O(L2/n).
This suggests that the natural barrier for pushing L (and hence B) as a
function of n is of order n1/2. In other words, even in the most optimistic
scenario where the hypothesis holds uniformly in L up to L = L(n), the
error term one would obtain by the same argument is meaningful only when
L(n) = o(n1/2).

This raises a concrete open problem: identify verifiable hypotheses under
which one can take B(n) → ∞, and determine the maximal growth rate
for which the marked-Poisson description remains valid. A representative
conjecture, tailored to our analytic framework, is the following.

Conjecture (mesoscopic marked-Poisson approximation).
Assume the Poissonized cycle-index hypothesis can be strength-
ened so that, for L = L(n) and t in a complex domain with
1− t ≍ 1/n, one has

logFL(t;x1, . . . , xL) =
∑
ℓ≤L

αℓt
ℓ

ℓ
(xℓ − 1) +O

(
L2

n

)

uniformly for |xℓ| ≤ R and all L ≤ L(n), with constants inde-
pendent of n. Then for any B(n) ≤ L(n) with B(n) = o(n1/2),
the joint law of (a1(σ), . . . , aB(n)(σ)) is close in total variation
to the corresponding truncation of the marked-Poisson pushfor-
ward, with an error tending to 0.

Even for the classical case Γ = {e} and µn uniform on Sn, much sharper
mesoscopic results are known by probabilistic couplings (e.g. the Feller cou-
pling) and by Stein–Chen methods, and these typically work up toB(n) = nβ

for some β < 1 with explicit error terms. It would be interesting to develop
an analogue for wreath products in which the “marks” coming from Γ are
incorporated directly into the coupling. At a technical level, this would re-
quire a joint construction of block cycles of h and the internal permutations
along those block cycles, so that the induced i-cycles of σ emerge with the
correct dependencies.
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A second aspect of the mesoscopic problem is conceptual. When B
grows, the limiting object is no longer a fixed-dimensional vector but an
array (Ai)1≤i≤B(n) whose coordinates are dependent through shared Zℓ,λ

contributions. While the Zℓ,λ are independent, the pushforward produces
relations such as

Ai =
∑
ℓ|i

∑
λ⊢k

ai/ℓ(λ)Zℓ,λ.

Thus, in large windows, one should view (Ai) as a linear image of a field
of independent Poisson variables indexed by (ℓ, λ). Understanding which
statistics of (ai)i≤B(n) exhibit Gaussian behavior (via many independent
contributions) and which remain genuinely Poissonian is itself a nontrivial
question. For instance, the total number of points in cycles of length at most
B,

TB(σ) :=
∑
i≤B

i ai(σ),

is a natural “mesoscopic mass” statistic. Under the limiting model,

TB ≈
∑
ℓ≤B

∑
λ⊢k

ℓ
( ∑

j≤B/ℓ

j aj(λ)
)
Zℓ,λ,

which is a compound Poisson variable whose Lévy measure changes with
B. Determining regimes of B = B(n) in which TB admits a central limit
theorem (after centering and scaling) would connect our local picture to more
global fluctuation theory.

2. Sharper constants and rates. Our total variation bound is adequate
for qualitative convergence but is far from optimal, and in applications one
may want an explicit rate as a function of (k,Γ) and of the base model.
There are at least three sources of looseness.

(i) De-Poissonization. The analytic Tauberian step is robust but not
tuned to any specific µn. In concrete models (e.g. Ewens-like measures or
measures arising from analytic combinatorics), one often has sharper infor-
mation on the singular behavior of the relevant generating functions, and
this can yield explicit polynomial rates in n. It would be useful to isolate,
within our argument, the minimal analytic input needed to obtain a specified
rate, e.g. an error O(n−δ) for some δ > 0.

(ii) Multivariate approximation in total variation. Even if one knows that
(b1(h), . . . , bL(h)) is close to a vector of independent Poisson variables, there
remains a nontrivial step in propagating this approximation through the
wreath-product construction and then bounding the distance between the
induced cycle count vectors. Our present treatment bounds the discrepancy
coordinatewise and then union-bounds in B, leading to a factor linear in B.
In principle one could do better by exploiting the explicit linear structure
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of the pushforward from (Zℓ,λ) to (Ai). For example, since (A1, . . . , AB) is
an affine map of the vector (Zℓ,λ)ℓ≤B, λ⊢k, any distance control on the latter
could be transported using data-processing inequalities tailored to Poisson
measures, potentially reducing the dependence on B.

(iii) Stein–Chen methods with marks. A natural next step is to adapt
Stein’s method for Poisson process approximation to the marked setting.
One can regard the “atoms” as cycles of h with their induced internal mark
(cycle type in Γ along the block cycle), yielding a random marked point
process on N× {λ ⊢ k}. If one can show that this point process is close (in
an appropriate metric) to a Poisson point process with intensity αℓPΓ(λ)/ℓ,
then the finite-dimensional cycle counts follow by applying a deterministic
functional. Such an approach has the potential to produce explicit constants
and to handle B = B(n) more flexibly, because one can work directly with
process-level metrics (e.g. Wasserstein-type bounds) that behave better un-
der truncation than total variation.

