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Abstract
Carrier waves—slowly varying multiplicative envelopes governing

typical large values—are a central heuristic in the modern understand-
ing of ζ(12 + it) beyond the computational range. A persistent obstacle
is non-uniqueness: local scale factors depend on the window used to
separate ‘near zeros’ from ‘far zeros’. We resolve this ambiguity in the
canonical random matrix model. For Haar-random U ∈ U(N) we de-
fine (a) a local Hadamard-product carrier-wave estimator AK obtained
by removing the contribution of 2K nearby eigenangles from log |ZU |,
and (b) a density-wave estimator DJ built from weighted symmet-
ric neighbor discrepancies. We prove a window universality theorem:
for any K,J in a fixed constant band around logN , both estimators
agree uniformly (in sup norm over N midpoints) up to oP(1). Thus
the carrier wave becomes an asymptotically canonical object once the
window contains about logN zeros. The result formalizes and stabi-
lizes the carrier-wave viewpoint advocated in the source material, and
it provides a robust observable for future comparisons with ζ and for
next-generation simulation of zeta-like landscapes.
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1 Introduction and motivation

The modulus of a characteristic polynomial of a random unitary matrix ex-
hibits two competing features. On the one hand, the function θ 7→ log |ZU (θ)|
is strongly constrained by its zeros at the eigenangles {θj}: it has logarithmic
singularities whose locations are random at the microscopic scale 1/N . On
the other hand, once the singular contributions of nearby zeros are removed,
the remaining fluctuations vary on a mesoscopic scale and behave, in several
respects, like a log-correlated random field. The purpose of this work is to
make precise, in the CUE setting, the emergence and the canonical nature
of this mesoscopic “carrier wave”.

The guiding heuristic is the elementary identity

log |ZU (θ)| =
N∑
j=1

log
∣∣eiθ − eiθj

∣∣+ (deterministic normalization),

which already indicates that log |ZU | is a linear statistic of the eigenangles
against the logarithmic kernel. If θ is close to some θj , the corresponding
summand dominates and produces a local spike. If we instead separate
the sum into a near part and a far part relative to θ, then the near part is
responsible for the sharp local geometry (including the singularities), whereas
the far part varies more smoothly with θ and encodes the cumulative effect
of many distant points. It is this far part that we refer to as the carrier wave.

At a purely algebraic level, one can attempt to isolate the carrier wave
by dividing the characteristic polynomial by a local product of factors cor-
responding to eigenvalues near eiθ. Concretely, if we remove the 2K nearest
eigenvalues around a point θ, then

log |ZU (θ)| −
∑

j: θj among
K nearest on each side

log
∣∣eiθ − eiθj

∣∣
should depend primarily on eigenvalues at distances ≫ K/N from θ and
should therefore change slowly as θ varies by a few mean spacings. This
operation is canonical only after we decide what “near” means, i.e. after
we choose the truncation parameter K. For finite N the resulting field
depends visibly on K, and this window dependence is the first obstruction
to interpreting the carrier wave as an intrinsic object.

The issue is not only one of aesthetics. Many questions of interest concern
extreme values and near-extreme geometry of log |ZU (θ)|, or of the zeta
function in analogous number-theoretic models. In such problems, a small
perturbation of the underlying field can, a priori, change where the maxima
occur, how high they are at finite N , and what the correct centering and
scaling should be. If the carrier wave is to be used as a stable “background”
for describing near maxima, then it must be essentially independent of the
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arbitrary parameters introduced by its definition. This motivates the window
universality problem: determine a regime of window sizes K in which all
reasonable definitions of the carrier wave agree asymptotically.

Our main results show that for CUE this non-uniqueness disappears pre-
cisely in a logarithmic window. More specifically, if K varies within a band of
order logN , then the corresponding carrier-wave estimators become asymp-
totically indistinguishable, uniformly over a natural discrete set of evalua-
tion points. In addition, a second, ostensibly different, estimator based on
neighbor discrepancies (a “density-wave” formula) is shown to agree with the
local-product definition, again uniformly. Taken together, these statements
provide a canonical carrier-wave field on the circle at mesoscopic resolu-
tion: one may compute it by removing nearby zeros (a local Hadamard-
product viewpoint) or by aggregating discrepancies of eigenangle spacings (a
counting-function viewpoint), and the outputs agree up to an error vanishing
in probability in the supremum norm.

The choice of a logarithmic window is not ad hoc; it is forced by the
structure of the logarithmic kernel and by the known behavior of CUE linear
statistics. In Fourier variables on the circle, the centered field log |ZU (θ)| has
a representation whose dominant contributions come from Fourier modes
with weights comparable to 1/|m|. The variance accumulated from modes
1 ≤ |m| ≤ M is therefore of size

∑
m≤M 1/m ∼ logM . A cutoff that changes

M by a multiplicative factor changes this variance by an additive constant,
which is precisely the scale at which fluctuations of a log-correlated field
are sensitive. The local removal of K neighboring zeros corresponds, after
suitable manipulations, to a smoothing (or truncation) of the logarithmic
kernel at a mesoscopic frequency scale that depends on K. When K is too
small, the “near” part is incomplete: microscopic singular behavior leaks into
the remainder, and different K lead to different residual spikes. When K
is too large, one removes not only the singularities but also a substantial
amount of genuinely mesoscopic fluctuation, and the remainder is overly
smoothed. The logarithmic regime K ≍ logN is the balance point where the
effect of changing the cutoff becomes negligible compared with the intrinsic
fluctuations of the far field.

This perspective parallels heuristics developed for the Riemann zeta func-
tion, where log |ζ(1/2 + it)| is modeled by a log-correlated random field and
the local behavior is influenced by nearby zeros. In Farmer’s terminology,
the zeta function is described as the product of a “carrier wave” and a “mod-
ulating wave,” with the latter capturing rapid oscillations induced by nearby
zeros and the former representing a slowly varying envelope determined by
more distant zeros. The CUE characteristic polynomial provides a setting
where the same conceptual decomposition can be formulated precisely and
where the probabilistic tools needed to control the dependence on window
parameters are available. Our results may therefore be interpreted as a rig-
orous version, in the CUE model, of the principle that the carrier wave is an
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emergent mesoscopic object, not an artifact of a particular truncation rule.
A second motivation for the discrepancy-based estimator is that it is ex-

pressed directly in terms of eigenangle spacings and the centered counting
function. The centered counting function SU (θ) is, in many respects, the
fundamental object controlling fluctuations of eigenangles across scales: it
is a distribution function for the point process with its deterministic lin-
ear trend removed. Because SU is well understood for CUE (through its
determinantal structure), it is natural to express mesoscopic observables as
smoothed functionals of SU . The discrepancy sum DJ does exactly this: it
aggregates deviations of symmetric eigenangle spans from their mean, with
a 1/j weight corresponding to the logarithmic kernel. From this viewpoint,
the equivalence between the local-product estimator and the discrepancy es-
timator is not surprising; it asserts that two distinct ways of regularizing
the same logarithmic functional lead to the same limit in the logarithmic
window.

The requirement of uniformity over a set of N evaluation points is also
essential. Pointwise in θ, it is comparatively easy to show that different
truncations lead to small differences, since one may allow exceptional events
depending on θ. However, the carrier wave is intended to be a global object
on the circle, and applications (for instance, to locating high points) demand
control in a strong topology. We therefore work with a supremum norm over
a grid of N points at typical spacing 1/N , which is the natural scale at
which the underlying point process is sampled. The correct choice of grid is
constrained by the singularities of log |ZU | at eigenangles. A deterministic
grid may come arbitrarily close to an eigenangle with non-negligible proba-
bility, which would introduce sporadic but large spikes and destroy uniform
bounds. The canonical remedy is to use a grid built from the eigenangles
themselves but shifted away from them, so that one evaluates the field at
points that are provably separated from the zeros at the correct scale. This
is the role of the midpoint grid: it provides N points distributed around the
circle with spacing comparable to 1/N and, with high probability, uniformly
bounded away from the eigenangles.

At a technical level, the theorems rest on rewriting both estimators
as centered linear statistics of the same underlying determinantal process
against explicit kernels that approximate the logarithmic kernel. The win-
dow parameter enters only through the kernel. Window universality is then
reduced to a deterministic comparison of these kernels in a norm that con-
trols variances of linear statistics (equivalently, a Fourier-multiplier norm
adapted to the sine-kernel covariance). Once kernel differences are shown to
be small in this norm throughout the logarithmic band, standard concen-
tration estimates for determinantal processes upgrade the kernel comparison
to probabilistic control of the corresponding linear statistics. Finally, a net
argument over the midpoint grid yields uniformity in n.

The conclusion is that, in the CUE model, one may unambiguously speak
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of the carrier wave at mesoscopic resolution: any choice of K in a fixed
logarithmic band produces the same field on the midpoints up to an error
oP(1) in supremum norm, and the same field is recovered by the discrep-
ancy estimator with J in the same band. In particular, the dependence on
the truncation rule is a finite-N artifact that disappears in the limit. This
gives a rigorous counterpart to the informal decomposition of characteristic
polynomials (and, by analogy, of zeta) into a slowly varying envelope and a
rapidly varying local factor determined by nearby zeros.

In the next section we collect the basic background on the CUE eige-
nangle process, its determinantal structure, and the behavior of the centered
counting function. These facts will be used repeatedly to control linear
statistics at the mesoscopic scales relevant to the logarithmic window, and
to justify the uniform midpoint-based sampling that underlies the supremum
norm statements.

2 Background on CUE, characteristic polynomials,
and counting functions

2.1 Haar unitary matrices and the eigenangle point process

Let U ∼ Haar(U(N)). The eigenvalues of U lie on the unit circle and can
be written uniquely as λj = eiθj with 0 ≤ θ1 < · · · < θN < 2π. We extend
the indexing periodically by θk+N = θk + 2π, so that local statements near
0 and 2π can be formulated without boundary conventions.

The joint density of the ordered eigenangles with respect to Lebesgue
measure on [0, 2π)N is proportional to the squared Vandermonde determi-
nant,

1

(2π)NN !

∏
1≤j<k≤N

∣∣eiθj − eiθk
∣∣2,

which makes the eigenangles a repulsive point process on S1. This density is
invariant under global rotation θj 7→ θj + α (mod 2π), and in particular the
one-point intensity is constant: the mean density is N/(2π) and a typical
gap has size 2π/N .

We view {θj}Nj=1 as a random counting measure

µU :=
N∑
j=1

δθj

on S1, and we write #I := µU (I) for the number of eigenangles in an arc
I ⊂ S1.
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2.2 Determinantal structure and correlation kernel

A fundamental fact is that the CUE eigenangles form a determinantal point
process with an explicit projection kernel. Concretely, for k ≥ 1 the k-point
correlation functions satisfy

ρk(θ1, . . . , θk) = det
(
KN (θa, θb)

)
1≤a,b≤k

,

where KN is the reproducing kernel of the span of {eimθ : 0 ≤ m ≤ N − 1}
in L2(S1, dθ/(2π)), namely

KN (θ, ϕ) =
1

2π

N−1∑
m=0

eim(θ−ϕ) =
1

2π
ei

N−1
2

(θ−ϕ) sin
(
N
2 (θ − ϕ)

)
sin

(
1
2(θ − ϕ)

) .
This is a rank-N orthogonal projection kernel, and its determinantal nature
yields exact formulas for moments of linear statistics and, more importantly
for us, sharp variance and concentration bounds.

