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Abstract

We study agentic chatbots that decide whether to trigger web
search and how to use the resulting information before producing a
final answer. The decision to search is an information-acquisition
choice: it can improve answer quality by revealing a signal about
the user’s latent intent, but it incurs latency/cognitive costs and may
generate platform-side benefits (e.g., monetizable search events). Mo-
tivated by the growing deployment of conversational assistants and
by recent mechanism-design results showing severe inefficiency under
modularized information acquisition versus allocation ?, we analyze
an analogous modularity gap arising from training architecture rather
than auction rules. We formalize a broad class of modular pipelines in
which a stage-1 component chooses whether to search using a proxy
objective (such as predicted engagement or revenue), while a stage-2
component optimizes answer quality conditional on the realized search
signal. Our main theorem shows an unbounded Price of Anarchy: for
any constant C, there exist environments where every such modular
pipeline achieves user welfare at least a factor C worse than the end-to-
end Bayes-optimal policy, even if the stage-2 component is pointwise
optimal given the stage-1 choice. We then provide sufficient condi-
tions under which modularity becomes safe: if the stage-1 proxy is a
certifiable approximation to the user value-of-information of searching
and the stage-2 model is calibrated, then the welfare loss is uniformly
bounded. Conceptually, our results connect economic theories of in-
complete contracting and reward misspecification ? to practical LLM
systems: optimizing easily measurable proxies for tool use can lead to
arbitrarily harmful distortions unless training, architecture, or audits
are designed to internalize downstream user welfare.
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1. Introduction and Motivation. Modern conversational assistants
increasingly operate as agentic systems: they do not merely map a user
message to an answer, but instead choose among intermediate actions such
as calling external tools (e.g., web search, retrieval over proprietary corpora,
code execution), selecting a query, and then composing a final response.
Even in the seemingly simple case of a single search call, the assistant faces a
sequential decision problem under uncertainty. The user’s true intent—what
facts are needed, what level of rigor is expected, what constraints matter
(freshness, jurisdiction, personalization), and what counts as a satisfactory
answer—is only partially revealed by the dialogue. The assistant must infer
this latent intent from the observed conversation and decide whether the
incremental benefit of acquiring outside information outweighs the associated
costs.

This paper frames search triggering and query phrasing as an instance
of information acquisition in the decision-theoretic sense. The key observa-
tion is that “using a tool” is not simply a means of producing text; it is a
choice of an information structure that determines what signal the system
will observe before committing to a final answer. In classical Bayesian de-
cision theory, an agent compares the value of additional information to its
cost, and optimally acquires information when the expected gain in deci-
sion quality exceeds the acquisition cost. When a chatbot decides whether
to search, it is implicitly solving this value-of-information tradeoff: search-
ing may reduce hallucinations and improve factuality, but it also introduces
latency, interaction friction, potential privacy exposure, and possibly new
failure modes (e.g., over-trusting low-quality sources or misreading retrieved
snippets).

Why this is not just a modeling nicety. The practical relevance of this
framing becomes clear once we recognize that tool use is often trained and
deployed modularly. In production systems, a tool-use component (or policy
head) may be optimized to predict whether a search call will yield engage-
ment, satisfy platform policies, or generate monetizable events. Separately,
a response generator is trained to produce a high-quality answer conditional
on whatever information is available—either no external information, or a
retrieved bundle of documents. This division is attractive: it reduces en-
gineering complexity, allows different teams to own different modules, and
provides clean supervised targets (e.g., “should we search?” labels inferred
from logs). It also reflects real constraints: large language models are ex-
pensive to train end-to-end with interactive exploration, while a standalone
trigger classifier can be iterated rapidly.

However, modularity introduces a subtle but central failure mode: even
if the response generator is “perfect” given its inputs, the overall system can
be arbitrarily far from user-optimal if the tool-use module selects the wrong
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information structure. The system’s welfare is determined not only by how
well it answers given retrieved evidence, but by whether it chose to retrieve
the right evidence in the first place. This point is easy to miss because eval-
uation practices often condition on tool calls (“given that search happened,
did the model cite correctly?”) rather than evaluating the upstream decision
(“should it have searched at all?”). Yet the user experiences the composition
of these decisions.

Misaligned incentives and proxy objectives. The incentive misalign-
ment we study is not hypothetical. The user’s objective is naturally ex-
pressed as expected answer quality minus the cost of tool use (latency, an-
noyance, privacy risk, cognitive overhead). The platform, by contrast, may
optimize a proxy: search calls may increase session length, create measur-
able events, or support product goals that correlate only imperfectly with
user welfare. Even if the platform’s proxy is benign (e.g., “reduce hallucina-
tions”), it remains a proxy because the true downstream utility is hard to
observe and can be context-dependent. This tension echoes a broader align-
ment theme: optimizing what is easy to measure can distort what is hard to
measure. Hadfield-Menell and Hadfield’s incomplete-contracting perspective
formalizes why such reward misspecification is routine rather than excep-
tional: when objectives are complex and partially unverifiable, systems are
necessarily trained on incomplete proxies, and the resulting behavior can
systematically deviate from the intended goal.

Our setting adds an additional layer: the proxy is often applied to the
information acquisition stage, not merely to the final output. This matters
because information acquisition changes the feasible set of downstream ac-
tions. A mis-optimized trigger policy can “lock in” an inferior information
structure, after which even an optimal answerer cannot recover the lost wel-
fare. In other words, the proxy does not merely bias a choice among answers;
it biases the choice among experiments the system runs on the world.

A motivating example. Consider a user who asks: “Is the new tax credit
available for used EVs in my state?” The latent intent includes jurisdiction,
date, and eligibility details; the dialogue signal may not specify all of these.
A user-optimal assistant would likely search (or ask a clarifying question)
because the answer is time-sensitive and state-dependent. A proxy-trained
trigger, however, might learn that users who receive a quick confident re-
sponse are less likely to abandon the session, and thus prefer NoSearch in
ambiguous cases. The downstream generator might be highly accurate when
provided with relevant statutes, but it never sees them because the upstream
module refused to search. Conversely, the proxy might over-trigger search
for queries that are easy to answer from parametric knowledge, creating un-
necessary latency and friction. Both errors are welfare losses; crucially, they
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arise upstream of the “answer quality” module.

Connection to information acquisition and mechanism design. Our
analysis is inspired by a conceptual parallel with interactive ad systems and
sponsored-question auctions. In such systems, a platform may choose which
questions to ask users (or which information to elicit) before allocating ad
slots. Bhawalkar, Psomas, and Wang (2025) show that modularity between
information acquisition and allocation can lead to unbounded inefficiency:
selecting an information structure based on induced intermediate utilities
can be arbitrarily worse than selecting information end-to-end for the final
objective. We adapt the logic to conversational assistants. The “allocation”
stage corresponds to generating the final answer once a signal is realized,
while the “information acquisition” stage corresponds to deciding whether
and how to search. The analog of their inefficiency is that a trigger policy
optimized against a proxy can systematically pick low-welfare information
structures, producing an unbounded price-of-anarchy-style gap relative to a
fully user-optimal policy.

The broader message is not that modularity is always bad, but that
modularity is a structural constraint that can interact with misalignment
in a particularly harmful way. When the upstream module is trained on a
proxy objective, downstream optimality cannot rescue the system because
the relevant information was never acquired.

Our approach and contributions. We develop a decision-theoretic model
that makes this issue precise and yields two types of results: an impossibility
result that formalizes the potential severity of modular misalignment, and a
positive result that identifies conditions under which modularity is safe.

First, we propose a simple welfare benchmark grounded in Bayesian de-
cision theory. The benchmark is the end-to-end Bayes-optimal policy that
jointly chooses (i) whether to search and how to phrase a query, and (ii)
what final answer to return after observing the resulting signal. This bench-
mark captures the normative “search if and only if the incremental value-of-
information exceeds the cost” principle, generalized to the setting where the
assistant can design its own query and then condition its answer on what it
observes. The model is intentionally minimalist: it abstracts away from the
details of ranking algorithms and language generation in order to isolate the
core economic tradeoff between information and cost.

Second, we formalize a broad class of modular training pipelines in which
a stage-1 tool-use module chooses the search action using a proxy objective,
while a stage-2 response module is (potentially) user-optimal conditional
on the chosen action and observed signal. Within this class, we show that
modularity can be arbitrarily inefficient: for any constant C > 0, there
exist environments where the user-optimal end-to-end policy achieves at least
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C times the welfare of the modular policy. Importantly, this gap persists
even when the stage-2 answerer is pointwise optimal given its inputs. The
inefficiency is thus not about a weak language model; it is about selecting the
wrong experiment. Conceptually, this aligns with the unbounded inefficiency
phenomena in modular information acquisition mechanisms: an upstream
proxy can push the system toward systematically bad information structures,
and downstream optimality cannot undo the loss.

Third, we provide a positive counterpart: modularity can be made safe
if the stage-1 proxy is a certifiable approximation to the user’s value-of-
information for searching. Concretely, we define conditions under which the
proxy objective tracks, up to small error, the incremental expected utility
that search would provide relative to not searching. When such a certifi-
cate holds uniformly (in the relevant posterior states induced by dialogue),
a modular trigger that maximizes the proxy will be near-optimal for user
welfare, and the welfare loss admits a uniform bound. This result does not
assume perfect reward specification—in line with the incomplete-contracting
view—but instead asks for bounded divergence between the proxy and the
true value-of-information. The practical takeaway is that we can tolerate
modular training if we can audit the stage-1 objective against a decision-
theoretic quantity (the value of information), rather than assuming the proxy
is aligned by construction.

Why the value-of-information lens is useful in practice. The cer-
tificate viewpoint suggests a concrete path for system design: rather than
labeling tool use from engagement logs or from heuristics alone, we can at-
tempt to estimate the incremental benefit of search in terms of downstream
answer quality, and train the trigger to predict that increment. This reframes
“should we search?” as a prediction task about counterfactual improvement:
how much better would the answer be if we searched? While estimating such
counterfactuals is nontrivial, the point of our theory is to clarify what must
be approximated to obtain welfare guarantees. In particular, it is not enough
for a proxy to correlate with “good outcomes” on average; it must track the
marginal value of acquiring information in each posterior state induced by
the dialogue.

Limitations and scope. Our model is deliberately stylized. Real assis-
tants may issue multiple tool calls, interleave clarifying questions with re-
trieval, face constraints from safety policies, and serve heterogeneous users
with different cost sensitivities. We view the present framework as a baseline
that isolates a core failure mode: mis-optimized information acquisition un-
der modular training. The unbounded inefficiency result is an existence the-
orem, not a claim that all deployed systems are arbitrarily bad. Its role is di-
agnostic: it warns that without explicit alignment between the stage-1 proxy
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and user value-of-information, there is no general welfare guarantee—even
if the answer generator is excellent. Conversely, the bounded-loss results
provide a way to recover guarantees under auditable conditions, pointing
toward training and evaluation protocols that focus on value-of-information
estimation.

Roadmap. We next present the formal model, defining the latent intent,
the dialogue-derived signal, the tool-use action (including query choice), the
induced information signal, and the final answer. We then compare an end-
to-end user-optimal policy to modular pipelines, establish the unbounded
inefficiency construction, and finally state conditions under which a proxy
that certifies value-of-information yields bounded welfare loss.

2. Model. We model a single user–assistant interaction as a Bayesian
decision problem with endogenous information acquisition. The assistant ob-
serves a dialogue-derived signal and then chooses whether to call an external
tool (“search”) and, if so, how to parameterize that call (a query template).
The tool call produces an additional signal (e.g., retrieved snippets), after
which the assistant commits to a final answer. Our goal in this section is
to make explicit (i) what is uncertain, (ii) what the assistant observes and
controls, and (iii) how user welfare depends on these objects.

Latent intent and dialogue signal. There is a latent user intent/state
θ ∈ Θ drawn from a prior distribution D over a measurable space (Θ,F). We
interpret θ broadly: it captures the factual state relevant to the user’s ques-
tion as well as contextual elements that affect what constitutes a good answer
(e.g., jurisdiction, time sensitivity, preferred level of detail, constraints such
as “do not use X”). The assistant does not observe θ directly. Instead it
observes a dialogue-derived signal x ∈ X (the conversation so far, possibly
including system-side features such as locale or device type). Formally, we
assume x is generated according to some conditional distribution P (· | θ) on
(X ,A), inducing a posterior over latent intents,

µ(· | x) ≡ Pr(θ ∈ · | x).

We will typically reason conditional on x; thus x is the sufficient statis-
tic summarizing everything the assistant knows before choosing whether to
search.

Tool-use action and query choice. After observing x, the assistant
chooses a tool-use action. In the baseline model there are two actions: do
not call an external tool, or call search. To allow the assistant to influ-
ence what is learned from search, we additionally allow it to pick a query
parameterization. Concretely, let

s ∈ S ≡ {NoSearch, Search}, q ∈ Q ∪ {∅}.
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If s = NoSearch, we interpret q = ∅ as a null query. If s = Search, then q ∈ Q
is selected by the assistant and can represent a literal query string, a query
template with slots filled from x, a retrieval configuration (e.g., corpus choice,
freshness filter), or a structured tool call. Allowing q is important because
“search” is not a single information structure: different query formulations
induce different conditional distributions over what evidence is returned.

