Tracking Demand Drift in Dynamic Pricing via
Sliding-Window Gaussian-Process UCB

Liz Lemma Future Detective

January 16, 2026

Abstract

Dynamic pricing in modern digital markets is inherently nonsta-
tionary: competitor repricing bots, shifting consumer sentiment, and
platform design changes can move the demand curve on the time scale
of days or hours. The source paper (Ananda—Agrawala—Bodas, 2025)
shows that GP-UCB/Bayesian Optimization (BO-Inf) yields strong re-
gret guarantees in stationary, infinite-inventory pricing, and proposes
GP-based methods for finite inventory. This paper pushes that line
to the 2026 reality by studying nonstationary expected revenue func-
tions. We model expected revenue at time t as an unknown function
f t(p) in an RKHS that drifts over time with a bounded variation
budget. We propose a sliding-window (or exponentially-discounted)
GP-UCB pricing rule that uses only recent data to maintain calibrated
uncertainty, enabling tracking of a moving optimum. We provide high-
probability dynamic regret bounds that decompose cleanly into (i) a
learning term governed by GP information gain over the effective win-
dow and (ii) a drift term governed by the variation budget. We derive
an optimal window choice and show how performance depends on drift
magnitude, kernel smoothness, and observational noise. Extensive ex-
periments with seasonal drift, abrupt regime shifts, and benchmark
pricing environments demonstrate large gains over stationary BO-Inf
and deep RL baselines in low-data regimes, while requiring fewer price
changes and no parametric demand assumptions.
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1 Introduction

Digital pricing in 2026 operates in an environment where the classical as-
sumption of stationarity—that the mapping from price to expected revenue
is stable over time—is increasingly hard to defend even as a useful approxi-
mation. On large retail platforms, prices are updated by automated repricing
agents that react within minutes to competitors, inventory signals, and rank-
ing incentives. Platforms themselves frequently adjust fee schedules, delivery
promises, and search or recommendation rules, all of which shift conversion
rates at a fixed posted price. Meanwhile, marketing channels and consumer
attention are mediated by auctions and algorithms whose parameters are
updated continuously, creating demand conditions that can drift even when
the underlying product is unchanged. In such settings, a pricing policy that
treats the demand curve as fixed is not merely misspecified in a statistical
sense; it can be systematically slow to respond to changes that are econom-
ically meaningful and strategically induced.

This motivates a modeling stance in which the seller faces a sequence of
expected revenue functions that evolve over time. The key empirical fea-
ture is not that changes are arbitrary, but that they are neither perfectly
predictable nor negligible. Some shifts are gradual (e.g., a steady deteriora-
tion in conversion as a product becomes less novel), others are episodic (e.g.,
a platform UI change or a competitor entering), and many are structured
(weekday /weekend patterns, seasonal promotions). A seller who learns a sin-
gle “best” price over a long horizon risks exploiting a price that was optimal
for yesterday’s environment. Conversely, a seller who reacts too aggressively
to short-run noise risks chasing transient fluctuations and leaving revenue
on the table. Our goal is to formalize this economic tradeoff and provide an
algorithmic prescription that is both implementable and backed by perfor-
mance guarantees that explicitly account for nonstationarity.

A convenient starting point in modern dynamic pricing is the Bayesian
optimization view: treat the expected revenue as an unknown function of
price, place a Gaussian process prior over this function, and choose prices
using an acquisition rule that trades off exploration and exploitation. In the
infinite-inventory baseline, the seller observes noisy realizations of revenue
(or an unbiased proxy) after posting each price. Under stationarity, GP-
UCB style policies deliver regret guarantees that scale essentially as O(\/T)
up to information-gain factors, and recent pricing papers (including infinite-
inventory Bayesian optimization formulations, sometimes referred to as BO-
Inf) leverage exactly this logic to justify sequential experimentation with
minimal parametric structure. However, these guarantees are fundamentally
anchored to a fixed objective: they compare performance to the single best
price in hindsight for one underlying function. When the revenue curve itself
moves, a policy can have small static regret while still persistently lagging
the moving optimum. The performance yardstick must therefore change with



the environment.

We adopt dynamic regret as the appropriate benchmark for nonstation-
ary pricing: we compare the seller’s sequence of posted prices to the sequence
of period-by-period optimal prices that a clairvoyant would choose if they
knew the current revenue function. This benchmark captures the operational
objective faced by practitioners: not to find a timeless “optimal price,” but
to track the best current price as market conditions evolve. To make this
meaningful, we require a discipline on how fast the environment can move.
Economically, it is implausible that the entire revenue curve can change arbi-
trarily each period without bound; even in fast-moving platforms, frictions in
consumer attention, shipping times, and competitive adjustment limit how
violently demand can shift. We encode this idea through a variation budget
that bounds the cumulative drift of the revenue function over the horizon.
This is deliberately weak: it neither imposes a parametric law of motion nor
requires the seller to observe the drift, but it rules out environments that are
so adversarial that no learning-and-tracking policy could perform well.

On the statistical side, we preserve the nonparametric flexibility that
makes GP methods attractive in pricing applications. Rather than speci-
fying a particular demand model (e.g., logit with time-varying coefficients),
we assume only that each period’s expected revenue function is smooth in
price in the sense of belonging to a reproducing kernel Hilbert space associ-
ated with a squared-exponential kernel, with a uniform norm bound. This
assumption is a formal way to state that small price changes do not cause ar-
bitrarily large expected revenue changes, a property that is often consistent
with observed conversion curves after appropriate normalization and price
scaling. Observations are allowed to be noisy and heteroskedastic at the level
of realized demand and revenue; the analysis uses a standard sub-Gaussian
noise condition, which can be interpreted as ruling out extremely heavy-
tailed shocks after basic winsorization or aggregation (common in platform
analytics). Together, these primitives yield a model that is economically
interpretable, empirically plausible, and mathematically tractable.

Our main contribution is to show that a simple modification of stationary
GP-UCB—restricting learning to recent data—achieves a principled track-
ing guarantee in this nonstationary pricing environment. The algorithm we
study forms a Gaussian process posterior using only a sliding window of the
last W price—feedback observations and then chooses the next price by max-
imizing an upper confidence index. The window length W becomes the key
design parameter: a longer window reduces statistical uncertainty by pool-
ing more data, but increases the risk of using stale observations that reflect
outdated demand conditions. A shorter window adapts more quickly to drift
but is noisier and can lead to under-exploration of profitable price regions.
This “memory” choice is exactly the operational question faced by pricing
teams when they decide how far back to look in training data for forecasting
or experimentation.



We provide a dynamic regret bound that makes this bias—variance trade-
off explicit and yields a transparent tuning rule. In our bound, one term
decreases with W and captures statistical learning difficulty (through the
kernel information gain), while the other increases with W and captures
drift-induced mismatch. Balancing these terms delivers a window choice
that adapts to the magnitude of nonstationarity: more stable environments
justify longer memory and near-stationary performance, while rapidly chang-
ing environments call for shorter memory and faster tracking. Beyond the
theoretical value, this structure offers a practical guideline: by estimating
drift proxies (e.g., rolling residual instability or the frequency of platform
changes), one can select a window that is aligned with the prevailing market
regime rather than fixed ex ante.

