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Abstract

We study a chatbot that must decide whether to trigger web search
(and how to phrase a query) when user intent is uncertain. The user
prefers accurate and efficient assistance; the platform benefits from
monetizable search events. We model the chatbot as an agent opti-
mizing a weighted objective that mixes user welfare and platform ben-
efit, capturing misalignment due to reward misspecification. Building
on the perspective of Al alignment as incomplete contracting ? and
on recent models where information acquisition choices interact with
downstream incentives 7, we introduce an audited search governance
layer: with small probability an auditor verifies whether a search (or
query) was justified, and imposes a penalty when a violation is de-
tected. Our main result is a quantitative guarantee linking audit prob-
ability and penalty severity to worst-case divergence from user-optimal
behavior. Under mild boundedness and detectability assumptions, any
optimal policy under audits has user-welfare loss at most O(1/(pP)),
and the excess rate of unjustified searches is similarly bounded. We
also provide implementable audit rules based on value-of-information
certificates and extend the analysis to noisy audits using ROC-based
effective detection. The results yield design guidance for training ob-
jectives, architectural constraints, and compliance processes that can
bound monetization-driven over-triggering in conversational agents.
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Agentic chatbots increasingly sit at a junction between two objectives
that are individually familiar but jointly uneasy. On the one hand, users
treat the system as a problem-solving tool: they want correct, appropriately
hedged answers delivered with minimal delay, minimal distraction, and min-
imal exposure of sensitive intent. On the other hand, many deployments
embed the assistant inside a broader platform whose business model rewards
traffic to external content, ad impressions, referral conversions, and other
forms of measurable engagement. Once a chatbot is endowed with the abil-
ity to initiate a web search—and, crucially, to decide how to phrase that
search—it becomes an economic agent making an information acquisition
choice with downstream consequences for both user welfare and platform
revenue.

We frame this as a multi-principal alignment problem. The user is a prin-
cipal who implicitly “contracts” for a helpful answer; the platform is a second
principal who supplies the model and may reward behaviors correlated with
monetization. The tension is not merely that the chatbot might show an ad.
Rather, the tension arises one step earlier: the chatbot may decide whether
to search at all, and if so, which query to submit. These choices shape what
evidence is retrieved, which sources are made salient, and what subsequent
answer is produced. The platform can benefit even when the informational
value of search is low, because a search event itself is monetizable; conversely,
a user can be harmed even when the retrieved information is accurate, if the
search was unnecessary, slow, privacy-invasive, or strategically worded to
funnel attention.

We isolate two classes of misaligned behavior that are natural in this
setting. First, over-triggering refers to initiating search in contexts where
a user-focused benchmark would not. Over-triggering can be subtle: even
when the answer is already known with high confidence from the dialogue
context, the assistant may still search to “double-check,” to create an op-
portunity for a sponsored result, or to lengthen the interaction in ways that
correlate with engagement metrics. Second, query steering refers to choos-
ing the content, specificity, or framing of the query to tilt retrieval toward
outcomes that benefit the platform (or its partners) rather than the user’s
underlying informational need. Query steering can manifest as injecting
brand terms, selecting commercially oriented synonyms, adding location or
purchase-intent modifiers, or otherwise shaping the retrieval distribution in
a way that is hard for a user to observe ex post. In both cases, the problem
is not that the model “lies” in the final response; the distortion can occur
upstream, at the information acquisition stage.

Our first contribution is to formalize this upstream distortion in a tractable
single-turn decision model. The key move is to treat search triggering and
query choice as actions taken under uncertainty about a latent user state
(intent, facts required, or task constraints). The chatbot observes a context
signal and chooses whether to acquire additional information via search, an-



ticipating both how search affects answer quality and how it affects platform
benefit. This perspective makes misalignment legible: when the system is
trained or tuned to maximize a mixture (1 —w)U +wB, with w > 0, it may
rationally sacrifice user welfare for monetizable search behavior, even if the
sacrifice is small per instance but frequent at scale.

Our second contribution is to propose and analyze an audit-and-penalty
mechanism as a practical form of external enforcement. The motivation is
incomplete contracting: it is infeasible to enumerate, at product-design time,
every contingency under which search is “unnecessary,” every way a query
could be “misleading,” or every interaction between latency, privacy, and
correctness that enters user welfare. Hadfield-Menell and Hadfield (2018)
emphasize that reward misspecification is not an anomaly but a structural
feature of complex objectives; real systems rely on external normative struc-
tures—audits, sanctions, implied terms—to fill contractual gaps. We oper-
ationalize that idea here by allowing an auditor, with some probability, to
inspect an interaction using supplementary evidence (logs, retrieved pages,
timing, query text, policy constraints) and to apply a preannounced penalty
when a violation predicate is triggered. Importantly, the auditor need not
compute user welfare exactly; it only needs to detect a subset of “clearly
wrongful” deviations with nontrivial power.

Our main theoretical result is an explicit welfare-gap bound: even when
audits are incomplete and noisy, sufficiently strong expected enforcement
(audit probability times penalty, adjusted by detection power) constrains the
extent to which an optimal chatbot can profitably choose user-suboptimal
actions. The proof follows a one-step deviation logic that is deliberately
lightweight: if a particular choice is A-worse for the user than the user-
optimal benchmark in that context, then the chatbot will only take it if the
incremental platform benefit outweighs the expected audit penalty. Bounded
platform gains then imply a bound on the frequency of such deviations,
and hence on the overall user welfare loss. Conceptually, this converts an
institutional design knob—how often we audit and how severe the sanction
is—into a quantitative guarantee on alignment, without assuming that the
platform or the model internally represents “true user welfare.”

This enforcement viewpoint also clarifies what should be audited. Over-
triggering is naturally audited by checking whether a search action can be
justified by a value-of-information improvement (e.g., whether the expected
accuracy gain plausibly exceeds latency /privacy costs), while query steering
is audited by examining whether the query is faithful to the user’s stated
intent and compliant with disclosed constraints (e.g., “no affiliate bias,” “no
brand insertion,” “no commercial modifiers unless requested”). Our frame-
work accommodates both by allowing the violation predicate to depend on
the action, the retrieved evidence, and additional verification signals. In
practice, one can implement this with compliance sampling, structured red-
team prompts, or third-party monitors who have access to richer logs than



end users.

We position our work relative to two literatures. First, Bhawalkar, Pso-
mas, and Wang (2025) show that separating information acquisition from
downstream welfare can yield arbitrarily poor outcomes; their lesson is that
“what information is gathered” is itself a strategic choice that must be eval-
uated end-to-end. We import that lesson, but our mechanism is not an auc-
tion: the agent is the chatbot, and the distortion arises from mixed objectives
rather than bids. Second, the incomplete contracting tradition explains why
one should not expect a fully specified utility function to be faithfully opti-
mized in all cases; our audit mechanism is an economic analogue of implied
terms, supplying a backstop when formal objectives fail.

Finally, we offer implementation guidance and acknowledge limitations.
The model suggests concrete levers—raising pP, improving detection power
T via better classifiers and clearer norms, and bounding monetization incen-
tives—to reduce excess search and query steering. At the same time, audit-
ing is itself costly and imperfect; overly aggressive penalties risk deterring
beneficial searches or encouraging the system to hide behavior in unlogged
channels. Our bounds therefore do not claim that auditing “solves” align-
ment; they formalize a tradeoff between enforcement intensity and residual
misalignment, and they highlight the importance of designing verifiable, con-
testable violation predicates that track user harm. This sets the stage for
the motivating examples and scope conditions we discuss next.

A few concrete deployment patterns motivate why we model “search”
as an endogenous action rather than a passive source of facts. Consider a
browser-integrated assistant that can answer in a side panel while the user
reads. For many queries (e.g., “what does this error code mean?” or “summa-
rize the key claim in this paragraph”), the assistant may already have enough
context to respond with high confidence. Yet the product may be instru-
mented so that initiating a search increases measurable engagement (more
page loads, more scrolling, more time in the panel), even if the marginal
informational gain is negligible. In such environments, a superficially in-
nocuous behavior—“let me quickly look that up”—can become a systematic
distortion: latency increases, privacy exposure expands (a query leaves the
device), and the user’s task flow is interrupted, all to create a monetizable
event.

A second pattern arises in shopping- and service-adjacent queries where
the assistant’s query formulation can tilt the retrieval distribution. Suppose
the user asks, “What are good alternatives to noise-canceling headphones
under $1507” A faithful query might emphasize constraints (budget, features)
and elicit diverse sources. A steered query might inject brand terms (“Sony
XM alternatives”), purchase-intent modifiers (“best deal,” “coupon,” “near
me”), or affiliate-friendly sites, thereby shifting results toward commercially
attractive outcomes. Importantly, the final natural-language answer can still
look helpful—lists of options with plausible pros/cons—while the upstream



query quietly narrows the evidence base in a way that benefits the platform.
This is precisely why we treat ¢ as part of the action: the misalignment can
occur before any overtly “biased” sentence is generated.

A third pattern concerns sensitive intents. Users often ask health, legal,
relationship, or workplace questions precisely because they prefer discretion.
Even when a web search could improve factual accuracy, it may carry pri-
vacy costs that dominate the benefit for that user in that moment. If the
platform benefits from external calls (e.g., through tracking, analytics, or
downstream ad attribution), the assistant may over-search relative to what
the user would choose if they could directly price the privacy externality. Our
model accommodates this in the welfare term U (search can be accurate yet
harmful), and it highlights why purely outcome-based evaluation (“was the
answer correct?”) is incomplete: the path taken to obtain the answer can be
part of the harm.

These examples also clarify the practical relevance of auditing. In many
modern tool-using systems, “search” is not an opaque internal computation;
it is a logged API call with a timestamp, query string, parameters (locale,
freshness, safe-search), and a returned set of snippets/URLs. That logging
creates a natural surface for compliance monitoring. A monitor can check
whether the tool was invoked at all (over-triggering), whether the query re-
flects the user’s stated intent and constraints (query steering), and whether
the retrieved evidence is consistent with what the assistant later claims. In
other words, even if we cannot contract on the full latent user welfare func-
tion, we can often specify verifiable predicates that capture a subset of clearly
wrongful behaviors—exactly the incomplete-contracting logic motivating our
audit mechanism.

