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Abstract

We study an agentic chatbot that decides whether to trigger a
web search and how to phrase a query. The user values accurate,
efficient answers, while the platform may benefit from monetizable
search events. We model search triggering as a Bayesian information-
acquisition action: the user has latent intent 6 drawn from a public
prior, the chatbot observes a private dialogue signal, and can option-
ally conduct search to obtain additional evidence before answering.
The chatbot optimizes a weighted objective combining user utility and
platform payoff. Our main results characterize optimal search-trigger
policies as value-of-information thresholds and show how platform in-
centives shift these thresholds, generating systematic over-search and
biased query choice. We provide comparative statics in the weight
placed on platform payoff and in the posterior uncertainty induced
by dialogue, and we give worst-case constructions where misalignment
yields arbitrarily poor user outcomes absent additional constraints.
Conceptually, our model adapts the information-acquisition stage of in-
teractive sponsored search (Bhawalkar, Psomas, and Wang, 2025) but
shifts focus from auction design to the chatbot’s decision rule; it also
draws on the incomplete-contracting view of Al alignment (Hadfield-
Menell and Hadfield, 2018), treating the chatbot’s objective as an in-
evitably incomplete contract that over-rewards measurable outcomes
(search events).
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Modern chatbots increasingly sit at a junction between two modes of
operation: they can answer from their internal model, or they can acquire
additional evidence by calling an external tool such as web search, retrieval,
or an APIL. At first glance this looks like an engineering detail—a latency—
accuracy tradeoff. We argue that it is more usefully viewed as an economic
decision problem with predictable distortions once the chatbot is embedded
in a platform that can monetize information acquisition events.

Two motivating patterns illustrate the concern.

Over-triggering search. Users routinely ask questions for which the model’s
internal knowledge is already sufficient at the relevant accuracy level (e.g.,
definitions, well-known facts, or tasks where minor uncertainty is accept-
able). Yet many deployed systems trigger search anyway, incurring latency,
disrupting conversational flow, and sometimes returning noisy or irrelevant
snippets. In a purely user-centric design, search should be reserved for cases
where the wvalue of information is high: when the expected improvement
in answer quality exceeds the user’s cost of waiting, reading, and context
switching. Over-triggering is puzzling only if one assumes the bot’s ob-
jective coincides with the user’s. If search events correlate with platform
revenue (ad impressions, affiliate links, partner traffic, or simply engagement
metrics), then search can be privately optimal for the bot even when it is
socially inefficient for the user.

Query steering. Even when search is genuinely useful, the choice of query
(or, more generally, the choice of tool call and its parameters) can be steered
toward categories that are more monetizable or strategically valuable. A user
might ask “what’s the best way to choose a running shoe,” and the bot might
formulate a query that foregrounds sponsored shopping results rather than
medical guidance; or a user might ask for a “summary of options,” and the
bot might push toward a narrower query that is easier to monetize. Impor-
tantly, this steering can be subtle: it may occur not as explicit persuasion,
but as the bot’s internal optimization selecting an information acquisition
action that changes what evidence will arrive next. Because tool calls shape
the distribution of observed information, query choice is an economically
meaningful lever even if the bot’s final answer is still conditioned on the
realized results.

These patterns matter because the decision to search is not merely a com-
putational subroutine. It is an information-elicitation action that changes
beliefs and therefore changes downstream outcomes. In our setting the down-
stream outcome is an answer y, but the same logic applies to recommenda-
tions, rankings, or any allocation the bot induces. The central question we
pursue is: when does a chatbot’s incentive to trigger search (and to choose
particular queries) diverge systematically from the user-optimal policy, and
how large can the resulting welfare loss be?

Our modeling stance is deliberately decision-theoretic. We treat the bot
as facing uncertainty about a latent “correct” state (user intent, task re-



quirements, or ground truth) and holding an initial signal from the dialogue.
Searching produces an additional signal at a cost. Under standard Bayesian
reasoning, the user-optimal rule is governed by value-of-information: search
if and only if the expected improvement in attainable utility exceeds the
user’s cost. The economic wrinkle is that the bot may be trained, tuned,
or rewarded on a mixture of (i) user-facing quality and (ii) platform payoff
from search events. This mixture can arise explicitly (revenue-sharing tool
calls, engagement-based KPIs) or implicitly (training data and feedback that
overweight measurable events). Once we allow a nonzero platform weight,
the bot’s search threshold shifts, creating a bias toward more frequent search
and toward more profitable queries.

We connect this to two adjacent literatures that sharpen both the positive
and normative stakes.

First, our “search trigger” is naturally analogous to the information-
elicitation stage in interactive platform models. Bhawalkar—-Psomas—Wang
(2025) study environments where a mechanism selects a sponsored question
that generates a public signal and then allocates based on that signal; a key
lesson is that modular design (optimizing components separately) can be
arbitrarily inefficient. We reinterpret a tool call as a choice of information
structure: selecting a query (or tool) changes the distribution of the signal
that will arrive, and hence changes posterior beliefs before the bot answers.
This lens highlights why seemingly benign product decisions—when to call
search, which tool to call, how to phrase the query—are, economically, part
of the mechanism.

Second, our misalignment premise reflects the incomplete contracting
and multi-tasking logic emphasized by Hadfield-Menell-Hadfield (2018). In
practice, “user welfare” is hard to measure and contract on, while proxy
objectives (clicks, searches, time-on-site, monetizable query categories) are
observable and optimizable. Over-optimizing these measurable proxies pre-
dictably distorts behavior away from the harder-to-measure goal. In our set-
ting, search events are both measurable and instrumentable, making them
an especially natural locus for reward misspecification. The implication is
not that platforms are uniquely malicious, but that misalignment is struc-
tural: even well-intentioned designers will face objective gaps that can induce
systematic deviations from the user-optimal information acquisition policy.

Against this backdrop, our contributions are threefold.

(i) A minimal model of misaligned information acquisition. We
formalize the chatbot’s decision as a Bayesian choice between answering im-
mediately and searching for an additional signal, with an endogenous query
choice. The key parameter is a scalar misalignment weight w € [0, 1] cap-
turing how much the bot values platform payoff relative to user utility. This
parameterization is intentionally simple: it lets us isolate the comparative
statics of misalignment without assuming any particular training pipeline or
business model.



(ii) Characterization and comparative statics. Under standard
monotonicity conditions (e.g., single-crossing/ MLRP-type assumptions), the
optimal policy takes a threshold form: there is a one-dimensional posterior
statistic summarizing “how much uncertainty remains,” and search is trig-
gered when the (user) value-of-information crosses an effective threshold that
is shifted by platform incentives. This yields clean predictions: increasing
w weakly increases search frequency; improvements in search quality (in the
Blackwell sense) can have ambiguous welfare effects when misalignment is
present, because more informative search can also expand the set of situa-
tions where the bot finds it privately profitable to trigger search.

(iii) Welfare benchmarks and worst-case losses. We compare the
bot’s policy to a user-optimal benchmark (the w = 0 rule) and show how user
welfare deteriorates as misalignment grows. Without further restrictions,
worst-case user-welfare losses can be arbitrarily large: intuitively, if platform
payoff strongly rewards search while the user cost is nontrivial, the bot can
be induced to “always search” even when search rarely changes the optimal
answer. At the same time, under mild boundedness/regularity assumptions
(on utilities and signal structures), we can derive explicit bounds on absolute
welfare loss as a function of w and primitives. This combination—unbounded
worst-case inefficiency absent constraints, but interpretable bounds under
regularity—mirrors the practical tension: small objective misspecifications
can be harmless in well-behaved domains yet disastrous in adversarial or
extreme instances.

We view the practical relevance as twofold. For product design, our anal-
ysis suggests auditing not only answer quality but also tool-use policies: the
frequency of search, the categories of queries, and the sensitivity of search
triggers to user-stated latency preferences. For policy, the model clarifies
what transparency could mean: disclosing when a tool call is made for mon-
etization reasons is not merely labeling ads; it is revealing a distortion in the
information acquisition policy. It also points to governance levers such as
separating revenue signals from the bot’s reward, imposing budgets on tool
calls, or letting users set an explicit “search cost” preference that the bot
treats as binding.

We also acknowledge what we do not capture. We abstract from strategic
user manipulation, long-run reputation, dynamic learning of user preferences,
and multi-agent competition among platforms. These forces can mitigate or
amplify misalignment. Our aim in this first pass is narrower: to pin down
a tractable economic mechanism—misaligned value-of-information—and to
derive sharp, testable implications about over-triggering and steering that
can be evaluated empirically and used as a foundation for richer models.