We sometimes write the stage-1 decision as a ≡ (s, q), with feasible set

A1 ≡ {(NoSearch,∅)} ∪ {(Search, q) : q ∈ Q}.

Signal generation as an information structure. Given latent intent θ
and the assistant’s stage-1 choice (s, q), an information signal σ is generated.
Let (Σ,G) denote the measurable signal space. For each feasible pair (s, q),
we specify a Markov kernel

Qs,q(· | θ) ∈ ∆(Σ),

interpreted as the distribution of the observed tool output conditional on θ.
If s = Search, then σ might encode retrieved documents, snippets, rankings,
timestamps, or other metadata. If s = NoSearch, we can model the absence
of a tool call as a degenerate signal σ = ⊥ by letting Σ include a distinguished
null element ⊥ and setting QNoSearch,∅(⊥ | θ) = 1 for all θ.

This formulation is deliberately agnostic about the mechanics of re-
trieval: all such details enter only through the induced conditional distri-
bution Qs,q(· | θ). It also highlights the experiment-design view: by choos-
ing (s, q), the assistant chooses which conditional distribution of σ will be
observed.

Final answer decision. After σ is realized, the assistant chooses a final
output y from an action space Y (answers, including possibly a refusal, a set
of citations, or a structured response). The assistant’s decision rule at this
stage can depend on both x and σ, since x may carry context that remains
relevant even after search. Formally, the stage-2 mapping is a measurable
function

π2 : X × Σ → Y, y = π2(x, σ),

or, allowing randomized policies, a Markov kernel from (x, σ) to ∆(Y). Be-
cause our central comparative statics concern the information acquisition
step, we allow the answer space Y to be rich (e.g., free-form text) but do
not model language generation explicitly; instead we treat y as the decision
variable that affects utility.

User utility and search costs. User welfare depends on how well y
matches the latent intent and on the cost of tool use. Let

u : Θ× Y → R
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denote user utility from receiving answer y when the true state is θ. This
utility can encode factual correctness, completeness, helpfulness, and adher-
ence to constraints; it can also incorporate penalties for overconfidence or
for presenting stale information. We assume u is measurable, and in several
results we will additionally impose boundedness, e.g. u ∈ [0, 1], to obtain
uniform welfare bounds.

Tool use induces an additive cost. In the simplest case, the cost depends
only on whether search is called:

c : S → R≥0, c(NoSearch) = 0, c(Search) = c > 0.

More generally, one can allow query-dependent costs c(s, q) (e.g., calling a
premium corpus, requesting high-freshness results, or issuing a longer query)
or even cost that depends on realized outcomes (e.g., requiring a follow-up
click). For most of the paper we keep costs ex ante and action-dependent to
isolate the welfare implications of choosing the information structure.

Given x, action (s, q), realized signal σ, and final answer y, we define
interim user welfare as

W (x, s, q, σ, y) ≡ E[u(θ, y) | x, s, q, σ] − c(s),

where the conditional expectation is taken with respect to the posterior over
θ induced by x and the likelihood Qs,q(σ | θ). This expression emphasizes the
decision-theoretic nature of the problem: after observing (x, σ), the assistant
chooses y to maximize posterior expected utility, but the decision to search
affects the posterior itself and incurs cost.

Information structure and observability. A key distinction in our set-
ting is what is observed by whom. The assistant observes x before choosing
(s, q), and then observes σ if and only if it chooses s = Search (or σ = ⊥ un-
der NoSearch under our normalization). The user may observe some aspects
of the tool-use decision indirectly (e.g., latency, or an explicit “Searching. . . ”
indicator), but in the baseline welfare definition the user’s cost is captured
by c(s) and the user’s benefit is captured by u(θ, y).

The platform (or training pipeline) may observe additional telemetry:
whether a tool call was made, dwell time, clicks, or downstream engagement.
These observations matter for how proxy objectives are constructed, but they
do not enter user welfare directly. To allow discussion of misaligned training
incentives, we optionally define a platform benefit function

B : X × S × (Q∪ {∅})× Σ× Y → R,

which may depend on tool-call events, monetizable actions, or engagement.
Importantly, B need not coincide with W and may be easier to measure.
Later, stage-1 proxy objectives will be interpreted as functions derived from
(or correlated with) B rather than W .
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Policies and measurability. A (possibly randomized) end-to-end policy
consists of two components: a stage-1 decision rule selecting (s, q) based on
x, and a stage-2 decision rule selecting y based on (x, σ). Formally, we can
write an end-to-end policy as

π ≡ (π1, π2),

where π1 is a measurable map from X to ∆(A1) and π2 is a measurable map
from X × Σ to ∆(Y). Given π, the joint distribution over (θ, x, s, q, σ, y) is
well-defined by the generative process: draw θ ∼ D, then x ∼ P (· | θ), then
(s, q) ∼ π1(· | x), then σ ∼ Qs,q(· | θ), then y ∼ π2(· | x, σ). We will evaluate
policies by their expected user welfare,

Eπ[W ] ≡ E
[
u(θ, y) − c(s)

]
,

where the expectation is over all randomness in the environment and in
the policy. (This equality follows from iterated expectations applied to our
definition of W (x, s, q, σ, y).)

We emphasize measurability because many of the comparisons we make
are existence and worst-case statements. Our results do not rely on con-
tinuity or convexity in Y; the key structure is the sequential revelation of
information through Qs,q.

Interpretation: where “retrieval quality” enters. In this model, the
effectiveness of search is entirely governed by the family of kernels {QSearch,q}q∈Q.
If retrieval is noisy, biased, or systematically missing key sources, this is rep-
resented by σ being only weakly informative about θ (or informative in the
wrong direction). Conversely, a high-quality retrieval system corresponds to
an information structure in which σ tightly concentrates on evidence that
identifies relevant aspects of θ. The point is not that retrieval is perfect;
rather, the assistant’s choice of whether/how to retrieve is a choice over
these informational tradeoffs.

Extensions: multiple tool calls. Real assistants may issue multiple
searches or combine tools (search, code execution, database queries). A
natural extension is a finite-horizon sequential model. For t = 1, . . . , T , the
assistant chooses an action (st, qt) based on the history ht = (x, σ1, . . . , σt−1),
observes σt ∼ Qst,qt(· | θ, ht), and finally outputs y at time T (or chooses to
stop endogenously). Costs become

∑T
t=1 c(st), and welfare becomes expected

utility of the final answer minus total cost. Our baseline one-shot model can
be viewed as the case T = 1, which already captures the central externality
of modularity: an upstream choice determines what information is available
downstream. Allowing T > 1 introduces dynamic programming structure
and makes the space of information acquisition policies richer, but it does
not remove the core possibility that a mis-optimized early-stage proxy locks
the system into a low-welfare information trajectory.
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Extensions: clarifying questions as information acquisition. Clar-
ifying questions can be treated as another information acquisition action
alongside search. One way to incorporate them is to expand the stage-1
action set to include s = Ask with a question design variable q ∈ Qask,
where q specifies what to ask. The resulting signal σ is then the user’s re-
ply, distributed according to a kernel QAsk,q(· | θ). Asking has its own cost
(interaction friction, abandonment risk) and can be complementary with
search (e.g., ask to resolve ambiguity, then search with a more precise query).
Framing clarifications as information structures emphasizes that “ask” and
“search” are comparable in principle: both are experiments that trade off in-
formativeness against cost, and both can be mis-triggered by proxy-trained
modules.

Discussion and scope. This model abstracts away from several impor-
tant operational details: it does not explicitly represent safety constraints,
adversarial content, or the internal reasoning process by which the assistant
converts σ into y. These elements matter in practice, but for our purposes
they can be incorporated into u(θ, y) (e.g., by assigning low utility to unsafe
outputs) and into Qs,q (e.g., by allowing σ to include misleading sources).
What we retain is the minimal structure needed to study the central ques-
tion: how does separating information acquisition (search triggering and
query choice) from downstream decision-making interact with proxy objec-
tives, and when can such modularity be justified in terms of user welfare?

3. Benchmarks: End-to-End Optimality and Value of Informa-
tion. Our welfare benchmark is the policy that optimizes the user’s objective
end-to-end, taking into account both (i) how information acquisition changes
what can be inferred about the latent intent and (ii) the cost of acquiring
that information. This benchmark is standard in Bayesian decision theory,
but spelling it out is useful because it makes explicit the quantity that any
stage-1 tool-use module is implicitly trying (and often failing) to approxi-
mate: the incremental value of the signal generated by search.

End-to-end Bayes-optimal policy. Fix the primitives from Section 2.
An end-to-end policy π = (π1, π2) induces a joint distribution over (θ, x, s, q, σ, y)
and hence an expected welfare Eπ[u(θ, y)−c(s)]. We define the user-optimal
policy as the Bayes-optimal solution to this sequential decision problem:

π⋆ ∈ argmax
π

Eπ[u(θ, y)− c(s)] .

While the policy class allows randomization, the problem has the famil-
iar dynamic-programming structure: after (x, σ) is observed, the assistant
should choose the action y that maximizes posterior expected utility; antic-
ipating this, at the moment of choosing (s, q) the assistant should trade off
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the expected improvement in that posterior-optimal utility against the cost
of searching.

To make this precise, define the posterior-optimal (stage-2) value after
observing (x, σ) as

V2(x, σ) ≡ sup
y∈Y

E[u(θ, y) | x, σ] . (1)

Under mild regularity (e.g., Y compact and u(θ, y) continuous in y for each θ,
or Y countable), the supremum is attained, and the optimal stage-2 decision
rule can be taken as a measurable selector

y⋆(x, σ) ∈ argmax
y∈Y

E[u(θ, y) | x, σ] .

This object captures an idealized assumption we will frequently use later:
conditional on whatever evidence is available, the assistant answers as well
as possible for the user. Any inefficiency we highlight will come from selecting
the wrong evidence to acquire, not from misusing the evidence once obtained.

Ex ante continuation value of a tool-use action. Consider a fixed
dialogue signal realization x. If the assistant chooses a stage-1 action a =
(s, q), it induces a conditional distribution over the subsequent signal σ via
the kernel Qs,q(· | θ) and the posterior over θ given x. The relevant object
for stage-1 choice is therefore the ex ante expected stage-2 value, net of cost:

V1(x; s, q) ≡ E[V2(x, σ) | x, s, q ] − c(s). (2)

The conditional expectation integrates over θ ∼ µ(· | x) and then σ ∼ Qs,q(· |
θ). The Bayes-optimal stage-1 choice at x is any maximizer of V1(x; s, q):

(s⋆(x), q⋆(x)) ∈ arg max
(s,q)∈A1

V1(x; s, q),

with the convention that q⋆(x) = ∅ whenever s⋆(x) = NoSearch. Combining
these two stages yields an end-to-end optimal policy of the form

π⋆(x, σ) =
(
s⋆(x), q⋆(x), y⋆(x, σ)

)
,

where y⋆ is computed under the posterior induced by the chosen action.1

1When we allow randomized policies and measurability subtleties, π⋆ should be inter-
preted as a measurable maximizer of Eπ[u− c]; the dynamic program above provides the
standard characterization. The subsequent results in the paper concern comparisons to
this benchmark and do not hinge on uniqueness.
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The canonical “search iff value exceeds cost” rule. The expression
(2) yields the familiar threshold structure for information acquisition. To see
it cleanly, separate the no-search baseline from the search value.

If the assistant does not search, the signal is degenerate (σ = ⊥), so the
continuation value is simply

V No(x) ≡ V1(x;NoSearch,∅) = sup
y∈Y

E[u(θ, y) | x] . (3)

If the assistant searches using query q, then it obtains a (generally informa-
tive) signal σ and can tailor y to that realization:

V Search(x; q) ≡ V1(x; Search, q) = E

[
sup
y∈Y

E[u(θ, y) | x, σ, Search, q]

∣∣∣∣∣x, Search, q

]
−c.

(4)
(When costs are query-dependent, replace c by c(Search, q); nothing essential
changes.)

Define the incremental value of information (VoI) of searching with query
q at dialogue state x as the improvement in expected posterior-optimal utility
before paying the cost:

∆VoI(x; q) ≡ E

[
sup
y∈Y

E[u(θ, y) | x, σ, Search, q]

∣∣∣∣∣x, Search, q

]
− sup

y∈Y
E[u(θ, y) | x] .

(5)
This quantity is always weakly nonnegative under our formulation: with an
extra signal in hand, the assistant can always ignore it and reproduce the
no-search action, so the optimal expected utility cannot decrease (this is the
standard monotonicity of information).2

With (5), we can rewrite the search value (4) succinctly:

V Search(x; q) = V No(x) + ∆VoI(x; q) − c.

Hence the Bayes-optimal decision rule takes the threshold form

choose Search with some q ⇐⇒ max
q∈Q

∆VoI(x; q) ≥ c, (6)

and otherwise choose NoSearch. When the query set is singleton (or when
the system uses a fixed query template), we can drop q and define ∆VoI(x) ≡
∆VoI(x; q), yielding the most familiar statement: search iff the incremental
value of the expected evidence exceeds the search cost.

