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Abstract

Dynamic pricing systems in 2026 face an additional objective be-
yond revenue: governance. Firms increasingly must respect fairness
rules (e.g., non-discrimination across protected groups) and opera-
tional or regulatory limits on price volatility, while demand remains
unknown and complex. Building on BO/GP-bandit pricing methods
that avoid parametric demand assumptions, we propose Governed GP-
UCB: a constrained Bayesian optimization algorithm that learns both
revenue and constraint functions using Gaussian process posteriors.
The method selects prices by maximizing an optimistic revenue bound
subject to conservative feasibility bounds, ensuring high-probability
constraint satisfaction (safe set expansion) or controlled violations (pri-
mal–dual). To address real deployment requirements, we incorporate
explicit price-volatility limits via batching (hard switch budgets) or
switching-cost regularization. We provide regret bounds comparable
to unconstrained GP-UCB up to constraint-dependent terms and show
how governance tightness shapes optimal prices through KKT charac-
terizations in a clean static benchmark. Empirically, the governed
algorithm achieves strong revenue while producing fewer price changes
and substantially reduced disparate-impact measures, compared to un-
constrained BO and deep RL baselines. The paper provides a practical,
theory-backed blueprint for compliance-by-design pricing systems.
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1 1. Introduction and motivation: governance con-
straints in modern pricing (fairness, volatility),
gaps in parametric/RL methods, and why GP/BO
is a natural compliance-by-design tool.

Modern pricing is increasingly governed as much by constraints as by de-
mand. Platforms that can tailor offers at the level of protected groups (and,
in practice, even individuals) face external scrutiny from regulators, internal
risk teams, and consumer advocates. Two classes of restrictions recur across
domains. First are fairness and non-discrimination requirements, which can
take the form of direct limits on price dispersion (e.g., |p(g)− p(g′)| ≤ ∆) or
limits on disparities in predicted outcomes (e.g., |µg(p(g))−µg′(p(g

′))| ≤ ε).
Second are operational volatility constraints: frequent price changes can
trigger consumer backlash, complicate communication, and violate contrac-
tual or policy commitments, motivating explicit budgets on the number of
switches or on total variation over time. These governance requirements turn
dynamic pricing into a sequential decision problem in which the seller must
learn demand while remaining compliant period by period.

The methodological gap is that much of the dynamic-pricing literature
optimizes within either parametric demand families or reinforcement-learning
architectures that prioritize asymptotic performance under stationarity and
rich exploration. Parametric models deliver interpretability and statistical
efficiency when correctly specified, but they are brittle when group-level
demand exhibits nonlinearities, thresholds, or unmodeled interactions. In
governed settings, misspecification is not merely a welfare loss; it can induce
systematic constraint violations (e.g., underestimating the demand response
in one group leads to persistent outcome disparities) or over-correction that
sacrifices revenue unnecessarily. At the other extreme, model-free RL is often
paired with aggressive experimentation that is hard to reconcile with com-
pliance: without calibrated uncertainty, exploration can wander into unsafe
regions, and the resulting policies can be difficult to audit or justify ex post
to regulators and stakeholders.

We therefore take a compliance-by-design perspective: the learning al-
gorithm should explicitly track uncertainty about both revenue and con-
straints, and should select prices only when it can certify feasibility (or, un-
der a softer regime, can quantify and control expected violations). Gaussian
process (GP) models, used as nonparametric priors over unknown functions,
naturally instantiate this idea. By producing posterior means and confidence
bands, a GP approach converts unknown constraints into probabilistic safety
envelopes. In particular, instead of hoping that a learned policy satisfies fair-
ness constraints on average, we can require that an upper confidence bound
on each constraint be nonpositive, ensuring that the chosen action is con-
servative relative to estimation error. The same uncertainty quantification
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supports principled exploration via optimism: upper confidence bounds for
the objective encourage learning where revenue is potentially high, but only
within the region currently certified as feasible.

This GP-based viewpoint is also well matched to the economic structure
of governed pricing. Governance constraints couple groups: a parity limit ties
prices directly across g, while outcome-based constraints link prices through
demand responses. Such coupling makes it difficult to decompose learning
group by group, and it complicates ad hoc exploration strategies. A joint
Bayesian surrogate for revenue and constraints provides a unified representa-
tion of these cross-group tradeoffs and their uncertainty. Moreover, volatility
constraints fit naturally into this framework as restrictions on the admissi-
ble sequence of actions (e.g., piecewise-constant prices with limited switches,
or a total-variation budget), which can be enforced mechanically alongside
feasibility. In operational terms, this yields policies that are not only sta-
tistically grounded but also implementable: they change prices infrequently,
document why a change is warranted, and maintain explicit buffers against
constraint violations.