Finally, we emphasize limitations and scope. Our framework does not
claim that platform-induced changes are exogenous; in many markets, com-
petitor bots and platform policies respond strategically to prices, and the
resulting dynamics may violate the bounded-variation condition in extreme
episodes. Likewise, the infinite-inventory baseline abstracts from stockouts
and intertemporal substitution, both central in retail. We view these as im-
portant extensions, but also as reasons to begin with a transparent revenue-
tracking model: it isolates the core learning problem created by nonstation-
arity and clarifies what guarantees are possible without strong structural
assumptions. The upshot is a pricing-oriented nonstationary GP bandit
framework that retains the flexibility of Bayesian optimization while replac-
ing stationary regret guarantees with tracking guarantees that are better
aligned with how algorithmic pricing is actually used.

2 Related work

Our setting sits at the intersection of three literatures: dynamic pricing un-
der stationarity (typically with parametric demand), Bayesian optimization
views of pricing that use Gaussian processes as flexible surrogates, and non-
stationary bandits that benchmark performance against a moving target. A
unifying theme is the same economic tension that motivates our analysis:
a seller wants to exploit what has been learned about the revenue curve
while retaining enough adaptivity to remain close to the contemporaneous
optimum when the environment moves.

The classical dynamic pricing literature in operations and revenue man-
agement largely starts from a stationary demand system with unknown pa-
rameters and studies optimal or approximately optimal experimentation poli-
cies. Canonical models assume demand arrives as a stochastic process whose
intensity depends on price through a parametric function, and the seller up-
dates beliefs over a low-dimensional parameter vector (e.g., linear, logit, or
isoelastic demand). This line includes Bayesian formulations and frequentist



learning frameworks, and delivers regret bounds or asymptotic optimality re-
sults that reflect how quickly the parameters can be estimated (see, among
many others, ??7?). The stationarity assumption is not merely technical: it
pins down a single “true” demand curve so that long-run exploration pays
off. In practice, however, pricing teams frequently retrain demand models
on rolling data precisely because a single global fit can become stale; this
operational reality is the starting point for our nonstationary benchmark.

A complementary stationary strand replaces parametric structure with
bandit-style learning directly over prices. In finite action sets, multi-armed
bandit algorithms provide regret guarantees without specifying a demand
model, and in continuous action spaces one can exploit Lipschitz or smooth-
ness assumptions to obtain rates that depend on the dimension of the price
vector. In pricing applications, these approaches are attractive because they
map cleanly to sequential A /B testing over price points, but they typically
measure performance relative to a single best price in hindsight. This static
benchmark can be economically misleading when the revenue curve shifts:
a policy can be “no-regret” in the static sense while persistently charging
yesterday’s price. Our use of dynamic regret aligns the benchmark with the
managerial objective of tracking, rather than learning once and exploiting
forever.

Recent work has popularized a Bayesian optimization (BO) perspective
for pricing, particularly in online retail settings where the price-revenue re-
lationship is noisy, potentially nonlinear, and costly to model structurally.
The idea is to treat expected revenue as a black-box function of price, impose
smoothness via a Gaussian process prior, and select prices through an ac-
quisition rule such as upper confidence bounds or Thompson sampling (e.g.,
GP-UCB and its variants; see 7). This “BO-Inf” viewpoint is appealing be-
cause it produces implementable algorithms with uncertainty quantification
and can accommodate heterogeneity through contextual extensions. Yet the
standard theoretical guarantees again rest on stationarity: the GP poste-
rior aggregates all past data as if it were generated from one fixed function.
When the objective drifts, the posterior can become overconfident in out-
dated regions, an effect that practitioners often observe as “model inertia”
after platform changes or competitor entry.

Nonstationary bandits address exactly this issue by weakening stationar-
ity and strengthening the benchmark. A prominent approach models the en-
vironment through a variation budget that bounds cumulative drift of mean
rewards, yielding dynamic regret rates of order 7%/ 3VT1/ 3 (up to logarith-
mic factors) under suitable conditions; see, for example, ? and subsequent
refinements. Algorithmically, these results motivate forgetting mechanisms
such as sliding windows, periodic restarts, or exponential discounting, which
mirror common engineering practices in online learning systems. Related
models consider piecewise-stationary environments with a bounded number



of changepoints, where one can combine change detection with exploitation
within segments. While this literature provides sharp insight into the bias—
variance tradeoff created by drift, many results are developed for finite action
sets or for structured classes (e.g., linear bandits), and translating them to
continuous pricing with nonparametric smoothness requires additional work.

Nonstationary Gaussian process bandits take a step in this direction by
allowing the latent function to evolve over time. Existing approaches include
(i) treating time as an additional input dimension and placing a separable
spatiotemporal kernel over (p,t), (ii) explicitly modeling temporal evolution
through state-space or Markovian dynamics over function values, and (iii)
adopting algorithmic forgetting (windowing or discounting) while retaining
the GP regression machinery. Representative contributions analyze time-
varying GP-UCB style policies and derive regret bounds that depend on
information-gain quantities associated with the chosen kernel and the effec-
tive memory of the algorithm (e.g., 7). These papers clarify that one can,
in principle, track a drifting optimum in nonparametric settings, but they
often leave open questions that are central in pricing. First, when time is
appended as a covariate, the resulting kernel complexity can obscure tuning:
the regret depends on information gain in a higher-dimensional space, and
the implied dependence on the time length-scale is hard to map to actionable
guidance for how far back one should trust data. Second, several analyses fo-
cus on generic function maximization rather than the institutional details of
revenue data (e.g., the fact that practitioners often observe realized revenue
or conversion, not a direct noisy oracle of expected revenue). Third, while
discounting and windowing are widely used heuristics, pricing applications
benefit from bounds that isolate the precise economic cost of staleness, be-
cause that cost is what determines how aggressively a pricing system should
“forget” after a market shift.

Our contribution is best viewed as importing the nonstationary bandit
logic—dynamic regret under a variation budget—into the BO-style, continuous-
price framework that practitioners increasingly use, and doing so in a way
that makes tuning transparent in one-dimensional pricing. By working with
a sliding-window GP posterior, we preserve the computational and modeling
conveniences of GP regression while directly controlling the mismatch be-
tween old observations and the current revenue curve. The resulting bound
decomposes cleanly into a statistical term (driven by uncertainty and the
information gain over the last W points) and a drift term (linear in VW),
making explicit the operational tradeoff between learning precision and adap-
tivity. This decomposition also clarifies when sophisticated spatiotemporal
kernels are likely to be worthwhile: if drift is largely seasonal or structured,
encoding that structure can reduce the effective variation budget, whereas
in environments dominated by irregular platform shocks, simple forgetting
may be more robust.

Finally, our approach has limitations relative to some strands of the pric-



ing literature. We do not model strategic interaction with competitors or
platforms; instead, we treat nonstationarity as an exogenous drift bounded
in total variation. This abstraction is deliberate: it yields a tractable perfor-
mance benchmark and a policy prescription that can serve as a baseline even
when richer dynamics are present. Incorporating endogenous drift, inventory
constraints, or intertemporal demand substitution would require additional
state variables and typically changes the objective from one-period revenue
maximization to a dynamic program. We view the present framework as
a useful intermediate step: it captures a first-order feature of modern al-
gorithmic pricing—that the revenue curve moves—and provides guarantees
that directly speak to the practical question of how much history a pricing
algorithm should use when the world does not stand still.

3 Model

We study a single seller who posts a scalar price each period and learns
the revenue curve from noisy feedback while the environment drifts over
time. Time is indexed by ¢ = 1,...,T, and the seller chooses a price p;
from a feasible interval [py,pp] € Ri. The one-dimensional action space
is deliberate: many pricing teams experiment over a single “list price” or
a dominant control knob (e.g., a uniform markup), and the key economic
tension we want to isolate is intertemporal rather than high-dimensional.