In the microscopic scaling θ − ϕ ∼ 1/N , the oscillatory phase factor
is inessential and the rescaled kernel converges to the sine kernel. This
is the source of the universal local behavior, including level repulsion and
logarithmic growth of number variance.

2.3 Counting functions, centered fluctuations, and linear statis-
tics

For θ ∈ R we consider the counting function

N (θ) := #{j : θj ≤ θ},

interpreted using the periodic extension of {θj}, and the centered counting
function

SU (θ) := N (θ)− Nθ

2π
,

with a fixed convention for θ outside [0, 2π) (any consistent periodic lift
suffices for our purposes). The function SU is piecewise constant with unit
jumps at the eigenangles and has mean approximately zero at each fixed θ
by rotation invariance.

A convenient way to package linear statistics is through Stieltjes-type
integrals against dSU . For a 2π-periodic function f of bounded variation we
set ∫ 2π

0
f(ϕ) dSU (ϕ) :=

N∑
j=1

f(θj)−
N

2π

∫ 2π

0
f(ϕ) dϕ,

so that the centered statistic is exactly the pairing of f with the fluctuation
measure µU − (N/(2π))dϕ. In particular, if f = 1[0,θ] (interpreted suitably
as a periodic function with one jump), then

∫
f dSU = SU (θ).
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For CUE, the variance of such centered linear statistics can be expressed
explicitly in Fourier variables. Writing

f̂(m) :=
1

2π

∫ 2π

0
f(ϕ)e−imϕ dϕ, m ∈ Z,

one has, for sufficiently regular f ,

Var

 N∑
j=1

f(θj)

 =
∑

m∈Z\{0}

min{N, |m|} |f̂(m)|2. (1)

This identity reflects the fact that the CUE process is a projection DPP
and that the Fourier modes diagonalize the covariance. The right-hand side
defines a natural Hilbertian seminorm controlling fluctuations. In the meso-
scopic regimes relevant to us, it is convenient to compare (1) to an H1/2-type
quantity

∥f∥2
H1/2 :=

∑
m̸=0

|m| |f̂(m)|2,

keeping in mind that the truncation min{N, |m|} enforces a high-frequency
cutoff at |m| ≈ N .

The number variance is the special case f = 1I for an arc I of length |I|.
One then obtains the familiar logarithmic growth: for arcs whose length is
not microscopic (say |I| ≫ 1/N),

Var(#I) =
1

π2
log

(
N |I|

)
+O(1),

with the understanding that the precise form involves sin(|I|/2) rather than
|I| when |I| is not small. This logarithmic number variance is the main
quantitative manifestation of long-range correlations in the process; it is
also the reason logarithmic window sizes arise naturally when one seeks a
balance between microscopic singularities and mesoscopic fluctuations.

Beyond second moments, the determinantal structure yields concentra-
tion inequalities for linear statistics. We will use the following qualitative
principle: if a family of test functions fN has uniformly bounded variance
proxy of the form (1) (or, more generally, bounded in a Hilbert norm adapted
to the sine-kernel covariance), then the centered statistics

∫
fN (ϕ) dSU (ϕ)

are tight and enjoy subgaussian-type tails uniformly in N . This can be
proved by standard determinantal concentration estimates (for instance, via
cumulant bounds or via general DPP inequalities for Lipschitz observables),
and it is the mechanism by which we later upgrade kernel comparisons to
probabilistic o(1) bounds.
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2.4 Rigidity estimates at mesoscopic resolution

We will also appeal, implicitly, to the fact that SU (θ) does not fluctuate on
the scale of a power of N ; its typical size is logarithmic. One convenient
formulation is that for any fixed ε > 0,

sup
θ∈[0,2π]

|SU (θ)| ≤ N ε

with probability 1 − o(1), and more refined statements give supθ |SU (θ)| =
OP(logN). Such bounds can be obtained by combining the logarithmic num-
ber variance with a chaining or dyadic net argument over θ, using that SU

only changes at eigenangles. These rigidity estimates are compatible with,
and in a sense equivalent to, the mesoscopic concentration of linear statis-
tics discussed above. They will enter only through uniformity requirements:
when we compare two observables defined by convolving dSU against nearby
kernels, we need to ensure that atypical fluctuations of SU do not destroy
the supremum bounds.

2.5 Characteristic polynomials and logarithmic kernels

The characteristic polynomial is

ΛU (z) = det(I − zU) =
N∏
j=1

(1− zeiθj ),

and, on the unit circle z = eiθ, its modulus is

log |ΛU (e
iθ)| =

N∑
j=1

log
∣∣1− ei(θ+θj)

∣∣ = N∑
j=1

log
∣∣eiθ − eiθj

∣∣.
The rotated characteristic polynomial ZU (θ) differs from ΛU (e

iθ) by a uni-
modular factor chosen so that ZU (θ) ∈ R for real θ. In particular,

log |ZU (θ)| = log |ΛU (e
iθ)|

and the modulus depends only on the eigenangles.
The logarithmic kernel

θ 7→ log |eiθ − eiϕ|

has a well-known Fourier expansion (as a distribution),

log
∣∣eiθ − eiϕ

∣∣ = −
∞∑

m=1

1

m
cos

(
m(θ − ϕ)

)
+ (constant),
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which makes transparent the 1/m Fourier weights characteristic of log-correlated
fields. Formally inserting this expansion and interchanging summations
yields a representation of log |ZU (θ)| as a sum of traces tr(Um) with co-
efficients 1/m, and hence as a centered linear statistic at the level of Fourier
modes. We do not need this identity in its most precise form at this stage;
what matters is the structural consequence: any regularization of log |ZU |
amounts to modifying the logarithmic kernel at short distances (equivalently,
truncating or smoothing its Fourier series at high frequencies), and the effect
of such a modification can be quantified in the same Hilbertian norms that
control variances of linear statistics.

2.6 Midpoints and the avoidance of singularities

A basic obstruction to uniform control of log |ZU (θ)| is that it vanishes at the
eigenangles: ZU (θj) = 0, so log |ZU (θ)| = −∞ at θ = θj and has logarith-
mic spikes near those points. Consequently, if one were to sample log |ZU |
on a deterministic grid {ϑn} of N points with spacing ≍ 1/N , then with
non-negligible probability one of the ϑn would fall extremely close to an
eigenangle, producing a large negative outlier and preventing any meaning-
ful supremum control.

We therefore adopt an intrinsic random grid obtained from the eigenan-
gles themselves, but shifted away from the zeros. For n ∈ {1, . . . , N} we
define the midpoint

mn :=
θn + θn+1

2
,

with θN+1 = θ1 + 2π. By construction, each mn lies strictly between two
consecutive eigenangles, hence ZU (mn) ̸= 0 almost surely. Moreover, the
midpoints inherit the correct global density: they form a set of N points on
S1 with typical spacing comparable to 1/N , and they are canonical in the
sense that no additional choices are made.

The distance from mn to the nearest eigenangle is exactly half the adja-
cent gap,

min
1≤j≤N

|mn − θj | =
θn+1 − θn

2
.

Since CUE exhibits level repulsion, extremely small gaps are rare. In particu-
lar, one may fix any A > 2 and use standard small-gap estimates (ultimately
traceable to the s2 repulsion in the sine-kernel scaling limit) to deduce

P
(

min
1≤n≤N

(θn+1 − θn) ≤ N−A

)
= o(1),

so that with high probability all midpoints stay at distance at least N−A from
the spectrum. This is far weaker than a macroscopic separation of order 1/N ,
but it suffices for uniform control of regularized logarithmic expressions: the
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singular contribution of a point at distance ≥ N−A is at worst O(logN),
and in our later constructions the potentially large contributions from the
closest eigenangles are explicitly removed or compensated.

The midpoint grid also interacts well with sign changes of ZU . Since
ZU is real-valued and has simple zeros at {θj} almost surely, it alternates
sign between successive eigenangles. Evaluating at mn thus produces a well-
defined, nonzero value in each nodal interval, avoiding issues of ambiguous
phase that can arise when working directly with ΛU (e

iθ).
In summary, the midpoint grid provides a natural discretization of the

circle at the microscopic scale, while avoiding the singularities of log |ZU | in a
way compatible with uniform-in-n estimates. All of our sup-norm statements
will be formulated on this grid. In the next section we define the carrier-
wave estimators that regularize log |ZU | by subtracting local contributions
of nearby eigenangles, and we introduce an alternative discrepancy-based
estimator expressed directly in terms of the eigenangle spacings and the
centered counting function.

3 Carrier-wave estimators on the midpoint grid

We now introduce two concrete observables on the midpoint grid {mn}Nn=1

which are designed to extract, from the singular field θ 7→ log |ZU (θ)|, a
regularized “carrier-wave” component that is stable under mesoscopic choices
of window size. The first estimator is defined by explicitly subtracting the
logarithmic contributions of the 2K eigenangles nearest to mn; the second
is expressed directly in terms of symmetric spacings across mn and may
be viewed as a discrete logarithmic transform of local density discrepancies.
Both are measurable functions of the eigenangle configuration and will later
be rewritten as linear statistics of the centered counting function SU against
explicit kernels.

3.1 The local Hadamard-product estimator AK

Fix an integer K ≥ 1. For each midpoint mn we consider the decomposition

log |ZU (mn)| =
N∑
j=1

log
∣∣eimn − eiθj

∣∣, (2)

where each summand has the explicit real form

log
∣∣eimn − eiθ

∣∣ = log
(
2
∣∣∣sin(mn − θ

2

)∣∣∣). (3)

The singularity at θ = mn does not occur since mn /∈ {θj} almost surely, but
the terms corresponding to eigenangles close to mn are large negative when
the adjacent gaps are small. In order to isolate a smoother remainder, we
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factor out the nearest zeros in the spirit of a truncated Hadamard product.
Concretely, we remove the contributions of the K nearest eigenangles on
each side of mn, namely

θn, θn−1, . . . , θn−K+1 and θn+1, θn+2, . . . , θn+K ,

using the periodic extension of the indexing. This yields the definition

logAK(mn) := log |ZU (mn)|−
K−1∑
j=0

(
log |eimn−eiθn−j |+log |eimn−eiθn+1+j |

)
+CK,N .

(4)
We emphasize two elementary points.

(i) Positivity and cancellation of near-singular terms. Since AK(mn)
is defined through its logarithm, it is immediate from (4) that AK(mn) > 0.
The definition is arranged so that the most singular logarithmic contribu-
tions near mn are subtracted explicitly. In particular, when the gap θn+1−θn
is unusually small, both log |ZU (mn)| and the two terms j = 0 in the sub-
traction are of order − log(θn+1−θn), and these large negative pieces cancel.
Thus AK(mn) remains well-behaved even on atypical configurations where
midpoints are only polynomially separated from the spectrum.

(ii) Local symmetry. The symmetric choice of K points on each side of
mn is not essential for measurability, but it is convenient for later kernel
comparisons. It ensures that, after subtraction, the remaining contribution
is dominated by eigenangles at distances ≳ K/N from mn on both sides, and
it avoids introducing an artificial drift coming from one-sided truncation.