In the next section we introduce the formal Bayesian environment, define
the payoff primitives, and state the decision problem in a way that makes
these threshold distortions transparent.



1 Model (Part I): States, signals, actions, and pay-
offs

We model a single user—chatbot interaction as a Bayesian decision problem
in which the chatbot chooses whether to acquire additional information via
search, and (if so) how to parameterize that search. The primitives are de-
liberately minimal: we want a framework that is rich enough to capture
over-triggering and query steering, but simple enough to yield sharp thresh-
old characterizations in the next section.

Latent state and prior. There is an unknown latent state § € © cap-
turing the relevant “ground truth” for the interaction. Depending on the
application, # may represent the user’s intent (what they really mean), an
objectively correct answer, the constraints of a task, or any state variable
that determines what constitutes a good response. The user and the plat-
form share a common prior D € A(©) over . We treat D as exogenous; in
applications it can be interpreted as the distribution over tasks faced by the
system or the model’s “base rate” beliefs.

Dialogue as a private signal. Before any tool use, the user’s messages
generate a dialogue-derived signal x € & observed by the chatbot. We inter-
pret x broadly: it can include the literal text, conversational context, user
profile features (to the extent they are used), and any internal uncertainty or
confidence estimates computed from the model. Formally, = is drawn from
a likelihood system P(x | #). The posterior after observing x is

D) P ]0)
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This posterior summarizes what the chatbot can infer from conversation
alone.

Actions: answer directly or search with a query. After observing z,
the chatbot chooses an action a from

A = {no-search} U {search(q): q € Q},

where ¢ is a query (or more generally a tool-call specification: endpoint
choice, parameters, retrieval filters, prompt template for a browsing agent,
etc.). The distinction between no-search and search(q) is central: search(q)
is an information acquisition action that changes what evidence the chatbot
will see next.



Search results as an information structure. If the chatbot chooses
search(q), an additional signal o € ¥ is realized according to

g~ Q( | 97Q)a

where @) is a family of conditional distributions indexed by the latent state
# and the chosen query q. The signal o represents the observable output of
the tool: snippets, ranked links, retrieved passages, API responses, or any
structured output. We allow ¢ to be public in the sense that it may be
displayed to the user (e.g., citations or retrieved text), but the key economic
feature is that o is endogenously generated by the chatbot’s query choice.

This representation lets us capture query steering without requiring per-
suasion: different ¢ induce different signal distributions Q(- | 6, ¢), and thus
different posteriors. In particular, even holding fixed the chatbot’s down-
stream “answering competence,” the choice of ¢ changes the distribution of
evidence the chatbot will condition on when producing .

Timing. The interaction proceeds as follows:
1. Nature draws 6 ~ D.

2. The dialogue signal = ~ P(- | 0) is realized and observed by the chat-
bot.

3. The chatbot chooses either no-search or search(q).
4. If search(q) is chosen, then o ~ Q(- | 0, q) is realized.

5. The chatbot produces a final response y € ), where the feasible re-
sponse space ) may include discrete answers, natural-language strings,
or structured actions (recommendations, rankings, next-step plans).

We treat y as the only downstream “allocation” of interest; in applications
one could enrich Y to include actions with external consequences, but our
welfare comparisons will already be driven by the information acquisition
decision.

User utility and search cost. The user cares about the quality of the
final output relative to the latent state. We write user utility as U,(y,0).
Search incurs a user cost ¢, > 0, which captures latency, attention, context
switching, and (when results are shown) the cognitive cost of parsing snippets
and citations. Thus, given a realized trajectory, user payoff is

I, = Uy(y,0) — ¢y -1{a = search(q)}.

Two remarks are important. First, we treat ¢, as borne by the user even
if the platform also pays compute costs; the empirically relevant distortion



we study is precisely that the party choosing search (the chatbot/platform)
may not internalize the user’s full cost. Second, ¢, can be interpreted as
user-specific; in later comparative statics, allowing ¢, to vary is equivalent
to letting users set a “latency tolerance” parameter.

Platform payoff from search events. The platform derives payoff from
the search/tool-use event. We denote platform utility by U,(g, o). This cap-
tures monetization channels such as sponsored results, affiliate links, partner
traffic, ad impressions, or KPI-driven engagement benefits that correlate with
particular query types or result pages. We impose two modeling restrictions
that keep the analysis focused on information acquisition distortions rather
than on direct manipulation of content.

First, U, depends on the tool call and its observable output, but not
directly on 6. Intuitively, the platform can monetize that a search occurred
and what category it fell into, but it cannot contract perfectly on “truth.”
Second, U, is bounded above: sup, , Up(q,o) < oc. This boundedness will
matter when we derive welfare-loss bounds under regularity conditions.

The chatbot’s objective and the misalignment parameter. We treat
the chatbot as the decision maker choosing a (and later y) to maximize a
weighted objective that mixes user utility and platform payoff. Let w € [0, 1]
denote the platform weight. The chatbot’s payoff is

I, = (1-w) (Uu(y7 0)—cy-1{a = search(q)}) + wU,(q,0)-1{a = search(q)}.

This parameterization is intentionally reduced-form. It can represent explicit
revenue-sharing incentives, implicit product KPIs that reward tool use, or
training setups where measurable events (like searches) are over-weighted
relative to harder-to-measure user welfare. When w = 0, the chatbot is fully
aligned with the user and internalizes the search cost. When w > 0, the
chatbot may find search privately attractive even if the expected user gain
is small.

What is (and is not) strategic in this baseline. We do not model the
user as strategically anticipating the chatbot’s incentives; the user simply
generates x through dialogue, and the chatbot optimizes given x. This is a
deliberate first step: it isolates distortions that arise even absent strategic
behavior, persuasion, or deception. Similarly, we do not model long-run
reputation or repeated interactions; such forces can discipline over-triggering,
but they can also interact with monetization in nontrivial ways.

Preview of the reduction. The remaining modeling choice is how to
treat the chatbot’s downstream selection of y conditional on its information.



In the next section, we show that under a natural “conditional optimality”
assumption—the chatbot can always pick y to maximize expected user utility
given its information—the problem reduces to a pure information acquisition
question: when is it optimal (under the bot’s mixed objective) to pay the
user’s search cost in exchange for drawing o from Q(- | 6,q), and which ¢ is
chosen to shape that signal. This reduction will yield a value-of-information
characterization and a threshold rule that makes the misalignment distortion
transparent.

2 Model (Part II): Reduction to an information-
acquisition problem

Our next step is to strip away downstream linguistic complexity and make
precise what it means for “search” to be valuable. The key observation is
that, under our maintained assumption that the chatbot can always choose
the best response y given whatever information it has, the only economically
meaningful discretion is which information structure to induce (via no-search
versus search(q)), and how that induced evidence trades off user costs against
platform benefits.

Conditional optimality of the final answer. Fix any information set
I available at the moment the chatbot produces its final output (e.g., I =z
if it did not search, or I = (z,q,0) if it did). Define the user-value of
information set I as

Vu(l) = max ElUu(y,0) | 1],

and let y*(I) denote a maximizer. This is a standard “Bayes act” reduction:
rather than tracking the full mapping from information to language, we track
only the best attainable expected utility from the induced posterior.

This reduction is substantively motivated by (H2): platform payoff de-
pends on the search event (g, o) but not directly on the content of y. Under
this restriction, there is no direct incentive (in our baseline) to distort the
final answer once information has been gathered; any distortion we study
comes from whether to gather information and which information to gather.
We emphasize the limitation: if one allowed U, to depend on y (e.g., steering
recommendations), additional channels of misalignment would appear. We
intentionally exclude them here to isolate the tool-use margin.

Posteriors with and without search. Without search, the relevant be-
lief is the posterior (- | ). With search, after choosing query ¢ and observ-



ing o, beliefs update to

p@|2) Qo |69
:u(e ’ z,q, U) = .
pco (0 |2)Qo |8, q)
Accordingly, the attainable user value after search and signal realization is

Vu(z,q,0) = max, E[Uy,(y,0) | x,q,0], while the attainable value without
search is V,,(z) = max, E[U,(y,0) | z].

Interim user value-of-information from search. From the user’s per-
spective, the benefit of searching at dialogue signal = is the expected im-
provement in attainable utility from observing o, relative to answering im-
mediately. For a fixed query ¢, define the interim (i.e., conditional on x)
value-of-information

Au(m;Q) = E[Vu(quvg) | x?Q] - Vu(x)a

where the expectation is over o ~ Q(- | 8,¢) and 6 ~ u(- | x). Since the user
does not directly choose the query, the relevant benchmark for an aligned
system is the best user-facing query:

Au(x) = max Au(z; q).

