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Abstract

We extend the semantic correspondence between probabilistic pro-
gramming interfaces for random graphs and graphons to higher-arity
relational data. Fix k > 2 and consider a minimal probabilistic pro-
gramming interface providing a type of vertices, a fresh-vertex sampler
new, and a deterministic symmetric predicate hyperedge; deciding k-
hyperedges. For any Bernoulli-based equational theory (modeled in
a distributive Markov category with an observation map into finite
stochastic matrices), we build programs that output finite k-uniform
hypergraphs as Boolean incidence tensors. We prove that the result-
ing sequence of finite random hypergraphs is exchangeable, projective,
and dissociated (induced substructures on disjoint vertex sets are in-
dependent). By the dissociated Aldous-Hoover/Kallenberg represen-
tation theorem, every such theory therefore determines a k-uniform
hypergraphon. Conversely, we construct a universal category from fi-
nite k-uniform hypergraphs via coproduct completion and a monoidal-
indeterminate (para) construction adjoining new; Bernoulli-based quo-
tients of this universal model are in bijection with hypergraphons.
This work generalizes the graphon-by-equations phenomenon to hy-
pergraphs and exchangeable arrays, providing a semantics-first route
to designing modern probabilistic APIs for multi-relational and tensor-
valued data.
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1 1. Introduction and motivation: exchangeable
interfaces for hypergraphs/arrays; summary of
contributions; relationship to graphon correspon-
dence and Aldous—Hoover.

We study a simple but rigid phenomenon: once a probabilistic program is
allowed to allocate fresh abstract names (vertices) and to query a determin-
istic, symmetric, irreflexive k-ary relation on those names, the distributions
produced by such programs are forced into the well-known exchangeable
world of hypergraph limits. Our aim is to make this constraint precise in
a way that is simultaneously (i) syntactic, by an equational theory of pro-
grams, (ii) semantic, by interpretation in a suitable probabilistic categorical
model, and (iii) structural, by identifying the induced laws with the standard
representation theory of exchangeable arrays.

The guiding example is the graphon correspondence for £ = 2. There,
one may view a graphon W as a limit object encoding all finite-dimensional
distributions of an exchangeable random graph, and conversely every ex-
changeable, projective, and dissociated random graph law is generated by
some W (uniquely up to measure-preserving rearrangement). The custom-
ary formulation starts from random adjacency matrices and invariance under
relabeling: our point of entry is instead an interface in a probabilistic pro-
gramming language: a constructor for new vertices and a predicate testing
whether an edge is present. The fact that a program never receives vertex
labels as data, but only obtains them by repeated allocation, is precisely
what enforces exchangeability. The fact that the predicate is determinis-
tic, combined with the usual laws of sequencing, is what enforces dissocia-
tion/locality.

For hypergraphs the same conceptual picture holds, but the correct limit
object is more intricate. A k-uniform hypergraph is a {0,1}-valued sym-
metric k-array with the additional constraint forbidding repeated indices,
and the appropriate exchangeability notion is invariance under finite per-
mutations of the vertex set. When £ > 3, the Aldous-Hoover/Kallenberg
representation theorem describes general exchangeable k-arrays via a hier-
archy of latent random variables indexed by all nonempty proper subsets
of [k]. In particular, one does not in general obtain a model from a naive
kernel [0, 1]¥ — [0, 1] depending only on vertex-level randomness; rather, one
requires dependence on the full collection of lower-dimensional coordinates
(e.g. pair-coordinates for k& = 3), and this dependence is exactly what the
hypergraphon formalism records.

Our contribution is to show that this representation theory is already
latent in a minimal programming interface for k-uniform hypergraphs. On
the one hand, from any interpretation of the interface in a probabilistic se-
mantics satisfying standard “let” equations, we obtain for each n a canonical



closed program producing the entire incidence tensor of a random k-uniform
hypergraph on n sampled vertices. This yields a sequence of distributions
(Pn)n>1 on finite hypergraphs. We prove that these distributions are neces-
sarily exchangeable, consistent under restriction to subsets of vertices, and
k-local in the sense that induced sub-hypergraphs on disjoint vertex blocks
are independent. The argument is not probabilistically deep; rather, it is
an exercise in extracting probabilistic invariances from program equations.
Commutativity of independent “let”-bindings corresponds to relabeling in-
variance; weakening corresponds to marginalization; and deterministic sub-
stitution for relation tests, together with the monoidal structure implicit in
pairing, yields dissociation.

On the other hand, once these three properties are established, the clas-
sical representation theorem applies: every exchangeable, projective, disso-
ciated k-uniform hypergraph model arises from a hypergraphon W, and the
hypergraphon is unique up to the standard measure-preserving equivalence.
Thus our syntactic and categorical assumptions isolate exactly the hypothe-
ses required by the dissociated Aldous-Hoover/Kallenberg theorem, and we
may pass from program denotations to hypergraphons without additional
modeling choices. In this sense, hypergraphons appear not as an externally
imposed analytical gadget, but as the unavoidable completion of the equa-
tional theory governing name allocation and deterministic relational queries.

A key methodological choice is to phrase semantics in the language of dis-
tributive Markov categories. This framework separates (i) the deterministic
structural fragment (products, coproducts, and their distributive interac-
tion) from (ii) the probabilistic fragment (Markov kernels and sequencing),
and it packages the equational reasoning about programs into categorical
equalities. However, to compare program denotations with classical proba-
bility distributions we require an observation map on a suitable “numeral”
fragment. We therefore assume a Bernoulli base, i.e. a faithful functor into
FinStoch on finite objects, ensuring that closed programs of finite type deter-
mine honest finite probability distributions. This step is conceptually small
but technically clarifying: it lets us state results directly in terms of equal-
ity of distributions, while keeping the ambient semantics abstract enough to
accommodate different models.

Besides extracting hypergraphons from program theories, we also pursue
a converse direction: every hypergraphon should be realizable as the seman-
tics of some Bernoulli-based equational theory for the interface. To do so we
construct a universal semantic object, a distributive Markov category freely
generated by deterministic k-uniform hypergraph structure together with a
single probabilistic generator representing “fresh vertex creation”. This uni-
versal category plays the role of a syntax-free initial model for the interface.
By analyzing distributive Markov functors from its numeral fragment into
FinStoch, we obtain a classification in terms of exchangeable, projective,
and k-local hypergraph models; composing with the representation theo-



rem yields the promised correspondence with hypergraphons. In particular,
given a concrete hypergraphon W we build a functor encoding its finite-
dimensional sampling scheme and then take a suitable quotient of the uni-
versal category to obtain a semantic model whose induced (p,) agrees with
the standard py ., for all n.

Several points deserve emphasis. First, the results are not restricted to
i.i.d. edge models; indeed, the hypergraphon formalism permits rich depen-
dencies among hyperedges, mediated by the shared latent variables indexed
by lower-dimensional subsets. From the programming perspective, this is
precisely what one expects: a program may allocate vertices and then make
correlated relational decisions through shared hidden state in the seman-
tic model, even if individual relation queries are deterministic. Second, the
constraint of determinism for hyperedge,, is essential for dissociation: if rela-
tion tests themselves were randomized, then additional sources of random-
ness indexed by k-tuples would appear, and one would recover the full (not
necessarily dissociated) Aldous-Hoover form. Our setting thus isolates the
“randomness comes from names, not from predicates” regime and identifies
it with the dissociated part of the theory.

Third, although we phrase the main development for a single-sorted ver-
tex type and a single k-ary predicate, the organizing idea is more general:
one may treat probabilistic interfaces as generators of exchangeable struc-
tures whenever fresh-name creation is the only way to obtain indistinguish-
able individuals. This viewpoint connects directly with standard probabilis-
tic symmetries (exchangeability, separate exchangeability, partial exchange-
ability) and suggests a systematic way to read off representation-theoretic
consequences from program equations. Hypergraphs are a natural test case
because they already exhibit the higher-order latent-variable hierarchy, mak-
ing clear why the correct limit object is genuinely higher-dimensional when
k> 3.

Finally, we regard this work as part of a broader program: to relate
operationally meaningful, equationally specified probabilistic programming
interfaces to the invariant objects studied in probability, ergodic theory, and
combinatorial limits. In the present case, the bridge runs from program
equations, through categorical semantics with a faithful finite observation
principle, to dissociated exchangeable hypergraph laws, and thence to hyper-
graphons. The resulting correspondence recovers the graphon story at k = 2,
while providing a uniform account for all £ > 2 that is compatible with the
classical Aldous-Hoover/Kallenberg framework for {0, 1}-valued symmetric
arrays.