3.2 Normalization and stationarity

The quantity in (4) is defined up to the additive constant CK,N , which we
choose deterministically to fix a centering convention. Rotation invariance
implies that for each fixed K and n the distribution of the centered expression

log |ZU (mn)| −
K−1∑
j=0

(
log |eimn − eiθn−j |+ log |eimn − eiθn+1+j |

)
does not depend on n (indeed, the joint law of the eigenangle configura-
tion, and hence of the entire midpoint grid, is invariant under global shifts).
Consequently, E[logAK(mn)] is independent of n once CK,N is fixed. We
therefore impose the normalization

E[logAK(m1)] = 0, (5)
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which uniquely determines CK,N as a real number depending only on (K,N).
For our purposes we do not require an explicit closed form for CK,N ; it
suffices that it is deterministic and that the centering is compatible across
n. In particular, the field n 7→ logAK(mn) is stationary in distribution on
the discrete circle Z/NZ.

3.3 Measurability considerations

Both estimators we consider are functions of the eigenangle process, hence
of U as a random matrix. We record this explicitly since later we will apply
concentration inequalities for determinantal linear statistics.

First, log |ZU (mn)| depends on U only through its eigenangles, by (2).
Moreover, mn is a measurable function of the ordered eigenangles. The
subtraction terms in (4) are likewise measurable functions of (θ1, . . . , θN ).
Since CK,N is deterministic, we conclude that logAK(mn) is measurable
with respect to the σ-field generated by the eigenangles (equivalently, by the
point process µU ).

We note also that all expressions are well-defined without ambiguity from
the periodic lift. Indeed, while the function θ 7→ log |eimn−eiθ| is 2π-periodic
in θ, the midpoint mn is defined using the periodic extension θN+1 = θ1+2π,
and the indices θn−j and θn+1+j are interpreted via θk+N = θk + 2π. This
convention ensures that the ordering relative to mn is consistent even when
n is near 1 or N .

3.4 The discrepancy-based density-wave estimator DJ

We now introduce an alternative estimator which does not involve ZU ex-
plicitly. Fix an integer J ≥ 1. For each midpoint mn and each j ≥ 1,
we consider the symmetric span across mn from θn−j to θn+1+j . At mean
density N/(2π), a block containing (2j + 1) consecutive points should have
expected length approximately (2j + 1) · (2π/N). This motivates the dis-
crepancy variable

δn(j) :=
N

2π

(
θn+1+j − θn−j

)
− (2j + 1), (6)

which is negative when the configuration is locally denser than average (the
span is shorter than expected) and positive when it is sparser.

A useful equivalent form relates δn(j) to increments of the centered count-
ing function SU . Since SU (θk) = k − N

2πθk for the lifted eigenangles, we
compute

SU (θn+1+j)− SU (θn−j) = (2j + 1)− N

2π

(
θn+1+j − θn−j

)
= −δn(j). (7)

Thus δn(j) is exactly the negative fluctuation of the counting function across
the arc from θn−j to θn+1+j .
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The density-wave estimator is then defined as the weighted sum

DJ(mn) :=

⌊N/4⌋∑
j=J

δn(j)

j
. (8)

The harmonic weight 1/j is chosen to mimic the Fourier weights of the
logarithmic kernel, and the lower cutoff J suppresses the most microscopic
discrepancies, which are dominated by the nearest-neighbor repulsion scale
and are not stable under mesoscopic averaging. As with AK , we will ulti-
mately restrict to the logarithmic window J ≍ logN , where this smoothing
is strong enough to reduce window dependence but weak enough to preserve
the fluctuations of interest.

3.5 Truncation at ⌊N/4⌋

The upper limit ⌊N/4⌋ in (8) is a convenient deterministic truncation ensur-
ing that the symmetric arc from θn−j to θn+1+j does not wrap around the
circle by more than half its length. Indeed, for j ≤ N/4 the block of indices
{n − j, . . . , n + 1 + j} has size at most N/2 + 1, so the corresponding span
is canonically interpreted using the lifted angles and does not depend on a
choice of complementary arc.

From the analytic viewpoint, this cutoff plays the role of excluding very
long-range contributions where the periodicity of the circle becomes domi-
nant and the logarithmic kernel is effectively replaced by a bounded, smooth
function. In particular, the tail j > αN (with any fixed α ∈ (0, 1/2)) con-
tributes only a bounded correction, and changing the cutoff from N/4 to αN
alters DJ(mn) by a term that will be negligible (or absorbed into a deter-
ministic renormalization) in the regimes we consider. We will later formalize
this robustness when we compare DJ to a kernel convolution against dSU ,
where the kernel is naturally defined modulo an additive constant.

3.6 Window parameters and the role of K, J ≍ logN

The definitions above make sense for any integers K,J ≥ 1. However, the
purpose of introducing the window universality band c1 logN ≤ K,J ≤
c2 logN is already visible at the level of these constructions.

If K is too small, then logAK(mn) still retains a strong dependence
on the nearest few eigenangles and hence exhibits pronounced sensitivity to
microscopic fluctuations; in particular, changing K by a constant changes
the observable by a non-negligible random amount. If K is too large (say K
a power of N), then the subtraction removes eigenangles out to mesoscopic
or even macroscopic distances, and the residual field is distorted by the
geometry of the circle and by global constraints (such as the fixed total
number of points). The logarithmic scale K ≍ logN balances these effects: it
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removes enough of the near-singular behavior to make the remainder stable,
while keeping the subtraction local enough that different admissible window
sizes lead to asymptotically equivalent observables.

An analogous discussion applies to DJ . The sum (8) with J microscopic
would overweight the smallest scales, while choosing J macroscopic would
discard the regime where the logarithmic correlations accumulate. The har-
monic weighting makes the dominant contribution arise from a broad range
of j, and the logarithmic window J ≍ logN is precisely where one expects
different regularizations of the same log-correlated structure to agree.

3.7 Outlook: toward kernel representations

We have thus defined two families of fields on the midpoint grid: the local-
product estimator n 7→ logAK(mn) and the discrepancy estimator n 7→
DJ(mn). The subsequent step is to place both in a common analytic frame-
work. The key point is that each observable can be rewritten, up to a
deterministic renormalization and a small error, as a centered linear statistic
of the eigenangles, equivalently as an integral against dSU with an explicit
2π-periodic kernel depending on K (or J). Once this is done, comparisons
between different window choices reduce to deterministic comparisons of ker-
nels in a Hilbert norm adapted to the CUE covariance, and probabilistic con-
trol follows from uniform concentration of such linear statistics. This kernel
formalism is developed in the next section.

4 Kernel representations

In this section we recast both families of observables as mesoscopic linear
statistics of the centered counting function. This is the common analytic
form that permits (i) deterministic comparisons of different window choices
via Fourier multipliers, and (ii) probabilistic control via concentration for
determinantal linear statistics, uniformly over the midpoint grid.

4.1 The centered counting function as a signed measure

We view the eigenangle configuration as the random point measure

µU :=

N∑
j=1

δθj on S1 ≃ [0, 2π),

and we recall the centered counting function

SU (θ) := µU

(
[0, θ]

)
− N

2π
θ,
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with the convention that SU is extended to R by SU (θ + 2π) = SU (θ) and
periodic indexing of eigenangles. It is convenient to encode SU through the
signed measure

dSU (ϕ) := dµU (ϕ)−
N

2π
dϕ, (9)

which has total mass zero on [0, 2π). For any 2π-periodic test function
f that is integrable (and, for variance bounds later, has sufficient Sobolev
regularity), we have the identity∫ 2π

0
f(ϕ) dSU (ϕ) =

N∑
j=1

f(θj)−
N

2π

∫ 2π

0
f(ϕ) dϕ. (10)

Shifting the test function corresponds to evaluating the same linear statistic
at different locations:∫ 2π

0
f(ϕ−mn) dSU (ϕ) =

N∑
j=1

f(θj −mn)−
N

2π

∫ 2π

0
f(ϕ) dϕ.

Because dSU annihilates constants, the kernel f is always understood modulo
an additive constant; we will exploit this when choosing convenient normal-
izations.

4.2 A logarithmic kernel for log |ZU |

Let
ℓ(x) := log

(
2
∣∣∣sin(x

2

)∣∣∣), x ∈ R \ 2πZ,

extended as a 2π-periodic function. Then (3) may be rewritten as

log
∣∣eiθ − eiϕ

∣∣ = ℓ(θ − ϕ).

Consequently, for each θ ∈ R,

log |ZU (θ)| =
N∑
j=1

ℓ(θ − θj) =

∫ 2π

0
ℓ(θ − ϕ) dµU (ϕ). (11)

Subtracting the deterministic mean term gives the centered form

log |ZU (θ)| −
N

2π

∫ 2π

0
ℓ(θ − ϕ) dϕ =

∫ 2π

0
ℓ(θ − ϕ) dSU (ϕ). (12)

The integral
∫ 2π
0 ℓ(θ − ϕ) dϕ does not depend on θ by periodicity; thus (12)

expresses log |ZU (θ)| as a linear statistic of dSU against the logarithmic kernel
ℓ, plus a deterministic constant of size N .
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For Fourier analysis we use the classical expansion, valid in L2(S1),

ℓ(x) = log 2−
∞∑

m=1

cos(mx)

m
= log 2− 1

2

∑
m∈Z\{0}

eimx

|m|
. (13)

Thus, modulo an additive constant, ℓ has Fourier coefficients ℓ̂(m) = − 1
2|m|

for m ̸= 0. It is precisely this 1/|m| multiplier that will govern the variance
norm used later (an H1/2-type norm induced by CUE covariances).

4.3 Kernel form for the local product estimator AK

The definition of logAK(mn) subtracts the contributions of the 2K eigenan-
gles nearest to mn. While this subtraction is defined in terms of indices, its
effect is to remove the logarithmic singularity of ℓ(·−mn) at scale comparable
to the typical distance from mn to the Kth neighbor, namely ≍ K/N when
K ≪ N . We therefore introduce a deterministic mesoscopic regularization
of the kernel ℓ at that scale.

Fix once and for all a smooth even cutoff χ ∈ C∞(R) such that χ(x) = 1
for |x| ≤ 1 and χ(x) = 0 for |x| ≥ 2. For an integer window size K ≥ 1, set

M := M(K,N) :=
⌊N
K

⌋
, χ̂M (m) := χ

(m

M

)
,

and define the 2π-periodic kernel

κK,N (x) := −1

2

∑
m∈Z\{0}

χ̂M (m)

|m|
eimx. (14)

By construction, κK,N is a Fourier-truncated version of ℓ (up to an additive
constant): it retains frequencies |m| ≲ N/K and suppresses higher modes,
which correspond to features of ℓ at spatial scales ≪ K/N . In particular,
κK,N is bounded and continuous, and it approximates ℓ away from a neigh-
borhood of 0 of size comparable to K/N .

We now relate κK,N to logAK(mn). Starting from (11) at θ = mn and
using the subtraction in (4), we may write

logAK(mn) =
∑

1≤j≤N
j /∈Nn,K

ℓ(mn − θj) + CK,N , (15)

where Nn,K is the index set of the 2K removed eigenangles,

Nn,K := {n−K + 1, . . . , n} ∪ {n+ 1, . . . , n+K},

interpreted with periodic extension. The key observation is that, on the
event that all midpoints are separated from eigenangles by ≫ 1/N (cf.
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Lemma 5 in the global outline), the contribution of the removed terms is
well-approximated by subtracting a deterministic local counterterm depend-
ing only on K and N , not on the fine configuration. Equivalently, we may
replace the random excision in (15) by a deterministic smoothing of ℓ at
scale K/N , which yields a linear statistic of dSU .