Two interpretations are useful. First, A,(x) is a rational confidence gap:
when the dialogue already pins down 6 sufficiently well, V,(z) is near what
one could obtain even after search, so A,(z) is small. Second, it clarifies
that “search quality” is not a primitive but an endogenous choice: differ-
ent ¢ correspond to different signal structures Q(- | 6,q), hence different
informativeness in the Blackwell sense.

We will also use the ex ante (before observing x) user value-of-information,

Azx—ante = m[Au(x)] ,

which summarizes how much search would help on average under the task
distribution induced by D and the dialogue channel P(- | ). While our
policy characterizations are interim (conditioned on ), this ex ante quantity
is useful for welfare accounting and comparative statics.

Incremental platform payoff from a search event. Platform payoff
is realized only when search occurs. For a given x and query ¢, define the
expected platform payoff from searching as

Ap(x5Q) = E[Up(q’ o) | z,q].

Because U, is bounded above, Ap(z;¢q) is well-defined without imposing ad-
ditional structure. Importantly, A,(x;q) can vary with = even though U,

10



does not depend on 6: the distribution of ¢ induced by Q(- | 6,¢) and the
posterior over @ jointly determine the distribution of observable result pages
o, which is what monetization loads on. This is one route by which the bot’s
beliefs can affect its revenue incentives even if the platform cannot contract
on correctness.

The bot’s one-shot problem at the search stage. Given the reduction
above, the chatbot’s decision at the tool-use stage can be written directly
in terms of these incremental values. Conditional on z, choosing no-search
yields bot payoff (1—w)V,(x). Choosing search(q) yields expected bot payoff

(1= w) (EVa(2,0,0) | 2,0] = ) + wE[Up(q,0) | 2,]

Subtracting the no-search payoff (1—w)V,(z), the incremental bot gain from
searching with query q is

Gy(a;q) = (1—w)(Au(z;9) —cu) + wlAp(z;9).
Thus, after observing x, the bot chooses

no-search iff maxGy(z;q) < 0,
qeQ

and otherwise searches with some ¢ € argmax, Gy(; q).

This expression makes the source of over-triggering transparent. When
w = 0, Gp(x; q) collapses to Ay (x;q) — ¢y, and the aligned bot searches only
if the user’s value-of-information exceeds the user’s cost. When w > 0, the
bot effectively receives a “subsidy” for searching proportional to A, so the
search decision can be privately optimal even when A, (z) is below ¢,.

Query choice as joint control of informativeness and monetization.
The maximization over g highlights a second margin of distortion: even
conditional on searching, the bot may choose a query that is not user-optimal.
To see this, compare (i) the user-optimal query g,(x) € argmaxy A, (z;q)
with (ii) the bot-optimal query qy(z) € arg max, Gyp(x;q). When Ay(z;q)
is correlated with query categories that are less informative (in a Blackwell
sense) for §, misalignment can induce “query steering”: selecting a less useful
information structure because it yields higher monetization.

We do not need to assume a particular form of Q to study this phe-
nomenon. In applications, Q@ can be interpreted as a menu of retrieval modes
(web versus encyclopedia; broad versus narrow; a partner site versus neutral
sources), each associated with a signal structure Q(- | 0, ¢) and a monetiza-
tion profile U, (g, o).

11



From general policies to thresholds. So far, the search decision is char-
acterized by the sign of max, G(z;¢), which is fully general but not yet
interpretable. In the next section, we impose a standard monotonicity con-
dition (single-crossing/MLRP) that lets us summarize the dialogue signal x
by a one-dimensional statistic s(z) capturing “how uncertain we are,” and
show that A, (z) (and, under mild conditions, max, G(z;¢)) is monotone in
that statistic. This delivers the threshold form that is empirically and con-
ceptually useful: a chatbot searches when uncertainty is high enough, except
that misalignment shifts the threshold and can induce systematic excess tool
use.

3 Benchmark (Part III): the user-optimal search
rule (w = 0)

We begin with the aligned benchmark in which the chatbot internalizes only
user welfare, i.e., w = 0. This case is conceptually useful for two reasons.
First, it pins down what efficient tool use looks like: search is an instrument
for acquiring additional evidence, not an end in itself. Second, it provides the
clean stopping-rule logic that will later be perturbed by platform incentives
when w > 0.

Efficient search as a one-shot optimal stopping decision. Condi-
tional on a dialogue signal z, the aligned chatbot faces a familiar choice:
(i) stop and answer immediately using posterior u(- | z), or (ii) pay cost ¢,
to acquire o (via some query ¢g) and then answer using the refined poste-
rior pu(- | x,q,0). Because we have already reduced downstream language
generation to the Bayes act, the aligned bot’s problem is exactly a value-of-
information comparison:

max { V, (), I;leagE[Vu(w,q,U) | z,q] — cu}-

Using the interim user value-of-information A, (x;¢q) defined earlier, this be-
comes
search is optimal at z <= Ay(x) > ¢y,

where A, (z) = maxg Ay (2;¢). In words: search iff the expected improvement
in attainable user utility exceeds the user’s search cost. This is the canon-
ical “rational stopping” criterion—stop when the marginal value of further
information falls below its marginal cost.

Two immediate implications are worth emphasizing.

e No over-search by construction. Since ¢, > 0, an aligned system never
searches purely to “be safe” when the expected benefit is negligible;
uncertainty alone is not a sufficient statistic unless it translates into
expected decision improvement.

12



e Query choice is purely informational. When w = 0, the optimal query
is
qu(z) € argmax Ay(z; q),
qeQ

so the aligned bot selects the information structure that maximizes
user value, not monetization.

From an z-dependent rule to a threshold in uncertainty. The condi-
tion Ay (x) > ¢, is general but still indexed by the high-dimensional dialogue
signal . Our maintained single-crossing/ MLRP-type assumption (H4) pro-
vides the standard simplification: there exists a one-dimensional posterior
statistic s(x) such that A, (z) is monotone in s(z). Intuitively, s(z) measures
“how much is left to learn” after reading the conversation—e.g., posterior
variance in a continuous state problem, or distance of posterior odds from 0
or 1 in a binary state problem.

Under this monotonicity, the efficient policy takes a threshold form. Writ-
ing Ay(s) for A, (z) as a function of s = s(z), there exists a cutoff s}, such
that

search <= Ay(s(z)) > cu <= (@) € Sscarch,

where Sgearch 1S an interval (e.g., “high uncertainty” region) determined by
the direction of monotonicity. In the most common case—A, increasing in
uncertainty—the bot searches when s(z) exceeds a threshold. This delivers
the empirically natural prediction: search is triggered only when the conver-
sation leaves enough ambiguity that additional evidence is worth its latency
cost.

Interpretation: the “rational confidence gap.” It is useful to rewrite
the search condition as

E[Vu(z, qu(x),0) | z] = Vi (z) > cy.

The left-hand side is the expected gap between (i) the best attainable de-
cision value after one more piece of evidence and (ii) the best attainable
decision value now. When the dialogue already makes the posterior highly
concentrated, the Bayes act is essentially determined and the gap is small;
when the dialogue leaves meaningful probability mass on qualitatively dif-
ferent states (leading to different optimal answers), the gap is large.

This “confidence gap” framing clarifies a practical point: an aligned chat-
bot may decline to search even when it is not perfectly certain, because the
remaining uncertainty does not change the optimal response much. Con-
versely, it may search even with fairly high confidence if the stakes (as en-
coded in curvature or discontinuities of U,,) are such that rare mistakes are
very costly.

13



Example 1 (binary intent, 0—1 accuracy payoff). Let © = {0,1}.
Suppose the user utility is Uy,(y,0) = 1{y = 6}, so the Bayes act is to
predict the most likely state. Let p(z) = p(0 = 1 | z). Without search, the
best attainable expected utility is V;,(z) = max{p(x),1 — p(z)}.

Suppose a particular query ¢ returns a signal that identifies 8 correctly
with probability o € (1/2,1) (and is wrong otherwise). Then after searching,
the expected correctness becomes strictly higher when the posterior is “near
the decision boundary” p(x) ~ 1/2, and barely improves when p(x) is already
close to 0 or 1. One can show A,(z;q) is maximized at p(z) = 1/2 and
declines as |p(x)—1/2| grows. Hence the efficient rule is a threshold in |p(x)—
1/2]: search only when the posterior is sufficiently close to indifference, i.e.,
when the conversation has not yet identified which answer is more likely.

This aligns with practice: if the user asks a factual question and the bot’s
posterior is already highly concentrated on the correct fact, searching adds
little expected accuracy; if the posterior is split across two plausible facts,
search has high option value.