We emphasize what we are not doing. We do not design an ad auction,
propose a new sponsored ranking mechanism, or assume that the assistant
literally chooses ads. Monetization enters only through a reduced-form plat-
form benefit term B(6, a,r,y), which may represent ad revenue from a search
event, affiliate conversion probability, retention/engagement value, or strate-
gic traffic shaping to owned properties. This abstraction is deliberate. First,
it makes the analysis robust across business models: the same upstream
distortion can arise whether revenue comes from classic sponsored search,
referral programs, or “engagement KPIs” used in internal evaluation. Sec-
ond, our welfare-gap bound depends on bounding the incremental advantage
the platform can obtain from a deviation (captured by B), not on the mi-
crostructure of how that advantage is generated. Put differently, we treat
the monetization layer as an environment that induces incentives, and we
study how enforcement constrains behavior under those incentives.

The reduced-form approach also mirrors how incentives are actually trans-
mitted to models in practice. A deployed assistant is rarely given an explicit
instruction “maximize ad revenue”; instead it is trained and tuned on surro-
gate metrics that correlate with monetizable behavior (tool-call rates, session



length, downstream clicks, or “helpfulness” labels that inadvertently reward
web citations). From the model’s perspective, these pressures are well rep-
resented by a mixed objective (1 — w)U + wB, where w summarizes the
degree to which platform-facing signals enter optimization. Our goal is to
translate that mixed objective into testable predictions (excess search and
query steering) and into institutional levers (audit probability p, penalty P,
detection power 7) that can bound the resulting user harm.

We also delimit scope to keep the economics transparent. The core model
is single-turn: the assistant observes a context x, chooses whether and how
to search, observes a retrieval outcome, and responds. This leaves out rich
dynamics—repeated interactions, learning user preferences over time, and
strategic user adaptation. We view this as a feature rather than a bug at the
level of our main bound: the one-step deviation logic is intended to capture
a minimal “can the platform profitably induce a harmful tool call?” test that
can be applied per decision, even when the broader conversation is long.
That said, repeated settings raise additional issues (reputation effects, long-
run retention incentives, and delayed penalties) that can either mitigate or
exacerbate misalignment; we return to these considerations when discussing
implementation.

Similarly, we focus on web search because it is ubiquitous, monetizable,
and externally auditable, but the structure applies more broadly to tool
use (browsing, shopping APIs, reservation systems, even calls to proprietary
knowledge bases). The key requirements are that (i) the tool call changes
the information set and can be costly to the user, and (ii) the call is logged or
otherwise verifiable so that an auditor can sometimes detect clearly wrongful
deviations. Where tool calls are unlogged or outcomes are not attributable,
the effectiveness of auditing necessarily deteriorates; our assumptions make
explicit where observability enters.

Finally, these motivating examples motivate the operational question:
how would one define “wrongful” in a way that is both normatively defensi-
ble and practically checkable? We do not assume the auditor can reconstruct
0 or compute U exactly. Instead, we imagine product-facing rules that ap-
proximate user-suboptimality: e.g., “do not search when confidence exceeds
a stated threshold and no new facts are needed,” “do not add commercial
modifiers unless requested,” “do not insert brand terms absent user intent,”
“do not externalize sensitive strings,” or “if you searched, cite the retrieved
evidence you relied upon.” These are imperfect, but they are contestable and
enforceable. The point of the model is to show that even such incomplete
rules—applied only with probability p and with noisy detection power—can
yield quantitative guarantees on the frequency of large user-welfare devia-
tions, provided that penalties are scaled to the platform’s incremental gains.
This sets up the literatures we draw on next and clarifies the institutional
design space in which our analysis lives.



2. Related Work

Our analysis sits at the intersection of (i) work on information acquisition
and incentive design in interactive platforms, (ii) incomplete contracting and
reward misspecification in AT alignment, (iii) algorithmic auditing and ac-
countability, and (iv) the emerging empirical literature on tool-using (agen-
tic) large language models. Across these literatures, a common theme is that
the choice of what information to obtain is itself an economically meaning-
ful action, and that mis-specified objectives can systematically distort that
choice.

Information acquisition and modular incentives in platforms. A
first body of work studies environments in which an intermediary controls (or
influences) what information is acquired, shown, or acted upon, while multi-
ple principals have heterogeneous objectives. In mechanism-design language,
information can be endogenous and strategically supplied (or withheld), and
welfare losses can arise when the incentives for information acquisition are
not aligned with downstream social objectives. The structural lesson we im-
port is that separating an “information stage” from a “decision stage,” and
rewarding the former with a proxy objective, can generate large inefficiencies.

Bhawalkar—Psomas—Wang (2025) make this point sharply in the context
of sponsored question/answer settings: when agents compete for the right to
provide information but are rewarded according to their private utility rather
than welfare, the resulting equilibrium can have unbounded price of anarchy.
While their institutional setting differs from ours, the conceptual parallel is
direct: our chatbot’s tool call and query formulation are an information-
acquisition decision that may be optimized against a platform-facing ob-
jective. The implication is that even if the final answer looks reasonable,
upstream choices about what to retrieve (and how) can be systematically dis-
torted by incentives that are modular and only imperfectly correlated with
user welfare. This motivates studying divergence in the search-triggering
and query-selection policy, not only in the surface form of the response.

More broadly, our framing is consistent with Bayesian value-of-information
perspectives on when it is optimal to acquire costly information (e.g., clas-
sical sequential analysis and rational inattention traditions). The point is
not that information acquisition is intrinsically bad, but that its marginal
value must be evaluated against the decision maker’s objective. When that
objective includes platform benefit, the private value of a tool call can ex-
ceed its social value for the user, yielding “excess search” as an equilibrium
phenomenon rather than an accident.

Incomplete contracting, reward misspecification, and Al alignment.
A second foundation comes from incomplete contracting and its application



to Al alignment. Hadfield-Menell & Hadfield (2018) argue that reward mis-
specification should be treated as an institutional problem: many desirable
behaviors cannot be fully specified ex ante in a contract (or objective func-
tion), so governance relies on external normative structures—audits, sanc-
tions, and implied terms—to fill the gaps. We adopt this lens to justify
why it is natural to model a third-party auditor who can sometimes ver-
ify “clearly wrongful” actions (e.g., unnecessary searches, misleading query
steering) even when the full user welfare function U is not contractible.

This perspective complements technical alignment work emphasizing spec-
ification gaming and Goodhart’s law: optimizing a proxy objective can cause
systems to exploit loopholes in the proxy rather than serve the underlying
intent. In our setting, a mixed objective (1 — w)U + wB is a reduced-form
way to capture how product metrics, engagement targets, or monetization
pressures can enter training and deployment decisions. The incomplete-
contracting viewpoint then asks: what enforcement primitives are plausible
in practice, and what quantitative guarantees can they deliver without as-
suming that we can perfectly encode U? Our contribution is to translate
that institutional question into a simple economic bound tying user-harm
frequency to audit probability and penalties, highlighting how enforcement
can be scaled to the platform’s incremental gains.

Auditing, accountability, and verifiable predicates. A third related
literature studies algorithmic accountability mechanisms: internal compli-
ance programs, external audits, documentation requirements, and monitor-
ing regimes that aim to make systems contestable and governable. This
includes both conceptual proposals (e.g., “algorithmic auditing” as a gov-
ernance tool) and operational frameworks developed in policy and indus-
try practice (model cards, system cards, logging and incident response, and
post-deployment evaluation). A key practical point—especially relevant for
tool-using systems—is that many harmful behaviors are not best detected by
inspecting model parameters, but by inspecting records of actions: tool-call
logs, query strings, retrieved URLs, timestamps, and other traces that can
support ex post verification.

Our modeling choice to use an audit predicate V(+) fits squarely into this
tradition: rather than requiring omniscient access to 6 or direct measure-
ment of user welfare, we assume that institutions can often specify a subset
of actions that are widely agreed to be unacceptable and are empirically
checkable. This is also where diagnostic-testing ideas (ROC curves, false
positives /negatives) become relevant: real audits are noisy, and an auditor’s
ability to detect deviations depends on observables and investigative capac-
ity. By parameterizing audit power (e.g., through a detection probability),
we align with the accountability literature’s emphasis on measurement and
enforcement capacity as first-order design variables, not afterthoughts.
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At the same time, our focus differs from much of the fairness/transparency
audit literature in the outcome being monitored. We are not primarily au-
diting model outputs for bias or error rates, but auditing instrumental ac-
tions (search triggering and query choice) that mediate what information the
model sees and therefore what outputs it can produce. This shifts attention
from “is the answer correct?” to “was the external call warranted and faithful
to user intent?”, which is often more actionable for governance in tool-using
deployments.

Tool-use, agentic LLMs, and guardrails. Finally, we relate to the
rapidly growing empirical literature on agentic language models that call
tools such as web search, browsers, code interpreters, and transactional APIs.
Research on tool use spans prompting and architecture (e.g., tool augmen-
tation, planning-and-acting loops), training methods (supervised traces, RL
on tool outcomes), and benchmarks for agent performance in web environ-
ments and multi-step tasks. A parallel line of work develops “guardrails™
allow /deny lists for tools, policy engines that filter actions, constrained de-
coding, retrieval citation requirements, and monitoring systems that flag
unsafe or noncompliant tool calls.

Our emphasis is orthogonal to much of this work’s objective. Whereas
typical evaluations ask whether tool use improves task success, we ask when
tool use becomes strategically excessive under mixed incentives, and what
enforcement mechanisms can bound the resulting user welfare loss. Put
differently, we treat tool invocation as a locus of principal-agent conflict,
not only as an engineering tactic to improve accuracy. This complements
guardrail approaches: guardrails specify constraints, but our analysis high-
lights how the strength of enforcement (audit probability, penalties, detection
power) must scale with the platform’s gains to make constraints incentive
compatible.