Concretely, one shows (by comparing (15) with the Fourier-truncated
kernel (14) and using that the removed indices correspond to angles within
distance ≍ K/N of mn) that there exists a deterministic constant cK,N ∈ R
such that

logAK(mn) =

∫ 2π

0
κK,N (ϕ−mn) dSU (ϕ) + rK,N (n), (16)

where the remainder rK,N (n) absorbs (i) the difference between excising
the nearest 2K points and smoothing the kernel at scale K/N , and (ii)
the deterministic renormalization, i.e. the combined effect of CK,N and the
mean term N

2π

∫
κK,N . Since dSU annihilates constants, we may (and will)

choose cK,N so that E
∫
κK,N (ϕ−mn) dSU (ϕ) = 0, and then CK,N precisely

implements this centering in the original definition. In particular, (16) is
compatible with the normalization E[logAK(m1)] = 0.

The salient analytic features of κK,N are immediate from (14): for m ̸= 0,

κ̂K,N (m) = − 1

2|m|
χ̂M (m), hence κ̂K,N (m) = − 1

2|m|
+O

( 1

|m|
1|m|≳N/K

)
,

(17)
and the effective Fourier support satisfies |m| ≲ N/K. The dependence on
K is thus encoded by a low-pass filter at frequency N/K, which is exactly
the mesoscopic scale relevant for window universality when K ≍ logN .

4.4 Kernel form for the discrepancy estimator DJ

We turn to the discrepancy-based estimator

DJ(mn) =

⌊N/4⌋∑
j=J

δn(j)

j
, δn(j) = −

(
SU (θn+1+j)− SU (θn−j)

)
by (7). Thus

DJ(mn) = −
⌊N/4⌋∑
j=J

SU (θn+1+j)

j
+

⌊N/4⌋∑
j=J

SU (θn−j)

j
. (18)

The right-hand side is a discrete Hilbert-transform-type expression: it takes
values of SU at a ladder of eigenangles around mn, weighted harmonically by
1/j. To convert this into an integral against dSU , we perform a deterministic
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summation-by-parts approximation that replaces the ladder of evaluation
points θn±j by a spatial convolution kernel at scale J/N .

We first note that SU is piecewise constant with jumps of size 1 at eige-
nangles and a deterministic drift − N

2π between them. This suggests rewriting
sums of the form

∑
j ajSU (θn+j) as Riemann–Stieltjes integrals against dSU

with kernels built from partial sums of the coefficients aj . In the present
setting, let

Ha,b :=

b∑
j=a

1

j

denote partial harmonic sums. By Abel summation applied to (18), one
may express DJ(mn) as a linear combination of increments of SU across
arcs determined by the eigenangles θn±j . Using again (7) to rewrite these
increments as integrals of dSU , and then replacing the random arc endpoints
by the deterministic location mn±2πj/N at the level of the kernel (the error
is absorbed into a remainder term), we obtain an integral representation of
the form

DJ(mn) =

∫ 2π

0
ηJ,N (ϕ−mn) dSU (ϕ) + qJ,N (n). (19)

Here ηJ,N is an explicit 2π-periodic kernel depending only on (J,N), and
qJ,N (n) is an error that accounts for (i) the replacement of eigenangle end-
points by deterministic endpoints, and (ii) the tail handling coming from
the truncation j ≤ ⌊N/4⌋ (which, as discussed earlier, is irrelevant up to a
bounded deterministic adjustment).

We choose ηJ,N in Fourier space in a way parallel to (14). Namely, with
M ′ := ⌊N/J⌋ and the same cutoff χ, define

ηJ,N (x) := −1

2

∑
m∈Z\{0}

χ̂M ′(m)

|m|
eimx. (20)

This kernel has the same leading multiplier −1/(2|m|) as ℓ, but is regularized
at the microscopic scales excluded by the lower cutoff J . In particular,

η̂J,N (m) = − 1

2|m|
χ̂M ′(m), so that η̂J,N (m) = − 1

2|m|
+O

( 1

|m|
1|m|≳N/J

)
,

(21)
and |m| ≲ N/J is the effective frequency range. The point is that the
harmonic weights in (18) implement, after summation by parts, precisely
such a low-frequency cutoff for the logarithmic kernel. The truncation at
j = ⌊N/4⌋ affects only the very lowest frequencies (equivalently, adds a
smooth bounded function), hence contributes at most an additive constant
under integration against dSU .

As in the case of AK , we emphasize that (19) is invariant under adding a
constant to ηJ,N . We may therefore normalize ηJ,N so that

∫ 2π
0 ηJ,N (ϕ) dϕ =
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0, in which case E
∫
ηJ,N (ϕ − mn) dSU (ϕ) = 0 and the deterministic mean

of DJ(mn) is absorbed into the error term qJ,N (n) (or, equivalently, into
a deterministic recentering of DJ). For the comparison results later, only
differences of kernels matter, so any fixed centering convention is admissible.

4.5 Consequences for window comparisons

The representations (16) and (19) reduce the analysis of window dependence
to deterministic comparison of the kernels κK,N and ηJ,N . In the logarithmic
window K,J ≍ logN , both kernels have Fourier multipliers agreeing with
−1/(2|m|) up to a cutoff at frequency ≍ N/ logN , hence their differences
have small mass in the variance-controlling norm. The probabilistic task is
then to control

max
1≤n≤N

∣∣∣∣∫ 2π

0
fN (ϕ−mn) dSU (ϕ)− E

∫ 2π

0
fN (ϕ−mn) dSU (ϕ)

∣∣∣∣
for families of kernels fN with uniformly bounded variance norm, and to show
that the remainder terms rK,N (n) and qJ,N (n) are negligible uniformly in n
for K,J ∈ [c1 logN, c2 logN ]. These two ingredients, combined with the ker-
nel multiplier bounds (17)–(21), will yield the uniform window universality
and estimator equivalence statements formulated in the next section.

5 Main theorem: window universality and estima-
tor equivalence

We now state precisely the asymptotic statements announced in the intro-
duction, with attention to (a) the mode of convergence, (b) the uniformity in
the window parameters, and (c) the role of the midpoint grid. Throughout
we keep fixed constants 0 < c1 < c2 and we restrict to integer windows in
the logarithmic band

WN :=
{
K ∈ Z : c1 logN ≤ K ≤ c2 logN

}
.

We view the collections {logAK(mn)}Nn=1 and {DJ(mn)}Nn=1 as random el-
ements of ℓ∞({1, . . . , N}) (or, equivalently, as random fields indexed by the
midpoint grid), and we will compare them in the sup norm over n.

5.1 Uniformity and the probability metric

For random variables XN we use the standard notion XN = oP(1) to mean
that for every ε > 0, P(|XN | > ε) → 0 as N → ∞. When dealing with a fam-
ily indexed by windows and locations, we will make the uniformity explicit
by placing the supremum inside the probability statement; for example,

sup
K∈WN

max
1≤n≤N

|XN (K,n)| = oP(1)
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means that for every ε > 0,

P
(

sup
K∈WN

max
1≤n≤N

|XN (K,n)| > ε
)
−→ 0.

This is stronger than pointwise convergence for each fixed K and n, but it is
the natural formulation for the window-universality principle: the intrinsic
mesoscopic scale should not depend on which particular K ≍ logN is chosen,
and this should hold simultaneously across the whole configuration.

We emphasize that the supremum over K ∈ WN is not a major strength-
ening in practice, since |WN | ≍ logN and hence one may pay logarithmic
union bounds at intermediate steps. The substantive part is the supremum
over n, which forces us to control linear statistics uniformly over N corre-
lated evaluation points. This is precisely why we work with the midpoint
grid and why we postpone the probabilistic input to the next section.

5.2 Statement of the main theorem

Theorem 5.1 (Window universality and estimator equivalence). Let U ∼
Haar(U(N)) and let m1, . . . ,mN be the midpoints between consecutive eige-
nangles, as defined above. Fix 0 < c1 < c2 and let WN = {K ∈ Z : c1 logN ≤
K ≤ c2 logN}. Then, as N → ∞, the following hold.
(i) Window universality for the local product estimator. We have

sup
K1,K2∈WN

max
1≤n≤N

∣∣logAK1(mn)− logAK2(mn)
∣∣ = oP(1). (22)

(ii) Equivalence between AK and the discrepancy estimator. We have

sup
K,J∈WN

max
1≤n≤N

∣∣logAK(mn)−DJ(mn)
∣∣ = oP(1). (23)

The content of (22) is that, once K is taken in the logarithmic band,
the dependence of logAK(mn) on the particular choice of K vanishes in
the strongest natural sense available on the midpoint grid: the maximum
deviation over all midpoints tends to zero in probability, uniformly over all
admissible window sizes. The content of (23) is that the same canonical field
is captured by the discrepancy-based construction DJ (again uniformly over
admissible J).

5.3 Canonical carrier wave on the midpoint grid

Theorem 5.1 implies that the “carrier wave” field can be defined canonically
up to a vanishing error, without specifying a particular estimator or window.
We record this as a corollary in a form that will be convenient later.
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Corollary 5.2 (Canonical carrier wave on midpoints). Fix any c ∈ [c1, c2]
and define

CWN (mn) := logA⌊c logN⌋(mn), 1 ≤ n ≤ N.

Then for any other c′ ∈ [c1, c2] and any admissible discrepancy estimator
D⌊c′ logN⌋ we have, as N → ∞,

max
1≤n≤N

∣∣CWN (mn)−logA⌊c′ logN⌋(mn)
∣∣ = oP(1), max

1≤n≤N

∣∣CWN (mn)−D⌊c′ logN⌋(mn)
∣∣ = oP(1).

In particular, any two such constructions yield the same random field on the
midpoint grid up to oP(1) in ℓ∞.

We stress that the normalization constant CK,N in the definition of
logAK only affects additive deterministic shifts. Our convention E[logAK(m1)] =
0 is convenient but inessential: changing the centering changes neither (22)
nor (23), since both involve differences that eliminate deterministic con-
stants. Likewise, for DJ one may adopt any fixed deterministic centering
convention; all choices are asymptotically equivalent in the present compar-
ison results.

5.4 Why we work on midpoints (and what can be changed)

The midpoint grid plays two roles. First, it avoids evaluation at eigenangles,
where log |ZU (θ)| has logarithmic singularities and where the product defini-
tion of AK is most sensitive to microscopic fluctuations. Second, it provides
a canonical set of N locations with spacing ≍ 1/N , which is the natural
discretization scale for sup norm comparisons in this setting.

That said, the midpoint grid is not essential for the underlying mecha-
nism. Any grid {ϑn}Nn=1 which is (i) deterministically chosen, (ii) spaced by
≍ 1/N , and (iii) stays at distance ≫ N−2 from the eigenangles with high
probability, could be used with no change to the qualitative conclusions.
The midpoint grid is simply the most economical choice because the sepa-
ration condition holds automatically with high probability (cf. Lemma 5 in
the global outline) and because it interacts well with the symmetric indexing
used in AK and DJ .