We emphasize limitations alongside the appeal. GP models rely on reg-
ularity assumptions (captured here by an RKHS norm bound) that may fail
under sharp discontinuities or strategic consumer responses. Constraint feed-
back may be indirect, noisy, or delayed, especially for outcome-fairness no-
tions that depend on latent conversion probabilities rather than directly ob-
served demand. Finally, conservative safety can be costly early on when un-
certainty is large, potentially shrinking the set of allowable prices. Nonethe-
less, for the central governance problem—learn while remaining compliant—
the GP/BO toolkit provides an unusually coherent combination of (i) flexible
nonparametric approximation, (ii) calibrated uncertainty, and (iii) algorith-
mic machinery for safe, constrained optimization under sequential data.

2 2. Related work: dynamic pricing with learning
(parametric/RL), GP bandits/BO, constrained/safe
bandits, fairness in online decision-making, ban-
dits with switching costs.

A large literature studies dynamic pricing with learning under parametric
demand models. Classic approaches posit a demand curve indexed by an
unknown parameter (often linear or logit), and use bandit-style experimen-
tation to learn the parameter while controlling revenue loss; see, e.g., ???.
These models yield sharp regret bounds and transparent comparative statics
when correctly specified, and they align naturally with managerial forecast-
ing pipelines. Their limitation for our purposes is that the governance object
is typically not modeled as an explicit constraint: fairness or parity restric-
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tions, when present at all, are imposed ex post through ad hoc adjustments.
Moreover, when parametric misspecification is present, the resulting bias can
interact with group heterogeneity in precisely the way regulators care about
(systematic disparities rather than purely noisy errors).

At the other end, reinforcement-learning formulations treat pricing as a
control problem with rich state dynamics (inventory, demand seasonality,
competition). This line is well suited to nonstationary environments and to
settings with delayed rewards; see surveys such as ?. However, RL methods
commonly rely on exploration heuristics whose safety properties are diffi-
cult to certify, and constraint handling is often heuristic (reward shaping,
Lagrangian penalties without calibrated uncertainty). In governance con-
texts, where the relevant question is frequently “was each decision compliant
at the time it was made?”, this gap between asymptotic performance and
period-by-period guarantees is consequential.

Our methodological building block comes from Gaussian-process bandits
and Bayesian optimization, which provide nonparametric function learning
together with explicit posterior uncertainty. The GP-UCB paradigm ? and
its many variants establish regret rates that scale with kernel complexity via
information gain, and have become standard tools for optimization under
expensive, noisy evaluations. While most BO work targets low-frequency ex-
perimentation (e.g., hyperparameter tuning), the conceptual match to pric-
ing is the combination of flexible response surfaces and calibrated confidence
sets.

A closely related stream studies constrained and “safe” bandits, in which
actions must satisfy unknown constraints learned from data. Safe BO meth-
ods construct conservative feasible sets from upper confidence bounds on
constraint functions, ensuring feasibility with high probability; see, e.g., ??.
Constrained contextual bandits and primal–dual online learning methods
provide complementary perspectives in which feasibility is traded off against
reward via dual variables, yielding sublinear cumulative violations under
suitable conditions ??. Our setting differs in two respects that matter for
practice: (i) constraints are governance constraints that couple protected
groups through parity or outcome-based requirements, and (ii) the action is
a vector of group prices, so both objective and constraints live on a joint
price space rather than decomposing cleanly by group.

We also connect to the rapidly growing literature on fairness in on-
line decision-making. Much work focuses on allocation or classification un-
der statistical notions of fairness (e.g., equal opportunity) and studies the
exploration–fairness tradeoff when group labels are observed ??. Pricing
raises distinct issues: the fairness object may be the price itself (disparate
treatment) or the induced purchase outcomes (disparate impact), and both
notions are naturally expressed as constraints on a decision-dependent de-
mand system. Our formulation treats these requirements symmetrically as
unknown functions to be learned and controlled, which facilitates auditing:
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the same confidence machinery that justifies exploration also explains why
a price vector is deemed compliant.

Finally, we relate to bandits with switching costs and variation bud-
gets, which formalize the operational friction from frequent policy changes
?. In pricing, such constraints capture menu costs, customer trust, and inter-
nal governance processes (approvals, documentation). Technically, switching
constraints interact with learning because they limit how quickly the algo-
rithm can correct mistaken inferences. Our approach accommodates these
frictions by restricting the admissible sequence of price vectors (hard switch
or total variation), bringing together safe exploration, fairness governance,
and operational stability in a single sequential decision framework.

3 3. Model: groups, demand/revenue primitives,
observable feedback, constraint definitions (price
parity and outcome-based fairness), and volatil-
ity constraints (switch/TV). Define feasible com-
parator classes.

We model a seller (or platform) interacting with consumers partitioned into
a finite set of protected groups G with G = |G|. Time is discrete, t =
1, . . . , T . In each period the seller posts a vector of group-dependent prices
pt ∈ [pℓ, ph]

G, where pt(g) denotes the price offered to group g. The key
economic primitive is that groups may respond differently to price due to
heterogeneous elasticities, baseline willingness-to-pay, or differential access,
so our action is intrinsically multidimensional.