2 Language, interface, and Bernoulli-based obser-
vation

We work in a typed, call-by-value core calculus with finite products, finite
coproducts, and an explicit sequencing construct. Types are generated from
a terminal type 1, binary products A x B, binary coproducts A + B, and a
distinguished boolean type

bool = 141,

together with a type constant vertex. We use standard derived notations:
A™ for the n-fold product, and we write (¢, u) for pairing, m; for projections,
inl and inr for injections, and case for coproduct elimination. Contexts I'
are finite lists of typed variables and are interpreted as products of types;
a judgment I' - ¢t : A is read as a program which, given an input tuple of
values in T', produces an output of type A.

The probabilistic structure is expressed by the let-construct. Formally,
if’'Ft: Aand I'yz:AF w: B, then ' - let z =t in u : B. Operationally
(in call-by-value style), we evaluate ¢ to a random value a and then continue
as u with z bound to a. This construct is the only source of sequencing; in
particular, we do not assume a primitive monadic syntax, but we treat let as
the syntactic reflection of Kleisli composition in a probabilistic semantics.

The hypergraph interface consists of two term constants:

new : 1 — vertex, hyperedge,, : (vertex)® — bool,

where k£ > 2 is fixed once and for all. We emphasize that vertex is abstract:
programs cannot inspect vertices except by feeding them into hyperedge,,
(and by duplicating or discarding them using product structure). The inten-
tion is that new allocates a fresh vertex and hyperedge; queries the presence
of a k-uniform hyperedge among its arguments.

We reason about programs up to an equational theory = extending the
usual §/n-equalities for products and coproducts with a collection of proba-
bilistic let-laws. We shall only use the following schemes, each understood as
an equation in any context where the terms are well-typed, with the usual
side conditions to avoid variable capture. First, associativity of sequencing:

letz=tin(lety=uinv) = lety= (letz=1¢inu)inwv.
Second, commutativity of independent lets: if x ¢ FV(u) and y ¢ FV(t) then
letx=tin(lety=uinv) = lety=win (letx=1inv).

Third, pairing/strength for products, expressing that sequencing distributes
over forming tuples:

let z =t in (u,v) = <Iet:c:tinu7 Ietm:tinv>.

6



Fourth, weakening (discard): if z ¢ FV(u) then
etz =tinu = wu.

Finally, we require a substitution principle for deterministic terms. Con-
cretely, we distinguish a syntactic class of deterministic terms (those built
without let and without probabilistic primitives, hence interpreting as deter-
ministic maps in the semantics below). For deterministic d we impose that
sequencing into d is ordinary substitution:

letz=tind = d[t/x].

In particular, deterministic coproduct elimination and deterministic product
operations commute with probabilistic binding in the expected way. These
laws are the sole source of probabilistic reasoning we assume at the syntactic
level; all subsequent invariance and independence properties are extracted
from repeated use of these equalities.

The interface is constrained by equations enforcing that hyperedge;, be-
haves as the adjacency predicate of a simple undirected k-uniform hyper-
graph. First, irreflexivity on repeated vertices: in any context I' and for
any k-tuple of variables or terms (x1,...,x)) in which some z; and x; are
definitionally equal (or, more generally, provably equal in =), we impose

I' - hyperedgey (z1,...,z) = false: bool.

Second, symmetry: for each permutation © € S and any I' - (x1,..., ) :
(vertex)® we impose

[' - hyperedge, (71,...,7) = hyperedge,(z(1),- -, Tx(x)) : bool.

These equations ensure that hyperedges are sets rather than ordered tuples
and that loops are forbidden. Third, and crucially for dissociation, we require
determinism of hyperedge,.: it is treated as a deterministic constant, so that
the deterministic substitution law above applies when d contains occurrences
of hyperedge,.. Intuitively, the only randomness in the interface comes from
allocating vertices; relational queries are measurements of the underlying
(possibly random) structure but are not themselves randomized.

The intended semantics is given in a distributive Markov category C.
We assume the reader is familiar with the basic structure: morphisms are
Markov kernels; deterministic morphisms form a wide subcategory closed
under products; every object carries copy and discard maps, and C has finite
coproducts distributing over products. An interpretation assigns to each type
A an object [A] of C, with [A x B] = [A] ® [B] and [A + B] a coproduct,
and to each term I' - ¢ : A a morphism

[] - [TT — [A]-



The defining clause is for let: if ' ¢t : A and T',xz:A + u : B, then
[let x = tin u] is the Kleisli composite obtained by first applying [¢] and then
[u], using the monoidal structure to thread the ambient context through.
The stated let-laws are precisely the equalities valid in any such semantics;
conversely, we may view them as axiomatizing the fragment of Markov cat-
egorical reasoning we will need.

The interface constants are interpreted by chosen morphisms

new| : 1 — [vertex|, hyperedge, || : [vertex ®F _ Thool],
k

with [hyperedge,] required to lie in the deterministic subcategory. The ir-
reflexivity and symmetry axioms are imposed as equalities between the cor-
responding morphisms, using the symmetry isomorphisms of the monoidal
product to interpret permutations of arguments.

To connect denotations with ordinary finite probability distributions, we
assume a Bernoulli base ¥ : Cy — FinStoch on the numeral fragment. Here
Cn denotes the full subcategory of C generated by finite coproducts of 1
(equivalently, by the usual finite objects n := 14 --- + 1), and FinStoch is
the category of finite sets of cardinality n and stochastic matrices between
them. The functor ¥ is assumed faithful and distributive Markov, so it
preserves the probabilistic and distributive structure and reflects equality
of morphisms on finite objects. In particular, if ¢ : 1 — bool™ is closed,
then U([t]) is an honest probability distribution on {0,1}", and two such
programs have the same observed distribution if and only if their denotations
are equal in C.

We will apply this observation principle to the canonical closed programs
producing incidence tensors. Fix n > 1 and choose once and for all an
enumeration of ([Z}); this identifies bool(+) with a finite product bool™ where

m = (Z) We define ¢, : 1 — bool (+) by sampling x1,...,x, using new

and returning the tuple of booleans (hyperedgey (i, . . - ’xik)){z‘1<-~<z‘k}e([z])'

Applying ¥ to [t,, ] yields a distribution p, on {0, 1}([2]), which we identify
with a distribution on labeled k-uniform hypergraphs on vertex set [n] via
the usual incidence-function encoding.

The remainder of the development uses only the equational principles
listed above, together with the interface axioms, to establish structural prop-
erties of the family (p,)n>1 and to connect those properties to the standard
representation theory of exchangeable k-uniform hypergraphs.

3 Background on k-uniform hypergraphs and hy-
pergraphons

We briefly recall the combinatorial and probabilistic objects that will mediate
between programs and limit representations. Throughout, & > 2 is fixed. For



n € N we write [n] = {1,...,n} and ([Z]) for the set of k-element subsets of

[].

Finite k-uniform hypergraphs and incidence tensors. A (simple,
undirected) k-uniform hypergraph on vertex set [n] is a pair H = ([n], E)
with £ C ([Z}). Equivalently, it is an incidence function

A (W) = 001 Au0) = 1yeer.

~Y

We will freely identify H with Ag. Fixing an enumeration ([Z}) & [m] with
m = (Z) identifies the space of incidence functions with {0, 1}". This is the
finite space on which our observed distributions p,, will live.

It is often convenient to pass between the set-indexed representation
Ap(e), e € ([Z]), and an ordered k-array representation. Given an incidence

function A : ([Z]) — {0, 1}, define a k-array (Xi,,. i) (,,...ip)em)F PY

A({d1,...,ix}) ifd1,..., 4 are pairwise distinct,
Xilv R .
0 otherwise.

Then (Xj, . 4. ) is symmetric under permutations of coordinates and van-
ishes on the diagonal (repeated indices), and conversely any such symmetric,
diagonal-free {0, 1}-valued k-array corresponds to a unique incidence func-
tion on ([Z}). We will use whichever presentation is more convenient, but our
primary viewpoint is the incidence function on k-subsets.

Random k-uniform hypergraph models; exchangeability and pro-
jectivity. A random k-uniform hypergraph on [n] is a random variable

taking values in {0, 1}([21), i.e. a probability measure p, on that finite space.
A random k-uniform hypergraph model is a family (pp)n>1 of such mea-
sures, one for each n. In later sections p, will arise as the observed output
distribution of a closed term producing the incidence tensor on n sampled
vertices.

Two structural properties will be central.

First, exchangeability expresses invariance under relabeling of the sam-
pled vertices. If o : [n] — [n] is a bijection, it induces a bijection ([Z]) —
([Z]) by e + o(e) := {o(i) | i € e}. For an incidence function A define
(0 - A)(e) := A(c71(e)), and for a measure p,, define its pushforward o.p,
along A — o - A. We say that (p,) is exchangeable if o.p, = p, for all n
and all bijections o.

Second, projectivity (or consistency) expresses compatibility under re-
striction to fewer vertices. Let ¢ : [n] < [n + 1] be the standard inclusion.