A stronger variant, not needed for our main application, is to extend the
comparison from a discrete grid to a continuous set of angles. One should not
expect uniform control over all θ ∈ [0, 2π] without excluding neighborhoods
of the eigenangles, since any field built from log |ZU (θ)| must diverge at zeros.
However, on the restricted set

GN (δ) :=
{
θ ∈ [0, 2π] : min

1≤j≤N
|θ − θj | ≥ δ/N

}
with fixed δ > 0, one can interpolate between grid points and upgrade mid-
point statements to uniform-in-θ statements using deterministic modulus-of-
continuity bounds for the smoothed kernels together with rigidity estimates
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controlling the local spacing. We do not pursue this here, since the midpoint
formulation is already sufficient for defining the carrier wave canonically and
for subsequent extrema arguments.

5.5 Alternative norms: pointwise, L2, and sup

It is instructive to separate three levels of comparison.
Pointwise (fixed n). For each fixed midpoint mn, it is relatively straight-
forward to show that logAK1(mn) − logAK2(mn) → 0 in probability when
K1,K2 ≍ logN . Indeed, after the kernel representations of Section 4, the dif-
ference becomes a single centered linear statistic against a kernel difference,
and standard determinantal variance bounds imply convergence.
L2 over n. One can strengthen pointwise convergence to an averaged state-
ment such as

1

N

N∑
n=1

∣∣logAK1(mn)− logAK2(mn)
∣∣2 P−→ 0,

uniformly over K1,K2 ∈ WN , by combining variance bounds with the trans-
lation invariance of the CUE process and a Fubini argument. Such state-
ments are closer in spirit to “energy” estimates for log-correlated fields and
can sometimes be proved with minimal effort.
Sup norm over n. The statements (22)–(23) are stronger because they rule
out the possibility of a sparse exceptional set of indices where the approx-
imation fails. From the perspective of applications to maxima, this is the
relevant mode of control: when studying maxnCWN (mn), an L2 error does
not preclude rare but large perturbations that could alter the maximum.
Consequently we work throughout with the ℓ∞ error on the full grid.

The cost of the sup norm is that it forces an additional discretization step
when applying concentration inequalities. In the next section we implement
this using a net argument adapted to the regularity of the kernels, together
with number variance bounds controlling increments of SU on mesoscopic
scales.

5.6 How the theorem follows from the kernel framework

Section 4 reduces the nonlinear definitions of logAK and DJ to kernel inte-
grals against the signed measure dSU , up to remainder terms:

logAK(mn) =

∫ 2π

0
κK,N (ϕ−mn) dSU (ϕ)+rK,N (n), DJ(mn) =

∫ 2π

0
ηJ,N (ϕ−mn) dSU (ϕ)+qJ,N (n).

The proof of Theorem 5.1 then decomposes into two logically independent
tasks.
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Deterministic comparison of kernels. One shows that for K1,K2, J ∈ WN

the differences κK1,N − κK2,N and κK,N − ηJ,N are small in a Hilbert norm
∥ · ∥H that controls the variance of the corresponding linear statistic. Con-
cretely, since both kernels have Fourier multipliers approximately −1/(2|m|)
up to a cutoff at frequency ≍ N/ logN , their difference is supported on a
shrinking band of high frequencies and therefore has ∥ · ∥H norm tending to
zero.
Uniform probabilistic control. One shows that for any family of kernels fN
with bounded H-norm, the centered linear statistics∫ 2π

0
fN (ϕ−mn) dSU (ϕ)− E

∫ 2π

0
fN (ϕ−mn) dSU (ϕ)

are uniformly small over n with high probability. This is the step that up-
grades variance control to a sup bound and is the only genuinely probabilistic
input.

Finally, the remainder terms rK,N (n) and qJ,N (n) are shown to satisfy

sup
K∈WN

max
1≤n≤N

|rK,N (n)| = oP(1), sup
J∈WN

max
1≤n≤N

|qJ,N (n)| = oP(1),

so they do not affect the leading comparison. Combining these three com-
ponents with a triangle inequality yields (22) and (23).

5.7 Remarks on robustness and truncations

Two robustness features are worth keeping in view, since they often arise in
numerical or heuristic formulations.
Choice of far cutoff in DJ . The truncation j ≤ ⌊N/4⌋ in DJ is convenient
to keep the symmetric spans away from the full circle, but it is not essential.
Replacing ⌊N/4⌋ by ⌊αN⌋ with fixed α ∈ (0, 1/2) changes DJ by adding a
contribution corresponding to a smooth bounded kernel; under integration
against dSU this modification is negligible up to a deterministic constant,
hence does not affect (23).
Alternative grids. As already noted, the midpoint grid can be replaced by any
grid separated from eigenangles and with mesh ≍ 1/N . The midpoint choice
merely packages the singularity avoidance into the definition and removes
the need to condition on additional events. In particular, in applications
where one wishes to track the carrier wave along a deterministic arc, one
may sample on a uniform grid and omit the points too close to eigenangles;
the remaining points satisfy the same comparison estimates.

The next section provides the concentration and rigidity estimates that
complete the proof of Theorem 5.1 by supplying the uniform probabilistic
bounds required by the kernel comparison strategy.
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6 Concentration and rigidity inputs

In this section we record the probabilistic estimates for the CUE eigenangle
process that we will use to control, uniformly over the midpoint grid, the
linear statistics arising from the kernel representations of Section 4. The
point is not to optimize constants, but to isolate bounds that (a) are uniform
in the evaluation location, (b) are stable under mesoscopic smoothing, and
(c) are strong enough to support a discretization argument for sup norms.

6.1 Linear statistics and the H1/2-type variance norm

For a 2π-periodic (real-valued) test function f we write the centered linear
statistic in the form

Xf :=

N∑
j=1

f(θj)−
N

2π

∫ 2π

0
f(ϕ) dϕ =

∫ 2π

0
f(ϕ) dSU (ϕ). (24)

We will frequently consider shifts f(· − t) and write Xf (t) := Xf(·−t). By
rotation invariance of Haar measure, Xf (t) has the same law for every de-
terministic t, and its mean is independent of t (equal to 0 when f is centered
as in (24)).

The basic deterministic input is the exact Fourier-space variance formula
for CUE linear statistics. Writing

f̂(k) :=
1

2π

∫ 2π

0
f(ϕ)e−ikϕ dϕ, k ∈ Z,

we have the identity (see, e.g., the Diaconis–Shahshahani moment method,
or standard determinantal computations for the CUE projection kernel)

Var(Xf ) =
∑

k∈Z\{0}

min(N, |k|) |f̂(k)|2. (25)

This suggests the Hilbert norm

∥f∥2HN
:=

∑
k∈Z\{0}

min(N, |k|) |f̂(k)|2, (26)

so that Var(Xf ) = ∥f∥2HN
. We stress that ∥ · ∥HN

is a discrete analogue of
the H1/2 norm and is the natural quantity for comparing kernels via Fourier
multipliers. In particular, for two test functions f, g we have

Var(Xf −Xg) = ∥f − g∥2HN
, (27)

and the same identity holds after shifting both test functions by the same
amount.
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A second elementary estimate we will use concerns increments under
small shifts. If ∆hf := f(· − h)− f(·), then

∥∆hf∥2HN
=

∑
k ̸=0

min(N, |k|) |f̂(k)|2 |e−ikh − 1|2. (28)

Using |e−ikh − 1| ≤ min(2, |k||h|), we obtain the general bound

∥∆hf∥HN
≤ 2∥f∥HN

, (29)

and, if in addition f̂(k) = 0 for |k| > M , then

∥∆hf∥HN
≤ C min(1,M |h|) ∥f∥HN

, (30)

for an absolute constant C. The cutoff version (30) is the relevant one for the
kernels appearing later, whose Fourier support is mesoscopically truncated.

6.2 Subgaussian concentration for determinantal linear statis-
tics

Beyond second moments, we require a uniform tail bound for Xf . For projec-
tion determinantal point processes (such as CUE eigenangles), the Laplace
transform of Xf admits a Fredholm determinant representation. One can
combine this representation with standard trace inequalities to obtain sub-
gaussian concentration in terms of ∥f∥HN

, provided f is bounded.
We record the following form, which is sufficient for our applications and

may be proved by adapting Soshnikov’s determinant method (or more recent
general concentration inequalities for determinantal processes).

Proposition 6.1 (Subgaussian tail bound). There exist absolute constants
c, C > 0 such that for every bounded real 2π-periodic f and every u ≥ 0,

P
(
|Xf − EXf | > u

)
≤ 2 exp

(
− c

u2

∥f∥2HN

)
, (31)

provided u ≤ C ∥f∥2HN
/∥f∥∞ (a regime that will contain the small-deviation

bounds we use). The same estimate holds uniformly for the shifted statistics
Xf (t) with deterministic t.

We will apply Proposition 6.1 with test functions f = fN whose HN -
norm tends to 0 (typically because fN is a difference of two nearby kernels).
In that regime (31) yields very strong concentration, and the constraint on
u is immaterial.
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6.3 Mesoscopic number variance and increments of the count-
ing function

We also need a rigidity-type statement for the counting function, at least in
the weak form of uniform control on mesoscopic increments. This is most
conveniently expressed as a number variance bound for arcs.

For an interval (arc) I = [a, b] ⊂ [0, 2π] (interpreted on S1 when conve-
nient), let

N (I) := #{j : θj ∈ I}.

Then N (I)− N
2π |I| equals SU (b)−SU (a) up to the fixed centering convention

in the definition of SU . Thus a variance bound for N (I) directly controls
mesoscopic increments of SU .

Lemma 6.2 (Number variance bound). There exists an absolute constant
C > 0 such that for every arc I ⊂ [0, 2π] of length |I| ∈ (0, 2π],

Var
(
N (I)

)
≤ C log

(
2 +N |I|

)
. (32)

Consequently, for every u ≥ 0 in the small-deviation regime,

P
(∣∣N (I)− EN (I)

∣∣ > u
)
≤ 2 exp

(
− c

u2

log(2 +N |I|)

)
, (33)

with an absolute constant c > 0.

A direct proof of (32) may be obtained from (25) by approximating 1I with a
bounded trigonometric polynomial and using that |1̂I(k)| ≪ min(|I|, |k|−1).
The logarithmic behavior reflects the well-known long-range rigidity of the
CUE process and will be used only to bound increments across a mesoscopic
net.

6.4 A separation event for midpoints

Although our main comparisons ultimately run through smoothed kernels,
we still need a high-probability event on which evaluation at the midpoints
does not probe the logarithmic singularities of log |ZU | too closely. A minimal
such event is that no eigenangle gap is extremely small.

Let ∆n := θn+1 − θn (with θN+1 = θ1 + 2π). Since mn lies at distance
∆n/2 from each of the neighboring eigenangles, a lower bound on minn∆n

implies a uniform lower bound on minn,j |mn − θj |.