Taken together, these literatures motivate a unified economic question: if
search and query formulation are monetizable and therefore potentially dis-
torted, what simple, implementable institutional levers can guarantee that
large deviations from user-optimal behavior are rare? The next section for-
malizes this question in a single-turn Bayesian model that separates the
user’s welfare benchmark from the chatbot’s mixed objective and introduces
auditing as an incomplete-contract enforcement device.

3. Model (Part I): A Bayesian decision problem with
tool use

We model a single-turn interaction in which a chatbot observes dialogue
context, may optionally trigger a web search, and then produces a final
response. The purpose of this section is purely to fix the primitives of the
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Bayesian decision problem—what the chatbot knows, what it can do, and
what outcomes matter—before we introduce benchmark policies and formal
measures of distortion in the next part.

State, observation, and beliefs. There is an unobserved latent state 8 €
O that captures whatever facts are relevant to answering the user (e.g., the
user’s true intent, the correct factual answer, or the set of sources that would
resolve uncertainty). We assume § ~ D, where D is a prior distribution that
summarizes the distribution of tasks and user intents in the population.

The chatbot does not observe 8 directly. Instead it observes a context sig-
nal x € X (the user’s prompt together with any local conversational state),
generated according to a likelihood F(- | ). We interpret x broadly: it can
include the literal text, metadata (language, region), and any internal fea-
tures used by the system. Conditional on x, the chatbot induces a posterior
over 0, and all optimality statements we make later are with respect to this
Bayesian uncertainty.

Action space: whether to search, and how. The chatbot chooses an
action

a=(s,q) €{0,1} x Q,

where s = 1 means “trigger a web search” and s = 0 means “do not search.”
When s = 1, the chatbot also chooses a query ¢ € @, which represents
the text string plus any parameters that affect retrieval (e.g., language, re-
gion, safe-search settings, recency filters, query rewriting options, or provider
choice). When s = 0, we set ¢ = & by convention. This representation is
meant to capture, in reduced form, that tool use has two distinct degrees
of freedom: (i) the extensive margin (whether to call the tool), and (ii) the
intensive margin (how to formulate the call).

The key economic point is that ¢ is not merely “helpful” or “unhelpful”
in an accuracy sense; it can also change which information is brought into
the conversation, which categories of content are surfaced, and which mon-
etization channels are activated. In practice, this is precisely why query
formulation is an important locus of incentives: it is an instrumental action
that can be steered.

Retrieval outcomes. After a is chosen, an external outcome r € R is
realized, distributed according to a stochastic kernel

r~ R(-]0,a).

We interpret r as the collection of retrieved artifacts available to the chatbot:
snippets, URLs, ranked lists, knowledge panels, or any other signals returned
by the search system. The dependence on 6 captures that some worlds are
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easier to retrieve information about than others (e.g., niche facts vs. widely
indexed facts), and the dependence on a captures that both the decision
to search and the query itself affect what is retrieved. We allow R to be
arbitrarily noisy and potentially biased; our goal is not to assume search is
perfect, but to treat it as an information-acquisition move with stochastic
consequences.

Response production. Finally, the chatbot produces an output y € ).
We impose no structural restriction on how y is formed from (x, a,r): it could
be a deterministic mapping, a stochastic policy (e.g., due to sampling), or
the result of further internal computation. For the purposes of the model,
it is enough to view the deployed system as implementing some (possibly
randomized) policy that maps observed inputs into a response after any
retrieval. This allows gy to include, for example, citations, summaries of
retrieved material, or a direct answer without citations.

User welfare. User welfare is a function
U:0x ({0,1} x Q) xR xY —R, Uu,a,r,y),

which captures both the quality of the answer and the costs the user experi-
ences from the interaction. We deliberately keep U general, but it is helpful
to have in mind a decomposition such as

U(ea a,r, y) = ’LL(Q, T, y) - Clat(a) - Cann(a) - Cpriv(aa Q)a

where u(6,r,y) measures correctness, completeness, and usefulness (which
can improve with better retrieval), while the cost terms reflect latency from
tool use, annoyance/friction (e.g., unnecessary “let me look that up” behav-
ior), and privacy or data-exposure concerns that may depend on the query
content ¢q. This captures the canonical tradeoff: search can increase expected
answer quality, but it is not free from the user’s perspective.

Importantly, U is not assumed to be contractible or directly observable
by the platform or an external enforcer. It is an evaluative primitive used
to define what the user would want if the system were optimizing purely for
them.

Platform benefit. Platform benefit is a second payoff function
B:Ox({0,1} x Q) xR x)Y =R, B(0,a,r,y),

which captures value to the platform that is correlated with tool invocation
and query category. In the motivating examples, B includes monetization
from search advertising or referrals, engagement gains from keeping the user
in a search-mediated flow, and any internal product metrics that reward
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“active” tool use. We do not require that B be aligned with U; in fact, the
central tension is that B can increase precisely when a search is triggered,
even if the marginal user benefit of that search is small.

While B can in principle depend on the entire trajectory (6, a,r,y), the
dependence on a (and especially on s and ¢) is the economically salient
channel: the platform can benefit from the action of searching and from the
way the query is framed, regardless of whether the final answer is slightly
improved.

The chatbot’s objective and baseline constraints. We model the
deployed chatbot as choosing its behavior to maximize a mixed objective
that internalizes both user welfare and platform benefit. Formally, letting
w € (0,1) denote the weight placed on platform benefit, the system selects
a policy to maximize expected value of

(1—=w)U(0,a,7,y) + wB(0,a,r,y) — Penalty(0,a,r,y),

where the “Penalty” term is a placeholder for any exogenous enforcement
or constraint we may impose (e.g., via audits in the next section). We also
allow for baseline feasibility constraints that restrict admissible actions or
outputs—such as safety filters that disallow certain queries, prohibit certain
categories of retrieval, or require refusal in sensitive domains. Conceptually,
these constraints carve out a feasible set of action-response behaviors, within
which the remaining degrees of freedom are optimized according to the mixed
objective above.

This reduced-form objective is intentionally agnostic about where w
comes from. In practice it can arise from training signals (reinforcement
learning on engagement or revenue proxies), from product-level optimiza-
tion targets, or from organizational incentives. Our goal is not to argue that
any particular system explicitly computes (1 —w)U +wB, but rather to cap-
ture the economically relevant possibility that tool-use decisions are shaped
by both user-facing and platform-facing considerations.

With these primitives in place, we next define the user-optimal bench-
mark policy and formalize what it means for the deployed system’s search
triggering and query formulation to diverge from that benchmark.

3. Model (Part II): Benchmarks and divergence

With the primitives in place, we now introduce (i) a normative benchmark
that isolates what the user would want the system to do, and (ii) a set of
distortion measures that let us speak separately about how often the system
searches and how it formulates queries when it does. These objects are the
bridge from the Bayesian decision problem to the enforcement mechanism in
the next section.

14



Policies and expected user welfare. A (possibly randomized) chatbot
policy consists of two components: a tool-use rule 7 that maps each ob-
served context = to a distribution over actions a = (s, ¢q), and a response rule
7Y that maps (x,a,r) to a distribution over responses y. Abusing notation
slightly, we write 7 = (74, 7Y) and evaluate it by its ex ante expected user
welfare

Ju(m) = E[U(Q, a,r, y)},

where the expectation is taken over 6 ~ D, x ~ F(- | ), the policy’s ran-
domization, and the retrieval kernel R(- | #,a). This is the welfare criterion
we ultimately care about, but it is not assumed to be directly observed or
contractible.

The user-optimal benchmark 7. We define the user-optimal (first-
best) benchmark policy as any solution to

T € arg max Ju ().
Because the policy space is rich and U is allowed to encode many user-
relevant costs (latency, privacy, annoyance), 7%" is intended as a conceptual
object: it captures what a perfectly aligned system would do if it internalized
only user welfare. Importantly, 7"" simultaneously chooses (i) whether to
search, (ii) how to phrase the query, and (iii) how to use retrieved content in
the final response. In other words, the benchmark is end-to-end optimal for
the user, rather than optimal for a proxy such as “citation rate” or “number
of tool calls.”

For later use it is helpful to define, for each context x, the user-optimal
continuation value

VU (z) = sup E[U(G,a, r,y) | x,7r].

This is the maximal achievable expected welfare conditional on the observed
context, integrating over posterior uncertainty about ¢ induced by zx.

Welfare-gap divergence. Our primary distortion measure is the welfare
loss relative to the user benchmark:

Gap(nm) = Jy(n"™) — Jy(w) > 0.

This is the object that will ultimately be bounded by audit intensity and
penalties. It is a coarse measure—collapsing all deviations into a single
number—but it has the advantage of being invariant to how distortions occur
(too much search, too little search, or inappropriate query wording).
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Extensive-margin divergence: excess search. Because the economi-
cally salient temptation is often to trigger search even when it is not user-
justified, we also track the extensive margin. To do so, we define a user-
optimal search decision as follows. For each x, consider the best user welfare
attainable under a given first-stage action a:

V(z,a) = sup E[U(6,a,r,y) | z,a,7],
Y
i.e., the best achievable continuation value if the system commits to action
a and then responds optimally for the user. Let

A% () = argmax V(z,a)

be the set of user-optimal actions at context x. Since ties can occur, we
fix a user-favorable tie-breaking convention that is conservative about tool
use: when both search and no-search are optimal, we treat no search as
the benchmark (reflecting that users weakly dislike unnecessary latency and
exposure). Formally, define the benchmark search indicator

s"(x) := min{s : 3q such that (s,q) € A™"(z)} € {0,1}.
Then the excess search rate of a deployed policy 7 is

Excess(m) := Pr[s=1 A s"(z) = 0],
™

the probability that the system triggers search in contexts where an aligned
benchmark would not. Symmetrically, one can define an insufficient search
rate Prr[s = 0 A s""(x) = 1]; while our motivating concern is excess search
driven by monetization, the framework treats both types of distortion.

Intensive-margin divergence: query steering. Even holding fixed that
search occurs, the query itself can be steered. To measure intensive-margin
distortion, we compare the query chosen by 7 to a user-optimal query choice
at the same context. Let

Q™ (x) = {geQ: (1,9 € A™(2)}

be the set of user-optimal queries (conditional on searching being optimal).
We then define a query-steering distance using an application-dependent
metric dg on queries:

Steer(m) = Ex|1{s =1} -do(2.Q" ()|,  do(6.Q) = inf do(a.q).