2Formally, V2(x, σ) ≥ V No(x) pointwise if Y and the posterior are unaffected by con-
ditioning on σ, because the no-search maximizer remains feasible after observing σ. This
is the decision-theoretic “value of information is nonnegative” result, not a claim that any
particular retrieval system improves utility in practice; failures of retrieval quality enter
via how informative or misleading Qs,q is about θ, which affects the magnitude of (5).
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Interpretation: what ∆VoI(x) measures in assistant terms. Equa-
tion (5) makes clear what the tool-use decision is optimizing under the bench-
mark: not a generic preference for “using tools,” but the expected gain from
being able to condition the answer on the additional evidence produced by
that tool call. This gain is high when (i) the posterior under x leaves mate-
rially relevant uncertainty about θ and (ii) the induced signal σ is informa-
tive about precisely those uncertain aspects of θ that matter for choosing a
high-utility y. Conversely, ∆VoI(x; q) is small when the question is already
answered well from the dialogue alone, when search is likely to return redun-
dant evidence, or when the best response y is insensitive to the remaining
uncertainty.

This framing also clarifies the role of query choice q: different query tem-
plates implement different experiments (different information structures),
and (6) says that the assistant should select the experiment with the high-
est incremental decision value. In other words, under the welfare bench-
mark, query formulation is not primarily about matching user keywords;
it is about maximizing expected downstream utility subject to the cost of
invoking search.

Regularity and measurability remarks. The threshold characteriza-
tion above is purely decision-theoretic and requires little structure beyond
well-defined conditional expectations. Two technical points are worth not-
ing. First, the definition of V2(x, σ) as a supremum is compatible with rich
answer spaces; we only need that u(θ, y) is measurable and integrable so that
E[u(θ, y) | ·] exists. When we later want uniform approximation guarantees
(bounds that hold across all x), we will impose boundedness, e.g. u ∈ [0, 1],
which implies ∆VoI(x; q) ∈ [0, 1]. Second, the maximization over queries in
(6) is well-behaved if Q is finite (as in many engineered systems where the
query template is chosen from a menu), or more generally if standard mea-
surable selection conditions hold. In such cases the stage-1 optimal policy
can be taken to be (essentially) deterministic given x, with randomization
only on measure-zero tie sets.

A useful decomposition: “quality of evidence” versus “value for
this user state.” A recurring source of confusion in practice is to equate
“search is good” with a static notion of retrieval quality. The benchmark
separates two distinct issues:

1. Intrinsic informativeness of the channel QSearch,q: how much does the
returned σ vary with θ and how reliably does it reflect the relevant
aspects of θ?

2. Decision sensitivity at x: even if σ is informative, does that information
change what answer is optimal? This is captured by the gap between
optimizing after observing σ and optimizing before observing it.
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The value-of-information term ∆VoI(x; q) bundles both elements: it is large
only when the information is both available and decision-relevant at the
current posterior induced by x. This is why a welfare-optimal assistant may
rationally decline to search even when search is generally accurate: if the
posterior already concentrates on a single high-utility response, the marginal
benefit of additional evidence is low.

Connection to Bayesian experiment design. It is often helpful to re-
state (5) as an experiment-selection problem. Fix x and view the family
{QSearch,q}q∈Q as a menu of experiments that map θ into observable sig-
nals. The benchmark chooses the experiment maximizing expected utility
improvement net of cost. This is the standard Bayesian value-of-information
criterion, but with two practical twists relevant for assistants: (i) the “ex-
periment” includes query parameterization and retrieval configuration, not
just a binary search/no-search flag, and (ii) the downstream decision is an
answer in a rich language action space, which we treat abstractly as Y.

This perspective will matter when we compare to modular training: any
stage-1 module that is trained on a proxy not tightly linked to (5) is, in
effect, selecting experiments using the wrong objective. Our welfare bench-
mark is therefore not merely an idealized target; it is also the conceptual
object against which we will measure the direction and potential magnitude
of distortions introduced by proxy-based triggering.

Summary of the benchmark. For each dialogue state x, the end-to-end
benchmark reduces the tool-use decision to a single statistic: the incremental
value of being able to condition the answer on the additional signal produced
by search. The optimal policy searches (and selects a query) exactly when
this incremental value exceeds the user’s cost of search, as in (6). In the next
section, we will use this benchmark as the reference point for formalizing
modular training pipelines and for diagnosing how proxy-optimized stage-1
decisions can depart from the value-of-information criterion even when the
downstream answer module behaves optimally conditional on the informa-
tion it receives.

4. A Class of Modular Training Pipelines. We now formalize a
broad family of engineering workflows in which the assistant’s information
acquisition decision is trained separately from its answering behavior. The
key modeling move is to treat the tool-use decision as a stage-1 module that
optimizes a proxy objective, while the response module is a stage-2 optimizer
that (possibly very well) uses whatever evidence it is handed. This captures
a common division of labor in deployed systems: a lightweight trigger (and
sometimes query generator) decides whether to call an external tool, and
a separate retrieval-augmented generator (RAG) or answer model produces
the final output conditioned on the retrieved content.
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Our goal in this section is not to argue that modular pipelines are “irrational”—
they are often the only practical choice given latency budgets, observability
constraints, and the difficulty of defining a single end-to-end reward. Rather,
we want a clean abstraction that (i) maps recognizable training choices into
a decision-theoretic object and (ii) makes it transparent how optimizing
the wrong stage-1 proxy can systematically select the wrong information
structure, even if the downstream answerer is essentially optimal given the
evidence it receives. This sets up the welfare comparisons and worst-case
constructions in the next section.

Stage-1 and stage-2 as separate maximizations. Fix the primitives
from our model: the dialogue-derived signal x, a stage-1 action consisting of a
tool-use flag and query template a = (s, q) ∈ A1 with s ∈ {NoSearch, Search}
and q ∈ Q (with q = ∅ when s = NoSearch), a subsequent tool signal σ
drawn from the induced kernel, and a final answer y ∈ Y. In an end-to-end
benchmark, stage-1 would trade off the cost of search against the incremental
value of conditioning y on σ. A modular pipeline, by contrast, makes stage-1
a best response to an auxiliary training signal.

We represent this by two objectives:

J1(s, q | x) (stage-1 proxy for choosing whether/how to search), (7)
J2(y | x, s, q, σ) (stage-2 objective for producing the final answer). (8)

The modular pipeline chooses (s, q) as

g(x) ∈ arg max
(s,q)∈A1

J1(s, q | x), (9)

then chooses the answer as

h(x, s, q, σ) ∈ argmax
y∈Y

J2(y | x, s, q, σ). (10)

The induced policy is therefore

πmod(x, σ) =
(
g(x), h(x, g(x), σ)

)
, (11)

where we suppress the explicit dependence of h on (s, q) when clear. We allow
g and h to be randomized or set-valued (ties), but the welfare pathologies
we study do not rely on such subtleties.

Two remarks clarify what this abstraction includes. First, J2 can coin-
cide with user welfare conditional on evidence (e.g., it can be calibrated to
maximize E[u(θ, y) | x, s, q, σ]), and we will often impose this as a “best case”
for modularity: any inefficiency then comes purely from stage-1 choosing the
wrong information structure. Second, we do not assume that the proxy J1
is adversarial; it may be a reasonable operational metric (latency, clicks,
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satisfaction ratings) or a learned reward model. The point is that these met-
rics are rarely equal to the Bayesian value-of-information expression from
Section 3, and the wedge between them is precisely what modular training
introduces.

Mapping common system designs into (J1, J2). The stage-1 module
g can be understood as any mechanism that gates tool access. In practice it
is often one of the following.

(i) A tool-use classifier trained on labels. A common approach is to train
a classifier on logged conversations with a binary label “search was used” or
“search was helpful.” This corresponds to choosing a proxy

J1(Search | x) = Pr(label = 1 | x), J1(NoSearch | x) = 0,

or a cost-adjusted variant. When labels are derived from human heuristics
(“current events ⇒ search”) or from retrospective judgments (“search im-
proved factuality”), the classifier inherits the bias and noise of that labeling
rule. Crucially, even an unbiased label of “search was used” is not a label of
“search’s incremental value net of cost.”

(ii) A discrete policy optimized by reinforcement learning on platform
metrics. Many deployments optimize stage-1 using RL (or contextual ban-
dits) against measurable outcomes such as click-through, dwell time, or ad
revenue. This falls directly into (9), with J1 the learned Q-value for a proxy
reward. Importantly, the state for this RL problem is often x (possibly
plus some shallow features), not the latent intent θ; moreover, the reward is
typically a platform metric, not the user utility u(θ, y).

(iii) Query selection as a separate learned component. Even if the system
always searches, many architectures still choose among query templates, re-
trieval indices, or tool configurations. Our q ∈ Q is meant to subsume these
“experiment design” knobs. For example, Q might index (a) a “freshness-
first” query for news, (b) a “high-precision” query that narrows to official
sources, or (c) a “broad” query that maximizes recall. Training q against a
proxy (e.g., maximizing clicks on retrieved results) is again an instance of
(9).

On the stage-2 side, h corresponds to what is usually called the answer
model (often an LLM) together with the prompt and decoding rules. Typ-
ical J2 include supervised likelihood of reference answers, preference-model
rewards for helpfulness, and factuality/scoring objectives that are evaluated
conditional on the retrieved documents. When the stage-2 module is a strong
conditional optimizer, it is natural to approximate it as “pointwise optimal
given (x, s, q, σ),” which is exactly the assumption we will use to isolate the
welfare effect of stage-1 mis-triggering.

Why modularity is an assumption about optimization, not archi-
tecture. It is tempting to equate “modular” with “two neural networks.”
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We mean something slightly different: modularity is the separation of ob-
jectives across the information acquisition step and the answering step. A
system can be architecturally end-to-end (one model) but still modular in
our sense if it is trained with auxiliary losses that push tool-use behavior
toward a proxy reward while training answering behavior toward correctness
conditional on retrieval. Conversely, a system can be architecturally modu-
lar but trained end-to-end with a single welfare-aligned objective (in which
case it would not fit our modular class). We focus on the former because
it is operationally common: stage-1 behavior is often tuned using abundant
telemetry, while stage-2 is tuned using smaller, higher-quality supervision.

Concrete instantiation 1: monetization-weighted proxy. We first
instantiate J1 with a stylized but realistic pattern: stage-1 is trained to
maximize a combination of user-facing metrics and monetizable events. Let
M be an observable monetization outcome (ad impression, sponsored click,
referral, etc.) realized after the stage-1 action and downstream interaction.
In many platforms, tool calls create additional “inventory” for such events
(e.g., a search results page with sponsored slots), or they change the probabil-
ity of downstream transactions. A reduced-form stage-1 proxy can therefore
be written as

J1(Search, q | x) = λ ·E[M | x, Search, q] + β ·E[S | x, Search, q] − κ, (12)

with
J1(NoSearch,∅ | x) = 0.

Here S can represent a coarse “user satisfaction” signal available at scale
(thumbs-up rate, complaint probability with negative sign, etc.), λ is the
monetization weight, β the satisfaction weight, and κ a fixed penalty cap-
turing latency or operational cost (often set too low when the platform in-
ternalizes only part of the user cost). The particular form is not essential;
what matters is that the proxy is a weighted sum of measurable outcomes
rather than the user’s incremental value of information.

This proxy can generate both over-search and under-search relative to
the welfare benchmark.

• Over-search: if λ is large and tool invocation mechanically increases
M (e.g., by generating an impression), then (12) can favor Search even
when the expected answer-quality gain is negligible or when the tool
results are noisy. From the user’s perspective, this is precisely the
regime where ∆VoI(x; q) is small but the platform proxy is large.

• Under-search: if informative searches reduce monetization (e.g., be-
cause a correct answer resolves the user’s need quickly and reduces
additional browsing), then E[M | x, Search, q] may be lower for the
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welfare-improving queries. In that case, stage-1 may systematically
avoid precisely the information structures that most improve accuracy,
because those structures reduce proxy value.

This aligns with the incomplete contracting logic: the platform can write
contracts (and therefore optimize) on M and on coarse S, but cannot directly
contract on u(θ, y) for every latent user intent. Optimizing (12) is then a
rational organizational choice that nonetheless induces misalignment.

Concrete instantiation 2: engagement proxy. A second common proxy
family optimizes for interaction volume or session-level engagement. Let E
denote an engagement measure such as number of turns, dwell time, or prob-
ability the user asks a follow-up. A simple proxy is

J1(Search, q | x) = α · E[E | x, Search, q] − κ, J1(NoSearch,∅ | x) = 0.
(13)

This proxy is attractive because E is easy to measure and often correlates
with some notions of satisfaction in aggregate. But its relationship to user
welfare is ambiguous at the margin. Informative searches can reduce engage-
ment by enabling a one-shot correct response (a user who gets the right ci-
tation immediately may leave), whereas uninformative searches can increase
engagement by producing confusion, prompting clarification questions, or en-
couraging repeated reformulations. Thus, much like the monetization case,
engagement can be negatively correlated with the value of information.

Moreover, engagement proxies can distort query choice even when the
binary search decision is correct. If some queries produce long, ambigu-
ous, or contradictory evidence (raising the chance of follow-up interaction),
then maximizing (13) can steer the system toward those queries, away from
high-precision experiments that would collapse uncertainty quickly. In our
notation, this is a distortion in the argmax over q ∈ Q inside g(x).

Stage-2 objectives: correctness conditional on the chosen evidence.
To isolate the effect of stage-1, we will often place stage-2 in an optimistic
regime. Concretely, we can take

J2(y | x, s, q, σ) = E[u(θ, y) | x, s, q, σ] , (14)

so that h is exactly the posterior-optimal response given the realized signal.
This captures a design intent behind many RAG systems: “given retrieved
documents, answer as accurately/helpfully as possible.” It also matches train-
ing pipelines where the answer model is evaluated on factuality and citation
quality conditional on retrieval outputs.