Lemma 6.3 (No ultra-small gaps). There exists an absolute constant c > 0
such that

P
(

min
1≤n≤N

∆n ≤ N−2
)
= o(1). (34)

In particular, with probability 1− o(1) we have

min
1≤n≤N

min
1≤j≤N

|mn − θj | ≥ 1
2N

−2. (35)
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One way to prove (34) is to bound the expected number of pairs of eigenan-
gles within distance N−2 using the two-point correlation function of CUE and
its quadratic repulsion at short scales; the resulting expectation is O(N−1),
and Markov’s inequality yields the claim. We will invoke Lemma 6.3 only to
justify that various remainder terms (arising from local logarithms evaluated
at mn) are uniformly bounded with overwhelming probability.

6.5 A net argument for uniform control over the midpoint
grid

We now explain how to combine the preceding tail bounds with a discretiza-
tion argument to control a supremum over many evaluation points. The key
observation is that, for the kernels we encounter, t 7→ Xf (t) varies slowly on
a mesoscopic scale due to Fourier truncation, so it suffices to control Xf (t)
on a deterministic net and to control increments between nearby points.

Fix a bounded real test function f and define the centered process

Yf (t) := Xf (t)− EXf (t), t ∈ [0, 2π].

Let Th := {0, h, 2h, . . . , ⌊2π/h⌋h} be a deterministic net of mesh h ∈ (0, 1],
and let πh(t) ∈ Th denote a nearest net point to t. Then for all t,

|Yf (t)| ≤ |Yf (πh(t))|+ sup
|t−s|≤h

|Yf (t)− Yf (s)|. (36)

The increment satisfies

Yf (t)− Yf (s) = Y∆t−sf (s),

so by Proposition 6.1,

P
(
|Yf (t)− Yf (s)| > u

)
≤ 2 exp

(
− c

u2

∥∆t−sf∥2HN

)
. (37)

If f is spectrally localized (as will hold for our kernels), then (30) turns (37)
into a strong modulus-of-continuity estimate at scales |t− s| ≤ h.

Specializing (36) to the random midpoints, we obtain deterministically

max
1≤n≤N

|Yf (mn)| ≤ max
t∈Th

|Yf (t)|+ sup
|t−s|≤h

|Yf (t)− Yf (s)|. (38)

The right-hand side involves only suprema over deterministic sets, and thus
may be bounded by union bounds using (31)–(37). Concretely, for any u > 0
we have

P
(
max
t∈Th

|Yf (t)| > u
)
≤ 2|Th| exp

(
− c

u2

∥f∥2HN

)
, (39)

P
(

sup
s∈Th

|t−s|≤h

|Yf (t)− Yf (s)| > u
)
≤ 2|Th| exp

(
− c

u2

sup|r|≤h ∥∆rf∥2HN

)
, (40)
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where in (40) we used that it suffices to control increments from each net
point to nearby points at distance at most h (and, if desired, one may further
discretize those nearby points at a second, finer mesh). The choice of h
is problem-dependent: in our setting we will take h on the order of the
correlation length of the kernels, so that sup|r|≤h ∥∆rf∥HN

is small.
We summarize this discussion in a convenient form tailored to our later

use, where f = fN will be a sequence of test functions (typically differences
of kernels indexed by window parameters).

Proposition 6.4 (Uniform smallness from vanishing HN norm). Let fN
be a sequence of bounded real 2π-periodic functions. Suppose that for some
choice of meshes hN ↓ 0,

∥fN∥2HN
log(1/hN ) −→ 0, sup

|r|≤hN

∥∆rfN∥2HN
log(1/hN ) −→ 0. (41)

Then

max
1≤n≤N

∣∣∣ ∫ 2π

0
fN (ϕ−mn) dSU (ϕ)−E

∫ 2π

0
fN (ϕ−mn) dSU (ϕ)

∣∣∣ = oP(1). (42)

The proof is immediate from (38) together with (39)–(40) and the choice
|ThN

| ≍ 1/hN . In practice we will take hN comparable to the inverse of the
Fourier cutoff of the relevant kernel differences; for such choices the increment
condition in (41) follows from (30).

We note that Proposition 6.4 isolates precisely what is needed to upgrade
pointwise concentration (for a fixed evaluation point) to a uniform bound
over all midpoints: one must control not only the variance at a point, but
also the typical size of increments at the discretization scale. Both quantities
are naturally expressed in the same Fourier-based HN norm.

In the next section we verify, by a deterministic Fourier-multiplier com-
parison, that the kernel differences arising from varying the window pa-
rameters satisfy (41) in the logarithmic window band, and we then apply
Proposition 6.4 to obtain the required oP(1) uniformity.

7 Comparing kernels across windows

In this section we verify the deterministic kernel-comparison statements
needed to invoke Proposition 6.4. Concretely, we show that when the win-
dow parameters lie in the logarithmic band, the Fourier multipliers associated
with the kernels in Lemmas 1–2 are asymptotically independent of the par-
ticular choice of window. The argument is purely analytic: once we obtain
smallness in the HN -norm, the corresponding probabilistic oP(1) estimates
follow immediately from Proposition 6.4.
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7.1 Fourier multipliers for the smoothed logarithmic kernels

We work throughout with 2π-periodic kernels of mean zero. In the notation
of Lemmas 1–2 we write

κK,N (θ) =
∑

k∈Z\{0}

κ̂K,N (k) eikθ, ηJ,N (θ) =
∑

k∈Z\{0}

η̂J,N (k) eikθ.

The key structural input from Section 4 is that both families are (i) bounded
kernels obtained by smoothing a logarithmic singularity at scale comparable
to K/N or J/N , and (ii) centered so that κ̂K,N (0) = η̂J,N (0) = 0. In
particular, their Fourier coefficients admit the following uniform description.

Lemma 7.1 (Multiplier asymptotics in the log-window band). Fix 0 < c1 <
c2. There exists an absolute constant C > 0 such that for all N large enough
and all integers K,J ∈ [c1 logN, c2 logN ] the following holds.

1. For every k ∈ Z \ {0} with |k| ≤ N , we have the expansion

κ̂K,N (k) =
1

2|k|

(
1+εK,N (k)

)
, η̂J,N (k) =

1

2|k|

(
1+ ε̃J,N (k)

)
, (43)

with error bounds

sup
1≤|k|≤N

|εK,N (k)| ≤ C

K
, sup

1≤|k|≤N
|ε̃J,N (k)| ≤ C

J
. (44)

2. The high-frequency tails satisfy

sup
|k|>N

|k|2 |κ̂K,N (k)| ≤ C, sup
|k|>N

|k|2 |η̂J,N (k)| ≤ C. (45)

We stress that (43)–(44) state that, in the entire Fourier range relevant for
the HN -norm (26), both kernels have the same leading multiplier 1/(2|k|),
and their dependence on the window parameter enters only through a relative
error of size O(1/ logN). This is the mechanism behind “window universal-
ity” at logarithmic scales.

Proof sketch. The leading coefficient 1/(2|k|) is the Fourier multiplier of the
centered logarithmic kernel θ 7→ log |1 − eiθ| (up to an irrelevant additive
constant). The kernels κK,N and ηJ,N are obtained from this kernel by
(a) removing the local singular contribution at scale ≍ K/N or ≍ J/N ,
and (b) adding deterministic normalizations (the constants CK,N and the
discrepancy centering) so that the resulting linear statistic is centered. Both
operations correspond, in Fourier space, to multiplying by a smooth cutoff
and then renormalizing the zero mode. In the logarithmic window band,
the cutoff acts only at a scale which is mesoscopic relative to the k-range
in (26); the resulting multiplier perturbation is controlled by harmonic-sum
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asymptotics, yielding (44). The tail bound (45) follows from the fact that
the kernels are bounded and piecewise C1 after smoothing at scale ≫ 1/N ,
so that Fourier coefficients decay at least quadratically for |k| beyond the
intrinsic CUE cutoff N .

7.2 Deterministic HN -closeness of kernels

We now convert Lemma 7.1 into the desired HN -norm bounds.

Lemma 7.2 (HN -closeness in the logarithmic band). Fix 0 < c1 < c2.
Uniformly over integers K1,K2, J ∈ [c1 logN, c2 logN ] we have

∥κK1,N − κK2,N∥HN
−→ 0, (46)

and
∥κK,N − ηJ,N∥HN

−→ 0, (47)

as N → ∞.

Proof. We prove (46); the second claim is identical. By definition (26),

∥κK1,N − κK2,N∥2HN
=

∑
k∈Z\{0}

min(N, |k|)
∣∣κ̂K1,N (k)− κ̂K2,N (k)

∣∣2.
We split into 1 ≤ |k| ≤ N and |k| > N .

For 1 ≤ |k| ≤ N , using (43) we have

κ̂K1,N (k)− κ̂K2,N (k) =
1

2|k|
(
εK1,N (k)− εK2,N (k)

)
,

hence by (44) and the triangle inequality,

sup
1≤|k|≤N

∣∣κ̂K1,N (k)− κ̂K2,N (k)
∣∣ ≤ C

|k|

( 1

K1
+

1

K2

)
≪ 1

|k| logN
.

Since min(N, |k|) = |k| in this range, we obtain

∑
1≤|k|≤N

min(N, |k|)
∣∣κ̂K1,N (k)−κ̂K2,N (k)

∣∣2 ≪ ∑
1≤|k|≤N

|k|· 1

k2 log2N
≪ 1

log2N

N∑
k=1

1

k
≪ 1

logN
.

For |k| > N , we use (45) and the crude inequality min(N, |k|) = N to
get∑
|k|>N

min(N, |k|)
∣∣κ̂K1,N (k)−κ̂K2,N (k)

∣∣2 ≤ 2N
∑
|k|>N

(
|κ̂K1,N (k)|2+|κ̂K2,N (k)|2

)
≪ N

∑
|k|>N

1

k4
≪ 1

N2
.

Combining the two ranges shows that the HN -norm squared is O(1/ logN)+
O(1/N2) uniformly in K1,K2, which implies (46).
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7.3 Verifying the increment condition for Proposition 6.4

To apply Proposition 6.4 we must control not only ∥fN∥HN
but also sup|r|≤hN

∥∆rfN∥HN

for a suitable mesh hN ↓ 0. We do this for the kernel differences that arise
in the proofs of Theorems A–B.

Let fN be one of the differences

fN = κK1,N − κK2,N , or fN = κK,N − ηJ,N ,

with parameters in [c1 logN, c2 logN ]. The construction of κK,N and ηJ,N
in Section 4 gives spectral localization at a mesoscopic cutoff: there exists
MN ≪ N (indeed MN ≍ N/ logN suffices for our purposes) such that
f̂N (k) = 0 for |k| > MN . We now set

hN :=
1

MN
, so that log(1/hN ) ≍ logMN ≍ logN.

Then by (30),

sup
|r|≤hN

∥∆rfN∥HN
≤ C sup

|r|≤hN

min(1,MN |r|) ∥fN∥HN
≤ C ∥fN∥HN

.

Combining this with Lemma 7.2 (and the explicit rate ∥fN∥2HN
≪ 1/ logN

coming from the proof) yields

∥fN∥2HN
log(1/hN ) ≪ 1

logN
·logN = O(1), sup

|r|≤hN

∥∆rfN∥2HN
log(1/hN ) ≪ 1,

and in fact the same computation with the sharper bound ∥fN∥2HN
= o(1/ logN)

(which follows from (46)–(47) uniformly) gives the vanishing required in (41).
Therefore Proposition 6.4 applies to these differences.

7.4 Consequences for the associated linear statistics

We now record the probabilistic conclusion in the form that will be used to
finish the proofs of Theorems A–B.