Restriction of incidence functions along ([Z]) C ([n-}:l]) gives a marginal map

T€Sn+1—n ° {0’ 1}([n2—1]) — {O’ ]_}([Z]), Ar—s A’([n])
k

We say that (py,) is projective if (resp4+1-n)«Pnt+1 = pn for all n.
Exchangeability and projectivity together say that the family (p,) be-
haves like the finite-dimensional marginals of an infinite exchangeable ran-
dom hypergraph on vertex set N. Indeed, by Kolmogorov extension one
can often package such a family into a probability measure on {0, 1}(E); we
will not rely on that construction explicitly, but it provides intuition for the

representation theorem stated below.

Dissociation and k-locality. Beyond exchangeability and projectivity,
we require an independence property. Let A C [n] and write (ﬁ) for the k-
subsets of A. Restricting incidence functions defines a random induced sub-
hypergraph on A (as a random variable valued in {0, 1}(2)) If A,B C [n]
are disjoint, we can consider the pair of induced sub-hypergraphs
(AH| Ay, Ag|s ) € {0,1}(2) X {0,1}(5).
(%) ()

We say that a model (py,) is dissociated (or k-local in the terminology we
will use for program reasoning) if for every n and all disjoint A, B C [n] the
induced sub-hypergraphs on A and on B are independent under p,. This
is strictly stronger than mere conditional independence given latent vertex
labels; it asserts unconditional independence between disjoint induced sub-
structures. In exchangeability theory this property is called dissociation and
is precisely the hypothesis under which the Aldous—Hoover representation
simplifies to a single “hypergraphon” function without an additional global
random parameter.

Hypergraphons in dissociated array form. For k = 2, a graphon is a
measurable symmetric function W : [0, 1]2 — [0, 1] generating exchangeable
random graphs by sampling i.i.d. latent labels U; ~ Unif[0, 1] and then in-
cluding each edge {1, j} with probability W (U;, U;) independently over pairs
conditional on the labels. For k > 3, this naive vertex-only parameterization
is insufficient: the most general dissociated exchangeable k-uniform hyper-
graph requires auxiliary randomness attached to lower-dimensional faces.

A k-uniform hypergraphon (in dissociated Aldous—Hoover form) is a mea-
surable function

W0,12°2 — [0, 1]

whose coordinates are indexed by the nonempty proper subsets S C [k], and
which is invariant under the natural action of .S, permuting indices: for each
permutation m € Sy we require

W ((us)ozsciu) = W((un(s))ogscp) for ae. (us).
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Given such a W, we define for each n a probability distribution py,, on

{0, 1}([21) by the following sampling scheme.

1. For every nonempty J C [n| with |J| < k, sample an independent
uniform random variable U; ~ Unif][0, 1].

2. For each hyperedge e € ([Z}), form the tuple of lower-face labels

(UJ)@;éJge S [07 1]2k_27

~

using the identification e 2 [k] up to permutation; the Sk-invariance
of W ensures the resulting quantity is well-defined almost surely (i.e.
does not depend on how we order the elements of e).

3. Conditional on the entire family (Uj)|j<, include e as a hyperedge
with probability W ((U)g.jc.), independently across distinct e € ([Z}).

The resulting random incidence function has distribution py,,. By construc-
tion, (pw,n)n>1 is exchangeable and projective, and it is dissociated because
disjoint vertex sets depend on disjoint families of latent variables (Uy).

Two hypergraphons can induce the same model. The appropriate notion
of equivalence is the usual measure-preserving one: if one applies measure-
preserving transformations to the underlying probability space [0, 1] in a way
compatible with the face-indexing (equivalently, replaces the i.i.d. family
(Uy) by another i.i.d. family with the same law), the induced distributions
pw,n do not change. We will therefore treat W as determined only up to this
standard a.e. equivalence.

Representation theorem (dissociated Aldous—Hoover/Kallenberg).
We now record the form of the representation theorem that we will use. There
are several equivalent formulations in the literature (infinite arrays indexed
by N, projective families of finite marginals, or random measures); we state
it directly at the level of the family (py,).

Theorem 3.1 (Dissociated exchangeable representation for k-uniform hy-
pergraphs). Let (pn)n>1 be a family of probability measures on {0, 1}([21) that
is exchangeable and projective. Assume moreover that the family is dissoci-
ated: induced sub-hypergraphs on disjoint vertex sets are independent. Then
there exists a k-uniform hypergraphon W : [0, 1]2k*2 — [0, 1], invariant un-
der the Sy-action, such that

Pn = PWn for allm > 1.

The representing hypergraphon is unique up to the standard measure-preserving
equivalence (i.e. equality a.e. after a suitable measure-preserving reparame-
terization of the underlying i.i.d. family (Uy)).

11



For our purposes, the content of Theorem is twofold. First, it identi-
fies dissociated exchangeable random k-uniform hypergraphs with the hyper-
graphon sampling scheme above; this will justify viewing a program-induced
family (p,) as determined by an abstract measurable object W. Second,
it provides the correct ambient notion of “limit object” for k-ary relation
models: for k& > 3 the domain dimension 2¥ — 2 is forced by general ex-
changeability considerations, and restricting to a naive [0, 1]* kernel would
exclude valid dissociated models. In the next section we will show that the
program equations enforce exactly the hypotheses of Theorem for the
family induced by the canonical incidence-tensor program.

4 From program equations to random hypergraphs

Fix n > 1. Our first task is to define, purely syntactically in Lang;, the
closed incidence-tensor term

tng:1— booI(Z)

which samples n fresh vertices and then queries the deterministic predicate
hyperedge;, on every k-subset of the sampled vertices. The precise arrange-
ment of products needed to realize the exponent booI(Z) is immaterial, since
we work in a cartesian fragment and hence may choose any fixed enumer-
ation ([Z]) >~ [m] with m = (}); different enumerations yield canonically
isomorphic types and, under ¥, canonically isomorphic finite sample spaces.
We therefore tacitly fix such enumerations once and for all.

The incidence-tensor program. Let & = (x1,...,2,) be n variables of
type vertex. For each e = {i; < --- < i} € ([Z]) write

he(Z) := hyperedge(z;,,...,x;,) : bool.

Using pairing and the chosen enumeration ([Z]) = |m|, we may form the
bool™-valued term

i1 (@) = (he(®)) ot bool (i),

The closed term ¢, is then defined by sampling vertices sequentially and
returning inc, j:

tnk = letxy = new(x)inletzo = new(x)in --- let z, = new(x) ininc, x(x1,...

where x : 1 denotes the unique term of unit type. This term is well-typed by
construction and uses only the core fragment together with the two interface
constants.
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Observed distributions. Interpreting Lang, in a distributive Markov cat-
egory C, we obtain a morphism

[tnsle : 1 —> [bool ().

By the Bernoulli base, the object [[booI(Z)]]c lies in the numeral fragment and
hence is observed as a finite set of cardinality 2 with m = (Z) Concretely,
writing W([t, x]c) for the induced stochastic map in FinStoch, we obtain a
probability distribution

pa € A({0,13(1))

by identifying bool (%) with {0, 1}([2]) via the chosen enumeration. All struc-
tural properties we prove below are equalities in FinStoch transported back
through W; faithfulness of ¥ on numerals ensures that program equations
suffice to establish the corresponding probabilistic equalities.

Well-formedness: support on simple k-uniform hypergraphs. The
first point is that, although ¢, ; returns an m-tuple of booleans, it is forced
by the interface axioms to behave as the incidence function of a simple,
undirected k-uniform hypergraph.

Indeed, consider the k-array presentation induced from the tuple by set-
ting

Xiy,...ip, = hyperedge,(z;,,...,2;,) ((i1,...,0k) € [n]k)

If (i1,...,4x) has a repeated index, then by irreflexivity we have the program
equation
hyperedge,,(zi,,...,x;,) = false.

If m € Sy is a permutation, then by symmetry we have

hyperedge (zi,, ...,z ) = hyperedgek(xim), . ,a:iﬁ(k)).

Since these are equations in the program theory, they hold under interpre-
tation in C, and hence under ¥ they hold almost surely with respect to p,.
It follows that p,, is supported on those boolean tensors which are diagonal-
free and symmetric, equivalently on incidence functions A : ([Z]) — {0,1} of
simple k-uniform hypergraphs.

Exchangeability from commutative let. Let o € S,, be a permutation

of [n]. Consider the term obtained by sampling vertices in the permuted
order:

mk = let y1 =new(x) in - let y, = new(x) in incmk(ya(l), - ,ya(n)).

13



By repeated use of the commutativity-of-independent-let axiom (together
with associativity/pairing laws to justify regrouping), we may reorder the
bindings of independent samples without changing denotation. In particular,
the term that binds the variables in the order ¥, ..., ¥y, is equivalent to the
term that binds them in the order y,-1(1),...,Ys-1(n). Renaming bound
variables, we obtain a program equation identifying ¢, ; with tJ . up to the
evident reindexing of outputs. ’

To read this statement on the observed distributions, note that ¢ acts
on ([Z]) by e — o(e), and hence acts on incidence functions by (o - A)(e) =
A(o~Y(e)). The preceding program equality implies that W([t,x]c) is invari-
ant under this output relabeling, i.e.