Demand at time ¢ is stochastic and depends on the posted price. Let
Dy (p) denote the (random) quantity demanded at time ¢ if the seller were to
post price p. In the baseline infinite-inventory setting, realized sales equal
realized demand, so ¢ = Dy(p;). Period-t revenue is

T i= peqr = peDi(pr).

We work primarily with the expected revenue function

fe(p) :=E[r¢ | p = pl = E[p D¢(p)]

which maps prices to expected revenues and is allowed to vary with ¢. This
formulation absorbs a wide range of underlying demand primitives: shifts
in demand levels, changes in price sensitivity, and composition effects in the
consumer population all manifest as movement in f;. From a managerial
perspective, f; is the object a pricing system implicitly estimates when it
retrains on transaction data and then optimizes predicted revenue.

The seller does not observe f; directly. Instead, after choosing p;, the
seller observes a noisy feedback signal y; that is informative about fi(p;).
Our baseline measurement model is

yr = fr(pe) + e,



where ¢; is conditionally o-sub-Gaussian given the past (so Ele; | Fi—1] =0
and its tails are controlled uniformly). This abstraction captures two com-
mon data regimes. First, if we set y; = ¢, then the noise term reflects de-
mand randomness, unmodeled covariates (promotions, traffic shocks), and
any misspecification in mapping transactions to a single scalar outcome.
Second, if practitioners use an intermediate metric such as conversion or
contribution margin, then y; may already be a smoothed or debiased proxy;
the sub-Gaussian condition remains a convenient way to state that extreme
outliers are not too frequent. We emphasize that we do not require a para-
metric demand model: the only structure is imposed directly on the unknown
function f;(-).

To formalize smoothness in a way that is compatible with Gaussian pro-
cess regression, we assume each period-t expected revenue function lies in
the reproducing kernel Hilbert space (RKHS) associated with a kernel k(-, -).
Throughout, we take k to be squared-exponential on [py, py], and we impose
a uniform RKHS norm bound:

(H1)  fieHe and ||filln, <B V&

Economically, (H1) says that the revenue curve is smooth in price and does
not exhibit arbitrarily sharp spikes. In many retail and service settings, this
is a reasonable reduced-form approximation: small price changes typically
do not create discontinuous jumps in expected revenue absent stockouts or
rationing. Methodologically, (H1) is what converts function learning into a
tractable nonparametric estimation problem with finite-sample uncertainty
quantification.

The central departure from stationary Bayesian optimization is that we
allow f; to drift. Rather than specifying a particular stochastic law of motion
for the function, we follow the nonstationary bandit tradition and restrict
attention to an environment class characterized by a variation budget:

T

(H3)  Vr:=>»_ sup |filp) - fia(p)| < V.
t—o PE[Pe,ph]

The supremum over prices makes the drift notion economically strong: it
bounds how much the entire revenue curve can change from one period to
the next, not merely the value at the posted price. This strength is useful for
robust performance guarantees because the seller must contemplate counter-
factual prices when deciding how to explore. At the same time, the budget
interpretation remains operational: Vp is small in stable markets where only
slow trends occur, and it is large in environments with frequent shocks (com-
petitor entry, platform redesigns, changes in ad auctions). Importantly, Vp
is not observed by the seller; it summarizes the difficulty of the instance ex
post, and it will govern the attainable tracking rate.



Performance is benchmarked against an oracle that is allowed to change
its price as the environment changes. Let

p; € arg max fi(p)
PE[pe,pn]
denote a period-by-period dynamic oracle price. Our primary criterion is

dynamic regret,
T

Reg?™ = > (fi0}) — fo(pr)),
t=1
which measures the cumulative revenue loss from failing to track the con-
temporaneous optimum. This benchmark aligns with a common managerial
objective: a pricing system should not only learn demand, but also remain
close to “the right price today” when the underlying response curve shifts.
In contrast, a static benchmark (a single best price in hindsight) can mask
economically costly inertia, because it can declare success even when the
policy is consistently late in reacting to drift.

In some applications, however, the seller cannot freely jump to the period-
by-period maximizer. Prices may be constrained by menu costs, fairness
concerns, platform guardrails, or internal governance that limits the fre-
quency or magnitude of changes. To capture this, we also consider con-
strained oracles. One natural variant imposes a bound on price movement,
|pt — pi—1] < n, reflecting operational limits on how quickly a pricing team
can adjust. Another variant introduces an explicit adjustment cost, either
a fixed cost ¢1{p; # pi—1} or a proportional cost c|p; — p;—1|, so the rel-
evant benchmark maximizes Zthl ft(pt) net of adjustment costs. These
constrained benchmarks are economically appealing when frequent changes
themselves are costly, and they clarify a limitation of pure tracking metrics:
a policy that perfectly follows p; may be infeasible or undesirable in prac-
tice. We keep the dynamic oracle as our baseline because it yields a clean
decomposition between statistical uncertainty and staleness from drift, but
the constrained oracle interpretation will matter when translating theoretical
guidance into deployment rules (e.g., tuning “forgetting” while also imposing
change limits).

This model distills the core tradeoff we care about. Because feedback is
noisy, the seller would like to pool many observations to reduce uncertainty
about f;(+). Because f; drifts, old observations can become misleading, so the
seller must discount or forget history to avoid overconfidence in an outdated
revenue curve. The next section makes this tension algorithmic by specify-
ing GP-based policies that balance exploration, exploitation, and adaptivity
through either sliding windows or exponential discounting.
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4 Algorithm: windowing and discounting for non-
stationary GP-UCB

Our goal is to turn the tradeoff described above—pooling data to reduce
noise versus forgetting data to avoid staleness—into a concrete pricing rule.
We do so by combining Gaussian process (GP) regression with an “opti-
mism” principle: at each date we choose the price that maximizes an upper
confidence bound (UCB) on the contemporaneous revenue curve. The only
nonstandard ingredient relative to stationary GP-UCB is that we modify
the GP posterior so that older observations receive less weight, either by
truncation (a sliding window) or by exponential discounting.

SW-GP-UCB (sliding window). Fix a window length W € {1,...,T}.

At the start of period ¢, we retain only the most recent data

Dt(Z) = {(p87y8) F5= ma’X{lat - W}?;t — 1}

Using ngl), we compute the standard GP posterior mean and standard de-

viation, denoted M?EKVI)() and ngl)(-). Concretely, if we write p = (pv)rez,_,

and y = (y¢)vez,_, for the window index set Z;_; = {max{1,t —W}, ... t—
1}, and define the kernel matrix K € R™*" with K;; = k(p;,p;) (where
n = |Z;—1| < W), then with noise variance parameter A we have for any
candidate price p:

4% - w 2 _
m () = k() (KDY, (o) (1) = k. p)—k(p) T (E+AD K(p),
where k(p) = (k(ps,p))i;. In our theoretical development, X plays the role
of o2 from the sub-Gaussian noise assumption, but in implementations it is
best viewed as a ridge parameter that stabilizes inference when observations
are nearly collinear in price.

Given (ugfl), Ugvl))’ SW-GP-UCB selects
(W)

pt € arg max  fi,_q

(p) + Koty (),
PE[pe,pn]

where k; is an exploration multiplier. Intuitively, the mean term exploits
what we have learned from recent data, while the standard deviation term
forces occasional experimentation in regions where recent data are sparse.

After posting p;, we observe y; and update the window by adding (p:, y¢)
and dropping (pi—w,y+—w) when applicable.