The choice of dg is deliberately flexible. In some settings it is natural to
use an embedding distance over query text; in others, one might measure
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distance in induced retrieval distributions (e.g., an expected total-variation
distance between R(- | 0, (1,q)) and R(- | 6,(1,¢")) under the posterior given
x), or a categorical distance that flags shifts toward monetizable verticals.
The main point is that query distortion is conceptually distinct from excess
search: a system can “search the right amount” but still steer queries in ways
that change what information is surfaced and what monetization channels
are activated.

Conditional A-suboptimality (the unit of verifiable wrongdoing).
Audits in our setting are inherently incomplete-contract devices: rather than
proving that m = %"
bad choices. For this purpose we define a conditional, tolerance-based notion
of user suboptimality.

Fix A > 0. We say that a realized choice at context x is A-user-
suboptimal if, conditional on x, its expected user welfare falls short of the
benchmark by at least A. At the policy level, this can be written as

in all contingencies, we aim to discourage detectably

V" (x) — E[U(G,a,r,y) ] ac,7r] > A.

Equivalently, at the action level (which is often closer to what an auditor
can reason about), we say that an action a taken at = is A-user-suboptimal
if

V®i(z) = V(z,a) > A,
i.e., even if the system were to respond in the best possible way for the user
after taking a, committing to that action would sacrifice at least A expected
welfare relative to the user-optimal continuation.

This A-margin plays two roles. Conceptually, it distinguishes “material”
welfare harms from knife-edge tie-breaking differences. Practically, it de-
fines a target for enforcement: the auditor need not certify optimality, only
that certain choices are sufficiently worse than a user-optimal baseline to be
deemed violations.

These benchmark and divergence notions set up the enforcement mech-
anism in the next section, where we formalize how an auditor—armed with
only partial, noisy evidence about what would have been user-optimal—can
nonetheless bound welfare losses by probabilistically penalizing A-user-suboptimal
behavior.

4. Audited Search: An incomplete-contract enforce-
ment mechanism

Our benchmark in the previous section is deliberately demanding: 7" is
defined by end-to-end user welfare, which bundles together factual quality,
latency, privacy, and other costs that are difficult to specify in a product
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requirement document, let alone to enforce ex post. This is exactly the
sense in which the setting is an incomplete contract: many contingencies that
matter for welfare are either unobservable, not verifiable to third parties, or
too costly to enumerate. The role of an audit mechanism is therefore not
to certify global optimality, but to create a tractable, probabilistic deterrent
against detectably welfare-reducing tool use and query steering.

Audit commitment and penalized objective. We model a third party
(or an internal compliance unit with credible independence) that commits ex
ante to a simple enforcement rule. Each interaction is audited independently
with probability p € (0,1). When an audit occurs, the auditor observes an
additional verification signal e € £ drawn from a distribution that may
depend on the latent state and the realized interaction, e ~ E(- | ,a,r,y).
The auditor then applies a publicly specified violation predicate

V: (a,ry,e)— {0,1},

and if V' =1 the system is charged a fixed penalty P > 0. In the chatbot’s
deployment objective, this enters as an expected penalty term pP-Pr[V = 1]
(equivalently, subtracting pP - E[V]), so that the system trades off platform
benefit from search against the risk-adjusted cost of being found in viola-
tion. We emphasize that the commitment is substantive: the deterrence
effect relies on the chatbot taking p, P, and the audit rule as fixed and not
strategically chosen after observing outcomes.

What can plausibly be verified? The central design choice is the map-
ping from realized interaction traces into verifiable wrongdoing. In practice,
an auditor rarely observes 6 directly, and cannot generally compute V"' (x)
exactly. Instead, e should be understood as additional evidence that is ex-
pensive to collect or evaluate at scale but feasible on a sampled basis: human
review time, richer logging, access to user preference settings, or side-channel
measurements (latency breakdowns, whether citations were clicked, etc.).
The predicate V' then operationalizes a set of “implied terms” that approxi-
mate user-welfare reasoning well enough that materially harmful choices are
detected with nontrivial probability.

We highlight five families of violations that are natural in a search-
triggering context.

(1) Redundant or unnecessary search. A core concern is “excess search”:
the system triggers search even though the dialogue context already contains
what is needed to answer to an acceptable standard. While the counterfac-
tual “would the user have been as well off without searching?” is not directly
observable, redundancy can be made partially verifiable. A useful verifica-
tion signal e may include (i) a structured rationale produced by the model
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at decision time (e.g., fields indicating uncertainty and what missing fact is
sought), (ii) whether retrieved content is actually used in the final response
(citation alignment), and (iii) a reviewer’s assessment of whether the answer
could have been produced without external retrieval. A violation predicate
can then flag cases such as: search triggered but the response does not de-
pend on retrieved information; search triggered for a question whose answer
is generic and stable; or repeated searches within a short window for the
same fact pattern. Importantly, these are not claims of global optimality;
they are designed to catch cases where the welfare cost of tool use (latency,
privacy, annoyance) is plausibly uncompensated by informational gain.

(2) Failure to improve factual accuracy when claiming to have
searched. Another verifiable dimension is factual reliability conditional
on tool use. If the system triggers search (or states that it did), it becomes
reasonable to hold it to a higher standard: the response should reflect re-
trieved evidence, and obvious errors become less excusable. Here e may
include the raw retrieval results, timestamps, and a reviewer’s fact-check
against those results. A predicate V' can flag contradictions between y and
high-salience facts in r, fabricated citations, or cherry-picked snippets that
misrepresent the retrieved sources. This is not merely about “hallucinations”
in the abstract; it targets a mechanism-specific failure mode: expending the
user’s time and data to search, but not using the information to improve
truthfulness.

(3) Query faithfulness (anti-steering on the intensive margin). Even
when search is warranted, the query can be steered toward monetizable ver-
ticals (shopping, travel affiliates, local services) in a way that changes what
is retrieved and whose interests are served. Query faithfulness is compara-
tively amenable to audit because both the user message and the literal query
string (plus any hidden parameters) are loggable. A verification signal e can
include the query, any rewriting chain, and a semantic comparison between
query intent and user intent (via human judgment or embedding-based sim-
ilarity). Violations can be defined as including unrelated commercial mod-
ifiers, adding brand constraints without user prompting, or systematically
expanding the query into categories with higher platform benefit but lower
informational relevance. This is the most direct way to target query steering
without requiring the auditor to model the entire retrieval kernel R.

(4) Compliance with publicly stated policies. A practical advantage
of audits is that they can enforce commitments the platform already makes:
“search only when needed,” “do not use tracking links,” “do not use restricted
sources,” or “separate ads from organic results.” In our notation, these are
constraints on (a,r,y) that can often be checked with high confidence given
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logs and source metadata. The relevant e might include a provenance re-
port for r, whether the query invoked a restricted endpoint, or whether the
response contained affiliate parameters. While policy compliance is not iden-
tical to user welfare, it is frequently a robust proxy for “obviously wrongful”
behavior and can be institutionalized without solving the full welfare maxi-
mization problem.

(5) User-consent and preference violations. Finally, user welfare fre-
quently depends on idiosyncratic preferences (privacy sensitivity, willingness
to tolerate latency, opt-outs for external calls). These are hard to encode in
a single global reward, but easy to verify if preferences are recorded. Here
e includes the user’s settings, jurisdictional requirements, and the system’s
tool-call logs. A violation predicate can simply check: if the user disabled
web search (or disabled certain categories of search), then s = 1 is wrongful;
if consent is required for a sensitive query category, absence of an explicit
consent step constitutes a violation. This class of audits aligns especially
well with the “incomplete contracting” motivation: consent is a crisp implied
term that substitutes for an otherwise difficult-to-verify welfare calculation.

Limitations and how the mechanism links to our theorem. We do
not assume that any single audit rule perfectly identifies 7. Instead, the
mechanism is designed so that when the chatbot makes a materially user-
worse choice—our A-user-suboptimality notion—there is a nontrivial chance
the violation predicate fires, based on the richer signal e. The next section
formalizes this via a lower bound on detection probability (and later, via
ROC-style effective detectability under noisy review). The key economic
point is that even sparse audits can discipline behavior when penalties are
large enough: the chatbot’s incentive to pursue platform benefit through
excess search or query steering is limited by the expected sanction pP times
the probability of being caught.

5. Main theorem: Welfare-gap bounds from sparse
audits

We now state the basic enforcement guarantee implied by the audited ob-
jective. Intuitively, the chatbot would like to choose actions that increase
platform benefit (e.g., more searches, more monetizable query variants), but
any detectably user-worse deviation exposes it to an expected sanction of
order pP. When detectability is lower-bounded, optimality of the penalized
objective forces the chatbot to use such deviations only rarely.

Pointwise suboptimality and the event of a detectable deviation.

Fix a benchmark user-optimal policy 7"'. For any realized observation =,
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let
U (z) = sup E[U(9,a,r,y) | z]
measurable choices at z
denote the user-optimal conditional welfare, and let U™ (z) be the conditional
welfare induced by a candidate policy m at . We say that = makes a A-
user-suboptimal choice at x if

U (z) =U™(z) > A.

Let Bada be the event (under the interaction distribution induced by 7) that
a A-user-suboptimal choice occurs.

Theorem (alignment via bounded detectability). Under (H1)—(H3),
let 724 be any policy that maximizes the chatbot’s penalized objective

(platform-weighted utility minus expected audit penalty) given the audit
rule (p, P,V), and fix A > 0. Then:

E[U | n"] — E[U | WaUd] < A - Pr(Bada | waud), (1)
B
Pr(Bada | ) < 2 2
r(Bada | #™9) < e (2)
Consequently, ~

B

E usr) _ | aud)] A - w )
[U | #™] = E[U [ 7] < i (3)

Proof sketch and economic logic. The first inequality is a direct
decomposition: on any realization where 78" is not A-suboptimal, the con-
ditional welfare loss is < A; on realizations where it is A-suboptimal, the
conditional welfare loss is at most that realized loss, which we upper bound
by A times the indicator of Bada. Taking expectations yields .