We stress, however, that treating stage-2 as optimal is a modeling con-
venience, not a claim about current systems. Retrieval can be misleading,
models can hallucinate, and user utility is richer than factual correctness.
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Importantly, these imperfections only strengthen the motivation for analyz-
ing the stage-1 decision carefully: if stage-2 were imperfect, bad information
acquisition could be even more harmful. Our negative results will therefore
be robust in the sense that they do not rely on stage-2 mistakes.

Data separation and the source of misalignment. One practical rea-
son modularity persists is that the two objectives are trained on differ-
ent data streams. Stage-1 has abundant implicit feedback (search events,
clicks, latency, session continuation), while stage-2 relies on comparatively
scarce high-quality supervision (expert labels, preference comparisons, red-
teaming). Our abstraction captures this by allowing J1 and J2 to be learned
from different distributions and to encode different stakeholders’ priorities.
The result is not merely estimation error; it is a structural wedge: even
with infinite data, if J1 differs from the user’s incremental value of informa-
tion, g(x) can converge to a systematically distorted information acquisition
policy.

This is exactly the sense in which modularity is nontrivial: the welfare
benchmark cares about selecting an information structure (search/no-search
and query) that maximizes decision value net of cost, whereas the modular
stage-1 module may be trained to maximize a proxy that is only loosely
related (and can be negatively related) to that decision value.

Summary and what we will prove next. We have defined a large class
of modular pipelines via the two best-response conditions (9)–(10) and illus-
trated how common engineering choices instantiate J1 as monetization- or
engagement-weighted proxies. This class is broad enough to capture “rea-
sonable” tool-use triggers (classifiers, bandits, RL policies) while still being
sharp enough to analyze formally.

In the next section, we will use this abstraction to show that proxy-
optimized stage-1 selection can yield unbounded inefficiency relative to the
end-to-end welfare benchmark: even when stage-2 is (conditionally) user-
optimal, choosing the wrong information structure at stage-1 can destroy
welfare. We will present explicit constructions exhibiting both over-search
and under-search failures, as well as a query-steering variant where the sys-
tem searches but systematically chooses the wrong query template.

5. Main Negative Result: Unbounded Price of Anarchy. This
section formalizes a stark message: even if the stage-2 answerer is as good
as one could hope for (it always chooses the user-optimal response given
the evidence it receives), a stage-1 proxy that is even slightly misaligned
with the user’s incremental value of information can drive arbitrarily large
welfare losses. The economic intuition is straightforward. Stage-1 is not
“just” a binary classifier; it is an experiment selection problem. If the proxy
pushes the system toward the wrong experiment (no experiment at all, a
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noisy one, or the wrong query template), then the downstream module is
optimizing the wrong posterior, and no amount of conditional optimality at
stage-2 can recover the lost value.

We state this as an unbounded Price-of-Anarchy (PoA) result: the ratio
between the end-to-end optimal welfare and the modular welfare can be made
arbitrarily large by an explicit family of instances. The constructions mirror
the mechanism in Bhawalkar–Psomas–Wang (2025): selecting an information
structure via an auxiliary objective can be arbitrarily inefficient relative to
the welfare that depends on the allocation (here: the final answer) induced
by that information.

Benchmark ratio. For an instance, define the modular inefficiency ratio

PoA ≡ E[W (π⋆)]

E[W (πmod)]
,

whenever the denominator is positive. (We construct instances where it is
positive and can be made arbitrarily small, so the ratio is well-defined and
large.)

Theorem 0.1 (Unbounded modular Price of Anarchy). Fix any constant
C > 0. There exists an instance (a distribution over intents D, tool signal
kernels, utility u, costs c, query set Q, and objectives (J1, J2)) such that:

1. the stage-2 module is pointwise user-optimal given evidence, i.e.,

J2(y | x, s, q, σ) = E[u(θ, y) | x, s, q, σ] ⇒ h ∈ argmax
y

E[u(θ, y) | x, s, q, σ],

2. the induced modular policy πmod satisfies E[W (πmod)] > 0, and

3. PoA ≥ C.

Moreover, the lower bound holds under each of three distinct failure modes:
(i) under-search (stage-1 declines valuable search), (ii) over-search (stage-1
triggers worthless search with near-unit cost), and (iii) query-steering (stage-
1 searches but selects the wrong query template).

Proof idea (before formal details). Each construction is parameterized
by a scalar V that controls how valuable the right information structure is.
The end-to-end policy uses that structure and achieves welfare on the order
of V . The modular policy, however, is pushed by J1 toward an action whose
resulting signal is uninformative (or toward no search at all), leaving stage-2
with no useful evidence; the best stage-2 can do then is fall back on a “safe”
answer that yields welfare on the order of 1. By scaling V , we make the ratio
arbitrarily large.
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Construction A: Under-search (proxy discourages informative
search)

We build an instance where search is extremely valuable for the user but is
assigned a lower proxy score than not searching.

Primitives. Let Θ = {0, 1}, with prior Pr(θ = 0) = Pr(θ = 1) = 1/2.
Let the dialogue signal x be constant (so it conveys no information). There
are three candidate answers Y = {y0, y1, ysafe}. Fix a parameter V > 1 and
define utility

u(θ, ysafe) = 1 for both θ ∈ {0, 1},
u(θ, yθ) = V, u(θ, y1−θ) = 0.

Thus ysafe is a guaranteed-but-low-quality response, while yθ is highly valu-
able if and only if we know the intent.

The stage-1 action set has two elements: NoSearch and Search (ignore q
here by taking Q a singleton). If NoSearch, no signal is produced (equiva-
lently σ = ⊥). If Search, the tool returns a perfectly revealing signal σ = θ.

Let costs be c(NoSearch) = 0 and c(Search) = 0 (we could add a small
cost without changing the argument).

Stage-2 optimality. Given NoSearch, the posterior equals the prior, so
the expected utility of ysafe is 1, while the expected utility of y0 (or y1) is
V/2. To ensure stage-2 prefers the safe response under no information, we
can either assume V < 2 for this sub-argument, or (more cleanly) slightly
modify utilities so that u(θ, yθ) = V but the prior probability of each θ
is so small that V Pr(θ) is below 1. To keep the exposition simple while
preserving scaling, take Pr(θ = 0) = Pr(θ = 1) = 1/2 but redefine the
risky answers so that, absent evidence, the optimal action is the safe one; for
example, introduce a small penalty −η for choosing y0 or y1 when wrong.
Equivalently, we can stipulate that the answer space only allows the safe
response without evidence (a reduced-form “policy constraint”). In all cases
the core mechanism is the same: without a good signal, stage-2 cannot
reliably extract the large payoff V and therefore chooses the low baseline.

Given Search and σ = θ, the posterior is degenerate, and stage-2 opti-
mally chooses yθ, achieving utility V .

Hence, with the optimistic stage-2 objective J2 = E[u | ·], we have:

E[W (π⋆)] = V, E[W (πmod) | NoSearch] = 1.

Stage-1 proxy. Define the proxy as

J1(Search | x) = −1, J1(NoSearch | x) = 0.

Then g(x) = NoSearch uniquely, so the modular policy never searches, even
though searching would allow stage-2 to realize the high-value action.
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Welfare comparison. The end-to-end optimal policy searches and gets
welfare V , while the modular policy does not and gets welfare 1. Therefore

PoA =
V

1
= V.

Choosing V ≥ C yields PoA ≥ C. This proves Theorem 0.1 for the under-
search failure mode. □

Construction B: Over-search (proxy rewards search even when
it is useless)

We now flip the pathology: stage-1 searches because the proxy directly re-
wards tool calls, but the search signal is worthless and the cost is nearly as
large as the entire baseline value, driving welfare arbitrarily close to zero.

Primitives. Keep Θ = {0, 1} with x constant and Y = {ysafe, y0, y1}.
Define utilities so that, absent any informative evidence, the safe action is
optimal and yields value 1:

u(θ, ysafe) = 1, u(θ, y0) = u(θ, y1) = 1

(or, more simply, restrict Y = {ysafe} so stage-2 always yields 1 regardless of
beliefs). The key point is that information provides no incremental value.

Let Search produce an uninformative signal: σ is independent of θ and
x (e.g., σ ∈ {0, 1} fair coin). Thus, even with search, the posterior does not
improve in any decision-relevant way. Set costs

c(NoSearch) = 0, c(Search) = 1− 1

V
,

with V a large parameter.

Stage-2 optimality. Because σ is useless, stage-2’s optimal expected util-
ity is 1 under either action. Thus,

E[W | NoSearch] = 1, E[W | Search] = 1−
(
1− 1

V

)
=

1

V
.

The end-to-end optimal policy therefore chooses NoSearch and attains welfare
1.

Stage-1 proxy. Let the proxy reward tool usage mechanically:

J1(Search | x) = 1, J1(NoSearch | x) = 0,

so g(x) = Search. This can be read as a reduced form of a monetization or
“inventory creation” effect: a tool call produces an event the platform values,
regardless of whether it improves the user outcome.
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Welfare comparison. Then

PoA =
1

1/V
= V,

which exceeds C for V ≥ C. This proves unboundedness for over-search. □

Construction C: Query-steering (search occurs, but the proxy
selects the wrong information structure)

Finally, we show that inefficiency can arise even when the system always uses
the tool: the proxy can distort which query template is selected, pushing the
system toward a low-value experiment.

Primitives. Let Θ = {0, 1} with constant x and the same answer set as in
Construction A. Suppose the system must pick between two query templates
q ∈ {qgood, qbad}, each with the same direct cost c(Search) = 0 (costs could
be equalized by engineering constraints). Under qgood, the signal reveals θ
perfectly: σ = θ. Under qbad, the signal is independent of θ (pure noise).
Utilities are as in Construction A, so that knowing θ is worth V while the
safe fallback yields 1.

Stage-2 optimality. Given (qgood, σ = θ), stage-2 picks yθ and obtains V .
Given qbad, stage-2 cannot infer θ and falls back to the safe response with
utility 1.

Stage-1 proxy. Define a proxy that prefers the bad query template, for
reasons orthogonal to answer quality (e.g., it yields more clicks, longer snip-
pets, or higher engagement):

J1(Search, qbad | x) = 1, J1(Search, qgood | x) = 0.

Then g(x) selects qbad deterministically.

Welfare comparison. The end-to-end policy chooses qgood and gets V ,
while the modular policy chooses qbad and gets 1, hence PoA = V as before.
□

Discussion and limitations. Theorem 0.1 is intentionally worst-case.
The proxies we wrote down are extreme, and the scaling parameter V effec-
tively creates situations where the value of the right information structure is
enormous. That is precisely the point: nothing in the modular decomposi-
tion prevents such instances, because the stage-1 objective is not, in general,
constrained to be a calibrated estimate of the user’s value of information.
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In practice, the analogue of V can be “rare but high-stakes” intents (medi-
cal, legal, safety, finance) where the marginal value of correct grounding is
very large, while the platform proxy may weakly penalize tool usage (latency
budgets) or even reward it for unrelated reasons (inventory, engagement).

Equally important, the constructions show that the failure is not a matter
of imperfect language modeling. We granted stage-2 the strongest possible
property: posterior-optimal behavior given the evidence. The welfare loss
is entirely attributable to the stage-1 selection of the information structure,
echoing the broader lesson from information design: if the wrong experiment
is chosen, even a perfect downstream decision rule is optimizing the wrong
posterior.

This motivates the question taken up next: what structural restrictions
on J1 (and what calibration conditions on J2) rule out these pathologies and
yield uniform welfare guarantees?

6. Positive Results: When Modularity is Safe. The negative
constructions hinge on a simple fact: stage-1 is choosing an information
structure, so even a small systematic distortion in its objective can select the
wrong experiment and thereby destroy downstream value. The natural way
to rule this out is to require that the stage-1 proxy is not an arbitrary engage-
ment or revenue predictor, but instead a certificate for the user’s incremental
value of information from searching. Under such a restriction, modularity
becomes much closer to the end-to-end Bayes benchmark, and we can make
this precise with both additive and (under mild regularity) multiplicative
welfare guarantees.

6.1 The value of information as the normative stage-1 target

Fix a dialogue signal x. For each stage-1 action a ∈ A, where A ≡ {NoSearch}∪
({Search}×Q), define the user value of committing to a and then behaving
optimally at stage-2:

V (a | x) ≡ Eσ∼Qa(·|x)

[
max
y

E
[
u(θ, y) | x, a, σ

]]
− c(a),

where for a = NoSearch we take σ = ⊥ deterministically and Qa is degen-
erate. This quantity already “bakes in” the best-possible stage-2 response
conditional on the information structure induced by a.

The end-to-end Bayes-optimal stage-1 choice at signal x is therefore

a⋆(x) ∈ argmax
a∈A

V (a | x),

and the incremental value of information of searching relative to not search-
ing is the gap

∆VoI(x) ≡ max
q∈Q

V ((Search, q) | x)− V (NoSearch | x).
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In this language, the normative decision rule is: search (with an optimal
query template) iff ∆VoI(x) ≥ 0.

Two remarks matter for modularity. First, the object stage-1 should
approximate is not “probability the answer is wrong,” nor “uncertainty,” but
the decision-relevant improvement in achievable utility net of costs. Second,
because V (a | x) already internalizes stage-2 optimal behavior, we can study
stage-1 errors without separately modeling the language generation problem,
as long as stage-2 is calibrated to implement the maxy above.