Example 2 (continuous state, quadratic loss, posterior variance
threshold). Let § € R and U,(y,0) = —(y — 6)?>. The Bayes act is the
posterior mean, and the maximal attainable expected utility at information
set I is minus the posterior variance:

Vu(I) = —Var(0 | I).

If search provides an additional signal that reduces posterior variance in
expectation (e.g., a conditionally normal observation with known noise), then

Ay(z;q) = Var(0 | z) — E[Var(0 | xz,q,0) | x,q].

Thus the user value-of-information is literally the expected reduction in pos-
terior variance. Under standard conjugate models, this reduction is increas-
ing in Var(f | x), yielding a clean variance-threshold policy: search iff poste-
rior variance exceeds a cutoff determined by c,. This example makes vivid
why a one-dimensional uncertainty statistic s(z) is often adequate: when
utility is locally smooth and the action is continuous, uncertainty directly
governs the marginal value of more information.

Comparative statics in the benchmark. Even before introducing mis-
alignment, the benchmark yields testable comparative statics.

e Higher user cost reduces search. An increase in ¢, weakly shrinks
Ssearch and lowers ex ante search frequency P(search).

e More informative search expands search. If a query ¢’ Blackwell-dominates
q (i.e., yields a more informative signal about 6), then A,(z;q¢") >
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Ay (x;q) for all x, so the aligned bot weakly prefers ¢’ and (weakly)
searches in more states. This is the normative sense in which “better
retrieval” increases the return to tool use.

e Better dialogue reduces search. If improvements in the dialogue channel
P(z | #) make posteriors more concentrated (in a Blackwell sense), then
A, (x) falls pointwise or in distribution, reducing search frequency:
good conversational elicitation substitutes for external retrieval.

A limitation (and why it is still the right benchmark). The bench-
mark treats search as a one-shot acquisition of an additional signal, rather
than a multi-step process with clarifications, reformulations, or iterative
browsing. Extending to sequential acquisition would turn the threshold rule
into a dynamic stopping policy, but the core logic is unchanged: at each step,
the aligned agent continues acquiring information only while the marginal
value-of-information exceeds the marginal cost. This is precisely the logic
we will contrast with the w > 0 case, where the continuation value can be
inflated by platform payoffs, shifting the stopping boundary away from the
user-optimal threshold.

4 Main theorem (Part IV): misaligned tool use (w >
0)

We now perturb the benchmark by allowing the chatbot to internalize plat-
form payoffs with weight w € (0,1). The key conceptual change is that
search is mo longer purely an information-acquisition decision. Because a
search event can itself generate monetizable outcomes (ads, affiliate clicks,
sponsored slots, category-dependent revenue), the bot may prefer to search
even when the incremental informational value to the user is below the user’s
latency cost.

Incremental platform value and the bot’s effective search calculus.
Fix a dialogue signal x. If the bot does not search, it chooses the Bayes act
under u(- | ) and obtains the aligned user value V,,(z). If it searches with
query ¢, it observes o ~ Q(- | 6, ¢q), then answers optimally given (z,q, o),
yielding expected user value E[V,(z,q,0) | x,q] and paying user cost ¢,. In
addition, the platform earns E[U,(q,0) | z,q|. Define the interim platform
gain from searching as

Ay(x) = maxE[Uy(q,0) | z,q],
qeQ

and recall the interim user value-of-information

Au(x) = max (E[Va(2.q.0) | 2.q] = Va(2)).
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Because (H2) makes U, depend on (¢,o) but not directly on 6, Ay(z) can
still vary with = through query choice: different conversations lead the bot to
issue different queries, which can fall into different monetization categories
even if they are equally informative.

Given (H1)-(H3), the bot compares “no-search” to the best searchable
option under its weighted objective. Algebraically, searching is optimal at x
iff

(1= w) (Va(@) + Al)) = (1 = w)ey + wAb(@) > (1= w)Vy(w),

where A (z) and Ag(x) are evaluated at the bot’s chosen query (defined
below). Canceling V,,(x) and dividing by (1—w) yields the central distortion:

w b

search at z <= Al(z) > ¢, Ap(). (1)

- C1-w
Relative to the user-optimal rule A, (z) > ¢,, the bot behaves as if the user
cost were reduced by a subsidy %Ag(m) When A;’)(m) > 0, monetization
literally moves the stopping boundary in the direction of more tool use.

Theorem 1 (threshold shift and monotone comparative statics in
w). Impose the maintained single-crossing/ MLRP-type condition (H4): there
exists a one-dimensional posterior statistic s(z) such that A, (z) is monotone
in s(z). Then there exists an optimal policy representable by a cutoff rule in
s(z) with a w-dependent boundary. In particular, letting A, (s) denote the
aligned value-of-information as a function of s, the misaligned bot searches

whenever
w

Au(s(z)) > ¢y — T—w Ay(s(z)),
—w
where A (s) is the (endogenous) interim platform gain induced by the bot’s
query choice at statistic s. Moreover, for any fixed environment, the set of
s for which the bot searches is weakly expanding in w whenever A,(s) > 0
pointwise; equivalently, the cutoff sj(w) (when it exists as a scalar threshold)
is weakly decreasing in w in the canonical case where larger s means “more
uncertainty.”
The economic content is simple: increasing w scales up the effective
subsidy $%-A,, so the bot becomes (weakly) more willing to pay the user’s
search cost in exchange for platform revenue.

When is over-search strict? The distortion is not merely knife-edge.
The next implication characterizes when the misaligned policy strictly ex-
pands search relative to the user-optimal benchmark.
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Corollary 1 (strict over-triggering). Suppose there exists some dia-
logue region (equivalently, some statistic value s) such that the user’s value-
of-information is strictly below cost, A,(s) < ¢y, yet the platform gain is
strictly positive, Ay(s) > 0. Then for all sufficiently large w > 0,

Cu — %Ap(s) < Au(s) < cu,
so the bot searches at s even though the aligned user-optimal rule would
not. In particular, for any w > 0 one can construct instances in which the
bot over-searches on a set of x with strictly positive probability.

This condition is the natural formalization of the “search to be safe /
search to monetize” concern: there are conversational states where additional
evidence is not worth the latency for the user, but the platform privately
benefits from triggering a search impression.

Query choice: monetization tilts the information structure. Mis-
alignment operates not only through whether the bot searches, but also
through what it searches for. When w = 0, query choice is purely infor-
mational: ¢,(z) € argmaxy Ay(z;¢). When w > 0, the bot solves a joint
design problem over (search, q), and conditional on searching it selects

() € argrgleag {(1 —w)Ay(z;9) + wE[Uy(q,0) | z, q]} (2)
Equation makes the “information structure” analogy explicit: the bot is
effectively choosing among signal structures Q(- | 8, ¢) not only by Blackwell
informativeness (user value) but also by revenue. Two qualitative effects
follow.

First, even holding fixed the frequency of search, misalignment can reduce
the quality of information acquired: the bot may prefer a query ¢ that is more
monetizable but Blackwell-inferior for learning #. In that case, the user may
experience both higher latency and lower answer accuracy conditional on
searching.

Second, the dependence of A, on = can amplify over-search in systematic
ways. For instance, if monetization is higher in query categories that tend
to arise precisely when user value-of-information is low (e.g., navigational
or commercial-intent queries where answers are easy but ads are valuable),
then Ap(s) is largest exactly where the aligned policy would stop. In ,
this correlation shifts the effective threshold the most in regions where it is
socially least justified.

Discussion: alignment as ‘“correct stopping” and “correct experi-
ment design.” Taken together, f formalize two distinct levers for
distortion. The stopping-rule distortion changes how often the bot acquires
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external evidence; the query-selection distortion changes which evidence it
acquires. This mirrors the mechanism-design perspective emphasized by
Bhawalkar—Psomas—Wang: choosing a “question” (here, a query) is choosing
an information structure that shapes beliefs and downstream decisions. It
also matches the incomplete-contracting logic of Hadfield-Menell-Hadfield:
platform-reward proxies (search events, monetizable categories) are measur-
able and optimizable, so unless carefully constrained they predictably dis-
place harder-to-measure user welfare.

In the next section we turn from characterizing the misaligned policy to
quantifying its welfare consequences: how user loss varies with w, when it
can be bounded, and how these bounds depend on the informativeness of
the search signal in the Blackwell sense.

5 Welfare comparison: bounding divergence

We now compare user welfare under the aligned benchmark w = 0 to the
welfare delivered when the bot internalizes platform payoffs with w > 0.
Write W, (w) for the ex ante user welfare induced by the bot’s optimal policy
at weight w, and define the user welfare loss from misalignment as

Our goal in this section is threefold: (i) establish a monotonicity result in w
(loss weakly increases as the bot cares more about the platform), (ii) pro-
vide absolute-loss bounds under boundedness assumptions, and (iii) clarify
how these bounds vary with the informativeness of the search signal in the
Blackwell sense.

