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Abstract

We give a systematic semantics for probabilistic programming over
exchangeable relational data in settings where relation queries must
be deterministic and memoized. Starting from a Fraissé limit M of
a class of finite structures IC, we form the nominal topos Nom(M)
of finitely supported Aut(M )-sets, generalizing the Rado-nominal sets
used to model Erdés—Rényi graphons. We then construct an internal
probability monad Pj; on Nom(M) whose kernels compose by inter-
nal integration on finitely supported events. As in the source paper,
full Fubini need not hold; we therefore extract commutative affine sub-
monads generated by specified self-commuting ‘generic measures’ using
a least-submonad construction. This yields Bernoulli-based distribu-
tive Markov equational theories for relational programming interfaces
in which new samples fresh atoms and relation tests are determinis-
tic, yet the induced finite distributions exhibit genuinely ‘gray’ ex-
changeable behavior. We work out the random tournament as the
first non-graph example and then generalize using w-categoricity (fi-
nite orbit/type partitions). The result is a uniform semantic toolkit
connecting program equations, symmetry, and exchangeable limit laws
beyond classical measure-theoretic models.
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1 Introduction

We study a simple but rigid programming interface: a base type of atoms
together with an operation new for allocating a fresh atom and, for each
relation symbol R in a fixed finite relational signature X, a deterministic
test

R : atom®™) 5 bool.

From these primitives we build terms using products, sums, and sequenc-
ing (Kleisli composition). The central semantic constraint is that relational
queries are deterministic and therefore implicitly memoized: once an atom
has been allocated, every subsequent evaluation of a relation test on tuples
involving that atom must return the same truth value as before. In other
words, the probabilistic effects come only from allocation and base random
choice (e.g. Bernoulli), while the relational structure itself is not resampled;
it is a single ambient object that the program can interrogate repeatedly.

This memoization constraint is easy to state operationally but it cuts
across many standard denotational treatments of probabilistic computation.
If one interprets atom as an arbitrary measurable space A and new as an ordi-
nary probability measure on A, then deterministic tests R : A¥ — 2 are mea-
surable predicates and one can form ordinary Markov kernels. However, such
a model does not by itself capture the requirement that the program can-
not distinguish atoms except through finitely many comparisons and queries,
and that it should be invariant under renaming of atoms that preserves all
previously observed information. Put differently, the operational behavior
is constrained by symmetries: if we permute the unseen portion of the am-
bient relational universe, the program should have no observation capable
of detecting that permutation. The semantics must therefore encode both
probability and symmetry in a way that makes invariance and finite depen-
dence manifest.

The second pressure point is that the event space relevant to such pro-
grams is not naturally presented as an external o-algebra. A program can
branch on relation tests involving atoms it has sampled, store atoms in data
structures, and later reuse them; the predicates it can form are therefore de-
finable from finitely many atoms and are stable under automorphisms fixing
those atoms. If we insist on an external measurable structure on A, we must
choose which subsets are measurable, and the choice must be compatible with
the action of renamings and with the finite-information nature of programs.
In many canonical “random structure” constructions, the most natural mea-
surable sets are those generated by cylinder events, but the memoized query
interface does not range over arbitrary cylinders: it ranges over definable
sets determined by finitely many parameters. We therefore seek a semantics
in which the correct event space is not imposed from outside, but arises in-
ternally from the same finite-support principle that governs definability and



program observability.

These considerations lead us to nominal semantics. The basic move is to
fix a countable structure M (in fact the Fraissé limit of a class of finite %-
structures) and to take its underlying set V' = |M| as the domain of atoms.
The automorphism group G = Aut(M) acts on V, and more generally on
all sets built from V. We interpret program denotations not as arbitrary
functions, but as G-equivariant maps between G-sets that satisfy a finite-
support condition: every element of such a G-set depends only on finitely
many atoms in the sense that any automorphism fixing those atoms pointwise
fixes the element. This nominal condition expresses precisely the “finite
information” intuition: a term of the language can only mention finitely
many atoms, hence its behavior must be invariant under automorphisms
that leave those atoms unchanged.

Once we adopt nominal objects, deterministic relational queries become
canonical. Each relation symbol R € ¥ is interpreted by the actual relation
RM C ya(B); the test map V¥ — 2 is G-equivariant by construction.
The memoization constraint is then automatic: the relations are proper-
ties of the fixed structure M, so the outcome of a query is a deterministic
function of the atoms supplied. What remains is to equip this determin-
istic nominal world with probabilistic choice in a way that respects finite
support, yields a useful notion of integration, and validates the equational
principles expected of probabilistic programming (notably those arising from
commutative sequencing).

The key technical choice is how to represent events and measures inter-
nally. For a nominal object X, we take as the “measurable subsets” precisely
the finitely supported subsets S C X; these form the internal powerobject
2% This reflects the idea that an event is observable only if it is invariant
under renamings that fix some finite set of atoms: equivalently, it is defin-
able from finitely many parameters. We then define a probability measure
on X as a finitely supported function u : 2% — [0, 1] satisfying normalization
and countable additivity for disjoint families that are themselves controlled
by a single finite support. The restriction to support-bounded countable
families is not an ad hoc weakening; it is the correct internal analogue of
countable additivity in a setting where one cannot quantify over an arbi-
trary external o-algebra without smuggling in choice principles incompatible
with finite support. It is also exactly what is needed to support an internal
Lebesgue integration theory for finitely supported functions X — [0, 1], built
by simple-function approximation using finitely supported predicates.

With this event space and integration in hand, we obtain a probability
monad on the nominal category: the unit is the Dirac measure, and bind is
given by internal integration against finitely supported kernels. This monad
plays the role that the Giry monad plays over measurable spaces, but it is
tuned to the definability and symmetry constraints imposed by atom allo-
cation and memoized queries. Importantly, the semantics is not merely a



rephrasing of classical probability in equivariant language: because we insist
on finite support at every stage, the resulting measures and integrals are
intrinsically w-categorical/definability-driven objects rather than arbitrary
countably additive measures on an externally fixed o-algebra.

A further reason to work internally is that commutativity properties can-
not be taken for granted. In standard measure-theoretic settings one often
relies on Fubini/Tonelli to justify program equations such as commutative
sequencing of independent random draws. In our nominal setting, not ev-
ery measure will commute with itself in the sense required to validate those
equations, and even when commutation holds, it must be proven using the
finite-support event structure rather than by appealing to external prod-
uct o-algebras. Accordingly, we isolate a pragmatic principle: instead of
demanding that the full nominal probability monad be commutative, we
construct the least strong submonad generated by the specific probabilistic
primitives of the language, namely Bernoulli choice on ground booleans and
atom allocation by a fixed measure v on V. When v satisfies an internal self-
commutation (a Fubini symmetry condition against finitely supported test
functions), the generated submonad is commutative and affine, and there-
fore supports the familiar equational theory of commutative probabilistic
computation (including weakening/projectivity properties that correspond
to deleting unused samples).

The interaction between finite support and probability becomes espe-
cially tractable when M is w-categorical. Oligomorphicity of G implies that
over any finite support set A C V, there are only finitely many orbits of n-
tuples; equivalently, only finitely many n-types over A. This orbit-finiteness
has two consequences that we exploit throughout. First, it identifies finitely
supported subsets of V" with first-order definable subsets over finite param-
eter sets, so the internal powerobject 2V" coincides with definable events.
Second, it turns many ostensibly analytic statements into finite combina-
torics: integrals of definable indicator functions reduce to finite sums over
orbit partitions, and self-commutation of a measure v can be checked by ver-
ifying equality on finitely many definable cases over a chosen support. Thus,
the nominal-probabilistic semantics is not only conceptually aligned with
memoized queries; it is also computationally amenable because definability
yields finite partitions.

At a higher level, this semantics is designed to produce exchangeable
and projective families of finite Y-structures. Given v as the interpretation
of new, we may sample n atoms, evaluate all relation tests on the resulting n-
tuple, and thereby obtain a random finite ¥-structure on {1,...,n}. Equiv-
ariance of the semantics yields exchangeability under permutations of the
sampled atoms, while affineness yields projectivity under deletion of unused
samples. In free-amalgamation settings, one expects more: the law should
be “local” in the sense that one-point extension information determines the
distribution by independent per-relation choices. The nominal framework



isolates precisely where such locality comes from (namely, from explicit v
constructed by averaging over one-point extension types) and where it can
fail (namely, when amalgamation imposes global constraints that break the
multiplicative extension pattern).

We therefore proceed as follows. After recalling in the next section the
Fraissé and oligomorphic background needed to control orbits and definabil-
ity, we develop the nominal topos Nom (M ) and identify its powerobjects with
finitely supported subsets. We then define internal measures and integration
and prove that they assemble into a strong probability monad. Finally, we
study commutative affine submonads generated by designated probabilistic
primitives and give explicit constructions of self-commuting atom-allocation
measures in free-amalgamation classes, recovering the canonical “constant-
gray” exchangeable laws in examples such as the random graph and the
random tournament.

2 Fraissé limits and oligomorphic groups

We fix throughout a finite relational signature X, i.e. a finite set of relation
symbols R each equipped with an arity ar(R) > 1. A (finite) X-structure
A consists of a finite set |A| together with interpretations R4 C |A|(%).
All embeddings are assumed to be ¥-embeddings (injective homomorphisms
preserving and reflecting all relations).

2.1 Fraissé classes and their limits

A class I of finite YX-structures is a Fraissé class if it satisfies the following
standard conditions.

e Hereditary property (HP): if B € K and A embeds into B, then A € K.

e Joint embedding property (JEP): for all A, B € K there exists C' € K
into which both A and B embed.

e Amalgamation property (AP): for all embeddings f; : A — B; (i = 1,2)
with A, By, Bo € K, there exist C' € K and embeddings g; : B; — C
such that g1 o fi = g2 0 fo.

o Countability and unboundedness: there are only countably many iso-
morphism types in I, and for every n there exists A € K with |A| > n.

Fraissé’s theorem then yields a distinguished countable -structure M char-
acterized uniquely up to isomorphism by two properties: Age(M) = K (every
finite substructure of M lies in K, and every A € K embeds into M), and
M is ultrahomogeneous (every isomorphism between finite substructures ex-
tends to an automorphism of M). We refer to M as the Fraissé limit of IC,
and we write V := | M| for its underlying set.



We shall use repeatedly a convenient reformulation of the above charac-
terization, namely the one-point extension property: if A C M is finite and
B € K is a finite structure extending A by one new element, then every em-
bedding A — M extends to an embedding B < M. In practice, when K is
presented by local constraints (e.g. forbidding finitely many finite patterns)
this property is often easy to check directly and serves as a combinatorial
proxy for ultrahomogeneity.