In the same vein, it would be useful to quantify the dependence of con-
stants on the group Γ. Even for fixed k, the number of partitions λ ⊢ k
grows, and a naive bound may introduce unnecessary factors depending on
p(k) (the partition number). Since k is fixed in our framework, this is not
an asymptotic issue, but it matters for explicit estimates. A more careful
accounting could express the constants in terms of a small collection of group
parameters, such as

max
λ⊢k

PΓ(λ),
∑
λ⊢k

∑
j≥1

aj(λ)
2PΓ(λ),

or other moments of the cycle-count profile of a uniform Γ-element. These
quantities naturally appear when one bounds variances of Ai and can serve
as proxies for the complexity of the mark distribution.

3. Structural criteria: which families (Hn) satisfy the hypothe-
sis? The Poissonized cycle-index hypothesis is stated analytically, and in
examples it is typically verified by a direct computation of a cycle index or
by importing known generating-function asymptotics. An important miss-
ing piece is a higher-level classification: given a family of measures µn (or
subgroups Hn with µn = Unif(Hn)), can one decide, without detailed cycle
index manipulations, whether the hypothesis holds?

We separate three related problems.
(a) Characterizing the hypothesis in probabilistic terms. Our analytic as-

sumption implies that for each fixed L the vector (b1, . . . , bL) behaves like
independent Poisson with means αℓ/ℓ. Conversely, one expects that a suit-
able family of factorial moment asymptotics implies the analytic statement
(at least locally in the polydisc). It would be valuable to formulate an
equivalence between the analytic Poissonized hypothesis and a finite list of
probabilistic conditions, for example:
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• boundedness and convergence of mixed factorial moments of (b1, . . . , bL);

• asymptotic factorization of these moments (approximate independence);

• a uniform integrability condition sufficient to justify analytic continu-
ation in xℓ.

Such a reformulation would make it easier to verify the hypothesis by soft
probabilistic arguments, and could provide a natural extension to non-conjugacy-
invariant settings in which cycle index tools are unavailable.

(b) Closure properties and universality. Many “logarithmic” combinato-
rial structures are stable under operations such as superposition and con-
ditioning, and their small-component counts admit Poisson limits with pre-
dictable intensities. In our context one can ask for analogous closure state-
ments for measures on Sn: if µn and νn satisfy the hypothesis with parame-
ters (αℓ) and (βℓ), does an appropriate convolution, mixture, or conditioning
of these measures satisfy the hypothesis with parameters derived from (αℓ)
and (βℓ)? A particularly natural operation is multiplication of independent
permutations: if h1 ∼ µn and h2 ∼ νn are independent, what conditions
ensure that h1h2 has logarithmic small-cycle statistics? For uniform per-
mutations this is trivial (closure under multiplication), but for structured
measures it is not. Establishing such closure properties would allow one to
build new examples systematically and would clarify which aspects of the
hypothesis are genuinely restrictive.

(c) Subgroups Hn and group-theoretic criteria. As emphasized earlier, if
one insists that µn be conjugacy-invariant as a measure on Sn, then uniform
measure on a subgroup forces Hn to be normal, leaving essentially Sn and
An (for n ≥ 5) as the only nontrivial cases. In that strict sense, there is
nothing to classify.

However, two broader classification problems remain meaningful.
First, one may drop conjugacy invariance and instead ask for conditions

on Hn ensuring that the cycle counts (b1, . . . , bL) under Unif(Hn) have an
approximately Poisson law. There is a substantial literature on cycle struc-
ture of random elements in permutation groups, often expressed via fixed-
point ratios and minimal degree. A plausible conjectural dichotomy is that,
for large primitive groups other than An and Sn, small cycles are typically
suppressed so strongly that the limiting intensities are αℓ = 0, leading to
a degenerate short-cycle limit. Proving (or refuting) such a statement in
a form compatible with our wreath-product conclusions would require new
input from permutation group theory.

Second, one may restore conjugacy invariance by averaging over conju-
gation: given a (possibly non-normal) subgroup Hn, consider the random
element ghg−1 with h ∼ Unif(Hn) and g ∼ Unif(Sn) independent. This
produces a conjugacy-invariant measure on Sn supported on the union of
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conjugacy classes intersecting Hn. It is then natural to ask: how do struc-
tural properties of Hn control the resulting intensities (αℓ)? In this formu-
lation, one may hope for criteria in terms of the distribution of cycle types
inside Hn rather than in terms of a full cycle index computation.

4. Interactions with the wreath-product layer. Finally, even when
the base model is understood, there remains the question of how the internal
group Γ modifies mesoscopic behavior. Because the mapping from (Zℓ,λ)
to (Ai) mixes many marks into each Ai (through the constraint jℓ = i),
one expects that mesoscopic scaling limits may depend sensitively on the
arithmetic of i and on the support of PΓ on partitions of k. For example, if
Γ is cyclic of order k, then λ is supported on partitions consisting of equal
parts, whereas for Γ = Sk all partitions occur. Understanding which features
of Γ are identifiable from the induced short-cycle process (ai(σ))i≥1, and how
this identifiability degrades as one moves from fixed B to B = B(n), is a
natural inverse problem. At a technical level, this may require controlling
not only marginal distributions but also fine correlations among the ai(σ)
across a growing range of i.

We expect that progress on any of the problems above—mesoscopic win-
dows, sharper rates, and structural criteria—will require combining the an-
alytic Poissonization viewpoint of the present work with more probabilistic
tools (couplings, Stein’s method, process approximations) and, in the sub-
group direction, with input from the theory of permutation groups. The
marked-Poisson pushforward mechanism is rigid and transparent; the main
challenge is to identify hypotheses under which one can invoke it uniformly
beyond fixed truncations and without bespoke cycle-index computations.
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