OxPn = Dn-

Thus (p,) is exchangeable, and the only nontrivial content is precisely that
commutativity of let provides the syntactic witness to invariance under vertex
renaming.

Projectivity from weakening (discard). Write m,, = (Z) The term

tn+1,k returns a boolean tuple indexed by ([”ZI]), hence in particular contains

the coordinates indexed by ([Z]) C ([nzl]). Let
Tntlon : bool™ 1 — bool™n

be the (deterministic) projection term dropping all coordinates correspond-
ing to k-subsets containing n+1. We claim that the composite m;, 15,0t 41k
is equal, in the program theory, to ¢, .

To see this, expand 2,41 as

let 21 = new(%) in --- let z, = new(x) inlet z,41 = new(x) ininc, 41 k(z1,...,Tnt1).

After applying 7,41y, €very remaining output coordinate mentions only
Z1,...,Tn; the bound variable x,4+; becomes unused. By the weakening
(discard) let-law, we may remove an unused probabilistic binding, obtaining
precisely the n-vertex program t,, ;. Interpreting this equality in C and ob-
serving with W, we conclude that the distribution p,4; marginalizes along
restriction ([Z]) - ([";gl}) to pn, i.e. (py) is projective.

k-locality (dissociation) from deterministic substitution. Let A, B C
[n] be disjoint. Consider the deterministic restriction maps
n |A n B
PA : bool(t) — bool( k‘), PB - bool (i) — bool(‘k‘),
defined by projecting to those coordinates indexed by k-subsets entirely con-
tained in A or in B (using fixed enumerations of (?) and (f )) The induced
pair
[A]
k

(pa,pB) : bool(*) — bool() x bool(uzfl)
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is again deterministic. We must show that, under p,,, the random variables
pa and pp are independent.

At the level of programs, the key observation is that the coordinates in
pa(inc, (Z)) depend only on the subtuple (x;)ica, and similarly the coordi-
nates in ppg(inc, (%)) depend only on (z;);ep. This dependence claim uses
determinism of hyperedge; in an essential way: since hyperedge;, is deter-
ministic, substitution behaves as in the ordinary (non-probabilistic) g-law,
and we can treat each query hyperedge,(x;,,...,z;, ) as a pure function of
its inputs when rearranging let-bindings.

Formally, we rewrite t,, 5, (up to permutation of independent let-bindings)
into a form where the vertices indexed by A are sampled first, those indexed
by B are sampled second, and all remaining vertices are sampled last:

tog = letZy = new‘A|(*) inletZg = new|B|(*) inlet Zo = new‘C|(*) ininc, x(Za, Zp, Zc),

where C' = [n] \ (AU B) and new” abbreviates an r-fold product of indepen-
dent calls to new. Applying (p4, pp) to the output and using the fact that
pa and pp ignore every coordinate involving a vertex from C' (and moreover,
by disjointness, ignore every coordinate involving both an A-vertex and a
B-vertex), we obtain a program equivalent to

let Z4 = new!!(x) in let Zp = new!P!(x) in (incAvk(fA), incB7k(fB)>,

where inc4 ; and incpj denote the incidence constructions on the smaller
vertex sets (transported along fixed bijections A 2 [|A|] and B = [|B|]). The
remaining sampling of Zc has disappeared by weakening, since it is unused
after restriction.

Now the displayed term is manifestly a sequential composition of two
independent samplers followed by pairing of deterministic outputs. By the
pairing and associativity let-laws, its denotation in C is the tensor/product
of the two marginal denotations; observing under ¥ yields

(pAapB)*pn = (pA)*pn ® (pB)*pn-

This is precisely dissociation (unconditional independence) for the induced
sub-hypergraphs on A and B.

Summary and transition. We have thus extracted, from the core let-
equations together with the k-uniformity and determinism axioms for hyperedge,,,
the three structural properties required for the dissociated exchangeable rep-
resentation theorem: exchangeability (by commutative-let), projectivity (by
weakening), and dissociation/k-locality (by deterministic substitution to-
gether with the product structure implicit in pairing). In the next section we
apply Theorem |3.1|to identify the resulting family (p,,) with a hypergraphon-
generated model, and we explain precisely what is and is not identifiable from

the induced equational theory.
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5 From random hypergraphs to hypergraphons

From Section 4] we have, for each Bernoulli-based interpretation of Lang,,, an
induced family of distributions

pe € AQ0, 1)) (=),

and we have verified that this family is exchangeable, projective, and k-local
(dissociated) in the sense of the preceding definitions. These three properties
are exactly the hypotheses under which the dissociated exchangeable-array
representation theorem applies in the k-uniform, {0, 1}-valued, symmetric
setting.

Hypergraphon-generated models. Recall that a k-uniform hypergraphon
(in dissociated array form) is a measurable map

W :0,122 — [0, 1]

invariant under the natural Si-action on coordinates indexed by the nonempty
proper subsets of [k]. Given such a W, one defines for each n a random in-

cidence function on ([Z]) by the standard sampling scheme: sample i.i.d.

uniforms

Ur ~Unif[0,1] (0 #1C [n)], |I| <k),

and then, for each e € ([Z]), include the hyperedge e with conditional prob-
ability
W((UJ)@#JQG) )

independently over distinct e conditional on the entire family (Ur). We write
pw,n for the resulting distribution on {0, 1}([2]). The conditional indepen-
dence built into this construction is precisely the probabilistic shadow of
dissociation, and the Si-invariance is what ensures that the resulting model
is symmetric as a k-uniform hypergraph model rather than a model of or-
dered k-tuples.

Application of the representation theorem. Let us write Theorem [3.]]
for a fixed choice of dissociated Aldous—Hoover/Kallenberg theorem special-
ized to {0, 1}-valued, symmetric k—arraysH Applying it to the family (pn)n>1
produced by ¢, ;. yields the promised hypergraphon semantics.

Corollary 5.1 (Hypergraphon representation). Let C be a Bernoulli-based
distributive Markov category interpreting Lang,, with deterministic hyperedge,,

! Any of the standard formulations suffices for our purposes; we only use existence and
the usual uniqueness notion up to measure-preserving change of variables.
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satisfying irreflexivity and symmetry. Let (p,) be the induced random k-
uniform hypergraph model. Then there exists a k-uniform hypergraphon W
such that

Dn = DWpn for alln > 1.

Moreover, W is unique up to the standard measure-preserving equivalence.

In this corollary, the content is not that W exists as a function on a particular
parameter space, but that the entire projective system of finite distributions
is representable by a single measurable kernel with the Aldous—Hoover co-
ordinate structure. The role of dissociation is to eliminate any additional
“global” latent random variable beyond those attached to nonempty proper
subsets: intuitively, there is no extra randomness coupling disjoint vertex
blocks, so the representation may be taken in the “ergodic” (dissociated)
form.

Measure-preserving equivalence and what “uniqueness” means. As
in the graphon case (k = 2), the representing hypergraphon is not unique
as a pointwise function. There are at least two inevitable sources of non-
identifiability.

First, W is only defined up to modification on a null set, since pw,,
depends on W only through integrals against product Lebesgue measure.
Thus we freely identify kernels that agree almost everywhere.

Second, the latent coordinate system admits measure-preserving reparametriza-
tions. A basic family of symmetries is obtained as follows: if ¢ : [0,1] — [0, 1]
is measure-preserving, then by applying ¢ to each coordinate we obtain a
transformed kernel

Wo = Wogx@~2)

Because (Uy) is an i.i.d. family of uniforms, the transformed family (¢(Ur))
has the same joint law, and therefore

Pwén = PWn for all n.

In the hypergraphon setting there are, in general, more elaborate “structure-
preserving” transformations of the product space [0, 1]216*2 compatible with
the subset-indexing and the Si-action; these are discussed in the exchange-
ability literature. For our purposes, it is technically cleanest to take the
induced model itself as the invariant:

Definition 5.2 (Weak equivalence). Two k-uniform hypergraphons W, W’
are weakly equivalent if

PW;n = PW'mn for all n > 1.
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The uniqueness clause in Corollary is then read as: the program-induced
model determines a unique weak equivalence class of hypergraphons, and any
two hypergraphons producing the same projective family of finite-dimensional
distributions are related by a measure-theoretic isomorphism of the under-
lying parameter spaces (in the standard sense for dissociated exchangeable
arrays). We will therefore speak of the hypergraphon semantics of an equa-
tional theory, meaning this weak equivalence class.