ED-GP-UCB (exponential discounting). Sliding windows forget abruptly,
which can be undesirable when drift is gradual and we would rather down-
weight than discard data. Exponential discounting implements a smooth
“memory” with a parameter p € (0,1). At time ¢, we assign weight

S

wys = p'T to observation (ps,ys), s <t,
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so that older samples receive geometrically smaller influence. A convenient
way to implement this within GP regression is to interpret downweighting as
inflating the effective noise variance of older points. Specifically, letting 3,
be the diagonal matrix with entries (X;)ss = A\/wy s for the included indices
s < t, the discounted posterior takes the same algebraic form as above with
(K + AI) replaced by (K + ¥;). The resulting decision rule is again UCB:

pr€arg max  u”) (p) + ki o) (p),
pe[P£7ph]

where ,ugf )1 and afﬁ )1 denote the discounted posterior objects. From a man-

agerial standpoint, p plays the role of an exponential moving-average pa-
rameter: p close to one corresponds to long memory (stable markets), while
smaller p corresponds to rapid forgetting (high-churn environments). In our
later bounds, this mapping is formalized through an “effective window” size
We ~ 1/(1 - p).

Continuous argmax and discretization. Because price is continuous,
the maximization of the UCB index is, in principle, an infinite-dimensional
search. In one dimension, this is computationally mild, but it is still useful
to be explicit about practical and theoretical choices.

In practice, we compute p; by evaluating the UCB index on a grid
Pm C [pe, pn] (e.g., evenly spaced or aligned with admissible price endings),
selecting the best grid point, and optionally refining with a local optimizer
(e.g., Brent search) initialized at that maximizer. This hybrid approach is
robust: the grid prevents the optimizer from getting trapped at poor local
maxima induced by numerical noise, while local refinement recovers near-
continuous performance.

For theory, discretization can be handled in two complementary ways.
First, if the posted price must be rounded (as in most retail settings), then
the action set is already finite and the algorithm is exactly discrete GP-UCB.
Second, if we view discretization as an approximation, we can bound the
induced error by controlling the smoothness of the UCB objective. Under our
RKHS assumption with squared-exponential kernel, functions are Lipschitz
on compact domains, so using a sufficiently fine grid (mesh size shrinking
with 7T") makes the discretization gap negligible relative to the main regret
terms we study.

Hyperparameters and stability. Kernel and noise hyperparameters (e.g.
length-scale ¢, signal variance, and \) are rarely known in pricing applica-
tions. A standard empirical Bayes approach is to re-estimate hyperparame-
ters by maximizing the (windowed or discounted) marginal likelihood at each
t using only past data. This aligns with operational workflows where models
are retrained daily on a rolling sample. However, it also introduces two lim-
itations. First, hyperparameter optimization can be unstable when data are
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scarce or when exploration is limited, leading to pathological length-scales
(overfitting) and overly narrow confidence bands. Second, our formal guar-
antees treat the kernel as fixed; plug-in hyperparameters can be interpreted
as model misspecification.

A practical compromise is to (i) restrict hyperparameters to a plausible
range (e.g., enforce £ € [yin, fmax|), (ii) regularize toward conservative un-
certainty (e.g., avoid very small \), and (iii) tune ; to be slightly larger
than the nominal theoretical choice to hedge against misspecification. When
computational cost is a concern, windowing also helps: naive GP updates
scale as O(W?3) per period, so smaller W is not only more adaptive but
also materially cheaper; when W must be large, standard approximations
(rank-one Cholesky updates, inducing points, random Fourier features) can
be layered on without changing the economic logic of forgetting.

These algorithmic details set up the next step: we will formalize how
windowing or discounting yields confidence intervals that separate (i) statis-
tical uncertainty from (ii) a drift-induced bias term, and how that separation
drives a dynamic regret bound with an explicit bias—variance tradeoff in W

(or p).

5 Theory I: confidence sets for a windowed GP un-
der drift

The UCB principle is only as good as the confidence set it relies on. In
the stationary GP-UCB analysis, one proves that the GP posterior mean
ui—1(+) concentrates around a single unknown function f(-) that generated
all past data. In our pricing environment, the object of interest at date t is

instead fi(-), while the observations in the window ngl)

the time-varying sequence { fs i;LW. Windowing is therefore not merely a
computational device; it is what makes learning meaningful when the target
moves. The technical task in this section is to make precise how a windowed
GP posterior yields a valid (high-probability) envelope for f;, and to separate
that envelope into (i) a statistical uncertainty term that shrinks with data

and (ii) a drift-induced bias term that grows with the window length.

were generated by

Intuition: treat drift as structured contamination. Fix a date ¢t and
consider the observations in the current window. For each s € 7,1 =
{max{1,t —W},...,t — 1} we observe

ys = fs(ps) +es = ft(p5)+(f8(p5)_ft(ps)) +Es.

drift mismatch

From the perspective of estimating f;, the data are generated by f; but with
an additional, non-stochastic (and generally non-mean-zero) perturbation

13



term fq(ps) — ft(ps). This term is not controlled by sub-Gaussian concentra-
tion; it is controlled only through the variation budget V. Thus, even if the
GP posterior based on ngl) were statistically sharp, it can be systematically
biased by the inclusion of stale samples. The role of the window length W

is exactly to balance these two forces.

A windowed confidence bound with an explicit drift term. We
state a representative concentration result in the form we will use later. The
first term is the familiar GP-UCB radius, expressed through the posterior
standard deviation and a confidence parameter; the second term is a deter-
ministic drift penalty that captures the worst-case mismatch between f; and
the functions that generated the windowed observations.

Proposition 5.1 (Windowed GP confidence under drift). Fiz a window
length W and failure probability 6 € (0,1). Under (H1)-(H2), there exists
a choice of confidence parameter Byw (polylogarithmic in W and 1/6 and
linear in B? and 02) such that, with probability at least 1 — &, for all dates
te{l,...,T} and all prices p € [pg, ppl,

£i) = )| < VBw o) + Auw,
where the drift-bias term can be taken as
t—1

Apw = Z sup | fi(p") — fs(P)]-

s=max{1,t—W} P'€[pe,pa]
Moreover, by a telescoping argument,
t

sup | £i(p') = ()] < D sup|fu(®) = fur (@),

P’ u=s+1 4
and hence Ay w is controlled by the local variation over the last W periods,
with a crude but useful bound

A < W » / — fu_ / .
WSVl "o Vo)~ fua @)

Several remarks clarify what this proposition does (and does not) deliver.

Separation of estimation and nonstationarity. The posterior stan-
dard deviation ot(KVl) (p) quantifies how informative the recent price exper-
iments are about the function that generated those experiments. When the
environment is stationary, that is enough. Here it is not: even perfect knowl-
edge of the past functions {fs} would not identify f; without a restriction
on how quickly the curve moves. The term Ay is exactly the price of that
restriction. It is deterministic conditional on the realized sequence {f;} and
depends on W in the opposite direction of statistical uncertainty: larger W

(W

generally lowers at_l)(-) but increases Ay .
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Why A, is the right scale. The variation budget Vy = ZtT:Q sup,, | fr(p)—
fi—1(p)| is a global constraint, but pricing decisions are local in time. Propo-
sition makes this locality explicit: if the recent market is stable, then
A¢w is small even when Vr is large due to distant shocks (e.g., a one-off
holiday). Conversely, if the market is churning in the last W periods, the
bias is unavoidably large, reflecting a genuine identification problem rather
than a weakness of the method.

Uniformity over a continuous price domain. The bound is stated for

all p € [py, pp] simultaneously, which is what we need to justify a maximization-
based policy like UCB. Technically, this uniformity can be obtained us-

ing standard GP concentration tools coupled with either (i) a discretiza-
tion/covering argument (leveraging smoothness implied by the squared-exponential
RKHS on a compact interval) or (ii) the information-gain machinery that
leads to I'yy in later regret bounds. The key point is that, in one-dimensional
pricing, the complexity penalty is mild: uniform control does not fundamen-

tally change the bias—variance logic.