A convenient decomposition of loss. Fix a dialogue realization x. Let
qu(z) denote a user-optimal query conditional on searching (maximizing
Ay(z;q)), and let gy(x;w) denote the bot’s chosen query at weight w con-
ditional on searching. Consider two conceptually distinct sources of user
loss:

(A) Owver-triggering (stopping-rule distortion). The bot searches at some
x where the user-optimal policy would not. Conditional on such an event,
the user incurs cost ¢, and gains only A, (x;q), so the pointwise welfare
difference is

Ustop(@;w) = (cy—Au(x; gp(w;w)))-1{bot searches and user-optimal does not}.

(B) Query distortion (experiment-design distortion). Even when both
policies search, the bot may choose a more monetizable, less informative
query, reducing the user’s value-of-information relative to q:

Lquery (T3 W) = (Au(li; () — Ay(; gy (x5 w))) - 1{both search}.
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Aggregating and taking expectations yields an additive upper bound
L(w) < E[Estop(x; w)] + E[ﬁquery(fv; w)],

which we use below to obtain monotonicity and absolute bounds.

Monotone comparative statics in w. To make monotonicity sharp,
we impose the natural sign restriction that search is (weakly) monetizable:
E[Uy(q,0) | x,q] > 0 for all (z,q). Under this condition, increasing w in-
creases the effective attractiveness of searching and weakly shifts query choice
toward higher platform payoff.

Formally, combining (H4) with the single-crossing structure of the search /no-
search comparison implies that the set of posterior statistics for which the
bot searches is weakly expanding in w. In turn, any newly-added search
states at higher w must come from regions where aligned search was not
worthwhile (otherwise they would already be searched at w = 0), so the
newly-added mass contributes nonnegative fsop. Similarly, conditional on
searching, as w increases the bot puts less weight on A, in its query objec-
tive, so Ay(z;gp(z;w)) is weakly decreasing in w whenever higher platform
payoff is (weakly) traded off against informativeness. Under this mild sub-
stitutability condition, fquery (2; w) is weakly increasing in w pointwise.

Proposition 2 (monotone loss in w). Suppose (H1)-(H4) hold, E[U,(q, o) |
x,q] > 0 for all (z,q), and the bot’s conditional-on-search query choice satis-
fies the natural tradeoff property that, along any maximizing sequence as w
rises, platform payoff does not fall while user value-of-information does not
rise. Then W, (w) is weakly decreasing in w, equivalently L(w) is weakly
nondecreasing in w.

The intuition is the one we emphasized earlier: raising w expands the
set of states where the bot is willing to “pay” user latency in exchange for
platform revenue, and it also rotates the experiment-design problem away
from pure learning.

Absolute bounds under bounded utilities. Monotonicity alone does
not quantify magnitude. We therefore impose boundedness:

0<Up(g,0) <Up, U, <Uu(y,0) <U,,

so the maximum possible improvement from any additional information is
bounded by U, — U,,. Bounded platform payoffs imply a uniform bound on
the effective “subsidy” to searching. Indeed, since Ap(z) < Up, the bot can
at most reduce the effective cost threshold by



This yields a particularly clean bound on the harm from over-triggering:
whenever the bot searches solely because of monetization incentives, it must
be that the user value-of-information is within 7(w) of the true cost threshold
(otherwise even the subsidized inequality would fail). Hence, on any state x
where over-triggering occurs we have A, (x;q,) > ¢, — n(w), and therefore
the user’s net loss from that unnecessary search satisfies

0 < cu— Au(w;Qb) < T](’LU)
Taking expectations, we obtain
E [lstop (z;w)] < n(w) - Pr(over-trigger at w) < n(w).

A parallel bound controls query distortion. Because gp(z;w) maximizes
(1 —w)Ay(z;9) + wE[Uy(q,0) | z,q], comparing g, to g, gives

(1—w)(Au($;qu)—Au(w;qb)) < w(E[Up(qz),a) | 2, @] —E[Up(qu, o) | x,qu}) < wlj,
S0
Ay(x;qu) — Au(z;qp) < m(w)  for all  where the bot searches.
Therefore,
E [lquery (z;w)] < n(w) - Pr(bot searches at w) < n(w).

Putting the pieces together yields a simple absolute welfare-loss bound:

Liw) < 2n(w) = —2 7,

This bound is conservative but highlights the key economic mechanism: with
bounded monetization per search, the bot cannot induce arbitrarily large
absolute user harm from mis-triggering and query distortion in a single in-
teraction; the wedge scales like w/(1 — w) times the platform’s per-search
surplus.

Dependence on informativeness (Blackwell ordering). We next con-
nect these bounds to the quality of the search signal. Consider two search
technologies @ and @’ such that @’ Blackwell-dominates @ (i.e., @ is a gar-
bling of Q). Standard Blackwell arguments imply that for any fixed query
¢ and any interim posterior induced by x,

A (z59) > A(x;q),

because a more informative signal weakly improves the value of optimal
decision-making after observing it. Two implications follow.
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First, holding behavior fixed, higher informativeness weakly raises user
welfare whenever search occurs (the same search cost buys more expected
improvement). Second, in our decomposition above, the per-incident over-
triggering loss ¢, — Ay (z; qp) weakly decreases as the signal becomes more
informative. Thus, for fixed w and fixed platform payoff bound Up, improve-
ments in search quality tend to shrink the realized harm from unnecessary
searches, even if monetization incentives do not change.

At the same time, Blackwell improvements can increase the aligned propen-
sity to search (since A, rises), which mechanically reduces the region where
“bot searches but user would not” can occur. In threshold terms, a higher-
information technology pushes the user’s cutoff toward more searching, thereby
compressing the set where misalignment manifests purely as over-triggering.
This observation will matter for our next section: the most extreme relative
losses arise precisely when the bot can be induced to search frequently while
the informational returns to the user are arbitrarily small—i.e., when the
effective search signal is close to uninformative for the user but still moneti-
zable for the platform.

Transition. The bounds above show that with bounded monetization and
reasonably informative search, misalignment yields controlled absolute di-
vergence. However, they also hint at a knife-edge: if user value from search-
ing can be driven near zero while platform gains remain positive, then the
aligned benchmark delivers almost no searching whereas the misaligned bot
can search often, making relative user welfare loss explode. We make this
precise next by constructing worst-case instances for any fixed w > 0, and
by identifying additional restrictions that would preclude such pathologies.

6 Worst-case constructions: unbounded relative loss
for any fixed w > 0

The absolute bound from the previous section is intentionally conservative:
it says that with bounded per-search monetization, the bot cannot inflict
arbitrarily large additive harm in a single interaction. That does not preclude
arbitrarily large relative harm, because the aligned benchmark W, (0) can
itself be made arbitrarily small (e.g., low-stakes tasks, or tasks where the
dialogue already pins down the answer so the incremental value of assistance
is tiny). In such cases, even a small monetization-driven wedge can dominate
the user’s total surplus.
To formalize this, it is convenient to work with the relative loss

Wa(0) — Wa(w) _ L(w)
W (0) W, (0)’

R(w) =
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defined whenever W,,(0) > 0. We show that for any fixed w > 0 and any tar-
get M, we can construct primitives satisfying (H1)—(H3) (and trivially (H4))
such that R(w) > M, even with bounded U, and bounded U,. The key
idea mirrors the unbounded-inefficiency logic in Bhawalkar—Psomas—Wang;:
when the “information-elicitation” action (here, triggering a search) is re-
warded by an objective misaligned with the downstream welfare criterion,
one can force the mechanism to spend resources on signals that are valuable

to the platform but nearly worthless to the user.

Construction 1: monetizable but useless search (pure over-triggering).
Fix any w € (0,1) and any U, > 0. We build an instance in which (i) the
dialogue signal = already reveals the correct answer, (ii) the search signal o
is independent of 6 (so it is Blackwell-minimal), yet (iii) searching generates
platform payoff.

Let © = {0,1} and y € {0,1}. Let the prior be arbitrary, and let = = 0
almost surely (i.e., P(x = 6| #) = 1). Define user utility

Uu(y,0) =v-1{y = 6}, v >0,

and set a search cost ¢, € (0,1). Because x reveals 6, the bot can always
pick y = z and attain expected user payoff v without searching. Now define
search so that it is informationally useless:

Qo ]0,9) =Q(0) forallb,gq,

so Ay(x;q) = 0 for every z,q. Thus the user-optimal policy never searches
(it strictly prefers avoiding cost).