Explicit finite-dimensional formulas. Although we do not need an ex-
plicit integration formula to invoke the representation theorem, it is useful
to record what information about W is visible at finite n. Fix n, and write
A for Lebesgue measure. For each e € ([Z]) let

We((ur)pzrcp, j11<k) = W ((wr)prsce),

viewing W, as the pullback of W along the coordinate projection select-
ing precisely those subset-variables that lie inside e. Then for any labeled
hypergraph H = ([n], E') the probability of sampling exactly H under W is

P (H) = / (ku)) [T 0-Wew) | dxw, (1)

eceE ([Z])\E

where u ranges over [0, 1]21;;11 (") indexed by the nonempty subsets of [n] of
size < k. In particular, every pw,,(H) is a polynomial expression in W and
1 — W integrated against product measure, and hence depends only on the
weak equivalence class of W.

Identifiability from the program theory. The program theory—more
precisely, the observed denotations under ¥ of closed numeral terms—determines
exactly the family (p,)n>1. Consequently, it determines precisely those in-
variants of W that can be expressed in terms of the finite laws . Con-
cretely:

e For each n and each labeled k-uniform hypergraph H on [n], the real
number p,(H) is determined. Equivalently, the theory determines all
joint moments of the incidence indicators (A(e)), e():

k

e For each fixed finite k-uniform hypergraph F' (say with vertex set [m)),
the probability that the induced random hypergraph on m sampled
vertices equals F' is determined; by exchangeability this is independent
of which m vertices we choose, and by projectivity it is consistent across
n>m.
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e Any two hypergraphons W, W’ that differ only by a measure-preserving
change of variables (in particular, any pullback W as above) are in-
distinguishable by the program theory, since they give identical (pw,p).

Conversely, nothing in the program theory can select a canonical representa-
tive of the weak equivalence class: pointwise features of W (values on a set
of positive measure, continuity, etc.) are not invariants of the induced model
unless they can be reconstructed from the collection of all finite distributions.
This is the same phenomenon familiar from graphons: the observable content
is the distribution on finite graphs (or equivalently the family of substructure
densities), not a particular coordinatization of the latent [0, 1]-space.

What the dissociated form buys us. It is worth isolating the concep-
tual consequence of k-locality. Without dissociation, the general Aldous—
Hoover representation introduces an additional global random variable (of-
ten denoted Up) mediating correlations between disjoint vertex blocks. Our
locality lemma rules out precisely such long-range coupling, and therefore
forces the representing object to be a single hypergraphon W with only the
subset-indexed coordinates. In this sense, the let-equations do not merely en-
sure symmetry and consistency; they also enforce an “ergodic” exchangeable
structure compatible with independent generation on disjoint vertex sets.

Transition to universal semantics. We have now moved from a Bernoulli-
based equational theory to a canonical probabilistic invariant: a projective,
exchangeable, dissociated model (p,), equivalently a weak equivalence class
of k-uniform hypergraphons. To complete the correspondence in the oppo-
site direction, and to obtain a syntax-free description of all such models at
once, we next construct a universal distributive Markov category Uy, for the
interface and identify its numeral-fragment Markov functors into FinStoch
with precisely these random hypergraph models.

5.1 A universal semantics for the hypergraph interface

We now give a syntax-free construction which plays, for the interface (vertex, new, hyperedge,),
the same role that the usual “classifying category” plays for ordinary alge-

braic theories. The point is to isolate a single distributive Markov category

Uy, in which the interface is interpreted universally, so that every concrete
Bernoulli-based interpretation factors through U by a unique distributive

Markov functor. In the next section we will restrict attention to the nu-

meral fragment (Uy)n and characterize its FinStoch-models as precisely the

exchangeable /projective/k-local random hypergraph models.

The category of finite k-uniform hypergraphs. We write Hyp,, for the
category whose objects are finite k-uniform hypergraphs H = (V(H), E(H))
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and whose morphisms are structure-preserving and structure-reflecting maps.

Definition 5.3 (Hyp;). A morphism f : H — H' in Hyp, is a function
f:V(H)— V(H') such that for every k-element subset e C V(H) one has

ec€c E(H) <= f(e)e E(H"),

where f(e) ;= {f(v) | v € e} (so the right-hand side is understood only when
[f(e)] = k).

The preservation direction ensures that hyperedges are sent to hyper-
edges, while reflection ensures that no new hyperedge is created by post-
composition. In particular, for labeled hypergraphs on vertex sets [n] this
implies that relabelings are exactly the isomorphisms in Hyp,; injections
[m] < [n] which identify [m] with a subset of [n] correspond precisely to
induced-subhypergraph embeddings; and more generally, Hyp, is a conve-
nient deterministic skeleton in which “remembering the incidence tensor” is
functorial.

We will systematically use the opposite category Hypzp, since in semantics
we want maps out of a larger vertex context to represent restriction along
an inclusion. Concretely, an inclusion of vertex sets ¢ : [m] < [n] induces,
for each hypergraph H on [n], a restriction hypergraph H [, on [m]; this
operation is contravariant and therefore naturally lives in Hyp;".

Finite-coproduct completion. The deterministic core of our universal
semantics must interpret sum types (in particular bool = 1 + 1) and must
be distributive. We therefore pass from Hyp;" to its finite-coproduct com-
pletion.

Definition 5.4 (Fam(—)). For a category D, let Fam(D) denote the category
of finite families in D. An object is a finite indexed family (D;);e; with I
finite. A morphism

(Di)ier — (Ej)jes

is given by a function ¢ : I — J together with morphisms D; — E_;) in D,
one for each ¢ € I. Coproducts are given by concatenation of families, with
injections induced by inclusions of index sets.

The category Fam(D) is extensive, hence distributive, and it contains
D as the full subcategory of singleton families. In particular, Fam(Hyp;")
provides a deterministic setting in which we can form finite case distinctions
over finitely many hypergraph-shaped summands. We regard this as the
deterministic “world of finite hypergraphs” in which the interface predicate
hyperedge; will be interpreted.
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A canonical family of n-vertex contexts. For each n > 0 we write
Hyp,([n]) for the (finite) set of all k-uniform hypergraphs with vertex set
[n]. We introduce in Fam(Hyp,”) the object

Vo = (H)getyp, ()

the family consisting of one summand for each labeled k-uniform hypergraph
on [n]. The intended reading is that V, is the “universal n-vertex context”:
a point of V,, chooses a concrete hypergraph structure on n labeled vertices.
Because Hypy,([n]) is finite, V,, is a well-formed object of the finite-coproduct
completion.

Given an injection ¢ : [m] < [n], restriction of hypergraphs along ¢ defines
a function

v" : Hyp([n]) — Hypy(Im]),  H+— H],,

and for each H € Hypy,([n]) the inclusion map ¢ : [m] — [n] itself determines
a morphism in Hyp, from H |, to H (as an induced-subhypergraph embed-
ding), hence a morphism H — H [, in Hyp,”. Assembling these data yields
a canonical morphism

vV, — V,

in Fam(Hypr) which implements restriction of an n-vertex hypergraph to
the t-selected m-vertex subhypergraph. Similarly, bijections o : [n] — [n]
act by relabeling and yield endomorphisms of V,, encoding exchangeability
at the deterministic level.

Adjoining new by a monoidal indeterminate. The preceding category
is deterministic; it contains no morphism that behaves like a probabilistic
sampler. We now freely adjoin such a sampler as a generator. Concretely,
we use the monoidal-indeterminate construction from the general theory of
distributive Markov categories: given a distributive category D and an ob-
ject X € D, there is a distributive Markov category D|[v] equipped with a
morphism v : 1 — X which is universal among such choices. We apply this
with D := Fam(Hyp,”) and with the distinguished object

vertex := V7.

We write
U, = Fam(Hypr)[z/], with v : 1 — vertex,

and we interpret the interface constant new : 1 — vertex as this indetermi-
nate v.

The universal property we use is the following: for every distributive
Markov category C, to give a distributive Markov functor F' : U, — C is
equivalently to give (i) a distributive functor Fp : Fam(Hyp.”) — C interpret-
ing the deterministic hypergraph structure, together with (ii) a morphism
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1 — Fp(vertex) in C interpreting new. In particular, U is initial among
distributive Markov categories equipped with an interpretation of the deter-
ministic hypergraph fragment and a chosen sampler for vertices.

The universal deterministic predicate hyperedge,. It remains to de-
fine, inside Fam(Hyp;") (hence also inside Uj), a deterministic morphism
interpreting

hyperedge,, : (vertex)* — bool.

We take bool := 1+ 1 in Uy, with coproduct injections denoted true : 1 —
bool and false : 1 — bool.

The key observation is that on a fixed set of k£ labeled vertices there
is exactly one potential k-hyperedge, namely [k] itself. Hence Hyp([k])
has precisely two elements: the empty k-vertex hypergraph H kL with F =
(), and the full k-vertex hypergraph H ];F with £ = {[k]}. Therefore the
corresponding family object

is canonically a binary coproduct in Fam(Hypzp). We define hyperedge;, to
be the evident “tag” map which distinguishes these two summands:

hyperedge,, : Vi — bool, hyperedge, ot = false, hyperedge,otT = true,

where ¢ : HkL — Vi and o7 : H,;r — V. are the coproduct injections.
By construction this morphism is deterministic (it lies in the base category
before adjoining v).