Discounting as a smooth analogue. For ED-GP-UCB, the same de-
composition holds with a weighted analogue of Ay yy:

A, ~ Zp sup [ filp ) = [,

so that very old observations contribute negligibly. This makes precise the
heuristic mapping Weg ~ 1/(1 — p): the estimation radius behaves as if we
had about Weg effective samples, while the drift bias behaves as if we were
comparing f; primarily to the last Weg periods.

Limitations and what we do with them. Two caveats are worth flag-
ging. First, A, is not observable, so the algorithm does not (and cannot)
subtract it in real time; instead we choose W (or p) to make the worst-case
accumulated drift penalty manageable. Second, our confidence parameter
Be,w treats kernel hyperparameters as fixed; plug-in estimation of ¢ and A
can tighten or loosen the interval in practice, but it lies outside the formal
guarantee. These limitations are precisely why the next step is a regret
analysis: what matters for performance is not pointwise confidence per se,
but how the confidence width and drift bias accumulate along the realized
sequence of posted prices. This is the object of our dynamic regret bounds
in the next section.
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6 Theory II: dynamic regret bounds and how to
tune the window

Our goal is not merely to form a pointwise confidence band for f;, but to
translate that band into economic performance: how much revenue we lose
relative to a seller who knows the entire path {f;}7_; and posts the con-
temporaneous monopoly price p; € argmax, f;(p) each period. This is a
demanding benchmark—the oracle tracks a moving target—so the relevant
question is how the loss scales with two primitives: (i) statistical difficulty
(noise and function complexity under k) and (ii) market instability as mea-
sured by V7.

Intuition: regret inherits the bias—variance tradeoff. Fix ¢ and sup-
pose SW-GP-UCB chooses p; by maximizing ugzvl) (p) + /@tagvl) (p). When
p; lies inside our confidence envelope, a standard UCB argument bounds
the one-step regret fi(p;) — fi(pt) by (a constant multiple of) the confidence
radius at the chosen point. Proposition [5.1] tells us that this radius has two
parts: a statistical term +/f3; Wat 1 p) and a drift term A, 7. Summing over
t then yields two corresponding contrlbutlons to cumulative regret: an esti-
mation term that decreases with W (more effective samples) and a tracking
term that increases with W (more staleness). The theorem below formalizes
this decomposition.

Theorem 6.1 (Dynamic regret of SW-GP-UCB). Let SW-GP-UCB select

p; € arg max ug_l)( )+ K aﬁW)( )s Kt =/ Be,w

PE[pe,ph]

where By w 1s chosen so that Proposition holds with failure probability §.
Under (H1)-(H3), with probability at least 1 — ¢,

T

Regl™ = 3 (A5f) — fulm)) < o(fwm n va)7

t=1

where Ly is the mazimum information gain of the GP model over W points
on [pe, pr), and O(-) suppresses polylogarithmic factors in T, W,1/§ and con-
stants depending on (B, o).

Proof sketch (economic reading). The argument mirrors the station-
ary GP-UCB proof, but with one additional accounting identity. First, by
Proposition 5.1} with high probability we have for all p,

£0) <0+ Brwoe M o)+ 2w, i) = 1) )=/ B (0)— A
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Evaluating at pf and at the chosen p;, and using the maximizing property
of the UCB rule, yields an instantaneous regret bound of the form

Ji(py) — filpe) < 2 5t,WU§KV1)(Pt) + 24w

Second, summing the posterior standard deviations along the realized actions
is controlled by information gain: on any block of length W, the usual GP-
UCB analysis gives

Z Ut(z)(pt) < O( WTw),

teblock

and a block decomposition over T' periods converts this into the global term
0) (\/LW \/m) Third, the drift term sums to at most order VW because each
local shock sup,, | fu(p) — fu—1(p)| can affect (at most) the next W windows.
Economically, each change in market conditions creates a transient period
during which the seller is partially “learning yesterday’s curve”; the window
length determines how long that transient lasts.

A corollary for one-dimensional squared-exponential pricing. In
our baseline pricing problem the action space is one-dimensional and com-
pact. For the squared-exponential kernel on [py, pp], it is standard that Iy
grows slowly, e.g.

'y = O(log? W)  (up to constants depending on the length-scale and domain).

Plugging this into Theorem [6.1] yields the more transparent expression

~( T
Regit” < O<\/W

Thus, in one-dimensional pricing, the kernel complexity is not the main
driver; the key economic lever is the instability index Vp.

logW + VTW>.

Choosing W: an optimal tracking rate. Treating slowly varying log
factors as constants, the upper bound is minimized by balancing the esti-
mation term 7'/ W against the drift term VpW. This yields the canonical
choice

2/3

TVTr .

W* = ( v T) = Reg®™ < O(T**V}/%),
T

with an additional mild (I'7)/ factor if we keep track of 'y, explicitly. The
rate T2/ 3V%/ ? is the familiar “tracking” rate from nonstationary bandits:
when the optimum moves, one cannot generally do better than a 2/3 expo-
nent in 7" without stronger structure. Our contribution here is to show that

the same economic logic carries over to a smooth (GP) demand environment
with continuous prices.
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How the bound behaves across regimes of market instability. Two
limiting cases sharpen intuition. If V- = 0 (stationarity), we can take W as
large as T" and recover the stationary GP-UCB behavior:

Rengyn < O(\/TFT),

so the seller learns the fixed revenue curve and eventually exploits it. At
the other extreme, if Vp is large (rapid churn), the optimal W* shrinks
and the bound approaches linear behavior in 7' (no algorithm can track an
arbitrarily fast-moving optimum). Between these extremes, Vi plays the
role of an economic sufficient statistic for the value of longer memory: stable
markets reward aggregation of data; unstable markets reward myopia.

Practical tuning and limitations. The window rule requires knowledge
of Vr to select W*. In many pricing applications, Vr is not observable ex
ante; one can therefore (i) tune W on a coarse grid and update it periodically
(a “meta-policy” over windows), or (ii) use exponential discounting with a
handful of candidate p’s to obtain robustness to unknown drift. Either way,
the theorem tells us what to look for empirically: performance should be
relatively flat near the minimizer of the U-shaped curve W \/LW\/IW +
VrW, and the dominant failure mode of overly large W is systematic lag
after regime shifts, not statistical noise.

7 Extensions: frictions, structure, and context

The baseline model is intentionally lean: each period we post any price in
a compact interval, observe noisy revenue, and update a (windowed) GP
posterior while the revenue curve drifts subject to a variation budget. Many
pricing environments add constraints that are economically central but do
not fundamentally change the learning logic. We briefly discuss three such
extensions and how they map into the same bias—variance accounting.

(i) Switching costs and limited price changes via batching. In retail
and platform settings, changing prices is not free: there may be menu costs,
customer fairness concerns, or operational constraints that make frequent
repricing undesirable. One reduced-form approach is to subtract a switching
penalty, e.g.

T T

T T
Som— Y Ypi#Epal  or Y om o= e |- pial
t=2 t=2

t=1 t=1

A convenient way to incorporate such frictions is batching: we restrict the
seller to update the posted price only every H periods, holding it fixed within
each batch. The decision problem then lives on a coarser time index b =
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1,...,[T/HY); within batch b we post a single price p(®), collect the H realized
feedback signals, and update the GP posterior once per batch (still using a
window of the last W batches, or the last W H raw observations, depending
on implementation). Economically, batching translates a switching cost into
a hard cap on the number of price moves (at most [T/H]| — 1), so the total
switching penalty is controlled by design.