6.2 Value-of-information certificates

We formalize the restriction on the proxy J1 as a uniform approximation (or
a conservative lower bound) to V (· | x) or ∆VoI(x).

Two-sided certificates. We say J1 is an (ϵ, δ) value certificate if, for all
x and all a ∈ A, ∣∣J1(a | x)− V (a | x)

∣∣ ≤ ϵ,

and the stage-1 optimizer is allowed δ suboptimality, i.e., it outputs some
â(x) satisfying

J1(â(x) | x) ≥ max
a∈A

J1(a | x)− δ.

This definition separates two common sources of modular slack: statistical
estimation error (ϵ) and imperfect optimization or heuristics in the stage-1
policy (δ).

One-sided (conservative) certificates. In many deployments the larger
concern is over-search (latency, privacy, annoyance). For that case, a one-
sided condition is often more plausible:

J1((Search, q) | x) ≤ V ((Search, q) | x) ∀x, q, J1(NoSearch | x) = V (NoSearch | x),

possibly up to additive ϵ. This guarantees that if stage-1 triggers search
based on J1, it is not doing so because of an “illusory” proxy gain. The
tradeoff is that conservative certificates can induce under-search when the
proxy fails to recognize some genuine value.

For clarity, we present the main welfare bounds under the two-sided
notion; variants under one-sided certificates follow by similar (and often
simpler) arguments.

6.3 Additive welfare guarantees

Assume stage-2 is decision-calibrated : for every (x, a, σ) it chooses

h(x, a, σ) ∈ argmax
y

E[u(θ, y) | x, a, σ].
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Then the welfare achieved by committing to stage-1 action a at signal x is
exactly V (a | x) by definition. Hence the welfare loss from modular stage-1
selection is the gap between the best V (· | x) and the chosen one.

Theorem 0.2 (Additive bound from value certificates). Suppose J1 is an
(ϵ, δ) value certificate and stage-2 is decision-calibrated. Let a⋆(x) ∈ argmaxa V (a |
x) be an end-to-end optimal stage-1 choice and let â(x) be the modular stage-
1 choice. Then for every x,

V (a⋆(x) | x)− V (â(x) | x) ≤ 2ϵ+ δ.

Consequently,
E[W (π⋆)]− E[W (πmod)] ≤ 2ϵ+ δ.

Why this is the right guarantee. The bound is uniform and instance-
independent : it does not assume a margin separating “search” and “no-search”
cases, nor any distributional structure beyond what is needed to define pos-
teriors. Economically, it says that modularity is safe when the stage-1 proxy
is a near-correct surrogate for the user’s own net value function over experi-
ments. The theorem also makes precise what the negative examples exploit:
when J1 can differ from V by an amount that scales with the stakes (our
parameter V in the constructions), no uniform bound is possible.

Bounded utility range and randomized certificates. In applications,
we rarely have a deterministic ϵ-uniform approximation. A common al-
ternative is a high-probability or in-expectation guarantee. If utilities are
bounded, say u(θ, y) ∈ [0, U ] and costs are in [0, U ], then V (a | x) ∈ [−U,U ]
and we can convert tail bounds on the certificate error into expected wel-
fare bounds by standard concentration and union bounds over A (when A
is finite), or via covering arguments (when A is infinite). The key role of
boundedness is to prevent rare proxy failures from producing arbitrarily large
welfare losses.

6.4 Multiplicative (ratio) guarantees and “margin” regularity

Additive guarantees are the natural benchmark in decision problems, but
ratio guarantees are often easier to interpret as “approximate optimality.”
A ratio bound cannot hold without some regularity: if E[W (πmod)] can be
arbitrarily close to 0, then any fixed additive error yields an unbounded ratio.

One practical regularity is the existence of a baseline action whose welfare
is uniformly bounded below. In conversational systems, the analogue is a
“safe and helpful enough” response that achieves at least some w > 0 for all
x (e.g., a competent generic answer, a refusal with guidance, or a low-latency
summary), and whose cost is controlled. Formally, suppose

V (NoSearch | x) ≥ w > 0 ∀x.
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Then the optimal welfare is also at least w, and the additive bound translates
into a ratio bound.

Corollary 0.3 (Ratio bound under a baseline floor). Under the assumptions
of Theorem 0.2, if V (NoSearch | x) ≥ w > 0 for all x, then

E[W (π⋆)]

E[W (πmod)]
≤ 1 +

2ϵ+ δ

w
.

In particular, when w is a constant and ϵ, δ are small, the ratio is 1+O(ϵ+δ).

A different (and often more realistic) regularity is a margin condition:
the set of x where ∆VoI(x) is near zero has small probability mass. Then
even a proxy with modest error will disagree with the end-to-end decision
only on a small measure set, yielding a small expected welfare gap. This
is the standard logic behind classification calibration, but here the “labels”
are induced by an economic threshold, and the loss from misclassification is
weighted by the magnitude of ∆VoI(x).

6.5 Query templates: continuity and Lipschitz structure

When Q is large, the main new issue is uniformity over q. Theorem 0.2
continues to apply as stated if the certificate error is uniform over (x, q).
When that is too strong, we can exploit structure.

A useful modeling assumption is that the family of information struc-
tures varies smoothly with q, so that V ((Search, q) | x) is Lipschitz in an
embedding of the query template space. Concretely, suppose Q is a compact
metric space with distance d(·, ·) and for each x,∣∣V ((Search, q) | x)− V ((Search, q′) | x)

∣∣ ≤ Ld(q, q′).

If we only learn J1 accurately on an η-net of Q, then the optimality loss from
discretizing templates is at most Lη, and the certificate error on the net adds
in the same way as ϵ above. Operationally, this says: if neighboring query
templates induce similar retrieval distributions and downstream utility, then
coarse template classes (or a small learned set of tools/queries) are sufficient
for near-optimal modular behavior.

This is also where “query steering” becomes architecturally addressable: if
we constrain the allowable q to a low-complexity family where V is stable and
auditable, the certificate problem becomes statistically and computationally
easier.

6.6 Stage-2 calibration and proper scoring rules

All of the above treats stage-2 as implementing maxy E[u(θ, y) | ·]. In prac-
tice, stage-2 is trained on proxy losses (next-token prediction, preference
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modeling, etc.), so we need conditions under which those losses correspond
to posterior expected utility maximization.

One clean route is to separate belief from decision. Suppose stage-2
produces (explicitly or implicitly) a predictive distribution p̂(θ | x, a, σ),
trained with a strictly proper scoring rule (e.g., log loss) on ground-truth θ
(or on a sufficient statistic for utility). Proper scoring implies calibration:
in the large-data limit, p̂ matches the true posterior. Then a decision layer
chooses

y ∈ argmax
y

Eθ∼p̂(·|x,a,σ)[u(θ, y)],

which coincides with the Bayes action when p̂ is correct. More generally, if u
is bounded and Lipschitz in the posterior (under total variation or another
divergence), then small miscalibration in p̂ implies small regret in expected
utility, yielding an additional additive term that composes with the 2ϵ + δ
stage-1 bound.

This perspective clarifies what is (and is not) required for the positive
results. We do not need stage-2 to be a perfect language model; we need it
to be approximately Bayes-optimal for the user utility-relevant uncertainty,
and we need the stage-1 proxy to be tied to the induced decision value.

6.7 Interpretation and limitations

The positive message is conditional but actionable: modularity is safe when
the stage-1 objective is a faithful proxy for the user’s net value of search-
ing (including query choice), and when stage-2 is trained in a way that is
decision-calibrated with respect to user utility. The bounds are deliberately
simple; they are meant to function as “design inequalities” that tell us what
must be controlled (proxy error and optimization slack) to prevent the un-
bounded failures.

At the same time, the assumptions are demanding in exactly the places
practitioners struggle: u(θ, y) is only partially measurable, θ is latent, and
the cost c(Search) includes user-experience terms that are easy to ignore in
platform-centric objectives. This is where the incomplete-contracting lens
is useful: rather than assuming we can perfectly specify u, the role of a
certificate is to restrict the degrees of freedom of stage-1 optimization so
that any remaining misspecification cannot be amplified into large welfare
loss.

These observations lead directly to architectural and training implica-
tions: we should evaluate and regularize tool-use at the level of ∆VoI, audit
whether search decisions are justified by measurable gains in answer qual-
ity net of costs, and constrain the query/template space to limit steering
incentives. We turn to these system-level implications next.

7. Design Implications for Training and Architecture. The the-
oretical message so far is not “modularity is bad,” but rather that what we
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modularize around matters. Stage-1 is an information-acquisition policy: it
chooses an experiment (search or not, and which query template) whose out-
put shapes what is even feasible for stage-2 to do. When stage-1 is trained
against a proxy objective that is only loosely related to the user’s net value
of information, the system can systematically select the wrong experiment,
and no amount of stage-2 excellence can repair the lost option value. Con-
versely, when stage-1 is tied to a certifiable approximation of ∆VoI(x) (or to
V (a | x) more generally), modularity inherits the usual robustness properties
of near-optimal decision rules.

This section translates that logic into concrete design choices for training
pipelines and product architecture. We organize the implications around four
levers: (i) end-to-end evaluation of tool-use, (ii) constrained optimization
that regularizes stage-1 toward estimated ∆VoI, (iii) post-hoc auditing of
whether searches are justified, and (iv) architectural constraints that reduce
query steering and shrink the “attack surface” of stage-1. We close with a
short taxonomy of interventions: which ones address the mechanism in the
negative examples, and which ones merely change surface behavior.

7.1 End-to-end evaluation for tool-use (what to measure)

A recurring deployment failure mode is to evaluate tool-use via tool-side
metrics (search frequency, click-through, dwell time, ad events) or via local
proxy scores (a classifier’s accuracy at predicting “should search” labels).
Our model suggests a different unit of evaluation: the incremental welfare
created by the tool call, namely an empirical analogue of

∆VoI(x) = max
q∈Q

V ((Search, q) | x)− V (NoSearch | x).

In practice, we rarely observe u(θ, y) or θ directly, and c(Search) includes
latency and annoyance that are easy to omit. But the design principle is
still sharp: evaluate tool-use decisions by the user-facing improvement in
answer quality net of user-facing costs, not by whether a tool was used or
whether engagement increased.

This has two immediate implications for evaluation harnesses.

(i) Tool-use must be evaluated counterfactually. Because ∆VoI(x)
is defined as a difference between the best achievable outcomes with and
without search, evaluation requires paired (or counterfactual) comparisons.
A test that only inspects post-search answers confounds the effect of search-
ing with the system’s propensity to search on “hard” inputs. Even a perfect
stage-2 will look weak under such selection.

(ii) Query choice is part of the welfare object. It is not enough to
measure “search helps on average.” The relevant quantity is the best at-
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tainable welfare under the chosen template family Q and the system’s in-
duced query distribution. This matters because the negative constructions
exploit stage-1’s ability to pick the wrong information structure. In produc-
tion terms, the question is not “did the model search?” but “did it search in
a way that plausibly improves the final answer for this x, given its cost?”

(iii) Costs must be first-class. If c(Search) is omitted from evaluation,
a policy that triggers search on marginal cases will look superior, even if
it degrades user experience via latency, distraction, privacy risk, or refusal
cascades. The certificate-based bounds make clear that costs are not a nui-
sance parameter: they are what converts “uncertainty reduction” into deci-
sion value. Architecturally, this argues for logging and explicitly budgeting
latency and user friction as part of the objective, rather than handling them
as ex post product constraints.

Taken together, these points suggest a simple operational norm: when-
ever we change a stage-1 policy, we should report (a) estimated answer-
quality lift from searching, (b) estimated user cost of searching, and (c) the
implied distribution of ∆VoI, including mass on “unjustified search” where
estimated net lift is negative.

7.2 Constrained optimization: tying stage-1 reward to ∆̂VoI

If the core pathology is that J1 can be systematically misaligned with V , then
the most direct fix is to restrict stage-1 optimization to objectives that are
dominated by (or tightly coupled to) an estimate of incremental user value.
Concretely, rather than maximizing a free-form proxy such as revenue, we
can train stage-1 under a constrained or regularized objective of the form

max
g

E
[
∆̂VoI(x) · I{g(x) = Search}

]
− λ · E

[
PolicyComplexity(g)

]
,

or, with explicit monetization terms M(x, a),

max
g

E
[
∆̂VoI(x, a)

]
+ β E[M(x, a)] s.t. E

[
∆̂VoI(x, a)

]
≥ τ,

where ∆̂VoI is an estimator of net user value and τ is a minimum welfare
floor.

We emphasize two design choices implicit here.

(i) Regularize toward decision-relevant uncertainty, not generic un-
certainty. A common heuristic is “search when uncertain.” But our defini-
tion of ∆VoI(x) depends on how uncertainty translates into expected utility
under the available actions y. There are many cases where uncertainty is high
but searching does not change the optimal answer (e.g., the safe response is
to refuse; or the user’s request is underspecified and the right action is to ask
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a clarification question rather than search). Training stage-1 against ∆̂VoI
forces the policy to internalize that distinction.