To evaluate the edge predicate on an arbitrary n-vertex context and a
chosen k-subset e € ([Z]), we use the restriction morphism induced by the
inclusion ¢¢ : [k] < [n] whose image is e (in increasing order). The composite

*

b hyperedge
Vn Vk g

bool

is then the deterministic query returning the incidence value of e in the cho-
sen n-vertex hypergraph. Symmetry under permutations of the k arguments
is immediate from the fact that Vj carries the evident Si-action by rela-
beling, and hyperedge;, is invariant under this action since it depends only
on whether the unique k-set is present. Irreflexivity is enforced by stipulat-
ing that any attempt to test a k-tuple with repeated vertices factors through
the k-vertex discrete context in which no k-edge can be present; equivalently,
such a test is identified with the constant map false in Uj.

Summary. The category U, = Fam(Hyp.”)[] is thus equipped with dis-

tinguished interpretations of vertex, new, and hyperedge; satisfying the k-
uniformity axioms by construction, and it is universal with this property. In
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particular, any concrete Bernoulli-based equational theory interpreting the
interface determines (and is determined on the deterministic fragment by) a
distributive Markov functor out of U. In the next section we use this uni-
versality to classify the distributive Markov functors (Uy)n — FinStoch and
hence to reconstruct, via a Bernoulli-based quotient, an equational theory
realizing any prescribed k-uniform hypergraphon model.

5.2 Hypergraphons as Bernoulli-based quotients

We now restrict the universal category Uy, to its numeral (finite) part and ex-
plain how stochastic semantics on this fragment are exactly the same data as
exchangeable, projective, and k-local random k-uniform hypergraph models.
We then use the resulting functorial presentation to build, for an arbitrary
hypergraphon W, a Bernoulli-based equational theory whose induced distri-
butions coincide with (pw,n)n>1.

The numeral fragment and the induced distributions. Write (Uy)n
for the full subcategory of Uy on the objects vertex™ (n € N), regarded as the
canonical n-vertex contextsE] By Lemma L5 we have a natural identification

(Ui ) (1, vertex™) = Hypy([n]),

so that a global element of vertex" is precisely a labeled k-uniform hypergraph
on vertex set [n].
Let F': (Uy)ny — FinStoch be a distributive Markov functor. We define

pn = F(®") € FinStoch(1, F(vertex")),

and we view p, as a probability distribution on Hyp([n]) by transporting
along the canonical bijection between the underlying finite set of F'(vertex™)
and Hyp([n]) induced by the above hom-set identification. Intuitively, z®"
is the universal program fragment which samples n fresh vertices; applying
F produces a distribution on the space of n-vertex hypergraph structures.

Deterministic structure: permutations and restrictions. Two classes
of deterministic morphisms in (Uy)y play a distinguished role.

First, every bijection o : [n] — [n] induces (by relabeling in Hyp, and
contravariance) a morphism

po - vertex — vertex”

encoding relabeling. Second, every injection ¢ : [m] < [n] induces a restric-
tion map
r, : vertex’" — vertex,

2Equivalently, one may use the isomorphic family objects V,, introduced in the deter-
ministic core; the choice is inessential for the present discussion.
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obtained by passing to the induced subhypergraph on the image of . These
maps satisfy the evident functorial identities

Por = Pr © Po, Twor =Tk OTy, T, O pPo = Tg—1¢, 5

and they generate, in a precise sense, the deterministic shape of the n-vertex
contexts.

Stochastic structure: locality via monoidality. The Markov struc-
ture in U supplies tensorial composition of independent samplers. On nu-
meral contexts this is reflected by canonical comparison maps that split an
(m + n)-vertex context into two disjoint blocks (first m vertices and last
n vertices), together with restriction morphisms projecting to each block.
Under a distributive Markov functor F', the monoidality constraints ensure
that sampling on disjoint blocks becomes product (independent) sampling in
FinStoch. This is the categorical origin of dissociation/k-locality: cross-block
dependence is carried precisely by those deterministic maps in Uy which re-
member edges meeting both blocks, and monoidality forces independence
once we forget such cross-terms by restricting to induced subhypergraphs on
each block separately.

Theorem 5.5 (Functor classification on numerals). Distributive Markov
functors
F: (Uy)n — FinStoch

are in bijection with sequences (pn)n>1 of probability distributions on Hypy([n])
that are exchangeable, projective, and k-local.

Proof sketch. Given F, define p, := F(v®") as above. Exchangeability fol-
lows from naturality with respect to p,: since p, is deterministic, we have

F(ps)opn = F(pooy®n) = F(V®n) = Dn,

which says exactly that p, is invariant under relabeling by o.
Projectivity follows similarly from naturality with respect to restriction
maps. If ¢ : [n] < [n + 1] is the standard inclusion, then

F(r)opny1 = F(r,) o F@20 D)) = F(r, 0 p®0H1),

In Uy, the composite r, o v®(+1) agrees with v®" (discard the last sampled
vertex and then restrict), hence F(7,) 0 ppy1 = pp-

For k-locality, let A, B C [n] be disjoint. Consider the deterministic map
vertex” — vertex!4l x vertex!Bl obtained by restricting to A and to B and
pairing the results. Functoriality yields that the pushforward of p, along
this map is the joint law of the induced subhypergraphs on A and B. In U},
this paired restriction factors through a tensor decomposition corresponding
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to the disjointness of A and B, and applying the (strong) monoidality of
F' identifies the resulting joint law with a product measure, establishing
independence.

Conversely, given (py) exchangeable, projective, and k-local, we define
F on objects by F(vertex) := |Hyp;([n])| (as an object of FinStoch) and on
the generating deterministic maps p, and r, by the corresponding relabeling
and restriction functions on hypergraphs, viewed as deterministic stochastic
matrices. On the states v®" : 1 — vertex” we set F(v®") := p,,. Exchange-
ability and projectivity ensure that these assignments respect the relations
among the p, and r,, while k-locality is exactly what is needed to make the
tensorial structure on disjoint blocks compatible with the monoidal struc-
ture in FinStoch. Extending by distributivity and the Markov axioms then
determines F' uniquely. d

From hypergraphons to functors. Fix a k-uniform hypergraphon W
in the dissociated array form. Its sampling scheme produces, for each n, a
distribution py,, on Hypy([n]) which is exchangeable and projective by con-
struction and dissociated (hence k-local) because, conditional on the latent
iid. family (Uj)o<|jj<k, hyperedges are independent and are measurable
in the U supported on the corresponding vertex subsets. Therefore Theo-
rem yields a canonical distributive Markov functor

Fyy - (uk)N — FinStoch with Fw(V®n) = PWn-

Contextual-equivalence quotients and Bernoulli bases. To obtain
a full Bernoulli-based equational theory (not merely a model on numeral
contexts) we quotient Uy, by the observational congruence induced by Fyy.
Concretely, we define an equivalence relation ~y on parallel morphisms of
Uy, by declaring f ~y g whenever, for every numeral context vertex” and
every deterministic “observation” map o out of the codomain into a numeral
object, the induced stochastic maps agree after applying Fy on numerals.
Equivalently, f ~y ¢ holds when f and g are indistinguishable by any closed
numeral experiment in the sense of the Bernoulli base.
The quotient category
Uk / Fw

is defined by keeping the same objects as Uy and quotienting each hom-set
by ~w. By construction, the inclusion of the numeral fragment descends to
a faithful distributive Markov functor

Uy - (uk/Fw)N — FinStoch

which agrees with Fyy on numeral morphisms. The faithfulness of Wy is
the categorical manifestation of the fact that we have quotiented ezactly by
observational equality on numerals and no further.
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Corollary 5.6 (Realizing hypergraphons by Bernoulli-based theories). For
every k-uniform hypergraphon W, there exists a Bernoulli-based distributive
Markov category interpreting Lang;, such that the distributions induced by the
incidence-tensor terms t,,  are exactly (Pwn)n>1-

Proof sketch. Interpret the interface in Uy / Fyy by the images of (vertex, v, hyperedge;.)
under the quotient functor Uy — Uy /Fyy. The axioms for k-uniformity hold
already in U), and are preserved by quotienting. On numerals, the Bernoulli
base WUy yields exactly the stochastic semantics prescribed by Fy, hence
running ¢, 5, and observing via Wy, produces pyy,, by definition. O

Combining Corollary with the representation direction obtained ear-
lier (every Bernoulli-based theory induces an exchangeable, projective, k-
local model and hence a hypergraphon up to equivalence), we obtain the
expected completeness statement: the space of Bernoulli-based equational
theories for the hypergraph interface, when restricted to numeral observa-
tions, is exhausted by dissociated hypergraphon models and nothing else.
In the next section we make this correspondence concrete in examples, be-
ginning with the case ¥ = 2 and then indicating genuinely higher-order
phenomena for k > 3.