Batching introduces a new tradeoff. Larger H reduces switching fre-
quency (and thus switching costs), but it also creates within-batch stale-
ness: if f; drifts inside the batch, a price chosen at the batch start is par-
tially targeting yesterday’s curve. In regret terms, this adds an approxima-
tion component on the order of the cumulative variation occurring within
each batch. Under bounded variation, a crude bound is proportional to
Db 2 oteb SUP, [ fe(p) — fi,(p)|, which is at most O(V7H) in the worst case.
Thus, batching makes the effective tracking term worse by a factor tied to the
batch length, while it improves the switching-cost objective. In applications,
we interpret H as a policy lever reflecting organizational constraints: tighter
governance (smaller H) supports faster tracking, while looser governance
(larger H) economizes on repricing effort.

A related (and often more realistic) constraint is limited price movement,
e.g. |pt — pi—1| < n. This does not require batching, but it does change the
action set at each time. Algorithmically, we can implement SW-GP-UCB
with a constrained maximization step,

Pt € arg max Ng? (p) + Htat(zvl) (p),
pE[pe,pnl; lp—pe-1|<n
so learning proceeds as before while the feasible set becomes local. The eco-
nomic consequence is intuitive: with an upper bound on adjustment speed,
regret can be dominated by inability to chase rapid movements of p;, even
when statistical uncertainty is small.

(ii) Seasonal drift and periodic variation budgets. Many demand
environments are not drifting arbitrarily; instead they exhibit structured
seasonality (day-of-week, pay cycles, holidays). A parsimonious decomposi-
tion is
ft(p) = 9(p) +s4)(p);  o(t) €{1,.... P},

where ¢(t) is a known phase (e.g. weekday) and sy is periodic with period
P. In such settings, the raw variation budget Vr can be misleadingly large if
we ignore phase and compare adjacent days with different seasonal compo-
nents; yet the environment is predictable once phase is accounted for. Two
implications follow.

First, even within the sliding-window paradigm, seasonality suggests a
principled window choice: taking W on the order of one period P reduces
systematic mismatch, because the window then contains comparable phases.
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This is a simple operational heuristic: “learn from last week, not from yes-
terday” when yesterday is the wrong phase.

Second, if phase is observable, we can encode seasonality directly by run-
ning a GP on an augmented input (p, ¢) with a product kernel k((p, ¢), (p’, ¢')) =
kp(p,p') ky(¢, @), where kg is periodic (or simply a kernel on the discrete set
of phases). In the idealized case where the mapping (p, ¢) — f(p, ¢) is sta-
tionary over t, the problem becomes a contextual but non-drifting GP ban-
dit, and the performance guarantee reverts toward stationary GP-UCB rates
(with information gain now computed on the augmented domain). Practi-
cally, this approach reduces the “effective” drift the algorithm must track:
what appears as instability in calendar time becomes stable structure in
phase time. When seasonality is only approximate (e.g. holiday effects shift
year to year), a hybrid approach—phase-aware kernels combined with dis-
counting or windowing—can deliver robustness.

(iii) Contextual drift: adding covariates x;. A second form of struc-
ture comes from observed covariates that shift demand, such as traffic, in-
ventory visibility, competitor prices, or ad spend. Let z; € X be observed
before pricing at time ¢, and suppose expected revenue is fi(p) = Fi(p, z¢).
A natural extension is to treat pricing as a contextual GP-UCB problem on
the joint space [pg, pp] X X, selecting

(W)

Pt € argmax fi;_q )
P

<p7 .Cli't) + Htat_l (pv xt)a

where the posterior is formed from recent tuples (pr,xr,yr). The same
decomposition that drives the dynamic regret bound continues to apply, now
with an information-gain term appropriate to the higher-dimensional input
and a drift term that measures variation of Fy(-,-) over time.

The main economic message is that covariates can substitute for mem-
ory. If a substantial portion of what looks like “drift” is in fact explained
by xz; (say, weekends or competitor promotions), then conditioning on x;
reduces the unexplained variation budget and allows the seller to use longer
effective windows without staleness. The limitation is equally clear: richer
contexts increase statistical complexity, potentially inflating information gain
and slowing learning unless we impose additional structure (low-dimensional
X, additive kernels, or strong smoothness across z). Finally, in some ap-
plications covariates are not exogenous (e.g. traffic can respond to price);
then the observed z; is partly an outcome of the seller’s action, and the in-
terpretation shifts from pure prediction to causal learning, requiring either
experimentation design or instrumental variation beyond the scope of the
present framework.
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8 Experiments: tracking under synthetic drift and
a repricing-bot stylization

We complement the theoretical guarantees with simulations designed to iso-
late the economic forces emphasized by the bound: statistical uncertainty
(captured by posterior variance and information gain) versus staleness from
nonstationarity (captured by the variation budget). Because field data typi-
cally confound demand shocks, seasonality, and strategic behavior, we begin
with controlled “ground-truth” environments where we can compute the dy-
namic oracle benchmark and vary the drift pattern holding noise fixed.

Design and evaluation metrics. We fix a feasible price interval [py, pp]
and generate a time-indexed expected revenue curve fi(-) satisfying the
RKHS boundedness assumption by constructing f; as a smooth function
(a sum of a few squared-exponential bumps) and then letting its parameters
move over time. At each ¢ the algorithm posts p; and observes y; = fi(pt)+¢¢
with &; i.i.d. o-sub-Gaussian (Gaussian in the simulations). We evaluate (i)
dynamic regret Zle( ft(py) — fi(pe)), where p; is computed by dense-grid
maximization of f;; and (ii) average realized revenue as a fraction of the
oracle revenue. When we include switching frictions in the objective, we also
report the number and magnitude of price changes.

Drift scenarios. We consider three canonical nonstationarity patterns
that span many operational settings. Sinusoidal drift captures smooth sea-
sonality and gradual macro shifts: we let the argmax of f; move continuously
(e.g. by shifting the center of a unimodal revenue curve) with a known period
P, so that Vp scales linearly in 7'/ P for fixed amplitude. Piecewise-constant
drift captures regime changes such as competitor entry, promotion cycles,
or product-page redesigns: we draw a sequence of stationary curves and
switch abruptly every L periods, creating concentrated variation at change
points. Adversarial bounded-variation drift stresses the model class: we let
an adaptive procedure choose f; to be difficult for the learner, subject only
to a budget constraint S -, sup,, | fi(p) — fi—1(p)| < Vr; operationally, we
implement this by moving the location of the revenue maximizer in a way
that “chases” the learner while respecting a step-size cap implied by Vp.

Algorithms and baselines. Our main methods are SW-GP-UCB (a hard
window of length W) and ED-GP-UCB (exponential discounting with fac-
tor p). We compare against three classes of benchmarks. First, stationary
Bayesian optimization baselines that ignore drift: a standard GP-UCB/BO
rule fit on all past data (effectively W = t—1) and a strong stationary method
(BO-Inf-style optimization) that is competitive when the objective is time-
invariant but has no mechanism to forget stale data. Second, reinforcement
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learning baselines: PPO and SAC with continuous actions, trained online
with a replay buffer. To make the comparison meaningful under drift, we
also test variants with a finite replay buffer (a crude analog of windowing)
and with higher learning rates (to encourage rapid adaptation). Third, sim-
ple heuristics that practitioners often deploy: (a) fixed price chosen from an
initial exploration phase; (b) e-greedy over a discretized price grid; and (c) a
“hill-climbing” rule that perturbs the last price up or down based on recent
revenue changes.