We also fix the automorphism group

G := Aut(M),

acting on V and diagonally on all finite powers V™. For a finite set A C V,
we write

Ga={oceG:VacA, o(a) =a}

for the pointwise stabilizer of A. The pair (M, G) is the symmetry datum
governing all later constructions: orbit decompositions under G and under
G 4 will serve as finite partitions on which definable events and integrals are
computed.

2.2 Standard examples

We list the examples that will serve as running test cases.

The random (Rado) graph. Let ¥ = {E} with a single binary relation
symbol, interpreted as an irreflexive symmetric edge relation. Let I be the
class of all finite graphs. This class has AP, in fact free amalgamation: given
By, By over A, we may amalgamate by taking the disjoint union over A and
adding no edges between the new points of By \ A and By \ A. The Fraissé
limit M is the Rado graph, characterized by the extension property: for
every finite disjoint U, W C V there exists v € V adjacent to all of U and to
none of W.

The countable random tournament. Let ¥ = {—} with a single binary
relation symbol, interpreted as a tournament orientation: for distinct x,y
exactly one of £ — y or y — x holds, and — is irreflexive. Let IC be
the class of all finite tournaments. This class again has free amalgamation
in the appropriate oriented sense (the amalgam places no constraints on
orientations between new points beyond those already imposed), and the
limit M is the random tournament, characterized by the extension property
for finite prescribed in/out neighborhoods.

Random k-uniform hypergraphs. Fix k& > 2 and let ¥ = {R} with
one k-ary relation symbol, interpreted as an irreflexive symmetric k-uniform
hyperedge predicate. Taking K to be all finite k-uniform hypergraphs, we



again obtain a free-amalgamation Fraissé class and a homogeneous limit
M with the expected extension property: given a finite set A C V, every
pattern of membership/non-membership for k-tuples involving one new point
and k — 1 points from A is realized by some vertex in V.

Forbidden-substructure generics. Many natural Fraissé classes are ob-
tained by forbidding a finite configuration; for instance, the Henson graphs
are the K,-free finite graphs. Such classes typically still have AP but not
free amalgamation, and their limits exhibit extension properties constrained
by the forbidden patterns. They provide useful nontrivial examples where
orbit partitions remain finite but one-point extension types are no longer
independent across different relations.

2.3 w-categoricity and orbit finiteness

A central assumption in our development is that the limit M is w-categorical.
We recall the relevant equivalences in the present setting. Let Th(M) de-
note the complete first-order theory of M in the language . Then M is w-
categorical if Th(M) has, up to isomorphism, exactly one countable model.
By the Engeler-Ryll-Nardzewski—Svenonius theorem, for a countable struc-
ture M this is equivalent to the automorphism group G = Aut(M) being
oligomorphic, meaning that for every n > 1 the induced action of G on V"
has only finitely many orbits.

We emphasize the parameterized form of this finiteness, which we will
use systematically. Fix a finite parameter set A C V. The group G 4 acts on
V", and w-categoricity implies that there are only finitely many G s-orbits
on V™ for each n. Equivalently, there are only finitely many complete n-
types over A. In more concrete terms: the information carried by an n-tuple
v € V", as far as formulas with parameters from A can distinguish it, takes
only finitely many values.

We shall also need the definability of these orbits. If M is w-categorical,
then for each finite A C V and each n, every G4-orbit O C V"™ is defin-
able over A: there exists a first-order formula ¢(Z;a) with parameters a
enumerating A such that

O={veV": Mk y¢(v;a)}.

One convenient way to see this is to note that the orbit of ¥ over A is exactly
its type over A, and in an w-categorical theory every type over a finite set is
isolated by a single formula. We will not require a specific normal form (e.g.
quantifier elimination), only the consequence that orbit partitions are finite
and definable.

We record the orbit-finiteness principle as a standing lemma schema.

Orbit finiteness over finite parameters. Assume M is w-categorical.
For every finite A C V and every n > 1, the action of G4 on V" has



finitely many orbits, and each orbit is definable by a first-order formula with
parameters from A.

This principle underlies two later reductions. First, any set or predicate
on V™ that is invariant under G 4 can be decomposed into a finite union of
(G 4-orbits, and hence into a finite Boolean combination of definable pieces
over A. Second, any equality between functions built from such predicates
can be checked orbitwise, reducing analytic-looking statements to finite com-
binatorics.

2.4 Types, one-point extensions, and free amalgamation

For free-amalgamation Fraissé classes, it is useful to think in terms of one-
point extension types. Fix a finite A C V. A one-point extension of A is
determined by declaring, for each relation symbol R € ¥, which tuples in-
volving one new element x and ar(R) — 1 elements of A satisfy R. When
K has free amalgamation, essentially any such local specification consistent
with the basic relation axioms (e.g. symmetry /irreflexivity, tournament an-
tisymmetry) is realized by some z € V. Moreover, the ultrahomogeneity of
M implies that the G 4-orbit of x is determined exactly by this one-point
pattern relative to A: two points x,y € V lie in the same orbit under G 4 iff
they induce the same extension type over A.

We illustrate this in the random graph case. Given A C V finite and
a subset U C A, the pattern “x is adjacent precisely to U” determines a
one-point extension type, and by the extension property it is realized. Thus
the G 4-orbits on V' correspond to subsets U C A, hence there are exactly
2l41 such orbits. Similarly, for the random tournament the G 4-orbits on V/
correspond to orientation patterns, again 2l 4l possibilities. For a k-uniform
hypergraph, the orbits correspond to all choices of which (k — 1)-tuples from

A form a hyperedge together with the new point, yielding 2(’&'1) patterns.

We will later exploit this concrete orbit description to define measures
on V by averaging over one-point extension types. The key point for the
present section is that in the free-amalgamation setting these extension types
are purely local data over A, and orbit finiteness is not merely abstract but
comes with an explicit finite index set parameterizing the orbits. In non-free
settings (e.g. forbidden configurations), extension types may be restricted
and may interact globally, but w-categoricity still guarantees that over each
finite A the space of possible types/orbits remains finite.

2.5 Consequences for later constructions

We summarize the two consequences of w-categoricity that will be used re-
peatedly.



Finite partitions. For each finite parameter set A and arity n, there exists
a finite partition

into G s-orbits O;, each definable over A. Any G s-invariant subset S C V"
is a union of some subcollection of the O;. Thus, whenever an object or
construction depends only on finitely many parameters A, it is controlled by
a finite amount of orbit data.

Checking equalities orbitwise. Suppose f,g : V" — Y are functions
into a set Y such that f and g are G 4-invariant (equivalently: constant on
each ;). Then f = g holds iff f and g agree on one representative from
each orbit. In later measure-theoretic arguments, the relevant f and g will be
probabilities obtained by integrating definable indicator functions; orbitwise
constancy will allow us to reduce statements such as commutation of iterated
integrals to the verification of finitely many cases.

These are the structural inputs we require from Fraissé theory and oligo-
morphic group actions. In the next section we pass from the structure M
and its symmetry group G to the nominal category built from the G-action,
where “dependence on finitely many atoms” is expressed as finite support
and will serve as the internal notion of context.

3 The nominal topos Nom(M)

We now fix the Fraissé limit M and its automorphism group G = Aut(M),
acting on the underlying set V' = |M| and diagonally on all finite powers V.
The category Nom(M) is the categorical environment in which “dependence
on finitely many atoms” is expressed intrinsically, without choosing external
names or a global enumeration of V.

3.1 Finitely supported G-sets

A G-set is a set X equipped with an action map G x X — X, (0,z) — o -x.
For a finite set A C V we write G4 < G for the pointwise stabilizer of A.
We say that a finite set A C V' supports an element x € X if

Vo € G4, o-x=1x.

Equivalently, the stabilizer subgroup Stab(z) = {o € G : ¢ -z = x} contains
Ga. A G-set X is finitely supported if every element x € X has some finite
support A C V. The objects of Nom (M) are finitely supported G-sets, and
morphisms are equivariant functions f: X — Y (i.e. f(o-z) =0 - f(x) for
all 0 € G).
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It is often convenient to keep in mind the topological reformulation. The
group G carries the pointwise convergence topology (equivalently, the permu-
tation group topology whose basic open neighborhoods of the identity are the
subgroups G 4 for finite A C V). If X is a G-set with the discrete topology,
then the action G x X — X is continuous exactly when each point stabilizer
Stab(x) is open, i.e. contains some G4. Thus “continuous G-action” and
“finite support” coincide. We will freely switch between these viewpoints:
support calculations are combinatorial, while topos-theoretic properties are
inherited from the category of continuous actions of a topological group.

3.2 Least supports

Because our action group arises from an ultrahomogeneous structure, the
support relation has a strong closure property under intersection. This yields
a canonical notion of least support for each element, which we will use to
speak of the parameters on which an element depends.

Lemma (intersection of supports). Let X € Nom(M) and z € X. If
A, B CV are finite supports of x, then AN B is also a support of x.

Proof. Let 0 € Ganp. Consider the partial map h : AUB — AU o(B)
defined as the identity on A and as o on B. This is well-defined because o
fixes AN B pointwise, and it is an isomorphism between the induced finite
substructures on AU B and A U o(B) because it is the identity on A and
agrees with the automorphism ¢ on B. By ultrahomogeneity of M, h extends
to some 7 € G. By construction, 7 € G4 and 7(b) = o(b) for all b € B,
hence 77'o € G. Since A supports z, we have 7 -z = z; since B supports
x, we have (17 10) -z = x. Therefore 0 -x =7-((7710)-2) = 2,50 ANB
supports x. |

In particular, the family of finite supports of a given x is closed under finite
intersections. Since the intersection of any collection of finite sets is again
finite, we may define

supp(z) = ﬂ{A C V : A finite and supports x}.

By iterating the previous lemma, supp(x) is itself a support of z, and it is
contained in every other support. Hence supp(z) is the least support of .
In later sections we will use least supports to make parameter dependence
explicit: whenever a construction is equivariant, it cannot introduce new
dependencies on atoms, and its output support is bounded by the supports
of its inputs.

Two immediate consequences will be used repeatedly. First, if f: X — Y
is an equivariant map, then supp(f(x)) C supp(x) for all z € X, since
any automorphism fixing supp(z) fixes x and hence fixes f(x). Second, if

11



(1,...,2p) € X1 X -+ x X, then

n
Supp(l.l’ cee 7'7;71«) = U Supp(xi)7
i=1
as is clear from the componentwise action and the definition of support.