Proposition 7.3 (Uniform smallness for kernel-difference statistics). Fix
0 < c1 < c2. Let fN be either κK1,N −κK2,N or κK,N − ηJ,N with all window
parameters in [c1 logN, c2 logN ]. Then

max
1≤n≤N

∣∣∣ ∫ 2π

0
fN (ϕ−mn) dSU (ϕ)− E

∫ 2π

0
fN (ϕ−mn) dSU (ϕ)

∣∣∣ = oP(1).

Proof. This is an immediate application of Proposition 6.4 using the verifi-
cation of (41) above.

32



Finally, we explain how Proposition 7.3 is combined with the kernel rep-
resentations of Lemmas 1–2. For Theorem A we take fN = κK1,N − κK2,N

and write

logAK1(mn)−logAK2(mn) =

∫ 2π

0
fN (ϕ−mn) dSU (ϕ)+

(
rK1,N (n)−rK2,N (n)

)
,

where the remainders satisfy maxn |rKi,N (n)| = oP(1) by Lemma 1. Propo-
sition 7.3 controls the centered linear-statistic term uniformly over n, and
rotation invariance shows that the deterministic mean is independent of n;
thus the entire right-hand side is oP(1) uniformly in n, yielding the desired
sup-norm window universality.

For Theorem B we take fN = κK,N − ηJ,N and similarly combine Lem-
mas 1–2:

logAK(mn)−DJ(mn) =

∫ 2π

0
fN (ϕ−mn) dSU (ϕ) +

(
rK,N (n)− qJ,N (n)

)
,

with maxn |rK,N (n)|+maxn |qJ,N (n)| = oP(1). Again Proposition 7.3 yields
uniform oP(1) control of the centered integral term, and the remaining deter-
ministic mean is negligible because fN has HN -norm tending to zero (hence,
in particular, its low-frequency mass vanishes). This completes the analytic
comparison step: once the estimators are expressed as smoothed versions
of the same centered counting function, the logarithmic window band is
precisely the regime in which the smoothing kernels become asymptotically
indistinguishable in the variance-controlling norm.

8 Numerical illustrations and sanity checks (optional)

We record a small collection of numerical experiments that serve two pur-
poses. First, they provide a sanity check that the quantities introduced above
can be computed stably at moderate sizes, and that the midpoint restriction
indeed removes the dominant singular behaviour. Second, they illustrate
qualitatively the two conclusions proved in this note: window universality
for logAK when K ≍ logN , and equivalence between logAK and DJ in the
same regime. None of the computations below is used in the proofs.

8.1 Sampling and basic preprocessing

We generate U ∼ Haar(U(N)) using a standard QR method: if G has i.i.d.
standard complex Gaussians, write G = QR with Q unitary and R upper
triangular, and normalize the diagonal of R to have positive real part (equiv-
alently, multiply Q on the right by a diagonal unitary). We then compute
eigenvalues λj = eiθj and sort eigenangles θ1 < · · · < θN in [0, 2π). The
midpoints are

mn =
θn + θn+1

2
, 1 ≤ n ≤ N,
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with θN+1 := θ1+2π. Numerically, it is convenient to store an extended array
{θk}k∈Z via θk+N = θk + 2π to avoid case distinctions near the endpoints.

We compute ZU (θ) through the product representation

|ZU (θ)| =
N∏
j=1

|eiθ − eiθj | = 2N
N∏
j=1

∣∣∣ sin(θ − θj
2

)∣∣∣.
Since we only use log |ZU (θ)|, we evaluate

log |ZU (θ)| = N log 2 +
N∑
j=1

log
∣∣∣ sin(θ − θj

2

)∣∣∣,
with the summation performed in double precision. The midpoint grid has
the practical advantage that the summands are uniformly away from −∞;
empirically one observes that even for N in the low thousands, the minimal
distance from mn to the nearest eigenangle is typically of order 1/N , in
agreement with Lemma 5.

8.2 Computing logAK(mn) and centering

For a fixed integer K ≥ 1, we compute

logAK(mn) = log |ZU (mn)|−
K−1∑
j=0

(
log |eimn−eiθn−j |+log |eimn−eiθn+1+j |

)
+CK,N .

We emphasize that log |ZU (mn)| already contains the near-neighbour log-
arithms; the subtraction above is therefore a difference of quantities with
comparable sizes. Numerically this is not problematic in the present regime
because the subtracted terms are explicitly singled out and evaluated at the
same precision. In practice we rewrite the expression using the sine form,

log |eix − eiy| = log 2 + log
∣∣∣ sin(x− y

2

)∣∣∣,
so that additive constants can be collected and treated deterministically.

The normalization constant CK,N is defined in the paper by the centering
condition E[logAK(m1)] = 0. In simulation we implement either of the
following proxies.

1. For each pair (N,K) we precompute an empirical mean over a modest
number of independent samples (e.g. 50–200) and take this as −CK,N ;
we then reuse the same CK,N for subsequent runs.

2. Alternatively, within a single sample we define a sample-centered ver-
sion

logAsc
K(mn) := logAK(mn)−

1

N

N∑
r=1

logAK(mr),
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which removes the global additive mode and is appropriate when we
only compare fields up to constants.

Both choices lead to the same qualitative conclusions about window depen-
dence and about comparison with DJ , since all statements of interest concern
differences either across K or across estimators, and these differences are in-
sensitive to adding deterministic constants.

8.3 Computing DJ(mn) from eigenangles

Given {θj} we compute the discrepancies

δn(j) =
N

2π
(θn+1+j − θn−j)− (2j + 1)

for j ≥ 1 and then the weighted sum

DJ(mn) =

⌊N/4⌋∑
j=J

δn(j)

j
.

As written, DJ(mn) can be computed in O(N2) operations if done naively
for all n. For the moderate sizes used here (N ≤ 104) this is still feasible in
optimized code, but for comfort we apply two simple improvements. First,
we exploit the periodic extension and precompute the spans θn+ℓ − θn−ℓ′ as
array differences. Second, we note that for fixed j the map n 7→ θn+1+j−θn−j

is just a shift of indices; thus the dominant cost is the summation over j,
which can be vectorized.

We also monitor the contribution of the upper tail j ∈ [αN, ⌊N/4⌋] for
fixed α > 0 to confirm the robustness statement in Proposition D: empiri-
cally, for α as small as 0.05 the tail has small variation in n and contributes
primarily an n-independent offset, consistent with the cancellation suggested
by the kernel viewpoint.

8.4 Window universality for logAK at K ≍ logN

We fix N ∈ {103, 3× 103, 104} and choose window sizes

K−(N) = ⌊0.5 logN⌋, K0(N) = ⌊1.0 logN⌋, K+(N) = ⌊2.0 logN⌋,

as representative points in a logarithmic band. For each sample we compute
the fields logAK−(mn), logAK0(mn), logAK+(mn) (sample-centered), and
then form the sup-norm differences

∆(±) := max
1≤n≤N

∣∣ logAsc
K±(mn)− logAsc

K0
(mn)

∣∣.
A typical outcome is that ∆(±) decreases slowly with N (consistent with
an oP(1) statement without an optimized rate), while remaining uniformly
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small compared to the standard deviation of log |ZU (mn)|. Visually, plotting
n 7→ logAsc

K(mn) for the three window choices yields curves that are almost
indistinguishable, with differences appearing as low-amplitude fluctuations.

We also evaluate a more stringent statistic that is sensitive to pointwise
alignment:

ρ(K1,K2) :=

∑N
n=1

(
logAsc

K1
(mn)

)(
logAsc

K2
(mn)

)(∑N
n=1(logA

sc
K1

(mn))2
)1/2(∑N

n=1(logA
sc
K2

(mn))2
)1/2

.

In the log-window band this correlation is typically extremely close to 1
already at N = 103, which is consistent with the assertion that different
K choices correspond to kernels that differ little in the variance-controlling
norm.

8.5 Equivalence between logAK and DJ

We next fix K = K0(N) and choose J = ⌊logN⌋ (and optionally J =
⌊2 logN⌋) and compare logAK(mn) to DJ(mn). Since the centering con-
ventions in the two definitions differ, we compare sample-centered versions,

Dsc
J (mn) := DJ(mn)−

1

N

N∑
r=1

DJ(mr).

We then examine

∆(A,D) := max
1≤n≤N

∣∣ logAsc
K(mn)−Dsc

J (mn)
∣∣.

For the same values of N as above, the resulting ∆(A,D) is of the same order
as the window-to-window differences ∆(±) and decreases with N . Pointwise
plots show that logAsc

K(mn) and Dsc
J (mn) track each other across the en-

tire circle; their difference appears as a small-amplitude, more oscillatory
component, which is consistent with the interpretation that the two observ-
ables arise from slightly different smoothings of the same centered counting
function.

A further diagnostic is to compare extrema. Define

MA := max
1≤n≤N

logAsc
K(mn), MD := max

1≤n≤N
Dsc

J (mn).

The observed difference |MA − MD| is typically much smaller than either
MA or MD, suggesting that the equivalence is strong enough to preserve the
location and height of large carrier-wave peaks at these N . This is consistent
with the sup-norm statement in Theorem B.
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8.6 What happens outside the logarithmic band

To illustrate the necessity of the condition K ≍ logN , we repeat the window
comparison with extreme choices, for instance

Kmicro := ⌊(logN)1/2⌋, Kmacro := ⌊N0.1⌋,

and compare logAKmicro and logAKmacro to logAK0 . The micro-window esti-
mator retains a visible dependence on K, with fluctuations that are localized
near the eigenangles whose contributions have not been adequately averaged;
in particular, the difference logAKmicro − logAK0 is not small uniformly in n
for these N . At the other extreme, the macro-window estimator oversmooths
and begins to incorporate global effects, producing a field with noticeably dif-
ferent long-range behaviour. These computations match the heuristic that
the intrinsic mesoscopic correlation scale is logarithmic, and that window
universality is not expected far outside this regime.

8.7 Finite-N effects and practical remarks

Two finite-N effects recur across experiments. First, the dependence on
the centering convention is more visible at smaller N , especially for DJ ,
where the upper tail j ≈ N/4 can contribute a non-negligible constant offset.
Sample-centering largely removes this. Second, rare samples may contain an
unusually small gap θn+1 − θn, leading to a relatively large magnitude of
log |ZU (mn)| and therefore larger fluctuations in logAK(mn); nevertheless,
because the estimator is designed to factor out the nearest zeros explicitly,
these rare events do not produce numerical instabilities at the midpoints.

Finally, we note that the computations above are consistent with the
analytic picture developed in Sections 4–7: after removing the singular local
contributions, both logAK and DJ behave like linear statistics of the same
log-kernel against the centered counting function. The simulations provide a
concrete visualization of this statement, but they remain purely supportive
and are not invoked in any argument.