Main findings: the bias—variance tradeoff appears sharply in prac-
tice. Across all drift scenarios, methods with explicit forgetting dominate
stationary baselines once drift is nontrivial. In sinusoidal environments, SW-
GP-UCB and ED-GP-UCB track the moving maximizer closely; the station-
ary BO baselines tend to “average” across phases and converge toward a
compromise price that is rarely optimal at any particular time. In piecewise-
constant environments, the windowed and discounted methods show short-
lived regret spikes immediately after a regime change and then re-learn
quickly, while stationary BO exhibits persistent post-change bias because
pre-change observations continue to pull the posterior mean toward the old
curve. In adversarial bounded-variation environments, all methods deterio-
rate, but SW/ED variants retain a clear advantage: the performance gap is
driven less by optimization quality (UCB is not the bottleneck) and more by
the ability to prevent obsolete samples from dominating inference.

The RL baselines illustrate a complementary limitation. With care-
ful tuning and sufficiently long horizons, PPO/SAC can eventually learn
good pricing policies in slowly drifting settings, but they are markedly less
sample-efficient: they require substantially more interaction to match the
revenue achieved by GP-based methods, and their performance is sensitive
to learning-rate and replay-buffer choices. Under abrupt regime switches,
RL agents often overfit to earlier regimes unless the replay buffer is ag-
gressively truncated, in which case variance increases and training becomes
unstable. This pattern is consistent with the economic interpretation that
policy-gradient methods are powerful function approximators but do not, by
default, implement the explicit staleness control that our regret decomposi-
tion isolates.

Sensitivity to W and p: U-shaped curves and practical tuning.
Varying the window length W produces the predicted U-shaped relationship
between performance and memory. Small W yields noisy posteriors and
excessive exploration (high variance), while large W yields biased estimates
after drift (high staleness). The minimizing W shifts systematically with
the drift rate: faster drift (larger Vp induced by shorter periods or more
frequent regime changes) favors smaller windows. Discounting exhibits the
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same pattern when we map p to an effective memory Weg ~ 1/(1 — p):
larger p helps in slowly drifting environments but hurts when changes are
abrupt. Empirically, ED-GP-UCB tends to be more forgiving than hard
windowing when drift is smooth (sinusoidal), because gradual downweighting
avoids sharp posterior discontinuities; conversely, strict windowing can react
slightly faster to regime breaks.

From a deployment perspective, these sensitivity patterns suggest a sim-
ple operational rule: tune W (or p) to the characteristic timescale of change
that the business can tolerate. When only rough prior knowledge is avail-
able, we find that lightweight online tuning—e.g. selecting W from a small
candidate set using recent held-out predictive likelihood or recent revenue—
captures much of the benefit without requiring direct estimation of V. The
broader takeaway is that the window /discount parameter is not a mere tech-
nicality: it is the algorithmic representation of an economic stance on how
quickly the environment is believed to move, and how costly it is to respond
to that movement.

9 Discussion and limitations

Our theory and simulations highlight a simple message: in nonstationary
pricing, forgetting is an economic design choice. The window length W
(or discount factor p) is the algorithmic representation of how quickly we
believe the revenue landscape moves and how much we are willing to pay,
in foregone revenue, to keep tracking it. That said, the guarantees rely on
modeling decisions—especially the kernel prior, the observation model, and
the bounded-variation assumption—that can be violated in practice. We
discuss the main failure modes and what they imply for deployment.

Kernel misspecification and “smoothness risk.” We work with a squared-
exponential kernel, which encodes very strong smoothness: sample paths are
infinitely differentiable, and the associated information-gain term I'yy is be-
nign (polylogarithmic in one dimension). This is analytically convenient and
often empirically reasonable when price is a one-dimensional action, but it
can be optimistic when the true mapping p — f;(p) has sharp kinks (e.g.
threshold effects from shipping cutoffs, discrete competitor price matching,
or psychological pricing around .99) or when the revenue curve is multimodal
in a way that violates the implied length-scale. In such cases, the GP pos-
terior can be systematically overconfident away from observed prices, and
the UCB rule may under-explore the regions where the model is wrong. The
regret bounds do not directly apply when f; ¢ Hy, and in finite samples the
resulting error can be economically meaningful: the algorithm may “lock in”
to a locally good but globally suboptimal price because the kernel extrapo-
lates too aggressively.
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Operationally, we view kernel choice less as a statistical nicety and more
as a statement about demand microfoundations. If management believes
that small price changes should not radically alter conversion, a smooth
kernel is defensible; if institutional constraints (rounding, stepwise shipping
fees, discrete platform rules) create discontinuities, then Matérn kernels with
lower smoothness, additive or piecewise kernels, or even mixtures that allow
both smooth and localized components can be safer. A pragmatic compro-
mise is to maintain a small library of kernels and select among them by
rolling predictive likelihood within the same windowing/discounting scheme,
so that model selection itself does not over-weight stale regimes.

Hyperparameter drift and endogenous uncertainty. FEven if the ker-
nel family is appropriate, its hyperparameters (length-scale, signal variance,
noise scale) may change over time. In pricing, this is not exotic: a redesign
of the product page can make demand less noisy; a new competitor can
make the revenue curve sharper; an advertising campaign can change the
relevant scale over which price matters. If we fit hyperparameters once and
hold them fixed, the posterior variance Jt(KVI)(-) may become miscalibrated
precisely when the environment changes, undermining the exploration term
that drives both learning and the confidence arguments behind UCB.

Allowing online hyperparameter estimation creates a second tension.
Fast re-estimation improves adaptivity but can induce feedback loops: the
algorithm chooses prices based on a posterior computed from the same data
used to tune the model, and aggressive tuning can shrink uncertainty in a
self-confirming way. In practice, we recommend treating hyperparameter
updates as a controlled process: re-estimate on a slower clock than price up-
dates; regularize toward conservative length-scales (shorter ¢ tends to reduce
risky extrapolation); and stress-test calibration by checking empirical cover-
age of residuals within the sliding window. From an economic perspective,
this is akin to governance over the firm’s “measurement system” when the
market regime changes, we should expect both the optimal price and the
reliability of our measurement to change.

Partial observability: censored demand, covariates, and strategic
data. Our baseline observation model y; = fi(p¢) + & abstracts from sev-
eral data realities. First, in finite inventory, sales are censored: we observe
gt = min{s¢, D¢(pt)}, so revenue understates demand when stockouts occur.
Treating r; as unbiased feedback can then bias the GP downward in high-
demand states, pushing prices in the wrong direction. Second, many firms
observe rich covariates (traffic, ad spend, macro indicators) and care about
context-dependent pricing; omitting these covariates can inflate the appar-
ent drift Vp because the algorithm attributes predictable variation to time.
Third, the data-generating process may be strategic: consumers and com-
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petitors can react to pricing policies, making D, (-) policy-dependent rather
than an exogenous stochastic function. Our framework is best interpreted
as capturing the reduced form faced by a seller who treats the environment
as drifting but not strategically responding to the learning rule.

These issues are not merely technical. They shape what the algorithm
is allowed to learn from, and thus what forms of experimentation are safe.
Where censoring is severe, it may be preferable to learn from upstream signals
(e.g. conversions, add-to-cart, or lost-sales estimates) rather than revenue
alone; where covariates are available, a contextual GP over (p, x¢) can reduce
“effective” nonstationarity by explaining away predictable shifts; and where
strategic interaction is central, regret relative to a nonstrategic dynamic
oracle may be the wrong benchmark.