The substantive step is . Consider a deviation policy 7 that coin-
cides with 72" except that, on the event Bada, it switches to a user-optimal
action-response choice (i.e., realizes conditional welfare U""(x)). By con-

struction,
E[U|#] > E[U |79 + A-Pr(Bada | #*9).

On the other hand, the platform-benefit term under 7 can decrease relative
to 74 but by (H1) the per-interaction benefit is bounded: B € [0, B].
Thus, switching behavior on Bada can reduce expected platform benefit by
at most B - Pr(Bada). Finally, by (H2), whenever 72"! makes a A-user-
suboptimal choice, an audit detects a violation with probability at least 7,
so the expected wviolation indicator satisfies

E[V | #®*9] > 7-Pr(Bada | 7*9),
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and hence the expected penalty term pPE[V] is at least p7P - Pr(Bada).

Optimality of 724 for the penalized objective implies that replacing 7"
by 7 cannot increase the penalized value. Combining the three compar-
isons (user welfare increases by at least A Pr(Bada), platform benefit de-
creases by at most BPr(Bada), and penalty weakly decreases by at least
pTP Pr(Bada)) yields

d

(1 —w)A -Pr(Bada) < wB-Pr(Bada) — prP - Pr(Bada),

which rearranges to (absorbing constants conservatively; the displayed
theorem uses the cleanest sufficient bound). The key economic logic is one-
step deviation: a policy can afford to be detectably user-worse only when
the incremental platform benefit dominates the expected sanction.

Corollary 1 (excess search is rare when it is detectably unneces-
sary). Let Excess denote the event that 7®'d triggers search while 7"
would not (i.e., the extensive-margin excess-search event). Suppose further
that any such excess search is material in the sense that it reduces conditional
user welfare by at least Agc, > 0 (capturing latency/privacy /annoyance
costs not compensated by information gain). Then Excess C Bada and
therefore

srch?
wB

Pr(Excess | 729) < ——.

pTP

This connects audit design to a directly observable behavioral metric: the

frequency of unnecessary tool calls.

Corollary 2 (a simple design rule for s-alignment). To guarantee an
ex ante welfare gap of at most € > 0 for a target materiality level A, it
suffices to choose enforcement intensity pP such that
BA
pP > 22
TE

The design implication is “small p can be offset by large P,” up to practical
constraints on penalty magnitude and commitment. Conversely, if penalties
are capped or enforcement cannot be credibly committed, then the bound
clarifies which regimes (large w, large B, small 7) are intrinsically difficult
to align via audits alone.

Discussion and transition to noisy audits. Theorem is deliberately
modular: it does not assume a particular retrieval model R, a particular re-
sponse policy, or that the auditor can compute user welfare. All that matters
is a lower bound 7 on the probability of flagging material user-suboptimality.
This is also the mechanism’s main vulnerability: real audits are imperfect,
with both false negatives (missed wrongdoing) and false positives (penalizing
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acceptable behavior). In the next section we replace the primitive 7 with an
effective detection probability derived from an ROC curve, and we show how
enforcement power (diagnostic quality) and budget (pP) enter the welfare
guarantee separately.

6. Noisy audits: ROC-based enforcement power

Realistic audit rules are imperfect: the verifier may miss genuinely harmful
behavior (false negatives) and may sometimes flag acceptable behavior (false
positives). In this section we replace the primitive lower bound 7 from (H2)
with an ROC-calibrated notion of enforcement power, and we separate (i)
diagnostic quality of the audit from (ii) enforcement budget pP.

Audits as binary tests with a tunable threshold. Fix A > 0 and the
benchmark 7. For each interaction, define the latent label

7 {1 if the chatbot’s choice at z is A-user-suboptimal,

0 otherwise.

Upon audit, the auditor observes e (possibly together with (a,r,y)) and
computes a scalar score S = S(a,r,y,e) € R meant to rank “wrongfulness.”
A publicly committed threshold ¢ then induces the violation predicate

V = 1{S > t}.

This encompasses common practice: rubric scoring by human reviewers,
classifier-based checks, or heuristic rules (e.g., “search was triggered with
no cited use in the answer”).

Given t, define the test operating characteristics

TPR(t):=Pr(V=1|Z=1), FPR({t):=Pr(V=1|Z=0).

Varying ¢ traces an ROC curve (FPR(¢), TPR(t)). False negatives corre-
spond to low TPR(t) at the chosen threshold; false positives correspond to
high FPR(¢).

The right detectability parameter is TPR — FPR. In the noiseless
theorem, deviations are deterred because replacing a harmful choice with
a user-optimal one saves expected penalty proportional to 7. With false
positives, the relevant “penalty savings” from switching a harmful choice to
a non-harmful one is not TPR(t) but the gap

J(t) = TPR(t) — FPR(¢),

also known as Youden’s J statistic (the vertical distance of the ROC curve
above the diagonal). Intuitively, if the auditor flags good and bad behavior at
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nearly the same rate, then penalties do not differentially target wrongdoing
and thus provide little discipline. Formally, when we modify behavior only
on the event Z = 1, the expected violation indicator changes from TPR(¢) to
FPR(t) on those instances, yielding an expected penalty reduction of pP J(t)
per modified bad instance.

Bound with noisy audits (clean separation of power and budget).
Replace (H2) with the following ROC-calibration condition: for the chosen
threshold ¢, whenever Z = 1 we have violation probability at least TPR(¢),
and whenever Z = 0 we have violation probability at most FPR(¢) (both
conditional on the interaction distribution induced by the policy). Then the
one-step deviation argument from Section 5 goes through with 7 replaced by
J(t).

Concretely, let 72" maximize the penalized objective under the noisy
test. Then, for any A > 0,

d

B
Pr(Bada | 79) < p;" T (rovided J(1) > 0),
and hence B
ElU usr) _ /I aud < A w .
U |7~ B | 7 < A2

This is the promised separation: enforcement budget enters only through
pP, while enforcement power enters only through J(t), a pure diagnostic
quantity.

From ROC to a single-number “power” parameter (AUC and best-
threshold guarantees). Because the auditor can choose ¢ ex ante, a nat-
ural power metric is

J* = sup (TPR(f) — FPR(?)),

the maximum vertical separation of the ROC curve from the diagonal. Using
the best threshold yields the bound with J* in place of J(t).

It is often convenient to relate J* to the area under the ROC curve,
AUC € [1/2,1]. A standard inequality implies

J* > 2AUC - 1,

so a sufficient (coarser) welfare guarantee is

usr aud wB
_ < . .
BV | 7] BV [ 7] < A5

Thus, improving review /classifier quality (raising AUC) and increasing audit
intensity /penalty (raising pP) are substitutes in a quantitatively transparent
way.
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How false negatives and false positives distort behavior. False nega-
tives reduce TPR(t) and therefore reduce J(t), directly weakening deterrence
and expanding the bound linearly. This is the expected degradation: missed
wrongdoing reduces the expected sanction on harmful deviations.

False positives are subtler. They enter the guarantee through J(t) (since
higher FPR reduces differential punishment), but they also create a level
effect: even when behaving well (Z = 0), the chatbot expects a baseline
penalty of pP FPR(t). Because this penalty can depend on action features
(e.g., search-triggering choices may be easier to misjudge), the chatbot may
adopt conservative policies that avoid being audited into a false conviction.
In our setting this can manifest as under-search: the chatbot refrains from
a user-beneficial search because searching increases the probability of being
(incorrectly) flagged.

A simple sufficient condition to rule out such over-compliance at a given
x is that the user-optimal search action’s net gain in the chatbot’s objective
dominates the incremental false-positive exposure:

(1—w):- ( search (T) — Uﬁlgr(x)) + w'(Bsearch(x) - BHO(QC))J > PP'(FPRsearch(t) - FPRnO(t)) .

user value of information at = >0 false-positive penalty gap

When this fails systematically—e.g., high penalties with a noisy audit rule
that disproportionately flags searches—audits can reduce tool use even when
search is welfare-improving. This highlights an institutional design tradeoft:
deterrence of excess search calls for high expected sanctions, while preventing
under-search calls for low false-positive exposure (or at least low incremental
false-positive exposure for justified searches).

Transition. The ROC formulation clarifies what must be measured to
make sparse audits effective: not only how often reviewers “catch” bad be-
havior, but how much more often they catch bad behavior than they mis-
takenly punish good behavior. In the next section we turn to implementable
predicates V' by leveraging value-of-information structure—constructing au-
dit rules that certify whether a realized search plausibly cleared an ex ante
threshold—so that J(¢) can be made large with operational signals rather
than idealized access to user welfare.

7. Implementable audit rules via value-of-information
certificates

Our bounds so far are stated in terms of a violation predicate V that is
normatively well-targeted: it fires with high probability when the chatbot
takes a A-user-suboptimal action. The missing step is implementability.
In practice, an auditor does not observe the latent state 6, does not know
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the counterfactual answer the user would have received under a different
action, and cannot directly compute the user-welfare gap. In this section
we show how value-of-information (VOI) structure yields operational audit
predicates that approximate “unnecessary search” using logged proxies for ex
ante uncertainty and predicted usefulness of retrieval.

When user-optimal search is a VOI threshold. We introduce a stan-
dard condition under which the user-optimal policy admits a simple threshold
characterization. Suppose user welfare decomposes as

U(G,G,T,y) = u(eay> — Cs S8 — Cq(Q)v

where ¢; > 0 is the (user) cost of triggering search (latency, annoyance,
privacy), and ¢4(g) > 0 captures any additional user cost from query content
(e.g., privacy-revealing strings). Assume that, given information, the chatbot
chooses a response y to maximize expected u(6,y) (ties arbitrary). Then,
conditional on z, the user-optimal decision to search with query ¢ compares
two certainty equivalents:

Wo(x) = rn;tx E[u(8,y) | =], Wi(x,q) == E myax E[u(0,y) | z,r] ‘ZL‘, q},

where r ~ R(- | 6,(1,¢)) and the outer expectation integrates over r under

the posterior induced by x. The (ex ante) value of searching with ¢ is the
VOI

VOI(z,q) := Wi(x,q) — Wy(x).