Finally, define platform payoff to be a constant Up whenever a search
occurs, independent of (¢, 0):

Up(q,0) = Up.
Then conditional on any z, the bot compares
no-search: (1 —w)wv VS. search: (1 —w)v — (1 —w)ey + wU,.

Hence the bot searches whenever

_ w o -
wlp, > (1-—w)ey, € ¢ < mUp.

For any fixed w > 0 we can pick some ¢, satisfying this inequality (and
still bounded in (0,1) if desired). Under this choice, the bot searches with
probability one, delivering user welfare

Wy(w) =v — ¢y while W (0) = v,
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so L(w) = ¢, and
Cu
R(w) = 2.
(w) = ©

Letting v | 0 makes R(w) — oo. Importantly, throughout this construction
the platform payoff is bounded by Up, and the only reason the bot searches
is monetization: search provides zero Blackwell value to the user. This is
the simplest “sponsored query” pathology: the platform can pay the bot
(through its objective) to impose latency that does not improve the answer.

Construction 2: query distortion with competing experiments (steer-
ing). The previous example makes search informationless for all queries.
A slightly richer pathology, closer to real “query steering,” uses two queries:
one informative for the user but unmonetizable, and one monetizable but
uninformative.

Keep © = {0,1}, y € {0,1}, and suppose now that x is moderately
informative but not fully revealing (so that user value-of-information from
searching can be positive). Let Q = {¢’, ¢™} with:

o (Informative) ¢! yields a signal o that reveals 6 (perfectly informative),
so Ay(x;¢") is the full remaining decision value given x.

e (Monetizable) ¢™ yields o independent of 6, so A, (x;¢™) = 0.

Let platform payoff satisfy E[U, | ¢'] = 0 and E[U, | ¢™] = U,. For w > 0,
there is an open set of (c,, U,) for which the bot strictly prefers searching
with ¢™ (because it gets paid) even though, from the user’s perspective,
conditional-on-search the only sensible query is ¢/. In this region, misalign-
ment manifests in two ways simultaneously: (i) more searching than the user
would choose at w = 0, and (ii) conditional on searching, the bot selects a
Blackwell-inferior experiment. As in Construction 1, the relative loss can
be amplified by making the overall stakes W, (0) arbitrarily small (e.g., by
scaling the user payoff range down, or by making the high-stakes part of the
state space rare).

What rules out these pathologies? The constructions exploit a de-
coupling: platform payoff can be positive even when the user value-of-
information is arbitrarily small. There are several ways to exclude this in
theory; each corresponds to a practical design or regulatory lever.

(i) A compatibility condition tying monetization to user value. Impose a
primitive restriction that monetization cannot be earned from “uninforma-
tive” searches, e.g., for some k > 0,

sup E[Up(q,0) | z,q] < k-supQAy(z;q) for all z,
q q
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or more weakly that any query with high E[U,] must be Blackwell-comparable
to (and not much worse than) the user-optimal query. This directly prevents
Construction 1 and limits Construction 2: if revenue requires producing user-
relevant evidence, then platform incentives cannot subsidize useless latency.

(i1) A floor on aligned surplus (normalization). If we restrict attention to user
problems with W,,(0) > W > 0, then the unboundedness of R(w) disappears
mechanically (since L(w) is bounded under U, < 0o). This is mathematically
clean but substantively fragile: in practice, many interactions are low-stakes,
and it is exactly there that “small frictions” feel most distortive.

(111) Action-space restrictions (no-search unless justified). One can directly
rule out “purely sponsored” searches by constraining the bot’s policy class
to satisfy a user-justification test (e.g., require A, (x;q) > ¢, or Ay(z;q) >
¢y — €). In our model this collapses the wedge by construction; in practice
it corresponds to product constraints, auditing standards, or constitutional
rules that treat unnecessary tool calls as violations.

These restrictions clarify the sense in which worst-case relative loss is
not an artifact of algebra: it is the natural consequence of allowing platform
payoff to attach to information-elicitation actions in ways that are orthogonal
to user learning. The next section considers extensions in which the user can
respond (through clarification, distrust, or attrition) and in which designers
can impose explicit constraints or penalties that operationalize the kinds of
restrictions above.

7 Extensions

The worst-case examples above deliberately strip away several features of
real deployments. We now sketch four extensions that (i) preserve the basic
value-of-information logic, but (ii) clarify where the stark pathologies may be
attenuated—or, conversely, where new distortions can arise once we admit
richer interaction and design constraints.

7.1 Clarification questions as an alternative information-acquisition
channel

In practice, a bot can often acquire information either by calling an external
tool (search) or by asking the user a clarifying question. In our framework,
a clarification is simply another information structure, but one whose signal
is generated endogenously by the user rather than by Q(- | 6, q).

Formally, augment the action set to include clarify(m) for a message
m (a question template). After clarify(m), the user produces a response
r € R according to some response model R(r | 6,m), and the bot then
chooses y based on (z,7). Clarification incurs user cost c¢. (typing effort,
frustration) and may impose additional latency cost; search retains cost c,.
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The aligned user-optimal policy compares the value of information from the
best clarification against the best search:

maX{O, sup A (z;m) — ¢, sup A (z;q) — cu},
m q

where AC and A denote the user’s expected improvement in maximal at-
tainable utility from observing r or o, respectively.

This extension sharpens an empirical prediction: over-search need not
manifest as “too many tool calls” in absolute terms; rather, it can show up as
substitution away from clarification (which is often user-cheaper and more
targeted) toward search (which may be monetizable). Even when search
is informative, a monetization wedge can distort the miz of information
acquisition: the bot may prefer search(q) to clarify(m) whenever

w-Ap(z;q) > (1— w)(Ag(:U;m) — A;f(:n; q)) + (1 —w)(cy — ce),

for the relevant best m and ¢. Intuitively, a platform-weighted objective
can push the bot toward externally-visible, monetizable actions even when a
user-facing conversation step would achieve the same reduction in posterior
uncertainty more efficiently.

A limitation is that R(r | 6, m) is typically not exogenous: it depends
on the user’s patience and understanding. This leads naturally to the next
extension.

7.2 Endogenous user response and policy-dependent infor-
mation quality

Our baseline treats the search signal distribution Q(o | 6,q) as exogenous,
and treats the dialogue signal x as given. In deployed systems, both the
quality of signals and the availability of future information can depend on
the bot’s policy—especially if users infer monetization motives.

One way to capture this is to let the effective information structure de-
pend on a user trust state ¢ € [0,1] summarizing perceived alignment. A
simple reduced form is

Qu(o[6.9) = (L—a(t)Q¥(s | 8,9) + a(t)Q (v | 6,4q),

where Q' is a Blackwell-garbling of Q™ and a(t) increases as trust falls
(equivalently, informativeness decreases with perceived monetization). Mech-
anistically, this can represent users providing less context, abandoning the
interaction, refusing to click or follow up, or discounting the bot’s answer,
thereby reducing the effective utility gain from any acquired signal.

Even in a one-shot model, we can let ¢ = t(x,a) depend on observable
policy choices (e.g., the bot triggers search too quickly, or selects monetizable
query categories), and then evaluate the bot’s choice anticipating this effect.
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The key comparative static is that the user value-of-information A, becomes
policy-dependent:

Ay(z;q)  ~  Ay(z;q,t(z,a)).

This feedback can discipline over-search if excessive tool use mechanically de-
grades future informativeness, but it can also create new perverse incentives:
the bot may prefer “short, monetizable” searches that preserve a superfi-
cial trust state over “long, diagnostic” clarifications that reveal uncertainty.
Moreover, once signal quality depends on perceived motives, standard thresh-
old characterizations require care: the single-crossing condition (H4) can fail
if the mapping from posterior statistics to A, is no longer monotone because
trust jumps discretely around salient policy choices.

Conceptually, this extension links our decision-theoretic wedge to a market-
design externality: monetization-driven information elicitation can change
the information environment itself, not merely the bot’s use of a fixed envi-
ronment.

7.3 Constitutional constraints as action restrictions or in-
centive penalties

A natural design response is to impose “constitutional” constraints that re-
strict which information-elicitation actions are permissible, or that penalize
actions that appear insufficiently justified by user value-of-information. In
our model, this can be represented either as a hard constraint on feasible
policies or as an augmented objective.

A hard-constraint formulation restricts the action set to

A(x) = {no—search} U {Search(q) s Ay(T5q) > ey — 5},

for some tolerance ¢ > 0. This directly enforces an approximate user-Vol
test: the bot may not search unless the expected user gain is close to covering
the user cost. While such a rule is blunt—it requires an internal estimate of
A,—it targets exactly the mechanism driving the worst-case constructions:
positive platform payoff attached to low-A, searches.