3.3 Limits, colimits, and ground objects

The category Nom (M) has the expected finite limits and colimits, inherited
from the category of all G-sets, with the additional observation that finite
support is preserved by these constructions.

Products are given by Cartesian products with componentwise action:

o-(z,y) == (0 -z,0-9).

If x is supported by A and y is supported by B, then (z,y) is supported by
AU B. Coproducts are disjoint unions with action defined by o - ¢;(z) :=
ti(o - x). Equalizers and coequalizers are formed as the corresponding sub-
sets/quotients in Set with the induced action; equivariance of the defining
maps ensures stability under the group action, and finite support follows
because the underlying action is still continuous.

A distinguished role is played by ground objects, by which we mean finite
sets equipped with the trivial G-action. If n is a finite set with trivial action,
then every element has empty support, supp(z) = @. Such objects serve as
semantics for non-atom data types (booleans, finite sums, finite products of
ground data, and so on). In particular, any equivariant map out of a ground
object is uniquely determined pointwise, without any hidden dependence on
V.

The terminal object 1 is a singleton with trivial action, and the initial
object 0 is the empty set. More generally, any finite limit/colimit of ground
objects remains ground. This is the categorical reflection of the distinction
between parameters of type atom (carrying G-action) and purely discrete
parameters (with trivial action).

3.4 Exponentials and internal function spaces

The category Nom (M) is cartesian closed. Given X,Y € Nom(M), the
exponential YX may be described explicitly as follows: its underlying set
consists of finitely supported functions f : X — Y (not assumed equivariant),
with the conjugation action

(0 f)(@) == o flo" ).

A finite set A C V supports f precisely when o - f = f for all 0 € G4, i.e.
when f is invariant under renamings that fix A. Evaluationev: YXxX — Y

12



is the usual ev(f,z) = f(x), and the transpose correspondence Z x X —
Y < Z — Y is given by currying/uncurrying as in Set, with equivariance
ensured by the conjugation action.

For later use we note the support bound implicit in this construction: if
f € YX has support A and x € X has support B, then f(z) is supported
by AU B. In other words, applying a finitely supported function does not
introduce fresh atoms; it can only combine the atoms already present in the
function and the argument.

3.5 Contexts as supports

The intended operational intuition is that elements of V' are atoms, and
finite supports are contexts of atoms on which an object may depend. This
becomes precise in two complementary ways.

First, if A C V is finite, then invariance under the subgroup G 4 expresses
“no dependence outside A”. For x € X, the statement “A supports x” can
be read as: any automorphism of M that fixes A pointwise is a permissible
renaming of the rest of the universe, and such renamings do not change x.
Thus supp(x) is the smallest context of atoms that must be fixed to keep z
unchanged.

Second, equivariant maps are precisely the maps that respect this notion
of context. If f: X — Y is equivariant, then f commutes with renaming,
and hence cannot create additional dependencies: supp(f(x)) C supp(z).
This monotonicity is the categorical form of parametricity with respect to
atoms.

In the programming interpretation developed later, environments carry-
ing atom variables are represented by products V", and a term in context
I' = (ay : atom,...,a, : atom) denotes a G-equivariant map out of V" (or,
in the probabilistic case, a finitely supported kernel out of V™). The least-
support operation then corresponds to extracting the minimal finite set of
atoms that a semantic value actually depends upon, which is crucial when
we restrict attention to constructions that are stable under the symmetries
of M.

This concludes the structural description of Nom(M). In the next section
we connect finite support to first-order definability over M by identifying
finitely supported subsets of V™ with unions of orbits over finite parameter
sets, and we make this correspondence explicit via orbit partitions.

3.6 Definability, support, and orbit partitions

The internal powerobject of a nominal object X is not the full set-theoretic
powerset, but the set 2% of finitely supported subsets of X. Concretely,
a subset S C X is regarded as an element of 2% when it is stable under
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renaming outside a finite context: a finite A C V supports S if
Vo € Ga, olS] =85,

where o[S] = {0 -z : € S} is the transported subset under the G-action
on X. In this case we also say that S is G g-invariant. By the least-support
lemma from the previous section (applied in the nominal object 2X), every
S € 2X has a least finite support supp(S) € V. Thus 2% exactly captures
those events whose truth is determined by finitely many atoms.

For arbitrary X € Nom(M) this is already the correct internal notion of
an event space. However, the objects that arise from typing contexts in our
programming interpretation are finite powers V", equipped with the diago-
nal G-action. In that case, finite support admits an explicit model-theoretic
characterization in terms of first-order definability over the Fraissé limit M.
We now make this correspondence precise, because it will reduce many nom-
inal measurability and commutation questions to finite orbit calculations.

Fix n > 1. For a finite parameter set A C V, the pointwise stabilizer
G4 acts on V™, and we write v ~4 w if w = o - v for some 0 € G 4. The
equivalence classes are the G 4-orbits in V™. We call the induced partition
the A-orbit partition of V™. A subset S C V™ is supported by A exactly
when it is a union of ~ 4-classes: if v € S and v ~4 w, then w € S. In other
words, support by A is the same as invariance under the renamings that fix
A.

The relevance of w-categoricity is that these orbit partitions are finite.
More precisely, since M is w-categorical, the action of G on V" has finitely
many orbits, and likewise the action of G4 on V™ has finitely many orbits
for each finite A. Equivalently, for fixed A there are only finitely many
complete n-types over A, and each such type is isolated by a formula over
A. We record this in the form we will use.

Lemma (orbit finiteness and definability over parameters). Let A C
V be finite. Then the G g-action on V™ has finitely many orbits. Moreover,
for each orbit O C V™ there is a first-order formula xo(Z;a) with parameters
a enumerating A such that

O={veV": ME xo(v;a)}.

We regard this as a standard consequence of the Ryll-Nardzewski the-
orem together with the usual identification of G 4-orbits with n-types over
A: two tuples v,w € V™ are in the same G 4-orbit iff they satisfy the same
first-order formulas with parameters from A. Since there are only finitely
many such types in the w-categorical setting, each orbit is definable (indeed,
definable by a disjunction of formulas isolating the corresponding type).

With this in hand, finitely supported subsets of V™ become exactly the
parameter-definable subsets of V™. We state this identification explicitly.
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Proposition (definability = finite support on V™). Let S C V™. Then
S € 2V" if and only if there exists a first-order formula ©(Z;a) in the lan-
guage X3, with parameters a from some finite A CV, such that

S={veV": M= ¢(v;a)}.

Moreover, when S € 2" and A = supp(S), the set S is a union of G 4-orbits,
hence is definable over A by a finite disjunction of orbit formulas xo.

Proof. For the forward direction, assume S € 2V" and let A = supp(9).
Then S is G 4-invariant, so it is a union of G 4-orbits. By the lemma, there
are only finitely many such orbits, each definable by some formula xo(Z;a)
over A. Hence S is definable by the finite disjunction

o(xa) = \/ xo(®a),

ocCs

where the disjunction ranges over those G 4-orbits O contained in S.

For the reverse direction, suppose S is defined by a formula ¢(Z;a) with
parameters from a finite A. If 0 € G 4, then o fixes a pointwise and is an
automorphism of M, so for all v € V™ we have

ME¢(v;a) <= MEgp(o-v;0-a) <= MEp(o-v;a).

Thus S is G a-invariant, i.e. supported by A, hence S € 2V". O

This proposition gives an effective translation principle: whenever we
encounter an element of 2", we may treat it as a definable predicate on
n-tuples with finitely many parameters, and conversely any such definable
predicate is a valid internal subset. In particular, the least support supp(.S)
can be read as a canonical “minimal parameter set” for the definable set S.
We emphasize that the least support is intrinsic, whereas a defining formula
is not unique; nevertheless, in the w-categorical setting every supported set
admits a definition over supp(S) obtained by orbit decomposition.

It is useful to state the orbit-decomposition viewpoint in a form that
exposes finiteness. Fix finite A C V. Let O4,, denote the finite set of G 4-
orbits on V™. Then every A-supported subset S C V™ corresponds uniquely
to a subset I C 04, via

s=[Jo.

Oe€l

Thus, relative to a fixed support A, the collection of events on V™ is (ex-
ternally) just a finite boolean algebra. Internally, this finiteness is what
makes countable additivity tractable later: for a fixed support, there are
only finitely many disjoint definable pieces to consider at once.

The same definability principle extends from subsets to predicates and
functions. An element of 2" is equivalently a finitely supported map V" —
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2 (its characteristic function). More generally, a finitely supported function
f: V™ =Y into a ground object Y is constant on each G 4-orbit for some
finite A, hence determined by finitely many values indexed by Q4. In the
special case Y = [0, 1] with trivial action, any finitely supported f : V" —
[0, 1] is again constant on G 4-orbits for some A, so it may be viewed as an A-
definable [0, 1]-valued predicate, constant on types over A. This observation
will later allow us to reduce integrals of supported functions to finite sums
after partitioning into orbits.

Finally, we note the compatibility with the relational interface. Each
relation symbol R € ¥ is interpreted in M as a subset RM C Var(R) Since
RM is definable without parameters (by the atomic formula R(Z)), it is
supported by the empty set, i.e. RM ¢ 2V with supp(RM) = @. More
generally, any first-order definable construction on M with finitely many
parameters yields a finitely supported subset or function in Nom(M). Thus,
when we interpret programs in contexts V", the internal events they test
and the internal predicates they build remain within the finitely supported
universe precisely because they are definable from finitely many atoms.

In summary, on the fundamental objects V™ we may freely pass be-
tween three equivalent descriptions: finite support (invariance under some
G 4), orbit unions (unions of finitely many G 4-orbits), and first-order de-
finability over finite parameter sets. This equivalence is the point at which
w-categoricity enters the semantics in an essential way: it converts nominal
“measurability” questions into finite combinatorics of types and orbits.

3.7 Internal probability measures and integration

To interpret probabilistic programs in Nom (M) we require a notion of prob-
ability measure and integration that (i) lives entirely inside the finitely sup-
ported universe, and (ii) is sufficiently countably additive to support sequen-
tial composition of probabilistic kernels. The guiding constraint is that in a
nominal topos, an arbitrary countable family of events need not be mean-
ingfully “given” without additional choice; accordingly, the correct substitute
for o-additivity is countable additivity along families that are controlled by
a single finite context.

Support-bounded families. Let X € Nom(M). Recall that the internal
powerobject 2% consists of finitely supported subsets S C X. A sequence
(S:)ien C 2% is called support-bounded if there exists a finite A C V such that
A supports every S;, i.e. each S; is Ga-invariant. Equivalently, the entire
sequence is a map N — 2% that is itself supported by A when N carries
the trivial action. This boundedness condition is the internal analogue of
“measurable sequence”: it guarantees that the countable decomposition is
not changing its defining parameters along the sequence.