6 Examples and variants

We record a number of basic instances and straightforward extensions of the
interface. The purpose is twofold: first, to verify that for kK = 2 we recover
the usual graphon correspondence; second, to indicate which features of the
construction are genuinely k-ary (already for k£ = 3), and which are artifacts
of the particular choice of a boolean, undirected interface.

6.1 k£ =2 and the usual graphon picture

When k = 2 the term constant hyperedge, : vertex x vertex — bool is con-
strained by irreflexivity and symmetry. The incidence tensor output by
tho 1 — bool(g) is equivalently an adjacency matrix with a forced zero
diagonal and symmetric entries. In this case our hypergraphon definition
specializes to a measurable map

W [0,1% 72 =1[0,1]*> — [0, 1],

invariant under the action of Sy swapping the two coordinates; this is pre-
cisely a (symmetric) graphon in the standard sense. The sampling scheme
reads as follows: for each i € [n] sample Uy ~ Unif[0,1] ii.d., and then
for each unordered pair {i,j} € ([TQL]) include the edge with probability
W(U{i}, U{j}), independently over pairs conditional on the vertex latents.
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Under this identification, exchangeability becomes invariance under re-
labeling of vertices, projectivity becomes consistency under restriction to
induced subgraphs, and 2-locality coincides with dissociation of exchange-
able graph models (independence for induced subgraphs on disjoint vertex
sets). Thus the general results above contain the familiar statement that
Bernoulli-based equational theories for the undirected graph interface, when
observed on numeral outputs, are classified (up to measure-preserving equiv-
alence) by graphons.

6.2 k = 3: dependence on lower-dimensional faces

For k = 3 the canonical hypergraphon has domain
[07 1]23_2 = [07 1]67

with coordinates indexed by the nonempty proper subsets of [3], namely
{1},{2},{3},{1,2},{1,3},{2,3}. In the sampling scheme on [n], we there-
fore draw i.i.d. latents Uy for vertices and Uy j; for unordered pairs, and
we include a triple {i, j, ¢} with probability

W (Ugiy, Ugiys Uy, Ugi > Uiy Uge )

independently over triples conditional on all these latents. The Ss-invariance
condition forces W to be symmetric under simultaneous permutation of the
six inputs according to the induced action on the indexing subsets.

This already exhibits a phenomenon absent at k = 2: the probability of
a 3-edge may depend not only on per-vertex parameters but also on per-pair
parameters. Such dependence is not cosmetic; it expresses the fact that, in
general dissociated exchangeable 3-uniform hypergraph models, correlations
between hyperedges sharing two vertices can be mediated by a latent variable

attached to that shared pair. Concretely, consider a symmetric measurable
W of the form

W (u, ug, ug, urz, wig, ugg) = L{urz < 1/2} - 1{uiz < 1/2} - 1{ugg < 1/2},

interpreted as a {0, 1}-valued hypergraphon. Then a triple {i, j, £} is present
if and only if all three pair-latents Uy; jy, Uy, sy, Uyjep fall in [0,1/2]. In par-
ticular, for fixed ¢ # j the random variables hyperedges(i,j,¢) as ¢ varies
share the common factor 1{Uy; ;; < 1/2}, yielding a nontrivial correlation
pattern which cannot be represented by a model depending only on vertex
latents (Uy;y) (equivalently, by a naive kernel [0,1]* — [0,1]). Said differ-
ently, for k& > 3 the correct limit object is not vertex-parametric; it must
allow dependence on all proper faces of a k-simplex, as mandated by the
dissociated Aldous—Hoover/Kallenberg theorem.

From the programming perspective, this distinction corresponds to the
fact that the interface does not constrain how hyperedge; may depend on
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the history of sampling, beyond determinism and symmetry; therefore a
Bernoulli-based interpretation may encode additional shared structure at
the level of pairs, while still satisfying 3-locality in the sense of independence
for disjoint vertex sets.

6.3 Higher uniformities

For general k > 2, the number of latent coordinates per potential hyperedge
is 2 — 2, indexed by the nonempty proper subsets of [k]. The combinatorics
grows quickly, but the conceptual content remains stable: the latent family
contains a variable Uy for each lower-dimensional face J of the k-simplex,
and the hyperedge probability is a symmetric measurable function of these
face variables. The k-locality/dissociation property is exactly what removes
any additional global randomness beyond this face-indexed family (and the
independent coin flips used to realize Bernoulli outcomes), and this is why
the resulting sampling scheme factors over disjoint vertex blocks once we
restrict to induced subhypergraphs.

It is sometimes useful to isolate sub-classes of hypergraphons by imposing
further invariances or factorization properties on W. For instance, restricting
to those W that depend only on singleton coordinates yields the “vertex-
kernel” subclass W : [0,1]¥ — [0,1], which is strictly less expressive for
k > 3 but may serve as a convenient parametric model. Our completeness
statement does not privilege such subclasses: the universal category and
quotient construction realize the full dissociated class.

6.4 Dropping symmetry: directed and ordered interfaces

The symmetry axioms implement undirectedness by forcing hyperedge,, to be
invariant under permutations of its k arguments, and irreflexivity enforces
simplicity. If we remove symmetry, we obtain an interface for ordered (or
directed) k-ary relations:

hyperedge,, : vertex® — bool deterministic, but not assumed symmetric.

The induced distributions are then exchangeable as jointly exchangeable k-
arrays, i.e. invariant under the simultaneous relabeling action of S, on each
coordinate, but not necessarily invariant under permutations of the k slots.
The representation theorem correspondingly yields a measurable

W 0,1272 = [0, 1]

with no Sk-invariance requirement. Thus, at the level of the universal se-
mantics, the same functorial classification applies after replacing Hyp,, by the
appropriate category of finite ordered k-ary relational structures. Irreflexiv-
ity may likewise be weakened or removed, leading to looped structures and
the corresponding modification of the deterministic core.
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6.5 Colored hyperedges and non-boolean relations

The boolean codomain is inessential for the classification method; what mat-
ters is that observations on numerals are finite. Fix a finite set of colors
m = {1,...,m} (as a numeral type) and replace the interface constant by a
deterministic color assignment

hyperedge,(gm) . vertex’ — m,

still subject to symmetry /irreflexivity as desired. A closed term t,, j then

produces a tensor in m(k), i.e. an m-~colored k-uniform hypergraph. In the
hypergraphon representation this corresponds to a measurable map into the
simplex,

w0, 1]2k_2 — A,

so that, conditional on the face latents, each hyperedge receives a color drawn
from the categorical distribution W (---). Equivalently one may represent
W as m functions W, : [0,1]%~2 — [0,1] with 3, W, = 1.

From the categorical viewpoint, nothing essential changes: FinStoch al-
ready supports finite-valued observations, and the quotient-by-contextual-
equivalence construction proceeds verbatim. The only modification is in the
deterministic core used to define Uy, where Hyp,, is replaced by the category
of finite colored k-uniform hypergraphs (with color-preserving and -reflecting
maps if one wishes to keep the deterministic semantics conservative).

6.6 Multi-sorted array interfaces: bipartite and higher ari-
ties

A particularly useful variant replaces the single vertex sort by several in-
dependent sorts. For example, introduce two type constants row, col with
samplers

newRow : 1 — row, newCol : 1 — col,

and a deterministic predicate entry : row x col — bool. The numeral con-
texts are then row™ x col™, and the induced distributions describe random
bipartite graphs (or {0, 1}-matrices) with separate exchangeability under
Sm X Sy, projectivity under restriction in either coordinate, and a suitable
locality condition expressing independence for disjoint row-blocks and dis-
joint column-blocks.

On the analytic side, this recovers the usual bipartite graphon picture:
sample i.i.d. uniforms (U;);g[) for rows and (V}) ;e[ for columns, and in-
clude (i, j) with probability W (U;, V;) for a measurable W : [0,1]*> — [0, 1]
(or, if one prefers to state it in Aldous—Hoover form, as a function of the
singleton latents together with the independent per-entry coin flips). More
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generally, higher-sorted variants yield the standard limit objects for sepa-
rately exchangeable tensors, and can be treated by the same “universal cat-
egory + functors on numerals + quotient” pipeline after replacing Hyp;, by
the appropriate category of finite multi-sorted relational structures.

6.7 Random-free semantics and {0, 1}-valued limit objects

Finally, it is worth isolating the degenerate situation in which the ambient
Markov structure carries no genuine randomness beyond deterministic com-
putation (for instance, in a purely measurable/predicate semantics where
new is interpreted deterministically). In such models the induced distribu-
tions p, are Dirac measures, hence the associated hypergraphon W may be
chosen {0, 1}-valued (up to null sets). This mirrors the graph case: a deter-
ministic semantics cannot produce “gray” edge densities, and the quotient
construction collapses to a deterministic equational theory. The Bernoulli-
based setting is therefore not merely technical; it is exactly what allows
the interface to express nontrivial probabilistic mixtures while retaining an
extensional, observation-based account of program equality on numerals.