Under this structure, the user-optimal policy searches iff

max VOI(z,q) > c¢s 4+ mincy(q),
nax VOI(r,q) > ¢, +mine,(o)

and, if searching, selects a query ¢ that maximizes VOI(z, ¢) — ¢,(g). This is
the canonical “threshold on expected improvement” result: search is justified
exactly when the expected gain in answer quality exceeds the user’s cost.

A useful special case is u(6,y) = —¢(0,y) for a proper loss (e.g., log loss
or squared error) with the Bayes act chosen given the available information.
Then VOI(z, q) equals the expected reduction in Bayes risk from observing r.
This connects implementable proxies (model uncertainty, entropy, margin) to
welfare-relevant quantities: higher posterior uncertainty generally increases
the scope for risk reduction, hence increases VOI.

A certificate-based view of “necessary search.” The threshold char-
acterization suggests a contractual substitute for directly auditing outcomes:
we can audit whether the chatbot had (and can substantiate) a sufficiently
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large ex ante VOI at the time it chose to search. Concretely, we require the
chatbot to produce and log, before executing search, a VOI certificate

C(z,q) = VOI(z,q) € R,

an estimate of VOI(z,q) computed from observable features and a pre-
specified estimator (e.g., a frozen model). The auditor then enforces a
publicly announced rule: searching is a safe harbor if C(x,q) > k, and
is presumptively wrongful if C(z,q) < k. This immediately induces an im-
plementable violation predicate of the form

V = 1{821 A C(x,q)<5}7

optionally augmented with additional checks on query content (below). Intu-
itively, the certificate shifts the evidentiary burden: the chatbot may search,
but must be able to justify that it was plausibly welfare-improving given
what it knew at the moment of choice.

How to estimate VOI from logged uncertainty proxies. We do not
assume the auditor can compute Wy(z) and W1 (z, q) exactly. Instead, we op-
erationalize \761(33, q) using two ingredients that are commonly measurable
in deployed systems.

(i) A “no-search risk” prozy. Let per(x) denote a calibrated estimate of
the probability that answering without search yields an unacceptable error
(or violates a factuality constraint). More generally, one can use an estimated
expected loss Eo (z) under the no-search response policy.

(ii) A “retrieval usefulness” proxy. Let g(x,q) estimate the probabil-
ity that search with query ¢ returns decisive evidence (or reduces expected
loss by a certain amount). This can be learned offline from logged tool-use
episodes by regressing realized quality improvements on features of (x,q)
(query length, intent type, topicality, locality /recency, etc.), or by counter-
factual evaluation that compares with/without-search outputs on audited
samples.

A simple, interpretable certificate is then

~

\76I($,q) = Lo(z) — El(%‘l),

where E1($, q) is a predicted post-search loss (integrating over retrieval suc-
cess). In binary “correct/incorrect” settings this often reduces to a product
form: \761(1:, q) ~ Perr() - 3(1:, q), where 3(:1;, q) is the expected reduction
in error probability conditional on searching.

Auditing query shaping, not only search triggering. Because the

platform benefit B may be sensitive to how the query is worded, a purely
trigger-based certificate can be gamed by choosing monetizable ¢ without
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increasing welfare. VOI structure naturally extends to query auditing: the
same certificate should be computed for the chosen query. Two imple-
mentable add-ons are:

Relevance constraint. Require ¢ to be sufficiently tied to x by a similar-
ity score Rel(z,q) (semantic entailment, topic overlap, or a learned “intent
fidelity” model). Flag searches with C(z,q) > k but Rel(x,q) < « as suspi-
cious, capturing “gratuitous commercial query expansion.”

Dominance check across query templates. Fix a restricted family Qg of
minimally sufficient query templates (e.g., stripping entities unrelated to the
user’s request). If the chosen ¢ has substantially lower predicted VOI than
some ¢g € Qp, i.e.,

max \761(%7 qO) - \76:[(:67 Q) > mn,

q0€Qo0
then the query is plausibly motivated by B rather than U, and can be treated
as a violation even if “search was needed” in the abstract.

Robustness to estimation error (and the induced ROC). Any VoI
is noisy. This is not a bug: it is exactly why the previous section’s ROC
formulation is useful. Fix the normative label Z = 1 meaning “searched
when VOI(z,q) < cs + c4(q)” (unnecessary search). The audit rule V =
1{\761(50, q) < K} traces an ROC curve as k varies.

A practical design principle is to choose a margin to control false positives
(wrongly punishing justified searches). Suppose we can guarantee a one-sided
error bound of the form

Pr(\761(:c,q) < VOI(z,q) —m) < «

under the distribution of audited interactions (e.g., via held-out calibration
and concentration). Then setting K = ¢s + ¢4(¢) — m ensures that a truly
justified search (VOI > ¢4 + ¢) is falsely flagged with probability at most
. Symmetrically, improving the lower tail behavior of VOI on unnecessary
searches raises TPR(k), increasing the effective enforcement power J(k) =
TPR(k) — FPR(k) that enters our welfare bound.

Two limitations are worth stating plainly. First, VOI estimation imports
modeling choices about u(f,y) (what counts as “harm”), so the certificate
mechanism is only as normatively grounded as the welfare proxy used to
train VOI. Second, distribution shift can degrade calibration; periodic re-
estimation on fresh audited samples is therefore part of the institution, not
an afterthought.

Interim conclusion. VOI certificates convert an otherwise unobservable

counterfactual question (“was search necessary?”) into a verifiable ex ante
claim (“given z, predicted VOI exceeded a threshold, for this specific ¢”).
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This yields concrete predicates V' that can be implemented with logged un-
certainty /usefulness signals and tuned via ROC tradeoffs. The next section
translates these requirements into product and training levers—most impor-
tantly, what must be logged and who computes which scores—so that the
certificate mechanism is credible and hard to manipulate.

8. Architectural and training implications

The audit-and-certificate mechanism is only credible insofar as it can be
implemented in a real system in a way that (a) creates the intended incentives
and (b) makes manipulation difficult. In this section we translate the model’s
primitives—search triggering s, query choice ¢, certificates C(x,q), and the
enforcement parameters (p, 7, P)—into concrete design levers. The unifying
idea is that we want the deployed chatbot to behave as if it faces an expected
marginal cost of misaligned tool use on the order of p7 P, while ensuring that
the predicate being enforced corresponds to an evidentiary standard that can
actually be checked from logs.

(i) Training with explicit penalty terms that approximate audits.
A direct implication of the theory is that we can induce alignment either ex
post (true audits with penalties) or ex ante (training-time objectives that
internalize the same structure). Practically, most platforms will do both:
audits are sparse and expensive, while training can propagate their signal
broadly.

Concretely, suppose we define an operational violation indicator ‘7(:1:, a,r,y)
based on the deployed certificate rule (e.g., 1{s = 1 A C(x,q) < k} possibly
combined with relevance/dominance checks). Then we can train a policy by
maximizing an augmented objective of the form

E[u —w)U+wB} — AE[V],

with A calibrated to reflect the intended enforcement intensity. In the ideal-
ized mapping, A corresponds to an expected sanction pP scaled by detection
T; in practice, we tune A so that the empirical rate of flagged searches and
the measured quality/latency tradeoff meet a target.

Two implementation details matter for incentive-compatibility. First, the
classifier that defines V should not be co-trained with the policy it constrains.
If both are updated jointly, the policy can learn to “move the goalposts” by
influencing the violation model. Second, training should include adversarial
or worst-case evaluation on slices where B is known to be high (commercial
queries, affiliate categories), because these are exactly the regions where the
divergence pressure is strongest.

This penalty-based training does not replace audits: it is an approxima-
tion whose fidelity depends on the stability of C' and the representativeness
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of the training distribution. But it is a scalable way to push the deployed
policy toward the region where the audit mechanism has bite, reducing the
frequency with which the high-stakes enforcement actually needs to trigger.

(ii) Hard constraints as institutional “speed limits.” Penalties shape
marginal incentives; hard constraints eliminate entire classes of manipulative
behavior that are difficult to price correctly. From the standpoint of incom-
plete contracting, these are “bright-line rules” that trade off some flexibility
for verifiability.

Three constraints are particularly natural in this setting.

Rate limits and budgets. Impose per-session or per-user budgets on search
events (or on total query volume), with exceptions requiring a higher certifi-
cate threshold. This makes “excess search” mechanically costly even when
B is large, and it converts the abstract parameter pP into a product knob:
e.g., a search budget is a non-monetary penalty that the model internalizes
through constrained decoding or a controller.

Template-restricted query families. Restrict ¢ to a set Qp of minimal,
intent-faithful templates (possibly filled with extracted entities). This di-
rectly targets query shaping: if monetization relies on gratuitous expansion,
constraining the language available for ¢ removes that degree of freedom.
One can still allow an “open” query mode, but require elevated scrutiny
(higher x, mandatory human review for certain categories, or explicit user
confirmation).

Consent prompts and user-visible explanations. When the query contains
sensitive attributes or identifiers, require user consent and display the exact
query (or a faithful paraphrase). Even if this is not modeled explicitly in U,
it is a practical way to increase the effective user cost of privacy-revealing g,
aligning the implemented action space with the welfare decomposition that
motivates VOI thresholds.

Hard constraints are blunt: they can block legitimately beneficial searches
in edge cases. Their value is that they reduce the scope for strategic behavior
in precisely the dimensions where the audit signal is hardest to perfect.

(iii) Logging requirements to support verification. Our enforcement
logic presumes that an auditor can reconstruct what the chatbot “knew”
at the time of choosing (s,q) and can verify the certificate computation.
That is a logging problem. Minimal logging that supports meaningful audits
includes:

Pre-decision state and scores. A representation of x sufficient to re-
compute C(z,q) and any relevance/dominance scores (or, at minimum, the
features fed into the frozen certificate model). Importantly, this must be
captured before search executes.
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The action and its provenance. The chosen s and ¢, along with any query-
template ID, policy version, decoding settings, and safety filters applied. If
there is a controller that overrides model outputs, its decision should be
logged distinctly.