We will only ask for countable additivity along disjoint support-bounded
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families. This is sufficient for the integration theory needed for the monad,
and it becomes concrete on the basic objects V" because, over any fixed
finite support A, there are only finitely many G 4-orbits (hence only finitely
many disjoint definable pieces) to which any supported event can reduce.

Finitely supported probability measures. A (finitely supported) prob-
ability measure on X is a finitely supported function

w: 2% —0,1]
such that
1. u(X) =1, and

2. for every disjoint support-bounded sequence (S;);eny C 2% we have

H(|_| Si) = ZM(Si),

1€N ieN

where | | denotes disjoint union in 2% and the sum is the usual sum in

[0, 1].

We denote by Pjs(X) the set of all such u. The group G acts on Py (X) by
transport of structure:

(0 -m)(S) :== u(c 9], oG, Sec2X.

With this action, P/(X) is again a nominal object: the support condition
on y : 2% — [0, 1] is exactly the requirement that there exists a finite A C V
such that p(o[S]) = w(9) for all o € G4 and all S € 2%. Intuitively, supp(p)
is the finite set of atoms relative to which the law p breaks symmetry.

The restriction to support-bounded families is essential. Without it,
countable additivity would quantify over arbitrary countable collections of
supported subsets with unbounded parameters, which is incompatible with
finite support in general. In contrast, for a fixed support A, the collection of
A-supported events in 2% forms (externally) a set with a finitary description:
on X = V™ it is a finite Boolean algebra generated by the finitely many G 4-
orbits. Thus the above additivity axiom is a genuine strengthening beyond
finite additivity, but remains stable under the nominal finiteness constraints.

Simple functions and their integrals. Let f : X — [0,1] be finitely
supported (here [0, 1] has the trivial G-action). We call s : X — [0,1] a
finitely supported simple function if there exist finitely supported, pairwise
disjoint subsets Sy, ..., S, € 2% with U;nzl S; = X and scalars r1,...,7, €
[0, 1] such that

s(z) = er [z € S;].

m
J=1
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Equivalently, s has finite image and each fiber s~!(r) is finitely supported.
Any such s is supported by the union of the supports of the S;’s, and thus
by a finite subset of V.

Given p € Pps(X) and a simple s as above, we define its integral by

/sd,u = eru(Sj).
j=1

This is well-defined: if s admits two simple presentations, then passing to
a common refinement (given by intersections of the supporting partitions)
yields a presentation with disjoint pieces on which both descriptions agree,
and finite additivity of p along that finite partition implies that the resulting
value of f sdy is independent of the chosen presentation. In particular, for
any S € 2% we have

/ (& € 8] dp = p(S).

Internal Lebesgue integral. For a general finitely supported f : X —
[0, 1], we define the integral by approximation from below by simple func-
tions, exactly as in the classical construction:

/fdu = sup{/ sdu: s < f, s a finitely supported simple function}.

The supremum is taken in the usual complete lattice [0, 1]; the expression
is meaningful internally because the collection of finitely supported simple
functions below f is itself determined by finitely much data (in particular,
the support of f). Concretely, if A supports f, then f is constant on each G 4-
orbit in X; for X = V™, orbit finiteness over A implies that f is determined
by finitely many values, and the above supremum reduces to an ordinary
supremum over a directed set of finite approximants.

The integral so defined satisfies the expected basic properties whenever
the relevant algebraic operations preserve finite support:

1. Monotonicity: if f < g pointwise then [ fdu < [ gdpu.
2. Normalization: [1dp = 1.

3. Finite linearity: if f,g are finitely supported and «, € [0, 1] then
J(af + Bg)dp = of fdu + B [ gdp whenever af + g < 1 (or
more generally for bounded nonnegative combinations, with the ob-
vious codomain adjustment).

Each property is proved by checking it for simple functions (where it fol-
lows from the defining axioms of p on finite partitions) and then passing to
suprema using directedness of the approximation order s < f.
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Monotone convergence under support-boundedness. The key analyt-
ical tool for monadic composition is monotone convergence. In our setting
the correct hypothesis is again a support-boundedness condition, now on the
approximating predicates.

Lemma (internal monotone convergence). Let p € Py (X). Let (fi)ien
be an increasing sequence of finitely supported functions f; : X — [0, 1] which
s support-bounded, i.e. supported by a common finite A C V. Then

/ <sup fi)dp = Sup / fidp.
€N

Proof. Write f = sup; f;. The inequality sup; [ fidp < [ fdu follows
immediately from monotonicity of the integral.

For the reverse inequality, fix e > 0. By definition of [ f dpu, there exists
a finitely supported simple s < f such that

/fdu < /sd,u—i—e.

Let ry,...,r, be the (finite) set of values taken by s. For each j define
the supported set Sj == {z € X : s(z) = r;}, so s = Y00 rj[z € Sj].
Since the sequence (f;) is supported by A, the pointwise supremum f and
the inequality s < f are all witnessed in the A-invariant world: for each
x € Sj we have r; < f(x) = sup; fi(x), hence there exists ¢ = i(x) such that
fi(z)(w) > 7;. Consider the sets

Tji:={z€S;: filx) >r;} €2%.

Each T ; is supported by A Usupp(s), uniformly in ¢ and j, and for fixed j
the family (7};)ien is increasing with (J; Tj; = S;. By countable additivity
of u along support-bounded families (applied to the disjoint decomposition
of S; into successive differences T} ;11 \ T};), we obtain

1(S;) = sup pu(Tj).
ieN

Choose i such that p(5;) < ,u(T ) +¢/m, and let N := max;i;. Since
fn = fi; pointwise, we have Tj;, C {x fn(z) > r;}, hence

w(S;) < p({z: fn(z) > 15}) +¢/m.

Define the simple function ¢(x) = > 7", r;[fn(z) > r;]. Then t < fn
pointwise, and

[sdu=3"rui$) <Yt fuo) = r)ee = [ tduse < [y duse.
=1 j=1
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Combining inequalities,
/fd,ug /sdu—i—sg /deu+2€ Ssup/fidu—i—%.

Since € > 0 was arbitrary, we conclude [ fdu < sup; [ f; dp, as required. [

This lemma is the point at which the support-boundedness restriction is
used critically: it ensures that the relevant increasing unions of events are
measured by u via its countable additivity axiom. In practice, our supported
predicates and kernels will always arise from program terms in finite contexts,
hence automatically satisfy such uniform support bounds.

We have thus obtained, for each X € Nom(M), a well-behaved nominal
object Pps(X) of finitely supported probability measures together with a
corresponding integral [ fdu defined for finitely supported f : X — [0,1]
and enjoying the monotone convergence property in the internal (support-
bounded) sense. In the next section we use this integral to define the Kleisli
bind operation and thereby assemble P,; into a strong probability monad
on Nom(M).

3.8 The probability monad P,

We now use the integral constructed above to assemble the assignment X —
P (X) into a probability monad on Nom(M). The intended interpretation
is standard: Pj/(X) is the object of (finitely supported) probability laws on
X, a Kleisli morphism X — Pjy;(Y) is a finitely supported Markov kernel
from X to Y, and sequential composition is given by integration.

Functoriality (pushforward). For an equivariant map f : X — Y and
w € Ppr(X), we define the pushforward measure Py/(f) (1) € Py (Y) by

Pu(f)(w)(T) = p(f'[T]), Te2".

Equivariance of f implies that f~'[T] € 2¥ whenever T € 2Y, and preser-
vation of support-bounded disjoint unions ensures that Pas(f)(u) satisfies
the additivity axiom. Moreover, if A supports both f and u, then A sup-
ports Pas(f) (1), so Pas(f) is a morphism in Nom(AM). This defines Pjy; on
morphisms and makes Pjs : Nom(M) — Nom(M) a functor.

Unit (Dirac measures). For each X € Nom(M) we define the unit nx :
X — Py (X) by Dirac measures:

nx(z)(S) = [z € 5], reX, Se2f
The map nx is equivariant and supported by supp(z). Countable additivity

along support-bounded disjoint families is immediate, since [z € ||, S;] =
>z € S;] for disjoint families. Thus nx(x) € Py(X) for all z.
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Bind (Kleisli extension by integration). Let u € Pj/(X) and let & :
X — Py (Y) be a finitely supported map (an equivariant kernel). We define
the composite measure y >>=k € Py/(Y) by

(>>=B(T) = [H@)T)uldz), T2 1)

where = +— k(z)(T) is a finitely supported function X — [0,1] and the
integral is the internal Lebesgue integral from the previous subsection. To
check that p >>= k is indeed a probability measure, we note:

1. Normalization holds since k(z)(Y) = 1 for all x, hence (u >>=
E)Y)=[1ldu=1.

2. For countable additivity, let (T});eny € 2¥ be disjoint and support-
bounded by some finite A C V. Then z — k(x)(T;) is supported
by A U supp(k), uniformly in ¢, and the sequence (k(_)(Ti))ieN is
support-bounded in the same sense. By additivity of each k(z) and
the monotone convergence lemma applied to partial sums, we obtain

(u>>= 0 (%) = [ S h@)T) ntdn) =3 [ ba@)(T) utde) = 3 >>= KT,

)

Equivariance of follows from equivariance of k£ and p together with in-
variance of the integral under the G-action on finitely supported functions.
Finally, if A supports both p and k, then A supports u >>= k, since for
each T' the integrand = — k(z)(7T) is A-invariant.

Monad laws. The data (Pas,n,>>=) satisfy the usual laws.

1. Left unit. For z € X and k: X — Py (Y),

(nx(x) >>=k)(T) = /k(xl)(T) nx(z)(dz’) = k(z)(T),
since integration against the Dirac measure evaluates at x.
2. Right unit. For pu € Py(X),
(4 >>=1x)(8) = [ nx(@)(S)n(do) = [ o € 5] (ds) = ().
3. Associativity. For p € Pp(X), k: X = Py (Y), and £: Y — Py (2),
we must show (u >>= k) >>= 0 = p >>= (v — k(z) >>= ().

Evaluated at U € 2%, both sides reduce to an equality of iterated
integrals:

/ ( / t(y)(U) k(w)(dw)u(das) = / () (U) (e >>= k)(dy).
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This is the defining property of bind, obtained by unwinding and
using the characterization of the integral as a supremum over simple
approximants together with internal monotone convergence to justify
passage to directed suprema. Concretely, one first proves the identity
for simple functions of y, where it is an instance of finite linearity, and
then extends to general finitely supported predicates y — £(y)(U) by
approximation.