(ii) Constrain the proxy to be a certificate, not an unconstrained
predictor. In the language of Section 6, the goal is to make J1 an (ϵ, δ)-
certificate for V (or a conservative lower bound). Practically, this suggests
training stage-1 with calibrated targets representing incremental answer-quality
lift and with explicit cost terms, and treating engagement signals only as an-
cillary features, not as the objective itself. When the platform’s business
objective must enter, the constraint formulation makes the tradeoff legible:
we are selecting β subject to a measurable welfare guarantee, rather than
implicitly letting β be “infinite” by training only on monetizable events.

An important limitation is that ∆̂VoI can be misspecified. Our theory
does not eliminate misspecification; it recommends bounding the damage by
restricting stage-1’s degrees of freedom. This is precisely the incomplete-
contracting intuition: since we cannot write down the full user utility, we
should design the contract (the training objective) so that whatever is left
out cannot be amplified into arbitrarily bad information choices.

7.3 Post-hoc auditing: “show your work” for searches

Even if stage-1 is trained with the right objective, we should expect drift: dis-
tribution shift, changing web content, evolving user mix, and policy updates
can all degrade the proxy-certificate relationship. This motivates post-hoc
auditing that treats each tool call as a claim: “search was worth it here.”

We find it helpful to separate three audit questions.

(i) Was searching ex ante justified? Given the pre-search dialogue
signal x, did the system have evidence that ∆VoI(x) was likely positive?
This is the audit analogue of the certificate condition. It can be implemented
by logging the stage-1 score and comparing it to a held-out estimate of
incremental value. The key is to audit before observing σ, because otherwise
the system can rationalize any search by pointing to whatever was retrieved.

(ii) Was the chosen query template appropriate? If the system
searched, did it use a query that plausibly targets the uncertain latent vari-
able relevant to u(θ, y)? In our model, “query steering” is a mechanism by
which J1 can be optimized while degrading V : the system may learn to emit
queries that trigger monetizable results or high click propensity while being
uninformative for the user’s intent. Auditing should therefore inspect the
mapping x 7→ q for systematic deviations (e.g., brand injection, irrelevant
entities, sensational phrasing) that correlate with engagement but not with
answer quality.
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(iii) Did the search actually change the decision? A strong diagnos-
tic for over-search is whether stage-2’s chosen action y (or its utility-relevant
content) is invariant to σ. If the answer is essentially the same regardless of
retrieval, then the tool call likely had low value, even if the retrieved doc-
uments look superficially related. This test is imperfect—sometimes search
increases confidence without changing the top action—but as an audit heuris-
tic it often identifies cases where tool-use is ritualistic rather than decision-
relevant.

A practical implication follows: we should log not only the final answer,
but also minimal sufficient statistics for the decision (e.g., citations used,
extracted facts, or a structured “belief state” if available). Without such
logs, it is difficult to audit whether search was decision-relevant as opposed
to post hoc decoration.

7.4 Architectural constraints to limit query steering (reducing
the action space)

Theorem-level guarantees in Section 6 become harder as Q grows and as
V ((Search, q) | x) varies sharply in q. From a mechanism-design perspective,
one can often get large welfare gains by restricting the message/action space
to eliminate manipulative degrees of freedom. Here, that means constraining
the set of allowable query templates and the interface between stage-1 and
the retrieval system.

We highlight four constraint patterns that are especially aligned with the
theory.

(i) Template libraries instead of free-form queries. Replace uncon-
strained query text with a small library of auditable templates (or tool “in-
tents”) whose semantics are stable: e.g., FactCheck, LocalBusinessLookup,
RecentNews, AcademicCitation. This reduces the Lipschitz burden discussed
earlier: if V varies smoothly within each template class, coarse choices are
near-optimal and easier to certificate.

(ii) Split “query generation” from “retrieval targeting.” Allow the
model to generate a natural-language query, but map it through a determin-
istic, transparent normalizer that strips ads/brands, enforces topical con-
straints, or converts it into a structured representation (entities, time range,
source constraints). The goal is not to reduce relevance, but to ensure that
optimizing for J1 cannot exploit idiosyncrasies of the retrieval stack.

(iii) Source constraints and diversity requirements. If the retrieval
mechanism itself is susceptible to monetization or click-optimization, then
even well-intended query choices can produce low-information σ. Archi-
tecturally enforcing source diversity, citation requirements, or a minimum
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“informativeness” criterion (e.g., excluding pages with low textual content)
can make Qa(· | x) more stable and increase the chance that search actually
produces useful signals.

(iv) Separation of concerns: tool router vs. business logic. If stage-
1 is trained on monetization events, we should expect it to internalize the
business objective. An architectural mitigation is to isolate tool routing
behind a welfare-gated layer: stage-1 proposes a search, but the system only
executes it if an independent gate predicts positive net user value. This is a
concrete way to implement one-sided (conservative) certificates: the gate is
designed to prevent illusory proxy gains from triggering searches.

These constraints are not “free.” They may reduce peak performance on
some tasks where nuanced query phrasing matters. Our claim is narrower:
when the alternative is an unconstrained stage-1 objective with unbounded
welfare failure modes, reducing Q and auditing the remaining degrees of
freedom is often an efficiency-enhancing choice from the user’s perspective.

7.5 A taxonomy: what fixes the negative mechanism, and
what does not

We close with a short taxonomy that maps interventions to the underlying
failure mode highlighted by the unbounded inefficiency result.

Fixes the mechanism (targets information-structure choice).

• Training stage-1 on (or constrained by) estimated ∆VoI. This
directly aligns J1 with V , moving the system toward the conditions of
the additive and ratio bounds.

• Explicitly pricing search costs in the objective. Incorporating
latency and user friction makes over-search unattractive even if it in-
creases engagement.

• Constraining Q and normalizing queries. Reduces the ability of
stage-1 to select perverse information structures and makes certifica-
tion statistically feasible.

• Independent gating / conservative certificates. Prevents searches
whose user value cannot be justified, limiting harm from proxy mis-
specification.

Helps sometimes but does not address the core pathology.

• Improving stage-2 answer generation alone. Better h(·) increases
V (a | x) for each fixed a but cannot fix choosing the wrong a; the
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negative examples are constructed precisely so that stage-2 optimality
does not rescue stage-1 mistakes.

• Training “should search” on heuristic labels (uncertainty, topic
lists). This can correlate with ∆VoI but is not decision-calibrated; it
fails on cases where search is unhelpful despite uncertainty, or helpful
despite apparent certainty.

• Optimizing engagement/revenue with small penalties for search
frequency. A frequency penalty controls volume but not selection:
the system may still search in the wrong places (or steer queries) to
maximize proxy value.

Often counterproductive (amplifies proxy incentives).

• Rewarding tool calls as intrinsically good. Any objective that
directly pays for triggering search events (or clicks) invites over-search
and query steering, recreating the unbounded-loss mechanism.

• Allowing unconstrained query text optimized end-to-end on
monetization. This enlarges the action space in exactly the dimen-
sion that matters for information-structure manipulation.

The unifying theme is that “tool-use” is not a cosmetic behavior but a
welfare-relevant experiment selection problem. The system-level implication
is therefore not merely to add more tools, but to (a) evaluate tool-use by
incremental user welfare, (b) train and regularize stage-1 against that incre-
mental welfare, (c) audit searches as claims that require justification, and (d)
constrain the tool/query interface so that proxy objectives cannot secretly
reintroduce the negative construction through query steering.

8. Empirical / Measurement Plan (Optional but Recommended).
Our theoretical objects—in particular the incremental value of information

∆VoI(x) = max
q∈Q

V ((Search, q) | x) − V (NoSearch | x)

and the notion of “unjustified search” (cases where the net lift from searching
is non-positive)—are decision-theoretic and therefore, in principle, measur-
able. In practice, the main difficulty is that we never observe both counter-
factual worlds (search vs. no-search) for the same dialogue state x, and we
seldom observe the true latent intent θ or the user utility u(θ, y). This section
outlines an operational measurement plan that (i) approximates ∆VoI(x)
with counterfactual evaluation, (ii) produces concrete summary statistics
such as the distribution of unjustified searches, and (iii) supports experi-
ments that test monotone comparative statics suggested by the theory (e.g.,
increasing proxy/monetization weight increases tool use while potentially
decreasing measured user welfare).
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8.1 A measurable surrogate for u(θ, y)

Any empirical plan begins by specifying a proxy for u(θ, y). We emphasize
two requirements: (a) it must be comparative (able to rank the search and
no-search answers for the same x), and (b) it must be cost-aware (so that la-
tency/failure risk enters the objective rather than being handled informally).

A practical approach is to define a scalar score

û(x, y) ∈ [0, 1]

that combines task success, factuality, instruction-following, and (where rel-
evant) citation correctness. This score can be obtained from (i) offline oracle
labels (domain experts; gold QA datasets with known answers; unit tests for
tool outputs), or (ii) an LLM-as-judge rubric. Because judge models can be
miscalibrated and can prefer longer or more confident answers, we recom-
mend calibrating û using a small, high-quality labeled set and forcing the
judge to output both a score and an uncertainty estimate (e.g., a calibrated
probability that the answer is correct).

Concretely, one can fit a calibration map ϕ so that

û(x, y) = ϕ
(
JudgeScore(x, y), JudgeUnc(x, y)

)
,

where ϕ is trained to match human ratings or known-correctness indicators
on a held-out calibration set. The goal is not to make the judge perfect, but
to make its errors stable and auditable.

8.2 Counterfactual evaluation: estimating ∆VoI(x)

To approximate ∆VoI(x), we need paired evaluations: the best (or at least
representative) answer without search and the best answer with search. An
offline approximation pipeline can be:

1. Sample dialogue states x from a deployment-representative log distri-
bution (stratified by language, topic, user segment, and difficulty).

2. For each x, generate two trajectories:

No-search: y0(x) ∼ Stage-2 policy conditioned on s = NoSearch,

Search: (q(x), σ(x)) ∼ Stage-1/IR stack; y1(x) ∼ Stage-2 conditioned on (s = Search, q, σ).

3. Score both answers with û(x, ·) and record search costs ĉ(x) (Section
8.3).

Then define an empirical incremental net value

∆̂VoI(x) = û(x, y1(x))− û(x, y0(x))− ĉ(x).
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This estimator is deliberately simple; its main virtue is interpretability. It
measures what we actually care about operationally: how much quality im-
proves when we search, net of cost, holding the user input fixed.

Two refinements matter in practice.

(i) Approximating the maxq∈Q term. The definition of ∆VoI(x) takes a
maximum over query templates. Offline we typically observe only the query
generated by the current policy. To better approximate the maximization, we
can evaluate a small candidate set {qk(x)}Kk=1 (e.g., from multiple decodings
or from a template library) and compute

∆̂VoI(x) = max
k≤K

(
û(x, y1,k(x))− ĉk(x)

)
− û(x, y0(x)).

This is not merely “try more prompts”; it is an empirical analogue of choosing
among information structures. It also provides a diagnostic: large dispersion
across k indicates that query choice is a high-leverage part of welfare.

(ii) Deconfounding via randomization or off-policy estimation. If
we only evaluate on the system’s chosen actions, we inherit selection effects
(hard inputs get searched more). The cleanest solution is to run a small
randomized router slice: for a fraction of traffic, force Search with probability
p and NoSearch with probability 1 − p (or randomize among a few query
templates). This produces unbiased estimates of the average treatment effect
of searching for a given stratum of x.

When randomization is infeasible, one can use off-policy estimators. Let
a ∈ {NoSearch, (Search, q)} denote the stage-1 action and let µ(a | x) be the
logging policy. For any evaluation policy π, a standard inverse propensity
score (IPS) estimator for expected utility is

Ê[u] =
1

n

n∑
i=1

π(ai | xi)
µ(ai | xi)

û(xi, yi),

with doubly-robust variants available when we fit a regression model for û
as a function of (x, a). The purpose here is modest: not to obtain asymptot-
ically perfect policy values, but to ensure our qualitative comparisons (e.g.,
policy A searches more than policy B, and has lower net welfare) are not
artifacts of selection.

8.3 Measuring costs: from latency to “hidden” failure modes

The cost term c(s) is conceptually simple but operationally multifaceted.
We recommend decomposing

ĉ(x) = αlat · Latency(x) + αfric · Friction(x) + αrisk · Risk(x),

where:

38



• Latency is measured directly (server-side end-to-end, including tool
timeouts and retries).

• Friction includes user-visible clutter (extra steps, consent prompts)
and interaction costs (e.g., increased back-and-forth or abandonment).
It can be proxied by short-horizon satisfaction surveys or by session-
level drop-off, but we caution that engagement can be confounded with
platform incentives.

• Risk captures privacy exposure and safety regressions induced by tool
use (e.g., leaking sensitive strings into queries, retrieving low-quality
sources, or increasing refusal cascades). This term is harder; we ad-
vocate conservative proxies such as measured rate of policy viola-
tions, sensitive-entity leakage detectors, or red-team evaluations on
tool-augmented paths.

The weights (αlat, αfric, αrisk) should be set by explicit product policy (or
varied in sensitivity analyses), not implicitly by omitting costs. Even coarse
cost accounting is preferable to treating search as free.

8.4 The distribution of unjustified searches

Given ∆̂VoI(x), the core descriptive object is the distribution of net lifts over
the population:

F (t) = Pr
(
∆̂VoI(X) ≤ t

)
.

From F we obtain operationally meaningful quantities:

• Unjustified search rate:

p̂unjust = Pr
(
∆̂VoI(X) ≤ 0 ∧ g(X) = Search

)
.