When bounded-variation drift is violated. The variation budget Vp
is a disciplined way to model change, but it does rule out some economically
relevant shocks. Flash crashes in demand, one-time policy interventions, and
discontinuous platform changes can generate large instantaneous jumps that
dominate ), sup,, | f; — fi—1]|. When such events occur, the U-shaped tradeoff
in W becomes more acute: long memory is harmful, but extremely short
memory makes the posterior noisy and can lead to costly price oscillations.
In these settings, hybrid procedures that combine forgetting with explicit
change detection (e.g. monitoring predictive errors and triggering a reset) are
often more robust than any fixed W or p. More broadly, bounded-variation is
a modeling stance that says “the world moves, but not arbitrarily fast”; if the
business environment does not respect that stance, then no purely passive
tracking method can guarantee low regret without additional structure or
side information.

Policy and operational implications. Two deployment implications fol-
low. First, choosing W (or p) should be tied to an interpretable timescale:
how quickly do we believe willingness-to-pay, competitive conditions, or traf-
fic composition changes in a way that matters for pricing? This suggests
governance: teams can set a default memory horizon (say, “two weeks of evi-
dence”), then allow limited online adaptation around it, rather than treating
tuning as a purely algorithmic exercise. Second, experimentation has exter-
nalities. Even if SW-GP-UCB improves revenue, frequent price moves can
erode trust, trigger platform scrutiny, or violate internal fairness policies.
These costs can be modeled as switching frictions or explicit constraints on
price changes; empirically, we find that such constraints often shift the opti-
mal W upward because the firm is effectively committing to smoother paths.
Finally, in regulated or high-salience categories, “safe exploration” matters:
conservative uncertainty calibration and explicit caps on price excursions can
be as important as asymptotic regret. In short, the methods here are best
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seen as components of a pricing system with institutional constraints, not as
fully autonomous repricing agents.

Conclusion: practical takeaways and open problems. We take away
three practical lessons from the nonstationary GP-UCB perspective. First,
the central object to govern is not the point estimate of the revenue curve, but
the effective memory of the system. Windowing or discounting determines
which past regimes are treated as relevant evidence today, and this choice
should be expressed in business time units (days, weeks, seasons) rather than
only as a tuning parameter. Second, the decision rule must be paired with
diagnostics. In drifting environments, the most common deployment failure
is not that the algorithm explores too little in a stationary world, but that it
continues to trust a model trained on a world that no longer exists. Rolling
measures of predictive fit, residual calibration, and the realized frequency of
near-boundary prices provide early warnings that the memory horizon is too
long, the kernel is too smooth, or the uncertainty is miscalibrated. Third, the
economic costs of experimentation are multi-dimensional: short-run revenue
loss is only one component, alongside customer trust, operational complexity,
and compliance. These costs should be reflected explicitly—as constraints
on price moves, caps on exploration ranges, or switching frictions—rather
than treated as informal “guardrails” outside the model.

From an implementation standpoint, a useful workflow is to treat SW/ED-
GP-UCB as a tracking controller with two knobs: a memory knob (W or p)
and a conservativeness knob (the exploration multiplier and any safety con-
straints). We can choose memory by aligning it with a presumed “half-life”
of demand predictability, then refine it empirically by backtesting rolling
regret proxies (e.g. the gap between posted revenue and a hindsight best-in-
window price). We can choose conservativeness by specifying acceptable tail
risk: how often are we willing to post prices that are meaningfully outside
the historically profitable range? In many retail settings, the dominant risk
is not that we fail to find the global optimum in a smooth curve, but that we
generate unstable price paths that create organizational pushback. In that
sense, constraints that smooth prices can be complementary to forgetting:
they reduce the harm from noisy short windows, allowing faster tracking
without visible oscillations.

Our results also suggest a more nuanced view of “adaptive pricing” as
an organizational capability. In stable periods, the algorithm should behave
like a high-precision estimator with a long memory; in turbulent periods,
it should behave like a change-responsive tracker. A purely fixed W or p
can only approximate this, which motivates hybrid designs: meta-rules that
adapt memory based on forecast errors; periodic “re-anchoring” to a baseline
price policy; and model ensembles that hedge across kernels and timescales.
Such designs are not merely engineering tricks: they correspond to econom-
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ically interpretable commitments about how much the firm is willing to rely
on the past, and how quickly it can credibly pivot when the market moves.

Several open problems are especially salient for the economics of nonsta-
tionary pricing. The first is multi-agent competition. In many categories, the
seller’s demand is influenced by competitors’ prices and promotions, which
themselves respond to the seller’s policy. Then f;(-) is not an exogenous
drifting function but part of an evolving game. Regret relative to a dynamic
oracle can be misleading because the benchmark ignores strategic reactions.
The right object may be a notion of regret to a time-varying equilibrium,
or performance guarantees under a class of competitor response models (e.g.
bounded rationality or slow adaptation). Methodologically, this pushes us
toward multi-agent bandits, learning in games, and models where the “envi-
ronment drift” is endogenous. Practically, it implies that learning systems
should be evaluated not only on immediate revenue lift, but also on their
impact on the competitive dynamics they may induce.

The second open problem is fairness and policy constraints. Modern
pricing systems are increasingly subject to constraints: limits on price dis-
crimination, requirements of price transparency, caps tied to cost-based rules,
and internal policies aimed at avoiding extreme price dispersion across re-
gions or consumer groups. These constraints interact with exploration in
nontrivial ways. A rule that is “fair” in outcomes (e.g. bounded differences
in realized prices across groups) may be incompatible with efficient learning
if some groups provide more informative signals; conversely, a rule that is
fair in opportunity (e.g. equal exploration budgets across groups) may incur
avoidable revenue losses. This motivates constrained and multi-objective for-
mulations in which the algorithm learns under parity constraints, Lipschitz
constraints across groups, or welfare-based objectives that trade off revenue
and consumer surplus. The analytical challenge is to obtain regret guar-
antees that incorporate both drift and constraints without collapsing into
vacuous worst-case bounds; the practical challenge is to produce auditable
policies with clear documentation of where and why the system explores.

A third open problem is finite inventory and operational integration.
When inventory is limited, the feedback is censored and the objective is
no longer period-by-period revenue but an intertemporal tradeoff between
margin and stock depletion. The seller’s decision becomes a joint control
of price and inventory, potentially with replenishment and lead times, and
the “oracle” policy depends on the remaining stock and the future demand
trajectory. Extending the GP tracking approach requires combining nonsta-
tionary demand learning with dynamic programming or approximate control,
and handling the fact that learning changes the future state distribution (be-
cause price affects sales and hence future inventory). A promising direction is
to treat the continuation value of inventory as an endogenous “shadow cost”
that converts the problem back into a sequence of myopic pricing decisions
with an adjusted objective; another is to use contextual kernels where the
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state (inventory, time-to-replenish, season) enters as a covariate, reducing
apparent drift by explaining it through state dependence.

More broadly, the theory invites work on robustness and evaluation. Ro-
bustness asks how to design tracking algorithms that degrade gracefully un-
der misspecification, heavy-tailed noise, or abrupt regime shifts, without
requiring ad hoc resets. Evaluation asks how to assess nonstationary pric-
ing systems with credible counterfactuals, given that the policy changes the
data it sees. Both questions matter for practice: firms need not only per-
formance, but also stable governance and clear accountability. Our view is
that the main contribution of the framework is to make the tradeoff explicit:
memory controls adaptivity, uncertainty controls experimentation, and both
should be chosen with the economic institution in mind.
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