Thus Pj is a monad on Nom(M).

Kernels and Kleisli composition. A (finitely supported) probability kernel
from X to Y is precisely a morphism k : X — Pp/(Y) in Nom(M). Given
k:X — Py(Y)and £:Y — Py (Z), their Kleisli composite £ ok k : X —
Pr(Z) is defined pointwise by

(Log k)(x) == k(x) >>= L.

Associativity of ok is exactly the associativity law of bind. The unit for
Kleisli composition is the Dirac embedding 7. This is the categorical form
of sequential composition of probabilistic programs: sampling according to
k(z) and then sampling according to ¢ from the intermediate result.

Strength and pairing. To interpret probabilistic programs in context (i.e.
with parameters that are passed through computations), we use the canonical
strength of Py;. Define

StX7y : X X PM(Y) — PM(X X Y)

by
sty (@(S) = [l@w) € Slutdy), 5 €2

Equivariance is immediate, and the additivity axiom follows from additivity
of u together with finite additivity of indicators and monotone convergence
for support-bounded unions. This strength is compatible with  and >>=
in the usual sense, so Pj; is a strong monad. In particular, given pu € P (X)
and k : X — Pp/(Y), we may form a joint law on X x Y by the standard
construction

joint(p, k) == p>>= (z — stx,y(z,k(z))) € Py (X xY),

b2

which internalizes the familiar notion of “sample z ~ p, then y ~ k(x)

Deterministic maps as kernels. Every equivariant function f : X — Y
induces a deterministic kernel ny o f : X — Pp/(Y). Under Kleisli composi-
tion, these deterministic kernels compose as ordinary functions:

(nzog)oxi(nyof)=nzol(gof),
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and pushing forward a measure p € Py;(X) along f may be expressed via
bind:
Pr(f)(p) = p>>= (ny o f).

This is the formal reason that deterministic constructs (products, coproduct
case analysis, and the relation tests interpreted by [R]) behave as expected
in the probabilistic semantics: they are interpreted by equivariant maps
and hence embed into the Kleisli category without introducing additional
probabilistic effects.

When Fubini fails. Although bind is defined by integration, P,; need
not be a commutative monad. Commutativity would assert that for all
€ Py(X), vePy(Y), and all finitely supported f: X x Y — [0, 1], the
two iterated integrals agree:

/fa:y (dy) p(dx) /fmy (dz) v(dy),

equivalently that the two ways of forming a joint law on X X Y coincide.
In classical measure theory this is ensured by o-additivity and standard
Fubini-Tonelli hypotheses. In our nominal setting the additivity axiom is
deliberately restricted to support-bounded families, and this restriction is
not stable under arbitrary constructions of product measures. Intuitively,
even if f is finitely supported, the decompositions of X x Y that arise when
approximating f by simple functions may require countable unions indexed
by data that is not uniformly supported after one marginal has been inte-
grated out. The monotone convergence lemma gives exactly the amount of
countable additivity needed for associativity of bind, but it does not force
symmetry under exchange of integration order.

This noncommutativity has a direct programming interpretation. In the
equational theory of probabilistic let-binding, commutativity corresponds to
the commutative-let equation

letx=tinlety=uine = lety=wuinletx =1in e,

when z is not free in u and y is not free in ¢. In the Kleisli semantics this is
precisely the assertion that the induced joint law on pairs (z,y) is symmetric
under swapping the order of sampling. Since Pj; is defined for all finitely
supported measures and kernels, but without an a priori Fubini theorem, we
do not in general validate such commutations.

Consequence: the role of commutative submonads. We therefore
distinguish two layers. The full monad P;; provides a sound semantics for
sequential probabilistic computation in Nom(M), with deterministic con-
structs embedded by 1 and composition given by bind. However, when one
wishes to validate commutative-let equations (and, later, weakening/affineness
principles relevant to projectivity), one must restrict to a commutative affine
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submonad in which the chosen primitive sampling operations commute. The
next section makes this restriction precise by constructing the least strong
submonad generated by specified commuting maps, and we will apply it to
the two primitives relevant for our relational interface: the Bernoulli family
on bool and the atom generator v : 1 — P (V).

3.9 Commutative affine submonads generated by primitives

We now formalize the restriction sketched at the end of the previous sub-
section. Fix the strong monad Pp; on Nom(M). By a strong submonad
T C Pjs we mean a subfunctor T(X) C Py/(X) on objects, natural in X,
such that (i) nx(z) € T(X) for all z, (ii) p € T(X) and k : X — T(Y) imply
p>>=k e T(Y), and (iii) stxy(z,n) € T(X xY) whenever p € T(Y).
Equivalently, T is closed under the Kleisli operations needed to interpret
probabilistic programs in context.

Commutation of Kleisli arrows. Let a : A — Py (X) and b : B —
Par(Y) be Kleisli arrows. We say that a and b commute if for every finitely
supported predicate f : X x Y — [0, 1] the two ways of sampling indepen-
dently and evaluating f agree, i.e. the following equality holds as a finitely
supported map A x B — [0, 1]:

//f z,9) blbo)(dy) a(ao) (dz) //f z,y) a(ao)(dz) b(bo)(dy), (a0, bo) € AxB.

In the internal language this is the familiar Fubini symmetry for the induced
joint law on X x Y; in monadic terms it is the equality of the two composites
obtained by using strength to form a joint distribution and then pushing
forward along the swap X XY — Y x X. When Pj;; is commutative, all
arrows commute; here we only require this for the chosen primitives.

Least strong submonad generated by a family of arrows. Let G be
a set of Kleisli arrows g; : A; — Pa(B;) in Nom(M). We define the least
strong submonad (G) C Pjs generated by G by closure under the monadic
operations, implemented via a transfinite construction. Concretely, we build
classes T (X) C Pp(X) by recursion on ordinals:

e T(X) is the set of all Dirac measures 7 () together with all measures
obtainable from the generators by deterministic postprocessing, i.e.
Par(f)(u) where f ranges over equivariant maps and g is in the image
of some g;.

e Given T4, we let To41(X) be the closure of T,(X) under bind and

strength in the following sense:
Tar1(Y) D {p>>=k:peT(X), k: X > Tu(Y)},
and similarly To41(X X Y) D {stxy(z,pn) :x € X, p € To(Y)}, and

we close under equivariant pushforward.
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o At limit stages A we set Tx(X) = Uyey Ta(X).

Since each stage is defined by operations available in Nom(M) and preserves
finite support, the union T (X) := |J, Ta(X) (for o ranging over all or-
dinals) yields a well-defined subfunctor of Py;. Standard closure arguments
show that T, is a strong submonad, contains every generator g;, and is least
with these properties. We denote it by

G) = T

Propagation of commutativity from commuting generators. Assume
now that the family G is pairwise commuting in the sense above. We claim
that (G) is a commutative strong monad. The proof is a closure argument:
consider the property C(T) that all Kleisli arrows a : A — T(X) and b :
B — T(Y') commute. One checks:

1. C holds at the base stage for the arrows generated by n and by the given
gi, because (i) Dirac measures commute with everything by definition
of integration, and (ii) the g; commute pairwise by hypothesis and
commutation is preserved by deterministic postprocessing.

2. If C holds for T,, then it holds for T,4+;. Indeed, closure under
pushforward does not affect commutation (it amounts to substitut-
ing fo(fx x fy) for f). For bind, if @ commutes with b, and if o’ is
obtained from a by sequencing with a kernel k, then the two iterated
integrals witnessing commutation of a’ and b reduce to the commu-
tation of a and b together with associativity of bind; formally, one
expands using (u >>= k)(T) = [ k(z)(T) p(dx) and applies Fubini
symmetry at the previous stage to the integrand. Strength is handled
similarly: st merely packages a parameter together with a draw, and
commutation reduces to the symmetry of the underlying draws.

3. At limits, C is preserved because any two arrows land in some common
stage T, by finite support considerations, hence commute there.

Thus every stage T, is commutative in the above sense, and so is (G). In par-
ticular, within (G) we validate the commutative-let equations for programs
built using only the generators in G together with deterministic constructs.

Affineness. A strong monad T on a cartesian category is affine if there is
a canonical map T(1) — 1 that is an isomorphism (equivalently: discard is
a homomorphism for the effect). In our setting, Py;(1) = 1 because the only
finitely supported probability measure on the terminal object is the unique
one. Hence every strong submonad T C P/ inherits T(1) = 1, and is there-
fore affine. Operationally, this affineness underpins weakening/projection
principles: unused probabilistic computations may be discarded without af-
fecting the rest of the semantics.
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Specialization to v and bern. We now fix the two primitives relevant for
our relational interface. Let

v:1l— Py(V) and bern : [0,1] — P (2), r+—— rd7+(1—7)d,,
where [0, 1] carries the trivial G-action. We write
Py = ({v,bern}) C Pyy.

By construction, Py, is a strong submonad containing both primitives and
closed under bind and strength, hence sufficient to interpret programs that
use new and Bernoulli sampling. If ¥ commutes with itself (in the sense that
v and v commute as Kleisli arrows 1 — Pj/(V)), then the generating family
{v,bern} is pairwise commuting: bern commutes with itself because it lives
over a trivial G-object and corresponds to an ordinary commutative proba-
bility choice, and v commutes with bern because sampling a fresh atom and
sampling an independent boolean do not interact (formally: the two iterated
integrals factor through the product measure on V' x 2, whose construction
uses only strength and bind and is symmetric under swap when one com-
ponent is a ground distribution). Consequently, under the self-commutation
hypothesis on v, the monad Py, is commutative and affine.

Bernoulli base on numeral types. Finally, we record the fact that on
ground finite types, Pjs, reduces to ordinary finite probability. Let n be
a numeral object in Nom(M), i.e. a finite set with trivial G-action. Then
every subset of n is finitely supported, so 2" = P(n), and the additivity
axiom for measures reduces to finite additivity. Hence Pjy;(n) identifies with
the standard simplex of probability distributions on the finite set n, and
Kleisli maps m — Pjs(n) are exactly stochastic matrices m ~» n.