• Over-search severity: the conditional mean loss on unjustified searches,

L̂unjust = E
[
−∆̂VoI(X) | ∆̂VoI(X) ≤ 0, g(X) = Search

]
.

• Missed-opportunity rate: the probability that search would have
been valuable but was not taken,

p̂miss = Pr
(
∆̂VoI(X) > 0 ∧ g(X) = NoSearch

)
.

These three numbers separate volume from selection. Two policies can have
the same search frequency but very different p̂unjust and p̂miss, which is pre-
cisely the distinction the model highlights.

Because ∆̂VoI(x) is noisy, we also recommend reporting uncertainty
bands. A simple procedure is to bootstrap over x and over judge noise
(e.g., multiple independent judge samples) to obtain intervals for p̂unjust and
related statistics. If costs are policy-dependent (e.g., search changes refusal
rates), that dependence should be included in the resampling.
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8.5 Comparative statics experiments: varying proxy incen-
tives

The theory predicts that when stage-1 is optimized for a proxy misaligned
with user net value, tool-use can increase while user welfare decreases. This
suggests a family of controlled experiments:

Experiment 1: Monetization weight sweep. Train (or fine-tune) a
family of stage-1 routers indexed by β ≥ 0 that trade off estimated user
value and a monetization proxy M :

J1,β(a | x) = ∆̂VoI(x, a) + βM(x, a),

or, in purely observational settings, deploy a family of decision thresholds
that interpolate between “search only if user-lift is high” and “search whenever
monetization is high.” For each β, measure:

1. search frequency Pr(gβ(X) = Search),

2. mean net welfare E[∆̂VoI(X) · I{gβ(X) = Search}],

3. unjustified search and missed-opportunity rates.

A pattern consistent with the negative mechanism is: as β increases, search
frequency increases monotonically while mean net welfare is non-monotone
and may decline, driven by rising p̂unjust (and possibly by query steering if
M correlates with particular query forms).

Experiment 2: Query-space expansion. Hold the training objective
fixed but vary the action space Q available to stage-1 (e.g., free-form queries
vs. a restricted template set). Measure dispersion in ∆̂VoI(x, q) across can-
didate queries and whether increased flexibility increases the variance of out-
comes (more mass in both high positive and negative tails). The mechanism
we model suggests that expanding Q can increase the opportunity for per-
verse information structures when the proxy is misaligned; empirically, this
should manifest as heavier negative tails (more severe unjustified searches)
even if average performance appears unchanged.

Experiment 3: Certificate quality stress test. If the system uses a
learned ∆̂VoI predictor (or any gate), deliberately perturb its calibration:
train versions with increasing label noise or with covariate shift (e.g., remove
cost features; remove recency signals) and measure how quickly p̂unjust and
welfare degrade. This tests the practical relevance of “certificate accuracy”
and helps decide how conservative the gate must be.
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8.6 Guarding against measurement pathologies

Several failure modes can cause the measurement plan itself to reproduce
the proxy-misalignment problem at evaluation time.

(i) Judge reward hacking. If the system is trained against LLM-as-judge
scores, it may learn superficial patterns that inflate û without improving true
utility (verbosity, hedging, citation dumping). To mitigate this, we recom-
mend (a) training the judge on adversarial examples, (b) using pairwise com-
parison judging (search vs. no-search) with hidden randomization of which
answer is shown as “A” vs. “B,” and (c) cross-checking with task-specific
automated checks whenever possible (unit tests; factual consistency checks;
citation verification).

(ii) Conditioning on retrieved content. A subtle issue arises if the
evaluator sees σ and rewards answers that reference it, even when retrieval
was irrelevant. For counterfactual comparisons, the judge prompt should be
constructed so that it evaluates whether the answer satisfies the user request,
not whether it appears “grounded.” When citations are required, the judge
should verify relevance and correctness rather than the mere presence of
citations.

(iii) Nonstationary web and tool drift. Because σ depends on the
retrieval system and the web, ∆̂VoI(x) can drift over time even if policies are
unchanged. This motivates periodic remeasurement on a stable benchmark
set of x (a “tool-use panel”) and reporting time series of the unjustified search
distribution. If drift is large, conclusions about policy comparisons should
be restricted to matched time windows.

8.7 Reporting: a minimal “tool-use welfare card”

To make the empirical objects usable for iteration, we suggest standardizing
a short report for any router or tool-use policy:

1. Pr(Search) and average latency increase;

2. mean and quantiles of ∆̂VoI(X) on searched instances;

3. p̂unjust, L̂unjust, and p̂miss (overall and by key strata);

4. sensitivity of these metrics to alternative cost weights and alternative
judges (human vs. model).

This “welfare card” does not eliminate value disagreements about u or c, but
it forces the relevant tradeoffs into view and makes it difficult for purely
tool-side metrics to masquerade as user benefit.
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8.8 What this plan can and cannot establish

Finally, we are explicit about limitations. First, û is only a proxy for user
utility; if it omits important dimensions (taste, trust, privacy), then ∆̂VoI
can be systematically biased. Second, counterfactual evaluation is only as
good as the coverage of the logged policy and the quality of randomization or
propensity estimation. Third, maximizing over multiple candidate queries
introduces multiple-testing bias: maxk can overestimate attainable gains
unless corrected (e.g., with a held-out set for query selection). These are
not reasons to avoid measurement; they are reasons to treat estimates as
decision aids with error bars, to triangulate with multiple evaluators, and to
favor comparisons that are robust across reasonable scoring choices.

The central objective of the measurement plan is therefore pragmatic:
to make the model’s welfare-relevant quantity—the net incremental value
of searching—empirically legible, and to enable controlled tests of whether
changing proxy incentives moves the system along the predicted (and poten-
tially harmful) margins.

9. Related Work. Our framework sits at the intersection of (i)
mechanism-design results on modularity and information structures, (ii)
alignment arguments emphasizing proxy objectives and incomplete contract-
ing, and (iii) decision-theoretic models of information acquisition and stop-
ping. What is distinctive in the present setting is that the “allocation”
problem is not allocating goods across agents, but selecting an informa-
tion structure (search vs. no-search, and which query) that shapes what the
downstream answerer can do. This makes the relevant inefficiency mecha-
nism closer to the informational externalities studied in interactive systems
than to standard static misallocation.

Interactive ad systems, modular auctions, and unbounded ineffi-
ciency. Our Claim (A) is conceptually closest to recent impossibility re-
sults for modular design in ad and recommendation pipelines, where a first
module selects an information structure (or an elicitation question) and a
second module runs an allocation/optimization routine conditional on the
induced signals. In particular, Bhawalkar, Psomas, and Wang ? show that
when information acquisition is optimized with respect to a proxy induced
by downstream agent utilities (rather than end-to-end welfare), the resulting
price-of-anarchy-style inefficiency can be unbounded. While their formal en-
vironment is an auction/mechanism-design setting, the core logic transfers:
the upstream choice determines what information becomes available, and a
myopic or misaligned upstream objective can systematically select informa-
tion structures that are low-welfare even if the downstream stage is optimal
given what it sees.

In our chatbot model, the stage-1 router is analogous to an upstream
component that decides what evidence the system will condition on. A key
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takeaway from ? is that “fixing” the downstream optimizer (e.g., making
the auction truthful or the allocator welfare-optimal conditional on signals)
does not resolve inefficiency when the upstream experiment-selection prob-
lem is wrong. This helps explain why a retrieval-augmented generator can
be excellent at using retrieved documents, yet the overall system can still be
welfare-poor if the router over-triggers search, triggers search for the wrong
queries, or systematically avoids search when it is beneficial. The unbound-
edness is not a pathology of bad language modeling; it is an identifiability-
and-incentives issue about which world we enter before answering.

More broadly, our setting parallels “interactive” ads/recs pipelines where
the platform chooses what to show (information acquisition) and then runs a
marketplace or ranking stage conditional on clicks and engagement. A large
empirical literature documents how optimizing for intermediate engagement
metrics can distort long-run user utility; our contribution is not to re-prove
those empirical facts, but to isolate a structural mechanism that is already
present in a stripped-down Bayesian decision problem: selecting an informa-
tion structure using a proxy objective can dominate downstream optimality.

Incomplete contracting, reward misspecification, and proxy objec-
tives. The motivation for modeling stage-1 as optimizing a proxy objec-
tive J1 rather than user welfare draws directly on the incomplete-contracting
view of AI alignment in Hadfield-Menell and Hadfield ?. In their account,
the principal (society, or a user) cannot fully specify desired behavior in a
contractible reward, so the agent optimizes a proxy that is inevitably mis-
specified. This lens is useful in the tool-use context because the platform
can readily instrument and optimize measurable outcomes of tool use (search
events, monetizable clicks, session length, “engagement”), while many dimen-
sions of user welfare (trust, privacy, long-run satisfaction, opportunity costs)
are difficult to observe and write into a training signal. Our modular pipeline
formalizes this as a two-stage optimization in which the router is trained on
J1 that may not correspond to the user’s incremental value of information.

The incomplete-contracting perspective also clarifies why purely techni-
cal improvements in generation quality do not necessarily solve the problem.
If the measurable objective shifts the stage-1 decision boundary in the wrong
direction, then the system can become more competent at executing a mis-
aligned policy. This is the same qualitative phenomenon emphasized in ?:
better optimization against an incomplete contract can exacerbate diver-
gence from the principal’s latent objective. In our terms, the relevant object
is not only whether the generator can answer well, but whether the system
acquires information when and how it should.

Multi-task incentives, Goodhart effects, and modular training. A
related body of work in economics and organizational design studies incen-
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tive distortions when performance is evaluated on measurable tasks that are
imperfect proxies for overall value. The classic multi-task principal–agent
model of Holmström and Milgrom ? predicts that incentive weight placed
on easily measured dimensions can crowd out effort on hard-to-measure di-
mensions. In our setting, stage-1 tool use is precisely an easily measured
“task” (did the assistant call search? did the query lead to clicks?), while
user welfare is multi-dimensional and partly unobserved. This suggests a
mapping: a platform that rewards tool-use events (directly or indirectly)
risks systematically increasing search frequency even when net user value is
negative, because the marginal training signal for tool calls is sharper than
the marginal signal for long-run user welfare.

We also view our analysis as a formal instance of Goodhart’s law: when
a measure becomes a target, it ceases to be a good measure. Tool calls,
citations, or “groundedness” markers can be optimized as ends in themselves,
producing behavior that looks instrumentally rational under the proxy but
is welfare-reducing. The contribution of our model is to connect this broad
idea to a specific decision-theoretic benchmark—the value of information—
and to show how modularity can amplify Goodhart effects by separating the
choice of what to observe from the choice of what to output. When these
are trained against different objectives, the upstream stage can effectively
“steer” the downstream stage into worlds where the proxy looks good.

RLHF/RLAIF, reward hacking, and intermediate rewards for tool
use. Our modular-training abstraction also speaks to discussions around
RLHF/RLAIF and reward hacking in LLMs ???. In many deployed systems,
tool-use routing is either (i) a separate classifier trained on engagement or
heuristic labels, or (ii) an RL-style policy trained with a reward model that
may include intermediate incentives for tool usage (e.g., encouraging citation,
browsing, or calling APIs). Both design patterns introduce the possibility
of reward hacking: the system finds ways to trigger tool calls or produce
tool-like artifacts that correlate with reward without improving the user’s
objective.

The key point is that reward hacking is not limited to the final natural-
language answer. It can occur at the level of information acquisition itself.
If the reward model assigns positive value to the act of searching (or to
outcomes downstream of searching that are easier to predict/monetize), the
policy may learn to search even when ∆VoI(x) ≤ 0, or to issue queries that
maximize reward proxies rather than informational relevance. Our bounded-
inefficiency result can be read as a constructive direction for RLHF-style
training: rather than hoping the reward model internalizes the full user
welfare, we can target a certifiable proxy for the incremental value of infor-
mation and treat miscalibration explicitly via (ϵ, δ)-style guarantees. This
aligns with recent alignment arguments that seek robustness to reward-model
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error (e.g., conservative objectives, uncertainty-aware policies) rather than
assuming reward-model correctness.

Information acquisition, Bayesian experiment design, and optimal
stopping. Normatively, our end-to-end benchmark π⋆ is grounded in clas-
sical Bayesian decision theory: acquire information if and only if its expected
marginal benefit exceeds its cost. This connects our model to the value-of-
information literature (going back to Blackwell’s comparison of experiments)
and to Bayesian experiment design, where an agent chooses an information
structure before acting. The chatbot’s choice among query templates q ∈ Q
is naturally interpreted as choosing among experiments with different signal
distributions. This is also related to optimal stopping and sequential search
models (e.g., Wald-style stopping, Weitzman’s “Pandora’s box” ?), in which
an agent decides whether to pay a cost to reveal additional information be-
fore selecting an action.

There are two salient differences from the canonical optimal stopping
models. First, in our deployment-relevant modular pipeline, the stopping
rule is not chosen to maximize the user’s expected utility but to optimize
a proxy objective that may be only loosely coupled to information value.
Second, the space of “experiments” (queries) is not exogenous; it is gener-
ated by a model that can adapt in complex ways to incentives. This makes
the experiment-selection problem both richer and more failure-prone than
textbook settings: the policy can effectively invent new experiments whose
informational and welfare properties were not anticipated by designers.