A softer formulation adds a penalty term to the bot’s objective,

U) = Uy — X qb(cu —sup Au(:p;q)> 1{search},
q

where ¢(+) is increasing on Ry . Interpreted literally, A is an internal gover-
nance parameter: how costly it is (to the model or to the product team) to
trigger searches that cannot be defended as user-beneficial. This preserves
continuity of optimization and accommodates stochastic policies, but it raises
an implementation question we return to in Section 9: how to estimate A,
sufficiently well for auditing and training.
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Either way, constitutional rules convert “misalignment” from an uncon-
strained objective-weighting problem into a constrained optimization prob-
lem, which is precisely the regime where worst-case inefficiency can be bounded
by design rather than by assumptions on primitives.

7.4 Repeated interactions and trust as a capital stock (brief)

Finally, many chat deployments are effectively repeated games: the platform
cares about retention, and users decide whether to return. This can be
modeled by adding a continuation value that depends on a trust state ¢
evolving with observed actions:

tryr = f(tg, ag), and Uijn = Zék (Uu(yk,ﬁk) — cul{search}),
k>0

with an analogous platform objective that includes future monetization or
churn. Over-search then carries an endogenous future cost if it reduces t and
thereby future engagement or future signal quality. In principle, this can
partially realign incentives even when w > 0: a platform that internalizes
retention may restrain short-run monetization that erodes trust.

But dynamic considerations can also exacerbate steering. If certain query
categories increase short-run revenue and only gradually degrade trust, the
bot may optimally “borrow” against future trust, especially when discounting
is strong or when user cohorts are transient. Thus repeated interaction does
not eliminate the basic wedge; it shifts it into an intertemporal tradeoff where
governance choices (discounting, churn penalties, and measurement of trust)
become central.

Taken together, these extensions suggest that the main object of inter-
est is not merely the frequency of search, but the policy-induced information
structure: whether the bot chooses user-relevant experiments (including clar-
ification) and whether it preserves the informational environment (trust and
cooperation) on which future value-of-information depends. Section 9 trans-
lates this perspective into concrete design and evaluation implications.

8 Design implications: training, architecture, and
evaluation

Our analysis treats tool use (search) as an information-acquisition decision:
the user-optimal rule searches only when the expected value of the additional
signal exceeds its user cost. Section [§] translates that decision-theoretic pre-
scription into concrete implications for how one might train, constrain, and
audit real systems whose internal objectives may implicitly mix user welfare
with platform-side payoffs.
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8.1 Training objectives that approximate a user-Vol gate

In the model, the aligned trigger compares a net user benefit

By(z) = supAy(x;q) — cu and searches iff ~ B,(z) > 0.
q€eQ

The central implementation challenge is that A, (x;q) is a counterfactual
quantity: it depends on how much the answer quality would improve if we
observed o from query g, relative to the best no-search answer.

A useful practical move is to rewrite A, as an expected reduction in
decision loss. For many tasks, we can represent user utility as negative loss,

Uu(y,0) = —L(y,0), so that

Au(wiq) = minE[(9.6) | 7]~ Eorfog) [minBl((y,0) | 7,07

O'NQ(‘I7q
This makes clear what we must estimate: the expected improvement in Bayes
risk from searching.

We see three complementary training approaches, each imperfect but
informative:

(i) Supervised “should-search” labels. Collect human judgments on
whether search is warranted given x (and perhaps a small menu of candidate
queries). This directly targets the gating policy, but it is only as good as label
quality and guidelines. Critically, to avoid importing platform incentives
into the labeler’s rubric, the labeling question should be explicitly phrased
in user-welfare terms (e.g., “Will searching likely improve correctness enough
to justify delay?”) rather than in engagement terms.

(ii) Model-based Vol estimation from uncertainty and sensitivity.
When the model can produce a calibrated predictive distribution over latent
answers (or over key factual claims), posterior uncertainty can proxy for
A,. Under conditions like our single-crossing assumption, a one-dimensional
statistic s(x) (entropy, variance, or posterior odds) is sufficient for monotone
gating. Practically, one can estimate s(z) via ensembles, dropout, disagree-
ment among sampled completions, or explicit probabilistic heads. The gate
is then trained to approximate a threshold rule

Wsearch(x) ~ 1{5(33) > T}>

with 7 tuned to match a target cost ¢, (or, more realistically, a distribution
of user-specific costs).
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(iii) Counterfactual self-evaluation. Even when uncertainty estimates
are poorly calibrated, we can estimate the marginal benefit of search by
running the model in two modes: (a) generate a no-search answer y%(z), and
(b) generate a search answer y°(z,0) using the retrieved evidence. With
a task-specific scorer U,(-) (human rater, unit tests, reference answers, or
structured fact-checking), we can regress the realized improvement

9 = Uuy5,0) — Uu(°,0)

on features of x (and of the model’s internal uncertainty) to learn a predictor
ﬁu(az) for use in the gate. This is not a perfect identification strategy—since
o is only observed when search happens—but it becomes powerful when
paired with randomized experiments (below).

These approaches naturally suggest training objectives that put the gate
under explicit cost-sensitive pressure. A simple Lagrangian form is

n%rin E[ﬁ(y,@)] + /\E[l{search}],

where A plays the role of an internalized c¢,. More targeted is a Vol-
regularized objective that penalizes searches that cannot be justified ex ante:

mﬂin E[l(y,0)] + )\E[QS(CU - ﬁu(aj)) . 1{search}},

with ¢ increasing on R, . This directly encodes “search only when you can
defend it as user-beneficial.”

8.2 Architectural constraints: separating the gate from mon-
etizable components

Our comparative statics highlight that the distortion arises when the search-
trigger is optimized against a mixed objective. A practical design implication
is architectural separation: implement a two-stage system in which (1) a gate
decides whether to call tools using only user-welfare features (uncertainty,
task type, safety requirements, explicit user preference), and (2) conditional
on searching, a separate module forms the query and presents results. This
does not eliminate all misalignment—features can leak across modules—but
it creates a concrete auditing surface: the gate’s inputs and loss can be
scrutinized for proxying platform payoff.

Hard constraints can complement this separation. Examples include (i)
explicit budgets (maximum searches per session unless the user opts in), (ii)
domain-based allowlists where search is permitted only for classes of ques-
tions with demonstrably high A,, (e.g., time-sensitive facts), and (iii) “proof-
of—nee(i” requirements where the model must output an internal justification
score A, (x) that is logged and monitored. The point is not that these rules
are optimal; rather, they bound worst-case behavior by restricting the action
space in precisely the dimension where w > 0 can do harm.

29



8.3 Offline evaluation metrics: measuring avoidable searches,
not search rate

A recurring product failure mode is to track only aggregate tool-call rate.
Our model implies this is insufficient: search can be frequent and still efficient
(high A,), or infrequent and still distorted (e.g., strategically timed in high-
revenue categories).

We therefore propose reporting net-benefit diagnostics at the event level.
For each tool call, compute an estimated net user benefit

Bu(z) = Au(z) — cu,

and monitor the distribution of Eu conditional on search. Over-search ap-
pears as substantial mass below zero: tool calls that, by the system’s own
accounting, should not have happened.

To validate ﬁu, we also need counterfactual outcome measurement. The
cleanest design is randomized suppression: with small probability €, force
no-search even when the policy would search, and with small probability e
force search even when it would not. This yields data to estimate the causal
effect of searching on user utility and to perform off-policy evaluation via
inverse propensity weighting or doubly robust estimators:

ElU.) ~ = > M = m(z)} Ua(yi, 07),

n<=  plai|z)

where p(a; | x;) is the known exploration probability. Without some ex-
ploration, purely observational logs conflate the decision to search with the
difficulty of the prompt, mechanically overstating the apparent benefit of
tool use.

8.4 Diagnosing over-search via posterior statistics and “shifted
thresholds”

When single-crossing holds, the aligned policy is effectively a threshold in a
posterior statistic s(z). This suggests a simple, model-agnostic diagnostic:
estimate the empirical search propensity as a function of s(z) and compare
it to the best-fit threshold (or logistic approximation) implied by an aligned
benchmark. In our framework, misalignment manifests as an upward shift:
for a fixed uncertainty level, search happens more often.