The point is that this identification already holds for the generated sub-
monad: Pz, (n) = Py(n) for all numerals n. Indeed, the Bernoulli genera-
tor bern provides arbitrary binary probabilistic choice on 2, and closure under
coproducts, bind, and deterministic maps allows us to build arbitrary convex
combinations on any finite set. Concretely, given a distribution (pl-)f:1 on k,
we can implement it by iterated binary choices (e.g. using a decision tree that
first selects between {1} and {2,...,k} with probability p;, then recurses),
and this construction uses only bern, bind, and deterministic case analysis.
Since Pz, is closed under precisely these operations, it contains every such
finite distribution. Therefore, when we restrict the Kleisli category of Pas,
to numeral objects, we recover the classical category FinStoch of finite sets
and stochastic matrices. This gives a faithful “observation layer”: programs
of ground type denote ordinary finite probability distributions, even though
the internal semantics lives in the nominal world and is constrained by finite
support.
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3.10 Semantics for relational interfaces

We interpret the typed language ¥-Prog in the Kleisli category of the com-
mutative affine monad Pjs, on Nom(M). Types are interpreted as nom-
inal objects by the usual clauses: [atom] := V, [bool] := 2, and prod-
ucts/coproducts by the cartesian and cocartesian structure of Nom(M).
Ground numeral types n are interpreted as finite sets with trivial G-action.
Terms in context are interpreted as Kleisli arrows

[CFt:7]:[I] — Paro([7]),

defined by the standard monadic interpretation of sequencing (let) via bind,
and deterministic constructs via the unit 1 and functoriality. Since Py, C
Pas is a strong submonad, all operations needed for the usual call-by-value
interpretation are available.

The relational interface is interpreted by fixing, for each relation symbol
R € ¥ of arity k = ar(R), the deterministic predicate induced by the Fraissé
limit M:

[R]:VF — 2, [R](®)=T < M = R(d).

Equivariance is immediate because G = Aut(M) preserves all relations. The
allocation primitive new : 1 — atom is interpreted as the given finitely
supported measure v : 1 — Pjs, (V). Thus, a program may sample atoms
using v, form tuples, and interrogate M through the deterministic tests [R];
any remaining probabilistic choice at ground types is provided by bern, and
therefore also lies in Py .

A convenient way to package the observable output of a relational pro-
gram is to regard a finite ¥-structure on a fixed labeled domainn = {1,...,n}
as a tuple of truth tables, one for each relation symbol. Accordingly we de-
fine, for each numeral object n, the finite set

Strg(n) = H 2nar(R)’
ReX

where the exponentiation is ordinary set-theoretic since n and 2 carry trivial
G-action, hence every subset is finitely supported. Elements of Stry;(n) may
be identified with X-structures with underlying set n (with labeled vertices),
and the assignment n — Stry(n) is functorial for functions between finite
sets via pullback/reindexing of relation tables.

Given an n-tuple v = (v1,...,v,) € V", we obtain an induced labeled -
structure on n by interpreting the ¢-th label as v; and reading off all relation
facts from M. This yields an equivariant map

evy, : V" — Stry(n),
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defined componentwise by
(evn(ﬁ))R(g) =T <= MER®Wi,,...,v), i=(i1,...,i) € n”.

Equivariance follows from automorphism-invariance of M, and triviality of
the G-action on Stry(n). Thus, any probability measure on V" induces, by
pushforward along ev,,, an ordinary distribution on the finite set Strs;(n).

We now define the canonical n-vertex sampler associated to v. Consider
the Kleisli arrow new” : 1 — Py, (V") obtained by iterating v using bind
and pairing. Concretely, in internal language this is the program

let z; = new in --- let z, = new in (x1,...,2y,),
whose denotation we also write as (™ € Py, (V™). We then set

[y = PM,,,(evn)(u(”)) € Par(Strs(n)).

Since Stry(n) is a finite object with trivial action, yu, may be read as an ordi-
nary probability distribution on labeled n-vertex X-structures (equivalently:
on Stry(n) as a finite set). This is the basic “finite-model law” induced by v
and the interface 3.

The commutativity of Py, supplies exchangeability of these finite-model
laws. Let w € S,, be a permutation. It acts on V™ by permuting coordinates,
via the deterministic map 7. : V" = V", (v1,...,0n) = (Vr-101)s -+ s Vr=1(n))-
On Strg(n) it acts by relabeling the domain, via 7 : Strs(n) — Strs(n)
given by precomposition on each relation table:

(7%(5)) g (7) = sr(x (D).

By construction, ev,, o m, = 7t o ev,,. Moreover, commutativity of Pas,
implies that the n-fold sampler »(™ is invariant under reordering of the n
independent uses of new, i.e.

PMW(W*)(V(TL)) =,

Indeed, this is precisely the content of the commutative-let equation special-
ized to repeated sampling from v and deterministic tuple formation. Pushing
forward along ev,, and using naturality, we obtain

PM7V(7Tﬁ)<:U’n) = PM,I/(eVn)(PM,V(W*)(V(H))) = PM,V(eVn) (V(n)) = Hn-

Thus py, is invariant under relabeling by S, i.e. the induced random labeled
Y-structure on n vertices is exchangeable.

Affineness gives the expected projectivity with respect to deletion (or,
more generally, restriction along injections of finite sets). Let ¢ : m < n be
an injection between numeral objects. There is an induced restriction map
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i¥: Strg(n) — Strg(m) obtained by pulling back each relation table along ¢.
On tuples, we have the deterministic projection map ¢, : V"™ — V™ selecting
the coordinates in the image of . Again, ev,, o 1, = tf o ev,. Consider
the program that samples n atoms, then discards the unused coordinates
and keeps only the m selected ones; in the Kleisli semantics, discarding is
interpreted by the unique map to 1, and affineness ensures that discarding
commutes with probabilistic effects. Consequently the marginal of (™ along
L« coincides with p(m).

Parw(ts) (1/(")) — M),

Pushing forward through ev,, yields the projectivity equation

Par (68) (1) = Paza(evim) (Pary () (™)) = Paga(evim) (V™) = fi.

In particular, the family (1, )nen forms a consistent system of finite-dimensional
distributions: restricting an n-vertex sample to any m labels yields the m-
vertex sample.

These two properties (exchangeability and projectivity) may be viewed as
soundness consequences of the equational theory validated by a commutative
affine monad: commutativity of let yields invariance under permutations of
independent draws, and affineness yields stability under weakening (discard-
ing unused probabilistic computations). In our setting, this can be stated
purely denotationally, without appealing to any external probability space.
For any closed term ¢ of ground type (e.g. t: 1 — nort: 1 — Strx(n)),
its denotation is a measure in Pz, (n) or Pys,(Strs(n)), hence an ordi-
nary finite distribution. Program equations derivable from the commutative
affine axioms (together with gn for the deterministic fragment) are sound
because they hold in the Kleisli category of Pjs,; in particular, any two
syntactic ways of expressing “sample n atoms and then compute the induced
Y-structure” denote the same p,, and any two orderings of the n samples
are provably equal and therefore yield the same distribution.

Finally, we record the operational reading relevant for relational model-
ing. A program that first allocates finitely many atoms and then returns a
value of numeral type (or, more generally, any finite coproduct of numerals)
is observed as an ordinary stochastic computation, because the codomain
carries trivial action and Pjs, agrees there with finite probability. When
the program returns the full relational table Stry(n), we obtain precisely
an exchangeable random finite ¥-structure on n labeled vertices, and the
projectivity equations above ensure compatibility across n. Thus the se-
mantics of the X-interface produces, from the single primitive measure v
on V, a canonical exchangeable projective family of finite 3¥-models. In the
subsequent worked examples we will identify these families explicitly for par-
ticular Fraissé limits and particular choices of v, showing that the abstract
nominal-monadic construction recovers the expected “constant-gray” laws in
free-amalgamation settings.
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3.11 Worked example: the random tournament

We specialize to the Fraissé class of finite tournaments. Thus ¥ = {T'} where
T is a binary relation intended to satisfy, for all distinct x,y, exactly one
of T(z,y) and T'(y,z), and never T'(x,z). Let M be the countable random
tournament (the Fraissé limit), V' = |M|, and G = Aut(M). In this setting
there is essentially a unique “constant-gray” choice: antisymmetry forces the
edge bias to be 1/2. We now give an explicit finitely supported measure
vi/2 € Py(V), prove that it self-commutes, and identify the induced finite-
model laws p, as the classical exchangeable random tournament on n labeled
vertices.

One-point extension patterns and unary orbit partitions. Fix a
finite parameter set A C V. For each function € : A — 2, consider the set

oA = {UEV\A : Va € A, (T(v,a)He(a)zl)}.

By ultrahomogeneity and the one-point extension property of the random
tournament, each OGA is nonempty; moreover, each Of is a single orbit for
the pointwise stabilizer G 4, and the family {OA}.co4 partitions V' \ A. To-
gether with the singleton orbits {a} for a € A, we obtain a finite G 4-orbit
decomposition of V.

By Theorem B, every A-supported event S € 2V is definable over A,
hence a union of G 4-orbits. In particular, SN (V \ A) is a union of some of
the OA, and membership of S on V' \ A is constant on each O4.

Definition of vy /; by uniform pattern averaging. Foranevent S € 2V,
let A := supp(S) be its least support (Lemma 1). We define

np(S) = g o[04 s (2)

Equivalently (using that SN (V \ A) is a union of some O#), we may write

ec24:04Cs
Vl/?(S) = |{ 9[A] }’a

and we stipulate that points of A themselves receive no mass (indeed, they
do not appear in the sum). Intuitively: relative to parameters A, a “fresh”
vertex is specified exactly by the orientation pattern it makes with A, and
V12 chooses this pattern uniformly.

We must check that is well-defined (i.e. independent of the chosen
supporting set). Suppose B D A is another finite set supporting S. Then
each Of refines into 212\l many G g-orbits 05, where ¢ : B — 2 extends €
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arbitrarily on B\ A. Because S is B-supported, it is a union of G g-orbits, so
for a fixed € either all extensions ¢ give 05 C S, or none do. Consequently,

1 1
ﬁZ[OgQS] = WZ[OGAQSL

e'e2B ec24

as required. Thus vy, is a well-defined function 2V — [0,1].

Measure axioms and finite support. For fixed support A, the algebra
of A-supported events is finite: it is generated by the finitely many orbits
{a} (a € A) and O (e € 2). On this finite Boolean algebra, vy /5 is plainly
a probability measure: vy /Q(V) = 1, and finite additivity holds because is
just uniform counting over € € 24. Countable additivity for support-bounded
disjoint families reduces to finite additivity since there are only finitely many
A-orbits available to partition V'\ A. Hence vy, € Pp(V).

Moreover vy, is G-invariant, hence supported by ). Indeed, for any
o € G and event S, we have supp(cS) = o(supp(95)), and o bijects the
pattern-orbits O with Ogo‘g,l. Therefore the uniform average in is
preserved:

V1/2(US) = V1/2(S)-

Two-point extension patterns. We now verify that vy /; self-commutes.