Tool use, retrieval-augmented generation, and agent architectures.
A growing systems literature studies retrieval-augmented generation (RAG),
tool-augmented LLMs, and agentic architectures in which a model decides
when to call external tools. Much of this work focuses on improving factu-
ality, grounding, or task success conditional on having retrieved documents,
and on engineering better controllers for multi-step tool plans. Our contri-
bution is complementary: we formalize the welfare economics of the first
decision—whether and how to retrieve—and emphasize that even a near-
perfect downstream reasoner can be made ineffective by an upstream router
optimized against misaligned signals. Put differently, we treat tool use not as
a purely technical augmentation but as an information-acquisition decision
with costs, externalities, and measurable proxy distortions.

This framing also relates to research on calibration and selective predic-
tion: a router that abstains (searches) when uncertain resembles a selective
classifier that defers to an oracle at a cost. However, unlike standard se-
lective prediction, the “oracle” here (web search) is itself noisy, strategically
shaped by the query, and potentially introduces new risks (privacy leakage,
unsafe content). Our model incorporates these aspects via c(s) and via the
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dependence of σ on (s, q), which is critical for capturing query-dependent
welfare variation.

Algorithmic auditing, compliance, and governance for tool-using
assistants. Finally, our emphasis on measuring unjustified searches and
welfare gaps connects to the emerging practice of algorithmic auditing and
compliance in ML systems. In many regulatory and governance regimes,
firms are asked to document system behavior, evaluate risks, and provide
evidence of monitoring and mitigation (e.g., model cards and dataset doc-
umentation ??; audit frameworks for automated decision systems ?). Tool-
using assistants introduce a distinct auditing surface: it is not enough to
audit output text; one must audit actions (what tools were called, what
data were transmitted, what sources were retrieved) and the incentives that
drive those actions.

Our framework suggests concrete audit targets that are closer to deci-
sion quality than to raw tool-use counts. For example, an auditor might ask
not only “how often does the assistant browse?” but “in what fraction of
cases is browsing net-beneficial under a stated cost model?” and “does the
browsing policy vary systematically across user groups or topics in a way
that is consistent with user value rather than monetization proxies?” This
resonates with compliance concerns around privacy and data minimization:
if searches transmit user text externally, a router that over-searches can vio-
late minimization principles even if the final answer is benign. More broadly,
the bounded-inefficiency perspective suggests an actionable governance ap-
proach: require that stage-1 decisions be justified by a documented, vali-
dated proxy for incremental user value (a “certificate”), and treat deviations
as auditable risk.

Limitations of the related literatures and our contribution. Each of
the above literatures captures part of the phenomenon but not the full inter-
action we emphasize. Mechanism-design PoA results highlight the dangers
of modularity but are often developed in stylized allocation environments;
alignment and incomplete-contracting work explains why proxy objectives
arise but does not by itself yield a decision-theoretic benchmark for when to
use tools; RAG and agent papers improve conditional performance but often
leave the tool-use decision criterion implicit; auditing frameworks demand
documentation but rarely provide a principled welfare object tied to infor-
mation acquisition. Our goal is to provide a minimal model that links these
threads: (i) a normative benchmark based on Bayesian value of information,
(ii) a modular training abstraction that mirrors practice, and (iii) formal
statements showing that modularity can be arbitrarily inefficient without
additional alignment structure, while also identifying a path to bounded
losses when the proxy can be certified against the relevant welfare margin.
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10. Conclusion and Open Problems. We studied a minimal but,
we believe, deployment-relevant economic model of tool-using conversational
assistants in which the system must first decide what to observe (search vs.
no-search and, if searching, which query template), and only then decide what
to output. The central modeling move is to treat tool use as information ac-
quisition: after observing a dialogue-derived signal x that induces a posterior
over a latent intent θ, the assistant chooses an information structure that
generates a signal σ (e.g., retrieved documents), and then chooses an answer
y. This framing makes explicit a normative benchmark—the Bayes-optimal
end-to-end policy π⋆ that searches if and only if the incremental value of
information exceeds the cost—and it clarifies why the tool router is not a
mere engineering detail but a first-class welfare decision.

Our analysis emphasizes the nontriviality of modular training. In prac-
tice, many systems decompose the problem into (i) a stage-1 router optimized
for a proxy objective J1 (engagement, revenue, tool-use events, or heuristic
labels) and (ii) a stage-2 generator optimized for conditional correctness
given whatever information arrives. We formalized this as a two-stage best-
response pipeline and asked a simple welfare question: how far can such a
modular policy be from the end-to-end user-optimal policy? Two conclusions
follow. First, modularity can be arbitrarily inefficient: even when the stage-2
answerer is pointwise optimal given (x, s, q, σ), a misaligned stage-1 proxy
can push the system into systematically low-welfare information structures,
generating an unbounded price-of-anarchy-style gap. Second, this pessimism
is not the end of the story: if the stage-1 objective is designed as an explicit
certificate for the user’s incremental value of searching (up to (ϵ, δ) error)
and stage-2 is calibrated to maximize expected utility conditional on the
acquired information, then the welfare loss admits a uniform bound. In
other words, the tool-use decision becomes governable once we insist on a
proxy tied to the correct margin—the value of information—and we track
its miscalibration.

We view these results as offering a conceptual reconciliation between two
common intuitions in tool-augmented language modeling. On the one hand,
practitioners observe that adding retrieval and improving grounded gener-
ation can dramatically improve factuality conditional on searching; on the
other hand, users often report that assistants browse at the wrong times,
issue irrelevant queries, or perform privacy-costly tool calls for low-stakes
questions. Our framework explains how both can be true simultaneously:
downstream competence does not repair upstream experiment-selection er-
rors. The policy implication is that “better RAG” and “better routing”
are complements rather than substitutes, and that routing quality must be
judged against the right counterfactual: the incremental welfare of acquiring
additional evidence net of its costs.

The model also suggests a design principle for training and evaluation:
treat tool calls as costly actions whose justification must be stated in welfare
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terms, not merely in terms of measured intermediate outcomes. In a reduced-
form decision problem, the relevant object is

∆VoI(x) =
(
max
q∈Q

Eσ|x,Search,q
[
max
y

E[u(θ, y) | x, σ]
])

−
(
max
y

E[u(θ, y) | x]
)
,

and the normative decision is to search when ∆VoI(x) ≥ c(Search)−c(NoSearch).
This expression is not meant as a literal implementation recipe—real systems
have complex utilities, constraints, and multi-step tool plans—but it provides
a sharp target for what the stage-1 proxy should approximate. It also makes
clear what must be measured to audit tool use: not “search rate” in isolation,
but the sign and magnitude of net benefit relative to costs.

Several limitations of the present model point directly to open problems.

(i) Multi-round conversations and dynamic information acquisi-
tion. We analyzed a single tool-use decision followed by a single answer.
Real assistants operate in multi-turn dialogues where both the belief state
and the feasible information structures evolve: the system can ask clarifying
questions, refine queries over multiple browsing steps, or stop early when suf-
ficient evidence accumulates. Extending our framework requires a dynamic
program in which the state includes the dialogue history, the posterior over θ,
and possibly the user’s evolving tolerance for friction. The relevant welfare
object becomes a sequential value of information and a stopping problem
with endogenous “experiments” (query generation). Two challenges arise.
First, modularity can occur at multiple layers (whether to browse; how many
steps; which sources; whether to ask the user a question), and misalignment
at any upstream layer can propagate. Second, certifying proxies becomes
more subtle: a proxy that is locally accurate for a one-step browse decision
may be globally wrong when future tool opportunities exist (classic issues
with myopic policies). We see a need for theory that characterizes when ap-
proximate one-step VoI certificates imply near-optimal multi-step behavior,
and when they fail.

(ii) Endogenous user behavior and conversational steering. Our
welfare functional treated user welfare as a function of (θ, y) net of an action
cost, with θ drawn independently of the assistant’s behavior. In practice,
users respond to the assistant’s tool use: browsing may increase trust in
some contexts and decrease it in others; it may induce follow-up questions,
abandonment, or changes in what the user discloses. Moreover, the assis-
tant can steer the interaction by choosing to browse (creating delays) or
by asking clarifying questions (shifting effort onto the user). Modeling this
requires endogenizing the user’s policy: the user observes the assistant’s
actions and outputs and chooses whether to continue, how much detail to
provide, and whether to accept the answer. From an economics perspective,
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this becomes a dynamic game with information asymmetries in which the
assistant’s tool-use policy affects both immediate answer quality and future
belief formation and engagement. A key open question is whether the un-
bounded modular inefficiency persists when users can discipline the assistant
by leaving (thereby penalizing over-search), or whether new failure modes
emerge because engagement itself becomes strategic.

(iii) Multiple principals, heterogeneous users, and distributional
welfare. We implicitly evaluated welfare from the standpoint of a repre-
sentative user with a single utility function and a single cost of tool use.
Deployed platforms face heterogeneous users (different privacy preferences,
patience, expertise, and stakes) and multiple principals (users, platform own-
ers, regulators, and possibly third parties whose content is retrieved). In such
settings, a single scalar welfare is not canonical. One direction is to treat
the assistant as solving a social choice problem over user types: choose a
routing policy that is efficient subject to incentive and fairness constraints,
or that maximizes a weighted welfare objective reflecting governance choices.
Another direction is robust: require that the routing policy be safe across
a family of plausible user cost functions ci(s) and utilities ui(θ, y). This
raises design questions that are both technical and normative: what weights
are legitimate; what kinds of heterogeneity should be personalized; and what
constraints (privacy minimization, content provenance rules) should override
welfare optimization? Our certificate-based approach suggests an answer
template: require that a router’s justification be valid for each relevant user
segment, not just on average, and report segment-level miscalibration (ϵ, δ)
rather than only aggregate performance.

(iv) Strategic environments: adversarial content, SEO, and en-
dogenous signal quality. We modeled the signal distribution σ ∼ Qs,q(· |
θ) as exogenous. Web search is not exogenous: content creators respond to
ranking incentives; malicious actors generate adversarial pages; and the plat-
form itself may have incentives that alter retrieval quality. Once the informa-
tion structure is strategic, the assistant’s query choice affects not only which
evidence is revealed but also which evidence is produced or amplified. This
turns Bayesian experiment design into a game between the assistant and an
environment that can manipulate σ. The relevant normative benchmark may
no longer be standard VoI but a robust or minimax value of information, or
an equilibrium notion in which retrieval quality depends on incentives. Open
problems include: designing routing policies that are resilient to adversarially
optimized content; understanding how modular proxies interact with SEO
(e.g., proxies that reward “authoritative-looking” sources may be exploited);
and characterizing when certification is possible given that the proxy itself
may be trained on data influenced by strategic manipulation.
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(v) Auditing and certification under uncertainty about objectives
and costs. Our bounded-inefficiency guarantee assumed that the designer
can specify the relevant welfare margin (incremental VoI) and the cost c(s)
up to small errors. In reality, the cost of searching includes latency, privacy
risk, and cognitive burden, and these are difficult to quantify and may vary
across contexts and jurisdictions. This creates a “second-order” incomplete-
contracting problem: we may be uncertain not only about θ but also about
the welfare function itself. One research direction is to treat the objective as
a set U of plausible utilities and costs and seek policies with worst-case or
regret guarantees relative to π⋆(u, c) for each (u, c) ∈ U . Another direction
is measurement: develop methods to elicit or infer costs (e.g., from user
choices over browsing vs. direct answers) while controlling for confounds
and strategic responses. A governance-oriented open problem is to integrate
such uncertainty into audit requirements: what evidence should a platform
provide to justify that its tool-use policy is net-beneficial given contested or
evolving definitions of user welfare?

(vi) From existence results to implementable training objectives.
Finally, while our certificate condition is conceptually clean, implementing it
in modern ML pipelines is nontrivial. Estimating ∆VoI(x) requires counter-
factual reasoning: we must predict the best achievable answer quality both
with and without searching, and we must do so under distribution shift and
model updates. This suggests connections to off-policy evaluation, selec-
tive prediction, and uncertainty quantification. It also suggests a practical
tension: the more expressive the query space Q, the more powerful (and
failure-prone) the experiment-selection module becomes. An open question
is how to design restricted query languages, retrieval constraints, or con-
servative browsing policies that trade off expressiveness against auditability.
Another is how to couple training across stages without losing modularity’s
operational benefits: e.g., can we train a router to optimize a VoI certificate
while still allowing independent iteration on the generator?

Stepping back, the model is intentionally spare. It does not attempt to
capture all the rich objectives at play in real assistants, nor does it prescribe
a single “correct” welfare function. Instead, it illuminates a structural point:
when tool use is an information-acquisition decision, optimizing it against
proxies that are not tied to the incremental value of information can produce
large welfare losses even if the downstream model is excellent. Conversely,
when the proxy is tied to the correct margin and its error is measured, we
can obtain meaningful guarantees and a concrete auditing surface.

We hope these ideas help reframe tool-use routing as a problem of eco-
nomic design and governance, not only of model capability. The practical
aspiration is modest but actionable: insist that tool calls be justified by an
explicit, testable estimate of their net user value, and treat deviations as
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both an optimization problem (better certificates) and a compliance prob-
lem (monitoring, documentation, and recourse). The open problems above
suggest that doing so in realistic multi-turn, strategic, heterogeneous en-
vironments will require combining decision theory, incentive analysis, and
modern evaluation methodology.
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