7 Discussion and future directions

Our results give a complete account, on numeral observations, of Bernoulli-
based equational theories for the interface (new, hyperedge;,) under the struc-
tural assumptions of exchangeability, projectivity, and k-locality /dissociation.
The corresponding analytic object is the (dense) k-uniform hypergraphon
W . |0, 1}2“2 — [0, 1], unique up to measure-preserving equivalence, and
the categorical object is the universal distributive Markov category Uy, to-
gether with its Bernoulli-based quotients. In this section we indicate several
directions in which the present framework can be extended, and where new
technical input is likely required.

7.1 Sparse regimes

The hypergraphon representation used above is intrinsically a dense limit
theory: for fixed n the output of ¢, ;. is a full incidence tensor in bool(Z), and
in the associated models the expected number of hyperedges typically scales
as ©(nF). In sparse regimes one instead expects ©(n®) hyperedges for some
«a < k, or even bounded average degree. Analytically, the appropriate limit
objects are not bounded kernels on [0, 1]2k_2 but rather variants of integrable
kernels or random measures (for & = 2 one encounters LP-graphons and
graphex processes), and the correct notion of sampling consistency is often
not “take the induced subhypergraph on the first n vertices” but rather a
thinning or restriction operation compatible with a Poissonized construction.
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From the semantic side, two obstacles appear immediately. First, sparsity
is naturally expressed by allowing the edge probability to scale with n (or by
allowing an unbounded latent intensity), whereas our current interface fixes
a single hyperedge,, : (vertex)* — bool used uniformly for all n. Second, com-
mon sparse constructions produce random counts and are better expressed
by point processes or random measures; this suggests moving beyond the nu-
meral fragment of FinStoch to a setting supporting countable coproducts or
standard Borel spaces, together with an observation mechanism compatible
with those. A plausible approach is to replace projectivity with a more flex-
ible consistency axiom (e.g. sampling by independent thinning of vertices,
or by restricting a random measure to [0,t]), and to rebuild the universal
category so that its deterministic core captures finite partial hypergraphs or
finite configurations of hyperedges rather than full incidence tensors. Estab-
lishing a precise “universal semantics <+ sparse limit objects” correspondence
would then require importing an appropriate sparse representation theorem
for dissociated exchangeable k-arrays or exchangeable random measures in
k dimensions.

7.2 Approximate and metric observation

We have assumed a faithful Bernoulli base ¥ : Cy < FinStoch, so that
equality of closed numeral programs is witnessed by literal equality of finite
distributions. This is appropriate when the equational theory is intended
to capture exact observational equivalence. In applications, however, one
often observes programs only approximately (finite sampling error, numerical
rounding, or deliberate relaxation), and on the analytic side hypergraphons
are usually considered modulo a metric such as an L'-distance or a cut-type
distance. It is therefore natural to ask for a quantitative variant in which
programs are compared by an observational pseudometric.

One route is to replace the discrete equality induced by ¥ with a family
of distances d, on FinStoch(l,Z(Z)), for instance total variation distance,
and to define a contextual distance on closed terms by

d(t,t') == sup dn (T ([D), ([£'])).

or by restricting to a designated class of contexts. Categorically, this sug-
gests enriching the numeral fragment of C over extended pseudometric spaces
and requiring the Markov structure and distributive structure to be nonex-
pansive. Analytically, one would like to relate the induced program distance
to a metric on hypergraphons; for k = 2 the relevant comparison is between
finite subgraph distributions and the cut distance. For general k£ there are
higher-order cut norms and associated metrics. A satisfactory statement
would identify the metric completion of programs modulo distance 0 with
hypergraphons modulo the corresponding metric equivalence, together with
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explicit continuity bounds for the passage from W to (pw.,)n. We emphasize
that such bounds are nontrivial: they mix combinatorial blowups (coming
from (Z)) with analytic control of convergence.

7.3 Computability and effective reconstruction

Our completeness direction is existential and uses a quotient-by-contextual-
equivalence construction together with a representation theorem that is itself
nonconstructive in general (due to measurability choices and quotienting
by measure-preserving transformations). If one is interested in algorithmic
extraction of limit objects, or in learnability from finite observations, an
effective refinement is required.

A basic question is the following. Suppose we are given, for each n, a
computable description of the finite distribution p,, (for example as ratio-
nal probabilities in FinStoch) satisfying the exchangeability /projectivity/k-
locality constraints. Under what conditions can we compute, to any de-
sired precision, a representative of the associated hypergraphon W (say as
a step function on a dyadic partition of [0, 1]2k_2)? Even ignoring measure-
preserving nonuniqueness, such a procedure amounts to an effective inverse
to the Aldous—Hoover/Kallenberg correspondence in the dissociated case.
One expects to approximate W by finite models via regularity-type lemmas,
but the quantitative bounds in hypergraph regularity are large and often
ineffective in strong forms. It is therefore of interest to identify subclasses
of programs (or of equational theories) giving rise to more tractable W (e.g.
those definable by finite mixtures of simple kernels, or those arising from
finite latent-variable models). On the categorical side, a related question is
whether the quotient Uy /Fy can be presented effectively from finite data
about Fy on numerals, and whether equivalence checking for a restricted
fragment of programs is decidable or semidecidable.

7.4 Interacting with other effects and richer base types

The present interface is deliberately austere: the only source of randomness
is new, and the only observable outputs are finite. A common extension
in probabilistic programming is to add real-valued primitives, continuous
distributions, and conditioning. Each of these interacts nontrivially with the
structural assumptions underpinning dissociation.

If one adds a base type R and allows sampling of real random variables,
then the appropriate observation category is no longer FinStoch but a cate-
gory of Markov kernels on standard Borel spaces (or an alternative such as
quasi-Borel spaces). One can still ask for a “Bernoulli base” on numerals, but
it is no longer faithful on the full language; moreover, approximate obser-
vation becomes unavoidable. If one adds an operation sample : 1 — R and
allows hyperedge;, to depend deterministically on sampled reals, then the
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induced hypergraph model may acquire a global latent variable, violating
dissociation unless additional axioms enforce that such global randomness
is not shared across disjoint vertex blocks. Thus, to maintain a clean hy-
pergraphon correspondence, one must either restrict the additional effects so
that they are generated locally from vertices (for example, per-vertex reals
sampled inside the scope of each new), or else generalize the target analytic
object to include global mixing (leading to mixtures of dissociated models).

Conditioning introduces further complications because it typically breaks
the affine/weakening structure and can destroy exchangeability unless han-
dled with care. A precise account would likely require moving from Markov
categories to a setting supporting disintegration and Bayesian inversion,
and stating explicitly which equational principles remain sound. We re-
gard this as compatible with the present approach but not formalized here:
the universal-category method isolates the deterministic core and the free
generators, and it should extend provided the additional structure admits a
similar universal characterization and an adequate observational semantics.

7.5 Prospects for mechanization

Several points in the development are routine for a human reader but in-
volve substantial bookkeeping, notably the index management in k-locality
and the naturality /monoidality arguments in the universal semantics. These
are prime candidates for mechanization. On the syntactic side, one may im-
plement a normal form for nested let-expressions in a proof assistant and use
rewriting tactics for the probabilistic let-laws (associativity, commutativity
of independent lets, and weakening) together with deterministic substitu-
tion. The goal would be to make arguments such as “reorder the n vertex
samplings” and “factor the computation over disjoint blocks” fully formal
and reusable.

On the categorical side, mechanization requires a concrete encoding of
Hyp,, its opposite, and the finite-coproduct completion Fam(—), together
with explicit combinatorial lemmas about ([Z]) under injections and disjoint
unions. Lemma L5 (hom-set identification) is especially well-suited to this:
it reduces to a finite combinatorial bijection that can be proved by explicit
constructions. The more delicate step is the correspondence “monoidality
= k-locality”, which hinges on understanding how disjoint vertex blocks
induce a product decomposition of incidence tensors and how this interacts
with the Markov tensor product. A successful mechanization here would not
merely increase confidence; it would provide a library of reusable lemmas for
other relational interfaces (directed, colored, multi-sorted) and would clarify
which parts of the proof rely essentially on distributivity and which rely on
specific properties of bool.

In summary, the dense hypergraphon correspondence should be viewed
as a baseline classification theorem. Extending it to sparse regimes, quan-
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titative observation, effective semantics, and richer effect combinations ap-
pears feasible, but each direction requires importing nontrivial additional
structure—either analytic (new representation theorems and metrics) or cat-
egorical (new universal constructions and enriched notions of observation).
The universal-category viewpoint is intended to keep these extensions mod-
ular: one modifies the interface and the observation principle, and the re-
sulting semantic invariants should follow by the same pattern of “universal
object + functors on a designated fragment + quotient.”
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