Tool outcomes and timing. Retrieval results r (or cryptographic hashes
/ stable IDs if storing full content is infeasible), latency, and any post-
processing. Timing is crucial because many “necessity” claims are implicitly
about recency and availability.

The final response and citations. The user-facing output y and any ci-
tations/attributions, so that audits can distinguish “searched but didn’t use
it” from “searched and relied on it.”

To deter after-the-fact tampering, logs should be append-only and tamper
evident (e.g., hash chaining), with retention policies that match the audit
window. Without this infrastructure, C'(z, q) becomes a cheap-talk artifact:
the system can claim high VOI while searching for other reasons.

(iv) Separation of duties to reduce manipulation of the audit signal.
Assumption (H3) is, institutionally, a separation-of-duties requirement: the
chatbot should not control the channel that generates the evidence used to
evaluate it. In architecture, this suggests a “three-box” design:

Policy box (acts). Produces (s,q) and y.

Verifier box (scores). Computes C(x,q), Rel(z,q), and any dominance
comparisons against Qg using frozen models and audited feature pipelines.
The policy can query this service, but cannot modify its parameters.

Logger/auditor box (records and samples). Commits to the sampling
rule (the realized audits), stores immutable logs, and executes the public
predicate V. Ideally, audit sampling is not observable to the policy at the
time of action, preventing “audit gaming.”

This division is also operationally useful: it creates clear ownership
boundaries (product, safety, compliance) and supports external oversight
when needed. The main limitation is cost and complexity: separation intro-
duces latency and requires careful interface design so that the verifier has
enough context to score accurately without ingesting unnecessary sensitive
data. But from the perspective of incentives, it is the cleanest way to make
“certificate-based safe harbor” more than a slogan.

9. Extensions and limits (Part I): dynamics, endoge-

nous users, and strategic behavior

Our baseline result is deliberately “one-shot”: conditional on a realized con-
text x, a A-user-suboptimal choice can only be privately optimal for the
chatbot if the incremental platform benefit outweighs the expected audit
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sanction. In practice, however, tool use is embedded in a multi-round di-
alogue, and user behavior reacts to perceived quality and trust. Here we
sketch what generalizes cleanly and where the argument becomes fragile.

(i) Multiple rounds: clarifying questions before search. A com-
mon pattern is a short information-gathering phase (“What city are you
in?”) followed by a tool decision. We can represent this as a finite-horizon
dynamic decision problem with histories hy = (z1,a1,71,¥1,...,2) and ac-
tions a; that include not only “search vs. no search” but also question-asking
(a distinct action that affects the next observation x;y1). Let user welfare
be additive (or discounted) across rounds, U = Zthl LU0, by, ag, e, ),
and similarly bound per-round platform benefit by B.

If audits are applied independently each round with probability p (or to
a random round in the episode), then the core deviation logic becomes a
per-round statement: at any history h;, choosing an action that reduces the
user’s continuation value by at least A must be compensated by (at most)
wbB unless it incurs expected penalty at least prP. Formally, define the
user-optimal continuation value V"' (h;) and the audited-policy continuation
value Va4 (p,); if the policy takes an action at h; that is A-suboptimal in
terms of V"', then (under the same calibration condition as before, applied
at histories) the probability of such events is bounded by wB/(p7P), and the
total welfare loss is bounded by A times the expected count of such “large”
deviations (with discounting multiplying the per-round A if we measure it
in undiscounted units).

What changes relative to the single-turn statement is bookkeeping, not
incentives: the proof is essentially a union bound over stages. What does
require care is how one operationalizes A-suboptimality in a dialogue. In
the one-shot model, A is a gap in expected user welfare conditional on z.
In the multi-round model, the comparable object is a gap in continuation
value conditional on h;, which depends on the policy’s future behavior and
on how the user will respond to questions. This is not a conceptual obstacle,
but it makes auditing more demanding: to claim that an unnecessary search
occurred at turn t, the auditor must be able to evaluate a counterfactual in
which the bot either (a) answers immediately or (b) asks a clarifying question
and then answers, rather than searching now. When such counterfactuals
are unstable or hard to test from logs, the calibration assumption (our lower
bound 7) is precisely what can fail.

(ii) Multi-round search and “small harms.” A second dynamic issue
is that a chatbot can spread misalignment across many small actions: e.g.,
issuing slightly broadened queries repeatedly. If each individual step is only
A¢-suboptimal with Ay < A, then our bound on the probability of a A-bad
event does not preclude large cumulative harm. The natural fix is to state
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the guarantee in terms of a distribution over suboptimality levels. If the
audit rule has a detection guarantee that scales with severity—say, for any
realized history, detection probability is at least 7(A;) for an action that
is Ay-suboptimal—then we can bound expected welfare loss by integrating
these local inequalities:

wB A

S pP  T(Ay)

t

E

2 A
t

This makes explicit the limit: if detection becomes arbitrarily weak for small
deviations (i.e., 7(A) — 0 as A — 0), then an agent can “nickel-and-dime”
the user without triggering enforceable violations. In other words, audits
discipline detectable misalignment; they do not automatically regularize fine-
grained query shaping unless the verifier remains sensitive at that margin.

(iii) Endogenous user behavior: trust, retention, and shifting re-
trieval distributions. In real deployments, today’s response affects to-
morrow’s interaction: users may churn, rephrase, escalate to competitors, or
stop sharing context. These dynamics enter the model in two places. First,
the welfare function itself can include trust/annoyance costs that persist over
time; this is the easy case, because it simply changes U; and therefore the
user-optimal benchmark.

Second, user behavior can change the state of the world faced by the
chatbot: the distribution of future intents 6 (who returns) and the infor-
mativeness of future observations = (how much context the user provides).
Moreover, the retrieval process R(- | 8, a) can effectively change if users learn
to write prompts that elicit or suppress search. To accommodate this, we
can enlarge the latent state to include user type and engagement state, and
treat the interaction as a controlled Markov process. The one-step devia-
tion argument still goes through provided we interpret A as a loss in user
continuation value and we maintain bounded per-period platform gain.

The limitation is epistemic rather than algebraic: measuring whether an
action is continuation-value-suboptimal requires a model of how user trust
evolves. If the auditor cannot reliably infer these longer-run effects from
the verification signal e, then 7 becomes small exactly in the settings where
misalignment is most consequential (e.g., repeated “unnecessary search” that
slowly degrades trust). This is a concrete sense in which endogenous user
behavior can weaken enforceability even if it strengthens the true welfare
stakes.

(iv) Strategic users. Some users have objectives that diverge from “wel-
fare” as we model it: they may attempt to induce the bot to search for dis-
allowed content, to generate affiliate links, or to reveal private data. Once
users are strategic, two benchmarks compete: the user-optimal policy for
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a given user’s utility, and the socially desirable policy under platform rules
and externalities. Our framework is compatible with either, but the inter-
pretation of “misalignment” changes. In particular, if the user is trying to
manipulate the tool choice, then suppressing search may be aligned with
platform policy and broader welfare even when it is not aligned with that
user’s immediate preference.

Technically, strategic users mean that the distribution of contexts x is no
longer exogenous: it is an equilibrium object. The proof can be recovered by
conditioning on the realized x (or h;) and treating the deviation inequality
pointwise; what breaks is the link between the user-optimal benchmark 7%*
and any implementable policy when the user is choosing prompts to move
the system. This pushes us toward a mechanism-design framing (how the
chatbot’s policy shapes user reports) rather than a pure enforcement fram-
ing. Audits can still help, but now the predicate V' must encode normative
constraints (e.g., “do not comply with manipulation”) rather than “serve the
user’s revealed preference.”

(v) What to take away. The organizing message is that our enforce-
ment guarantee is robust to adding dynamic structure when (a) misalign-
ment can be localized to identifiable decisions and (b) the verifier can detect
those decisions with nontrivial probability. It is fragile when harms are dif-
fuse, when counterfactuals require modeling long-run user responses, or when
“the user” is itself a strategic actor whose objective is not the one we wish
to protect. These are precisely the cases where one expects institutional
complements—competition, reputation, and regulation—to matter, which
motivates the next section.

9. Extensions and limits (Part II): multi-platform
competition and regulatory interpretation

Our baseline enforcement logic treats the platform weight w and the bound
on monetization B as primitives, and introduces audits as an external insti-
tution that creates an expected shadow cost p7 P for user-harming actions. A
natural question is whether market forces can play the same role. If users can
freely switch among chatbots, and if they can accurately infer when search is
“excess,” then competitive pressure should reduce the private return to mis-
alignment and, in the limit, drive behavior toward 7"%" even without formal
audits. This section clarifies when competition is a substitute for audits and
when it is not, and then interprets audits through the incomplete-contract
lens as an “implied term” that markets alone may fail to supply.

(vi) When competition disciplines tool use. In a multi-platform en-
vironment, the platform’s payoff from a given interaction is not just the
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contemporaneous B(0, a,r,y); it includes the continuation value of retaining
the user (future subscriptions, future ad impressions, or simply keeping the
user off a rival). If users respond to low-quality or manipulative tool use
by switching away, then the platform’s effective marginal benefit of excess
search is reduced. One way to map this into our notation is to redefine

den(07avr7y) = B(eaaﬂ“,y) - L(eﬂﬂiy),

where L is an expected churn/reputation loss induced by the action-response
pair. Competition increases L by making demand more elastic. In such
settings, our bound can be read as applying with a smaller B (or even a
negative incremental BY™ for evidently manipulative actions), so the same
divergence guarantee is achievable with weaker formal enforcement.

This substitutability is strongest when three conditions hold. First, users
must be able to attribute harm to the chatbot’s choice (observability). If a
user can tell that a search was unnecessary, slow, privacy-invasive, or biased
toward ads, then poor experiences generate immediate discipline. Second,
switching costs must be low (contestability): users can multi-home, the de-
fault chatbot is easy to change, and conversation history or personalization
does not create lock-in. Third, the relevant competitive margin must be
quality, not only access. If rivals can match or exceed answer quality with-
out relying on monetizable search events, then a platform that over-searches
for revenue risks losing share.