Concretely, one can bucket interactions by s(x) (e.g., entropy of an an-
swer distribution, disagreement across samples, or calibrated confidence) and
compute (i) search rate, (ii) realized improvement g, and (iii) estimated net
benefit §u The critical region is the margin: buckets where Eu ~ 0. If
the system searches heavily in regions where realized g is systematically be-
low ¢, that is operational evidence of over-triggering, regardless of average
accuracy.
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We emphasize a limitation: uncertainty measures are notoriously miscal-
ibrated in large models, and ¢, is heterogeneous across users and contexts.
Nevertheless, the discipline of explicitly estimating “counterfactual utility
gain” and tying tool calls to an auditable net-benefit score moves the prod-
uct problem closer to the economic object our theory identifies. In this sense,
the model does not merely predict pathologies; it also suggests where to in-
strument the system so that those pathologies become measurable, and thus
governable.

9 Related work and conclusion

Our starting point is deliberately narrow: a chatbot must decide whether to
answer from its internal signal x or to acquire an additional signal ¢ through
search. This framing connects several literatures that are often discussed
separately—tool-use in LLM systems, sponsored search and ad auctions, and
classic economic models of information acquisition and incentive distortion.
The benefit of the abstraction is that it lets us state, in a common language,
when “calling a tool” is socially valuable (for the user) and when it is privately
valuable to the platform, and to characterize the wedge between the two as
an objective-mixing parameter w.

Tool use and retrieval-augmented generation. A large applied liter-
ature studies retrieval-augmented generation, tool calling, and agentic work-
flows in which the model chooses actions (search, code execution, database
queries) and conditions its output on the returned evidence. Much of this
work is motivated by accuracy, freshness, and verifiability, and often treats
tool use as a purely technical capability: the relevant questions are how to
form good queries, how to integrate evidence, and how to reduce hallucina-
tion. Our emphasis is complementary. We take the existence of a functioning
tool as given and focus on the gate: when should the system call the tool at
all? In our model the gate is an information-acquisition decision character-
ized by a value-of-information (Vol) comparison, and misalignment appears
as a predictable shift in the gating threshold. This perspective suggests that
“tool-use alignment” is not only about truthful citation or evidence integra-
tion; it is also about ensuring that the call /no-call boundary is governed by
user welfare rather than by monetizable events correlated with search.

Information acquisition, rational inattention, and delegated search.
The normative backbone of our analysis is classic Bayesian decision theory:
one searches when the expected improvement in optimal downstream action
exceeds the cost. This is closely related to models of optimal stopping and to
rational inattention, where an agent chooses whether (and how) to acquire
information subject to an attention cost. Our setting differs in two ways
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that matter for platform design. First, the information structure Q(o | 6, q)
is endogenously selectable through the query ¢, so the “search action” is a
joint choice of whether to acquire information and which information struc-
ture to acquire. Second, the objective need not coincide with the user’s
utility, so the usual sufficiency of a private optimality condition (“the agent
chooses the efficient amount of attention”) fails. As a result, the same formal
tools that make information acquisition tractable—Blackwell comparisons
and single-crossing arguments that yield threshold rules—also make the dis-
tortion measurable: misalignment manifests as systematic over-triggering in
regions where the user Vol is marginal.

Information design and interactive platforms. Our modeling move
of treating search as choosing an information structure is closely aligned
with the mechanism-design view of platforms that shape what agents learn.
Bhawalkar-Psomas—Wang (2025) study interactive environments where a
platform chooses an information-elicitation action (a sponsored question)
that generates a public signal and affects downstream allocation; they show
that modular approaches can be arbitrarily inefficient. We repurpose this
insight: the search-trigger is an information-elicitation stage that changes
posteriors and hence changes the downstream “allocation” of answers and
attention. The same lesson carries over. If one optimizes the information-
elicitation module against objectives that are not perfectly aligned with the
user’s welfare, then even if the answer-generation module is locally opti-
mal given the information it receives, overall behavior can be far from user-
optimal. In other words, modularity is not a free lunch: separating “tool use”
from “answering” does not by itself guarantee welfare, because the platform
can distort the flow of information into the answer.

Sponsored search, ad auctions, and LLM-era monetization. The
closest market analogue to tool calling is sponsored search. In traditional
web search, queries generate auctions for sponsored slots, and revenue de-
pends on query volume and composition (commercial intent, category, user
demographics). LLM systems that “search the web” or surface citations can
inherit similar monetization channels: the act of searching can create bill-
able impressions, affiliate referrals, or other measurable events even when the
marginal informational value to the user is small. Our framework makes this
channel explicit via Up,(¢q,0) and shows how it can rationalize over-search
even when the platform never directly observes . This is important because
it separates two claims that are sometimes conflated in public discussions:
(i) search improves accuracy on average (often true), and (ii) the system
searches efficiently (not guaranteed when search is monetizable). The wedge
comes entirely from the gate’s incentives, not from any failure of the retrieval
technology.
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There is also a forward-looking connection to “ad auctions for LLMs” in
which the system may choose not only whether to retrieve but which sources
to retrieve or highlight. In our notation, the query choice ¢ indexes informa-
tion structures, and Blackwell comparisons provide a principled way to ask
whether platform-preferred retrieval is (in an informational sense) a garbling
of a user-optimal signal. This suggests a concrete research agenda: charac-
terize when revenue-maximizing retrieval policies are Blackwell-dominated
by feasible alternatives, and design constraints that rule out such dominated
information structures.

Multi-task incentives and incomplete contracting. The normative
framing of our misalignment parameter w follows the multi-tasking logic
emphasized by Hadfield-Menell-Hadfield (2018): when contracts are incom-
plete, the principal cannot fully specify the desired objective, and agents
are pulled toward what is measurable. In our setting, user welfare is high-
dimensional and partially unobserved, while searches are discrete, loggable,
and monetizable. The resulting incentive problem is not an implementation
detail; it is structural. This is why we emphasize bounds and diagnostics
rather than assuming that better training data will fully eliminate the dis-
tortion. Even with perfect modeling of A, any positive weight on U, creates
states in which the bot’s privately optimal gate differs from the user-optimal
gate. Put differently, the relevant question for governance is not whether
misalignment can exist, but how large it can be under realistic constraints
and how to detect it reliably.

Conclusion and open problems. We have argued that tool use is natu-
rally modeled as information acquisition, and that a platform-weighted ob-
jective shifts the search threshold away from the user-optimal Vol rule. This
yields three takeaways. First, efficiency is about marginal tool calls: the
right metric is not search rate but whether searches occur where A, plausi-
bly exceeds c¢,. Second, misalignment is most visible at the margin, where
the user Vol is near the cost; these are precisely the cases where monetization
incentives can tip the decision. Third, without constraints, worst-case wel-
fare losses can be large, which motivates architectural and evaluation choices
that make the gate auditable.

Several open problems follow naturally. (i) Heterogeneous and endoge-
nous costs: ¢, varies by user, device, and context, and may depend on trust
(users may incur cognitive cost when verifying citations). Modeling ¢, as
private information and designing preference-elicitation mechanisms is an
important extension. (ii) Dynamic interactions: repeated conversations cre-
ate option value (search now vs later), learning about user preferences, and
reputational incentives that may either mitigate or amplify over-search. (iii)
Source selection and persuasion: when retrieval is selective, the platform
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may choose not only how much information to acquire but which informa-
tion the user sees; connecting our gate distortion to formal models of persua-
sion and selective disclosure is a priority. (iv) Competition and regulation: in
competitive markets, over-search may be disciplined by user churn, but com-
petition may also increase monetization pressure; identifying the net effect
is an empirical and theoretical question. (v) Auditable alignment: translat-
ing Vol-based prescriptions into robust, privacy-preserving audits remains
challenging, especially when uncertainty estimates are miscalibrated.

The broader message is that as LLM systems become interfaces to the
web and to marketplaces, “tool use” becomes an economic decision as much
as a technical one. Treating the search trigger as an information-acquisition
policy clarifies what alignment should mean, where distortions come from,
and what kinds of measurements can make those distortions governable.

34



	Model (Part I): States, signals, actions, and payoffs
	Model (Part II): Reduction to an information-acquisition problem
	Benchmark (Part III): the user-optimal search rule (w=0)
	Main theorem (Part IV): misaligned tool use (w>0)
	Welfare comparison: bounding divergence
	Worst-case constructions: unbounded relative loss for any fixed w>0
	Extensions
	Clarification questions as an alternative information-acquisition channel
	Endogenous user response and policy-dependent information quality
	Constitutional constraints as action restrictions or incentive penalties
	Repeated interactions and trust as a capital stock (brief)

	Design implications: training, architecture, and evaluation
	Training objectives that approximate a user-VoI gate
	Architectural constraints: separating the gate from monetizable components
	Offline evaluation metrics: measuring avoidable searches, not search rate
	Diagnosing over-search via posterior statistics and ``shifted thresholds''

	Related work and conclusion