By Lemma 4 it suffices to check the Fubini symmetry on indicator functions

of definable subsets D C V? supported by a fixed finite A C V. Since

V12 assigns mass 0 to any finite set, we may ignore the A-diagonals and

equalities (i.e. tuples where x € A or y € A or x = y); these contribute 0 to

both iterated integrals. Thus we restrict attention to (V \ 4)? with x # y.
For ¢, € 24 and t € 2, define the (A4, ¢, €, t)-cell

Oé&t = {(:c,y) e (V\A)?:z#y Yac A, T(z,a) < e(a) =1, T(y,a) <> €(a) =1, T(z,y) <t =1

As before, by ultrahomogeneity and free choice of orientations in a tourna-
ment, each O:}E’,t is nonempty and is a single G 4-orbit in (V \ A)2. The
family {Oée/,t} yields a finite orbit partition of the generic part of V2, and
any A-supported definable D C V2 is a union of some of these orbits (up to
the measure-zero exceptional set where z € A or y € A or x = y).

Computation of iterated integrals and symmetry. Fix such a defin-
able D supported by A, and write 1p for its indicator. Consider the iterated
integral [ ([ 1p(x,y) v1/2(dy)) v1/2(dx). For a given z € V' \ A, its A-type
is the unique € € 24 such that € OA. The inner event {y : (z,y) € D}
is definable over AU {z}. By the definition of vy, V1/2({y s (x,y) € D})

9lAl+1

is obtained by uniformly averaging over the one-point patterns of y
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relative to AU {z}; these patterns consist of an € € 24 together with the bit
t € 2 describing the direction between x and y (equivalently, T'(z,y)). Since
D is a union of the cells Ofe, ;» the value of the inner integral depends on x
only through ¢, and equals o

1 A
2‘A|+1 Z Z[Oevelvt < D]
€24 te2
Averaging once more over x means averaging uniformly over € € 24, Hence
1 A
// Lp(z,y) v1ya(dy) v1po(da) = 92[A[+1 Z Z Z[an’,t cDJ]. (3)
e€24 ¢/e24 te2
If we reverse the order of integration, the same argument yields
1 A
[ 10 mpdn) = g 3 o[04, < D),
ee24 ec24 te2

which is equal to by commutativity of finite sums. This establishes the
required Fubini symmetry on definable indicators, hence vy /5 self-commutes.

Induced finite-model law and “constant-gray”. Let (™ € Py, (V")
be the n-fold sampler obtained by iterating new, and let p,, be the pushfor-
ward of v along ev, : V" — Strs(n). We claim that p, is the uniform
distribution on labeled tournaments on n vertices, i.e. each orientation of the
(’2‘) unordered pairs occurs with probability 9=(5).

This follows by an induction that mirrors the pattern-averaging defini-

tion. Suppose we have already sampled z1,...,Z;,, and condition on their
realized tuple. The conditional distribution of x,,11 relative to the finite
set A = {x1,...,2m} is, by construction of vy 5, uniform over the 2™ one-

point extension patterns € : A — 2. But such a pattern is exactly a choice,
independently for each i < m, of whether T'(z,+1, z;) holds. Thus, condi-
tional on the past, the orientations (T(.’Z‘m+1,$i))i <, are independent fair
coins. Iterating this step shows that for the induced labeled tournament on
{1,...,n}, all edge directions are independent and unbiased. In other words,
1 is the classical random tournament law.

In the language of limit objects, this is precisely the “constant-gray” tour-
namenton: the measurable kernel W on [0,1]? is (up to null sets) constantly
1/2 on the off-diagonal, and antisymmetry forces W(z,y) = 1 — W (y, x),
hence forces the constant to be 1/2. Consequently, unlike the graph case
where an Erdds—Rényi parameter « yields a family v, the tournament sig-
nature admits no nontrivial one-parameter constant-gray deformation com-
patible with antisymmetry. Our explicit v/, therefore realizes the canonical
exchangeable projective family of finite random tournaments arising from
the random tournament Fraissé limit and the uniform one-point extension
mechanism.
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3.12 Generalization schema: free amalgamation Fraissé classes

We explain a uniform construction of “constant-gray” measures for Fraissé
classes with free amalgamation, and how the commutation requirement re-
duces to a finite, orbit-wise calculation. Throughout, ¥ is a finite relational
signature and K is a Fraissé class of finite Y-structures whose Fraissé limit
M is w-categorical. We additionally assume that K has free amalgamation
in the usual relational sense: whenever Bi, By € K intersect in a common
substructure A, there is an amalgam C € K whose underlying set is the
disjoint union of By and Bs over A, and such that no new relations are
imposed between B; \ A and B \ A beyond those forced by the axioms of
the class (e.g. irreflexivity, symmetry/antisymmetry conventions, etc.). In
this regime, one-point extensions over a finite parameter set are combinato-
rially unconstrained, and this is precisely what allows a simple multiplicative
specification of v.

One-point extension orbits and their parametrization. Fix a finite
parameter set A C V. Consider the action of the pointwise stabilizer G4 on
V'\ A. By w-categoricity (Lemma 2), there are finitely many G 4-orbits, and
by Theorem B these orbits are exactly the realized 1-types over A (equiva-
lently, quantifier-free one-point extension patterns over A, since M is ultra-
homogeneous and K is relational). We denote the orbit set by

Orbi(A) := (V\ A)/Ga,

and for p € Orb; (A) we write 0;74 C V'\ A for the corresponding orbit. In free
amalgamation classes, an orbit p can be concretely described by the truth-
values of all atomic X-facts in which the new variable x appears together with
a tuple of parameters from A, modulo the equational constraints on K (e.g.
prohibiting repetitions, enforcing symmetry, etc.). In particular, Orb;(A) is
finite and effectively enumerable from |A| and ¥ once the axioms of K are
fixed.

Orbit/type weights and the formula for vy. We choose a parameter
vector 0 assigning a bias to each atomic relation template in which a fresh
point participates. Concretely, for each R € ¥ of arity r = ar(R), we pick a
real number 0 € [0, 1], with the understanding that 6 is interpreted as the
intended probability that R(x,a) holds for a fresh x and a parameter tuple
a € A"! satisfying whatever distinctness conditions are imposed by K. (If
K enforces identifications between R-facts, e.g. symmetry, one first fixes a
canonical representative scheme and assigns 6 to those representatives; we
suppress this bookkeeping since it is signature- and axiom-dependent but
finite.)
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Given A and an orbit p € Orb;(A), define its (unnormalized) weight by
the multiplicative rule

wh) = [T I 02" —op)tieasl
ReY acAdmp(A)

where Admp(A) ranges over those (r — 1)-tuples a of parameters to which
the class allows relating a new point = via R (e.g. excluding tuples with rep-
etitions if the class is irreflexive in the relevant coordinates), and where the
exponents refer to whether the corresponding atomic fact is forced true/false
by the type p. Free amalgamation ensures that every such assignment of
atomic facts consistent with the axioms is realized in M, so each admissible
pattern contributes an orbit p with wi(p) > 0, and at least one orbit has
positive weight provided 0r ¢ {0, 1} are chosen compatibly with the axioms.
Let Z9 = 2 peOrby (A) wY (p). Define the normalized distribution 74 (p) :=
wz(p)/ZZ. For an event S € 2" with least support A = supp(S), we then

set
v(S) == Y 74 -[0) C5S]. (5)

peOrby (A)

Thus v4(S) is determined by which one-point orbits over A are included in
S, weighted according to 6. This is the direct analogue of uniform pattern
averaging, with uniformity replaced by the product-form bias .

Well-definedness under enlargement of supports. To verify that
does not depend on the particular supporting set used to describe S, we must
compare the distributions 71'21 and 71'03 when B D A. The crucial property is a
finite marginalization identity: each orbit ¢ € Orb;(B) restricts to a unique
orbit resp,4(¢) € Orbi(A), and in free amalgamation classes the weight
factors for atomic facts involving parameters in B \ A separate from those
involving only A. Concretely, for fixed p € Orb;(A), we have

> wple) = wip) Chp,

q: resp, A(q)=p

where Cfl p Is a constant independent of p (it is the total weight contributed
by choices of atomic facts between 2 and B \ A, summed over all consistent
such choices; in the product-form case, it is a finite product of terms of the
form 6r + (1 — 0r) = 1, possibly multiplied by class-dependent constants
arising from canonical-representative conventions). After normalization, this
yields

) = D> 7wl

q: resp_ A(q)=p

Since S is B-supported iff it is a union of G g-orbits, the indicator [Of C 9]
is constant on all q restricting to the same p, and the above marginalization
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implies that the right-hand side of computed with A agrees with the
same expression computed with B. Hence vy is well-defined as a function
2V —[0,1].

Measure axioms and equivariance. For a fixed finite A, the Boolean
algebra of A-supported events in 2" is finite, being generated by the finitely
many singleton orbits in A together with the finitely many orbits O}‘;‘ in
V' '\ A. On this finite algebra, vy is a probability measure by construction:
vp(V) = 1 and additivity on disjoint unions follows from additivity of the sum
in (5). Countable additivity for support-bounded disjoint families reduces
to finite additivity because there are only finitely many relevant orbits over
the common support. Thus vy € Py (V).

Equivariance is immediate from the orbit-based definition. For o € G,
the map o sends Orbg(A) bijectively to Orb;(cA) and preserves the truth-
values of atomic facts, hence preserves the weights wfl and therefore the
normalized probabilities 7%. Consequently v4(cS) = v4(S) for all S, so vy
is G-invariant (supported by ().

Self-commutation via two-point extension checks. Assuming vy is
defined as above, we now indicate the general commutation argument. By
Lemma 4, it suffices to check Fubini symmetry on indicators 1p where D C
V2 is definable over a fixed finite A. As in the tournament computation, we
may ignore a finite exceptional set (coordinates in A, or diagonals) since vy
gives mass 0 to finite subsets.

On the generic part of (V' \ A)? with z # y, the stabilizer G 4 has finitely
many orbits Orbg(A), corresponding to realized 2-types over A. Each g €
Orby(A) specifies simultaneously: the one-point orbit p, € Orbi(A) of z,
the one-point orbit p, € Orb;(A) of y, and the atomic ¥X-facts relating x
and y (and, in higher arity, facts involving both z and y together with some
parameters from A). Free amalgamation again ensures that all consistent
such specifications occur and form single orbits.