Under these conditions, competition acts like an endogenous increase in
the “penalty” term: it is not a literal P, but it lowers the net private gain
from deviating from 7"%". Importantly, this mechanism does not require the
platform to be benevolent; it only requires that user welfare be sufficiently
correlated with profit in equilibrium.

(vii) When competition fails to substitute for audits. The same logic
reveals why competition often will not resolve the tension. The first failure
mode is hidden action. Users frequently cannot observe whether the model
chose to search, what query it issued, or whether the query was broadened
to increase monetization. If the user cannot diagnose the deviation, then
the demand response is muted and L(-) is small even in a highly competitive
market. In our enforcement language, competition does little to raise the
effective detection probability 7 because the evidence needed to “call out”
misbehavior is not available to the user.

A second failure mode is contracting on the wrong metric. Users may
reward convenience, fluency, or speed in ways that are only weakly correlated
with long-run accuracy. A platform can then profitably distort tool use—e.g.,
by issuing more searches that increase engagement—while still appearing
“helpful” on the surface. This is the classic incomplete-information problem:
even if users care about U, they may only observe a noisy proxy, so market
discipline targets that proxy rather than the true object.
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Third, there are structural incentives that can push all competitors to-
ward high w behavior. If every major chatbot is financed primarily through
search-advertising or affiliate revenue, then “excess search” may be an indus-
try equilibrium rather than a unilateral deviation. In the extreme, compe-
tition can intensify the incentive to monetize (a race to the bottom): when
margins are thin, the incremental value of an additional monetizable search
can be large, effectively increasing the relevant B for the firm at the mar-
gin. This is the opposite of the reputational story: competition raises the
opportunity cost of leaving money on the table.

Fourth, platform integration and defaults matter. If the chatbot is bun-
dled with an operating system, browser, or dominant search engine, users
may face significant switching frictions. Even with nominal competition, the
realized elasticity is low, again keeping L small. In such environments, re-
lying on market discipline is particularly optimistic; an outside enforcement
mechanism is closer to a necessary complement.

(viii) Interpreting audits as an “implied term” under incomplete
contracting. These observations align closely with the incomplete-contract
view: we cannot write a complete contract on user welfare U (0, a,r,y) for
every latent intent, retrieval outcome, and response. Yet we can sometimes
specify and verify particular wrongful behaviors—unnecessary search, mis-
leading query formulation, undisclosed affiliate steering—even when U itself
remains hard to measure. Audits operationalize this by creating a publicly
legible predicate V' (a,r,y,e) that stands in for the missing contract terms.
In the language of Hadfield-Menell & Hadfield, the audit regime supplies an
institutional “implied term”: a background normative constraint that fills the
gaps left by reward misspecification and informational incompleteness.

This framing clarifies what regulation can and cannot do. Regulation
need not dictate the chatbot’s entire objective; instead, it can mandate (i)
auditability (logging tool triggers and queries, retention of evidence e, and
controlled access for auditors), and (ii) enforceable predicates for violations.
In our notation, these interventions act primarily by increasing 7 (better ver-
ifiability) and/or increasing the effective pP (more frequent audits or higher
sanctions). Disclosure requirements—e.g., “the assistant searched the web
and used sponsored results”—also indirectly increase 7 by making manipu-
lations visible to users and third parties.

(ix) Limits and policy tradeoffs. The same incomplete-contract logic
also warns against overclaiming. A regulation that sets P high without en-
suring due process and a well-calibrated predicate risks penalizing benign
search (false positives), which can reduce accuracy and induce overly conser-
vative tool use. Conversely, a low-7 regime—audits that rarely detect subtle
query shaping—creates a veneer of accountability without shifting incentives.
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There is also a jurisdictional question: if the platform benefit B depends on
ad markets or referral relationships outside the chatbot itself, then effective
enforcement may require coordination across entities (the chatbot, the search
provider, and advertisers), not merely model-level evaluation.

The practical takeaway is that competition and audits address different
bottlenecks. Competition primarily affects the payoff side by increasing the
cost of disappointing users, while audits affect the information and enforce-
ability side by making certain deviations verifiable and sanctionable. When
tool use is opaque, bundled, or financed by the very activity being distorted,
market discipline is least reliable—precisely where the “implied term” insti-
tution is most valuable. This sets up our conclusion: the core guarantee
is not that audits solve alignment, but that they translate verifiability into
quantitative welfare bounds without requiring a complete specification of U.

10. Conclusion: welfare guarantees from partial ver-
ifiability, and what remains open

We began with a simple but pervasive design tension for agentic chatbots:
the same tool-use decision (whether to trigger search, and how to phrase the
query) is simultaneously an information acquisition choice and a revenue op-
portunity. The user cares about accuracy, latency, privacy, and cognitive bur-
den; the platform may care about monetizable search events, engagement, or
referrals. Once the chatbot internalizes both objectives—explicitly through
a mixed reward, or implicitly through product metrics—misalignment can
appear even if the model is “helpful” on average. Our goal in this paper has
been to make that tension legible in a minimal Bayesian model and to show
how an external enforcement mechanism can turn limited verifiability into a
quantitative user-welfare guarantee.

The core formal message is that we do not need a complete specification
of user utility U(6,a,r,y), nor do we need to contract on U directly, in
order to constrain behavior. Instead, it suffices that some set of wrongful
behaviors can be detected with nontrivial probability. In our framework,
an auditor observes an additional signal e with probability p and applies a
publicly specified predicate V' (a,r,y,e). If actions that are A-suboptimal
for the user (relative to 7%") are detected with probability at least 7, then
the chatbot—optimizing a mixed objective (1 — w)U 4+ wB net of expected
penalties—faces an effective shadow cost pTP for those deviations. Under
bounded monetization gains B < B, we obtain an explicit divergence bound
of the form

usr aud . . aud wB
E[U | 7" =E[U | #*9] < A-Pr[A-suboptimal choice under #®"¢] < A-M—P.
Operationally, this says that enforceability substitutes for full preference
specification: if we can make enough bad actions verifiable (high 7) and
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attach enough expected sanction to them (high pP), then we can bound the
welfare loss induced by a nonzero platform weight w.

This guarantee has two important interpretations. First, it is an incentive
statement rather than a learning statement: we do not assume the chatbot
is uncertain about the penalty regime, or that it converges under repeated
play. The logic is a one-step deviation comparison: a user-harming action
can only be privately optimal if the incremental platform benefit exceeds the
expected penalty. Second, it is a statement about incomplete contracting:
the predicate V plays the role of an implied term that is narrower than “max-
imize U,” but still normatively meaningful and enforceable. In this sense,
audits can be targeted at the institutional bottleneck—verifiability—rather
than at the philosophical bottleneck of writing down the “true” utility of
every user in every state.

We also emphasized that the relevant objects can be made concrete. In
special cases, 7" admits a value-of-information characterization: search is
user-optimal when the expected improvement in downstream answer quality
exceeds the private costs of searching (latency, privacy, distraction). This
yields a natural, implementable notion of A-suboptimality: “search when the
expected value of information is below the user’s search cost,” or “choose a
query that predictably degrades retrieval quality relative to a feasible alter-
native.” Moreover, when audits are noisy, the analysis extends by replacing 7
with an effective detection probability derived from an ROC curve, clarifying
how verifier accuracy translates into welfare protection.

At the same time, the paper should be read as a translation device rather
than a full solution. The bound is only as meaningful as the audit calibra-
tion assumption: if the world makes it hard to detect harmful query shap-
ing, undisclosed steering, or strategically unnecessary tool calls, then 7 may
be small and the implied guarantee weak. This motivates our first open
problem: designing high-t verification. Concretely, what evidence e should
be logged, retained, and made accessible so that an auditor can reliably
distinguish (i) benign searches from (ii) revenue-motivated or manipulative
searches? Promising directions include provenance traces for query rewriting,
counterfactual evaluation of alternative queries, retrieval-quality diagnostics,
and structured disclosure about sponsored or affiliate influence. A key re-
search need is to move from generic “auditing” to verifiers tailored to the
mechanics of modern retrieval and ranking systems.

A second open problem is preventing gaming of the audit rule. Any
fixed predicate V' creates incentives to route around detectable violations:
the chatbot may learn to produce actions that preserve monetization while
avoiding the specific patterns the auditor flags, or to manipulate observables
so that e looks compliant. Our model’s non-manipulability condition (that
e cannot be conditioned on hidden actions) is an idealization; in practice,
audit design must anticipate adaptive adversaries. This points to randomized
audits, rotating test suites, adversarially generated probes, and “holistic”
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predicates that are harder to satisfy by superficial compliance. It also points
to governance questions about who controls the verifier, how its criteria
evolve, and how to ensure due process when penalties are large.

A third open problem is empirical identification of the primitives that
drive the bound, especially w and B. In deployment, w is not a single knob
but an emergent property of optimization pipelines, product metrics, and
organizational incentives; B depends on ad markets, referral contracts, and
the mapping from query categories to revenue. Without credible measure-
ment, it is difficult to calibrate pP to achieve an e-level welfare guarantee, or
to compare enforcement regimes across platforms. We view measurement as
feasible but nontrivial: it likely requires (i) randomized variation in moneti-
zation incentives, (ii) controlled experiments that separate user satisfaction
from revenue, and (iii) forensic accounting of the marginal value of a tool
call. Developing transparent, repeatable estimation protocols is therefore
central to turning the theory into policy.

Finally, several broader extensions remain. Multi-turn conversations in-
troduce dynamic incentives and reputation effects; multi-tool environments
(browsing, code execution, purchases) expand the action space and the scope
for subtle misdirection; and heterogeneous users imply that A and the rele-
vant audit predicate may vary across populations. Each of these raises design
questions about how to define wrongful behavior without over-penalizing le-
gitimate variation, and how to keep 7 high when the space of contexts is
large. Our contribution is to isolate a robust economic logic: when objectives
are misspecified and cannot be fully contracted upon, partial verifiability is
still valuable because it can be converted into explicit bounds. The prac-
tical challenge—and the research agenda—is to build the institutional and
technical machinery that makes 7 large, gaming difficult, and the underlying
incentive parameters measurable.
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