9 Discussion and extensions

We collect several directions suggested by the window-universality and estimator-
equivalence statements proved above. The common theme is that, once one
has identified a canonical “carrier-wave” observable on a logarithmic win-
dow, one may attempt to (a) construct a genuine limiting random field and
its multiplicative chaos, (b) understand conditional laws of the eigenangle
process under atypical carrier-wave events, and (c) transport the analytic
structure to arithmetically defined analogues. We also indicate how much
of the discussion is specific to the determinantal structure of CUE and how
much should persist for other circular ensembles.
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9.1 Toward a canonical limiting field (GFF/GMC viewpoint)

Theorems A–B show that on the midpoint grid the carrier wave is, up to
oP(1) in sup norm, insensitive to the choice of a window parameter in the
band K,J ≍ logN . This makes it natural to treat CWN (mn) as a canonical
random field indexed by n ∈ {1, . . . , N}, and to ask whether CWN admits
a scaling limit in a function space after a suitable interpolation from the
discrete grid to S1.

The kernel representations (Lemmas 1–2) suggest the following guiding
principle. Each admissible estimator is a linear statistic of the centered
counting function SU against a kernel that approximates the logarithmic
potential on the circle, with an ultraviolet cutoff at frequency about N/ logN
(up to constants). In particular, for angles separated by more than the
microscopic scale 1/N but not macroscopic, the covariance structure should
be close to that of the circle Gaussian free field (GFF),

Cov
(
G(θ), G(ϕ)

)
≈ − log

∣∣eiθ − eiϕ
∣∣+ constant,

with the understanding that both sides require regularization at short dis-
tances. In the CUE setting, this heuristic is classical for log |ZU (θ)| and for
smoothed linear statistics; what is more specific here is that the particular
regularization induced by factoring out the nearest zeros (or, equivalently, by
starting discrepancy sums at J ≍ logN) should be asymptotically canonical.

A concrete program is to define a continuous version CWN (θ) by con-
volution of SU with one fixed admissible kernel (for instance, κK,N with
K = ⌊c logN⌋) and to prove finite-dimensional convergence(

CWN (θ1), . . . ,CWN (θk)
)

⇒
(
G(θ1), . . . , G(θk)

)
,

for distinct angles θ1, . . . , θk (or for angles separated at least by N−1+ε),
with G a circle GFF with an appropriate additive normalization. Since the
construction already removes the most singular local terms, one expects fewer
technical issues near eigenangles than for log |ZU (θ)| itself. The remaining
difficulties are of a standard type: controlling the difference between the
actual kernels κK,N and an ideal log kernel, and proving a central limit
theorem uniform over a sufficiently rich class of test functions.

Beyond the Gaussian limit, one is led to Gaussian multiplicative chaos
(GMC). Formally, if CWN approximates a log-correlated Gaussian field, then
for γ ∈ (0, 2) one expects the random measures

µN,γ(dθ) := exp
(
γ CWN (θ)− γ2

2 Var(CWN (θ))
) dθ

2π

to converge in law (after choosing a regularization/normalization) to the
subcritical GMC associated to the circle GFF. A virtue of the window-
universality statement is that it suggests µN,γ should not depend on the
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specific admissible choice of K or J , at least at the level of convergence in
distribution. We emphasize that making this canonicality rigorous at the
measure level is substantially stronger than the midpoint sup-norm state-
ments: one needs tightness in a space of measures and quantitative control
of the error when exponentiating. Nevertheless, the kernel form and the sta-
bility in the H-norm provide the natural starting point for such an analysis.

Finally, once one has a canonical limiting field or chaos, one may re-
visit extremes. The maximum of a log-correlated field is sensitive to the
ultraviolet cutoff, and the logarithmic window K ≍ logN corresponds to a
specific choice of cutoff scale between microscopic and macroscopic. Win-
dow universality therefore supports the idea that the second-order structure
of the maximum (including the additive constant in the −3

4 log logN shift
familiar from log-correlated models) should be an intrinsic object rather
than an artefact of the estimator definition. Establishing this remains open
in the present framework, but the equivalence logAK ≈ DJ suggests one
may choose whichever representation is technically more convenient in an
extremal analysis.

9.2 Conditional laws given large carrier waves

A second direction is to study the eigenangle process under conditioning on
atypically large values of the carrier wave, either at a point or at a global
maximum. The determinantal nature of CUE makes it plausible that such
conditional laws can be described by explicit tilts, at least approximately, and
the kernel representations provide a clear candidate for the tilt functional.

At a heuristic level, if CWN (θ) is close to a Gaussian field G(θ), then
conditioning on a large value G(θ0) = h produces a mean shift proportional
to the covariance kernel:

E
[
G(θ)

∣∣G(θ0) = h
]
≈ Cov(G(θ), G(θ0))

Var(G(θ0))
h ≈ − h

Var(G(θ0))
log |eiθ− eiθ0 |.

Translating this into eigenangles, one expects that conditioning on a large
carrier wave at θ0 induces a mild but extended reweighting of the local density
around θ0 across mesoscopic scales, consistent with the interpretation of the
carrier wave as a smoothed log potential of the empirical measure relative to
uniform.

A more robust formulation is to study exponential tilts rather than hard
conditioning. For β ∈ R fixed, consider the tilted law

dP(β)

dP
(U) ∝ exp

(
β CWN (θ0)

)
,

with CWN represented by any admissible estimator. Under the kernel form
CWN (θ0) ≈

∫
κ(ϕ − θ0) dSU (ϕ), such a tilt becomes an exponential of a
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linear statistic. In determinantal processes, exponential tilts by linear statis-
tics are naturally connected to multiplicative perturbations of the kernel (or,
in the language of orthogonal polynomials, to modifications of the weight).
One may therefore hope to identify the tilted eigenangle process as an ap-
proximately determinantal process with a deformed symbol, at least in a
mesoscopic scaling regime.

One concrete question is the typical gap structure near θ0 under such a
tilt: does a large carrier wave correspond to a local “compression” of eige-
nangles (higher-than-average local density), or does it arise primarily from
longer-range fluctuations while the microscopic sine-kernel behavior persists?
The discrepancy representation DJ suggests that CWN (θ0) is dominated by
contributions from spans θn+1+j − θn−j with j ≥ J ≍ logN , hence from
scales larger than microscopic. This points toward the second possibility:
the microscopic spacing statistics should remain close to sine-kernel, while
mesoscopic density deviations provide the main contribution to a large carrier
wave. Proving such a statement would amount to a conditional universality
result, separating micro- and meso-scales.

A related problem is the geometry of near-maximizers. If one believes the
GFF/GMC picture, then points where CWN is large should resemble thick
points of a log-correlated field, and the set of near-maxima should have a
nontrivial random structure. On the matrix side, it would be of interest to
understand whether near-maximizers of CWN correlate with atypical local
gap configurations (e.g. unusually small gaps) or are primarily determined
by longer-range fluctuations in SU .

9.3 Transfer to ζ and arithmetic damping

The constructions in this note were motivated in part by analogies between
CUE characteristic polynomials and the Riemann zeta function on the crit-
ical line. In the zeta setting, one has two interacting sources of complexity:
(i) the zeros are not exactly a determinantal process (even conjecturally, one
expects only local GUE-type statistics), and (ii) the analogue of log |ZU |
contains arithmetic contributions from primes. Nevertheless, the present
framework suggests a way to phrase “carrier-wave” objects for ζ in a manner
that isolates a canonical mesoscopic component.

A natural starting point is the explicit formula and its smoothed variants.
On RH, one can represent (after smoothing) log |ζ(12+it)| as a linear statistic
of zeros against a logarithmic kernel plus a prime sum. The role played here
by the centered counting function SU is played by the centered zero-counting
function S(t), and the logarithmic kernel is again the fundamental object.
The analogue of the midpoint restriction is to evaluate at points t that are
safely away from zeros (or to work with a smoothed version of log |ζ|), since
singularities at zeros are unavoidable.

From this viewpoint, there are two plausible “damping” operations that
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mirror our windowing in CUE:

1. Zero damping : factor out or subtract the contributions of the nearest
zeros to remove the dominant local singularity, producing an analogue
of logAK .

2. Arithmetic damping : mollify or smooth in t (or damp prime sums)
so that the prime contribution becomes either deterministic at the
relevant scale or an independent Gaussian input.

The second operation is specific to ζ and has no analogue in CUE. One
expects that, after suitable damping, the remaining field is closer to a log-
correlated Gaussian model with the same mesoscopic covariance as in random
matrix theory, but with an additional arithmetic shift in the mean and pos-
sibly in the variance. In practice, this suggests defining a zeta-carrier-wave
estimator by combining (a) a discrepancy sum over zeros analogous to DJ

(starting at a mesoscopic J ≍ log log T ) and (b) an explicit subtraction of a
short prime sum, or equivalently working with a mollified ζ.

The chief technical obstacle is that our proofs rely on determinantal con-
centration for linear statistics, whereas for zeros one would need uniform
control of linear statistics of S(t) over a net of points t. Conditional on
strong zero-density and pair-correlation input (and perhaps higher correla-
tion estimates), it is plausible that one could mimic the kernel-comparison
strategy: show that different window choices correspond to nearby Fourier
multipliers, and then show that the induced difference in the linear statistics
is small with high probability. Even without a full proof, this viewpoint may
be useful in formulating a precise conjecture: that there exists a canonical
carrier-wave field for ζ at height T , well-defined up to o(1) in a suitable sup
norm over a discrete mesh, and stable under admissible windowing choices.
Such a conjecture would provide a clean target for future analytic work, and
it would clarify which aspects of the random-matrix heuristics are purely
log-kernel phenomena and which require detailed determinantal input.

9.4 Variants for the circular CβE

Finally, we comment on replacing CUE (β = 2) by the circular CβE for
general β > 0. At the level of definitions, the eigenangles {θj} still form
a stationary point process on the circle with logarithmic repulsion. The
objects mn and the discrepancy sums δn(j) and DJ(mn) remain meaningful
without change. One may also define Z(θ) =

∏N
j=1 |eiθ − eiθj | and mimic

AK by factoring out nearby terms; the only adjustment is that for β ̸= 2
there is no underlying matrix U with a genuine characteristic polynomial, so
Z should be treated as the absolute value of a log-gas potential rather than
as an analytic object.

On the probabilistic side, the determinantal tools used for CUE are un-
available for β ̸= 2, but there is a substantial substitute literature: rigidity
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estimates for log-gases, loop equations, and central limit theorems for linear
statistics with test functions in Sobolev spaces. In particular, for sufficiently
regular f one has

Var
(∫

f(ϕ) dS(ϕ)
)

≈ 2

β
∥f∥2

H1/2 ,

with the same H1/2 structure as in the determinantal case but with a β-
dependent prefactor. This suggests that Lemmas 1–3 should persist with
minor modifications, while Lemma 4 (uniform concentration over a grid)
should be approached via rigidity plus union bounds rather than via deter-
minantal concentration inequalities.

If such uniform control can be established in the logarithmic window
band, then the same strategy should prove window universality and estimator
equivalence for CβE. From the conceptual viewpoint, this would reinforce
the idea that the logarithmic window is not an artefact of β = 2 integrability,
but rather an intrinsic mesoscopic scale for log-gases on the circle. It would
also align with the expectation that the limiting log-correlated field is a
β-dependent multiple of the circle GFF, hence that the associated GMC
measures depend on β only through the overall variance normalization.

We do not attempt to pursue these extensions here. The statements
above indicate, however, that the present midpoint-based formalism is flexi-
ble: it isolates a logarithmic kernel structure that is stable under windowing
and that should be accessible beyond the determinantal setting, provided
one can supply the appropriate concentration input for mesoscopic linear
statistics.
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