The key observation is that sequential sampling according to vy induces
a product-form weight on Orbg(A) that is symmetric in the two variables.
More precisely, if we define an unnormalized two-point weight Wz(q) by the
same multiplicative recipe as , but now ranging over all admissible atomic
instances in which at least one of x,y appears (including those connecting
r to y), then W9(g) is invariant under swapping = and y. Moreover, the
iterated integral [[ 1p(z,y)ve(dy)ve(dz) reduces, by orbit constancy, to a
finite sum of the form

1
=7 Y. Wil [0of c D],
Z4 qeOrba(A)

for an appropriate normalization constant ZZ. Reversing the order of in-
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tegration yields the same expression, because the summand depends only
on the (unordered) 2-type and the set of included orbits of D, and because
finite sums commute. Thus vy self-commutes. In practice, this argument
can be implemented as a finite case analysis over Orbs(A), whose size is
controlled by oligomorphicity; for many concrete K, one can compute these
orbit partitions explicitly from the one- and two-point extension axioms.

On uniqueness of parameters. The extent to which 6 yields a genuine
family depends on algebraic constraints in K. In some signatures, the axioms
force 0 to a unique value. The tournament case is the prototypical example:
for distinct x, y, exactly one of T'(x,y) and T'(y, x) holds, and swapping the
roles of x and y forces any constant bias p to satisfy p = 1 — p, hence p =
1/2. By contrast, for the graph signature (an irreflexive symmetric binary
relation), the same scheme yields the Erdés—Rényi family § = « € [0, 1].
For higher-arity free amalgamation classes (e.g. k-uniform hypergraphs) one
obtains analogous constant-gray families with parameters 0 for each relation
symbol (subject only to the signature-imposed symmetries). In general, any
definable dependency among atomic facts involving a fresh point constrains
the admissible 0, and uniqueness is exactly the phenomenon that the only
self-consistent exchangeable “local” bias is forced by the axioms.

3.13 Limitations and future directions

Beyond free amalgamation. Our explicit construction of vy and the ac-
companying commutation argument rely on a particularly strong form of
local independence: one-point extension data over a finite parameter set A
can be chosen essentially atom-by-atom, and restrictions along B O A factor
through a marginalization identity whose constant does not depend on the
A-type. This is exactly what free amalgamation provides. Once amalgama-
tion introduces genuine compatibility constraints (forbidden configurations,
algebraic closure, definable equivalence relations, order, metric inequalities,
etc.), the product-form weight can fail to be consistent under support
extension, or can become consistent only for a thin set of parameter values
(often forcing uniqueness, or degeneracy).

A particularly instructive non-example is the Fraissé limit (Q, <) of finite
linear orders. Over a finite parameter set A = {a; < --- < ax}, the realized
1-types are the k£ + 1 cuts, hence Orb(A) grows with |A|. Any attempt to
define v by assigning a fixed probability to each cut immediately encoun-
ters coherence constraints: if we enlarge the support by inserting a new
parameter b into an interval, then the mass assigned to that interval must
split additively into the masses of the two subintervals. Iterating this refine-
ment along longer and longer finite chains forces the mass of every nonempty
open interval to be arbitrarily small, and one quickly runs into tension with
normalization (V) = 1 when we try to maintain countable additivity on
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support-bounded families. In other words, the sort of finitely supported,
orbit-wise specification we used in free amalgamation classes does not inter-
act well with the order-induced refinement structure. We view this not as a
defect of the formalism, but as a signal that new in ordered contexts should
not be expected to behave like “independent generic choice” without import-
ing additional analytic structure (for instance, sampling from an ambient
continuous distribution and then passing to induced order statistics). Such
analytic structure is deliberately absent from the present nominal setting.
More generally, for non-free amalgamation classes one may still hope to
obtain self-commuting v by an orbit/type averaging principle, but the av-
eraging will have to be carried out against the genuine one-point extension
counts in K rather than a simple multiplicative bias. This suggests two
concrete research tasks: first, to characterize when the projective system
of finite-dimensional distributions arising from a candidate v exists at all (a
“Kolmogorov extension” problem internal to Nom(M)); second, to determine
when such a v can be chosen self-commuting. Both questions appear to de-
pend sensitively on combinatorial properties of K (e.g. strong amalgamation
variants, elimination of algebraic closure, or structural Ramsey features) and
on group-theoretic properties of G = Aut(M) (amenability and its strength-
enings). We have not attempted to systematize these dependencies here.

Mixtures and hierarchical randomness. The measures vy obtained in
the free amalgamation regime are “extremal” in the sense that the induced
finite-model laws are constant-gray with fixed parameters 6. Many natural
exchangeable laws are mixtures of such extremals, and in applications one
typically wants hierarchical models where 0 itself is random and learned from
data. Semantically, this asks for an additional source of randomness on a
parameter object (e.g. [0,1] or a finite-dimensional cube [0,1]™) together
with the ability to bind that parameter into the subsequent uses of new.

At the level of our generated monads, the obstruction is clear: Pjs,, is
generated by v on V and bern on 2, so while we can express finite proba-
bilistic choices and hence randomize among finitely many parameter values,
we cannot express genuinely continuous priors on 6. Extending the language
with a primitive unif : 1 — [0,1] (or more generally, with a class of sam-
pling primitives on trivial-action objects) would enable such mixtures, but
would also force us to confront the status of probability measures on ob-
jects with trivial G-action beyond the finite ones (cf. the discussion below
on real-valued primitives). A workable compromise is to add finitely sup-
ported priors (finite mixtures), which are already definable using Bernoulli
choices and sums; this suffices for many algorithmic uses (model selection
among finitely many regimes), but does not capture de Finetti-style integral
representations.
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Conditioning and posterior support. Our semantics is purely gener-
ative: programs denote kernels built from unit, bind, v, and deterministic
tests. Conditioning—either hard conditioning on events or soft conditioning
via likelihood weights—is not primitive. One can attempt to define condi-
tioning internally by

(T NS)
1(S)

for finitely supported S € 2%, but this is necessarily partial, and the map
(1, S) — condg(p) is not everywhere defined nor obviously stable under bind
in a way that preserves commutativity. Even when defined, conditioning typ-
ically increases support: if S is supported by A, then condg(u) should be sup-
ported by AUsupp(u), reflecting the familiar fact that observations introduce
dependencies on the observed parameters. This is compatible with nominal
reasoning, but it means that equational principles such as commutative-let
should not be expected to survive unrestricted conditioning, since reordering
two conditionings can change intermediate normalizing constants.

A more robust direction is to treat conditioning as a separate effect (for
instance, via a “measure transformer” or “scoring” monad) and to relate it
to Pjs only after normalization. Doing so in a nominal topos raises further
issues: the relevant notion of c-algebra is replaced by 2%, and countable
additivity is only required for support-bounded families, so standard disin-
tegration theorems do not apply verbatim. Establishing a usable theory of
Bayesian inversion in Nom(M ) (even restricted to definable observations)
remains open in our setting.

condg(u)(T) = when p(S) > 0,

Real-valued primitives and the role of trivial-action objects. Al-
though [0, 1] appears in our development, it appears only as a codomain for
predicates and expectations, equipped with the trivial G-action. This choice
is intentional: it allows us to speak about probabilities and integrals without
committing to a rich supply of probability measures on [0, 1] itself. Indeed,
because the action on [0,1] is trivial, every subset is finitely supported, so
2001 i simply the full powerset. A “probability measure” in the sense of our
definition would therefore be a countably additive measure defined on all
subsets of [0, 1], which is far stronger than standard Borel measurability and
is typically unavailable in ordinary foundations. Consequently, P/([0,1])
should be expected to contain very few measures (e.g. Dirac measures), and
this makes it unreasonable to add a primitive continuous sampler [0, 1] with-
out further modifying the notion of event.

There are several plausible remedies. One can enrich the base topos so
that objects come equipped with a chosen o-algebra (or an internal analogue)
rather than taking 2% as the full finitely supported powerset; alternatively,
one can restrict attention to a designated subobject of “measurable” subsets
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for trivial-action objects while retaining 2% for nominal ones. Another pos-
sibility is to work with quasi-Borel or synthetic-measure-theoretic structures
internal to Nom (M), so that [0, 1] carries a canonical measurable structure
not equal to the full powerset. Each of these approaches amounts to adding
analytic structure orthogonal to the nominal symmetry, and we have not
pursued it here. The present framework is therefore best viewed as a seman-
tics for probabilistic computation whose observable randomness is ultimately
finitary (via numeral types and Bernoulli), even though the hidden nominal
state V' is infinite.

Algorithmic and machine-checked orbit/type calculations. Even
in the free amalgamation regime, verifying self-commutation by hand can
become tedious as the signature grows, because one must reason about orbit
partitions Orb,,(A) and the effect of bind on finitely supported definable sets.
At the same time, our reduction lemmas make these verifications intrinsically
finite: over any fixed finite support A, there are finitely many relevant n-
orbits, and integrals reduce to finite sums of orbit indicators. This finiteness
strongly suggests computer assistance.

A concrete goal is a toolchain which, given a relational signature 3 and
a finite axiom scheme describing K (e.g. free amalgamation together with ir-
reflexivity /symmetry conventions and finitely many forbidden patterns), pro-
duces (i) an explicit description of Orb;(A) and Orby(A) up to isomorphism
over A, (ii) the corresponding weight expressions wf_‘ and the marginalization
constants Cfl’ . and (iil) a mechanically checked proof that the induced vy
is well-defined and self-commuting. For many classes, orbit representatives
can be encoded as finite relational tables with marked parameters, and con-
sistency can be discharged by SAT/SMT solving. One can then export the
finite orbit-sum computations as proof certificates checked in a proof assis-
tant (Lean/Coq/Isabelle), thereby separating the combinatorial enumeration
from the semantic argument.

We emphasize that such mechanization is not merely an implementation
detail: it would provide a systematic way to explore the boundary between
classes where commutative new-semantics exists and classes where it fails,
and it would enable rapid prototyping of new interfaces (higher-arity re-
lations, multiple interacting sorts of atoms, or signatures with constrained
symmetries). Ultimately, one would like to turn the abstract statement
“commutation reduces to finitely many orbit checks” into a practical method
that either constructs v and proves commutation, or produces a minimal
counterexample orbit configuration witnessing failure.

Summary. Our results are strongest when I presents genuinely local ex-
tension freedom, in which case vy and commutation follow a uniform orbit-
averaging pattern. Extending beyond this regime raises substantive ques-
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tions: whether suitable v exist, how to support mixtures and condition-
ing without sacrificing commutative-let reasoning, how to incorporate real-
valued sampling without collapsing into set-theoretic pathologies on trivial-
action objects, and how to mechanize the finite orbit/type arguments that
underlie both definability and commutation. We expect that progress on
these questions will require a tighter integration of Fralssé-theoretic combi-
natorics, topological dynamics of G, and synthetic or internalized measure
theory within nominal toposes.
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