When group g is offered price p, demand is a random variable Dg,t(p)
(units purchased, conversions, or accepted offers). We write the mean de-
mand curve as

µg(p) = E[Dg,t(p)] ,

and define realized and mean revenues for group g as

rg,t = pt(g)Dg,t

(
pt(g)

)
, fg(p) = p µg(p).

Total mean revenue from a price vector p is therefore

F (p) =
∑
g∈G

fg
(
p(g)

)
,

and the seller’s realized revenue in period t is
∑

g rg,t. To isolate the governance–
learning tradeoff, our clean baseline assumes that after posting pt the seller
observes group-level revenues rg,t (or equivalently demands Dg,t), with con-
ditionally σ-sub-Gaussian noise around the mean. In many applications one
observes only aggregated outcomes or delayed chargebacks; these features
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can be incorporated, but they obscure the core mechanism we wish to em-
phasize: governance turns pricing into constrained optimization on a joint
price space.

Governance enters through explicit constraints on the posted price vec-
tor. We encode each requirement as an (unknown) constraint function
cj : [pℓ, ph]

G → R with the feasibility condition cj(p) ≤ 0, for j = 1, . . . , J .
This abstraction allows the constraint to be a direct legal rule (e.g., dis-
parate treatment in prices) or an operationalized policy threshold derived
from internal audits. Two canonical examples are:

(price parity) cparg,g′(p) = |p(g)− p(g′)| −∆ ≤ 0,

which limits dispersion in treatment across groups up to tolerance ∆, and

(outcome fairness) coutg,g′(p) =
∣∣µg(p(g))− µg′(p(g

′))
∣∣− ε ≤ 0,

which limits disparities in expected purchase outcomes up to tolerance ε. The
latter is economically natural but informationally demanding: it couples
groups through unknown demand curves, so compliance requires learning
how each group responds to its offered price. In practice, platforms may
estimate these constraints via noisy proxies (conversion rates, acceptance
probabilities, or complaint-adjusted outcomes); our formulation treats such
measurements as noisy feedback on cj(pt).

Finally, we impose volatility constraints capturing menu costs, approval
frictions, and the governance reality that frequent price changes are them-
selves risky or infeasible. We study two common forms. A hard switch
budget S limits the number of periods in which the price vector changes,

#{t ≥ 2 : pt ̸= pt−1} ≤ S,

while a total-variation budget V limits cumulative movement,
T∑
t=2

∥pt − pt−1∥1 ≤ V.

Both restrictions force the learning algorithm to “live with” earlier choices,
which is particularly consequential when constraints are present: the cost of
a misstep is not merely low revenue, but potential noncompliance.

These elements jointly define the policy classes against which we evaluate
performance. Let ΠS denote the class of feasible price sequences that satisfy
all governance constraints period-by-period and incur at most S switches:

ΠS =
{
{pt}Tt=1 : pt ∈ [pℓ, ph]

G, cj(pt) ≤ 0 ∀j, t, #{t ≥ 2 : pt ̸= pt−1} ≤ S
}
.

Analogously, ΠV imposes the total-variation budget V . These comparator
classes formalize a practical benchmark: we do not compare a governed, op-
erationally constrained seller to an unconstrained clairvoyant, but to the best
feasible pricing path within the same governance and stability requirements.
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4 4. Static benchmark and characterization: con-
strained revenue maximization problem, KKT con-
ditions, and interpretable comparative statics (how
tighter fairness/volatility changes the optimal pric-
ing vector). Flag when numerical optimization is
needed.

Before turning to learning dynamics, we anchor the analysis in a static gov-
erned benchmark : what a regulatorily compliant, fully informed seller would
do in a single period absent estimation error. This benchmark isolates the
purely economic distortion induced by governance, separating it from the
additional distortion created by learning under uncertainty.

Formally, given mean revenue F (p) and governance constraints {cj(p) ≤
0}Jj=1, the static problem is

p⋆ ∈ arg max
p∈[pℓ,ph]G

F (p) s.t. cj(p) ≤ 0, j = 1, . . . , J.

This formulation is deliberately agnostic about the origin of cj : some con-
straints are directly about treatment (e.g., parity of posted prices), while oth-
ers are outcome-based and therefore couple prices through demand responses.
Economically, the distinction matters because treatment constraints primar-
ily restrict the geometry of feasible prices, whereas outcome constraints re-
strict prices through the slope and curvature of the demand system, effec-
tively importing behavioral heterogeneity into compliance.

When F is concave and each cj is convex (as in convex surrogates for
absolute-value fairness rules), the benchmark admits a transparent first-order
characterization. There exist multipliers λ⋆

j ≥ 0 such that

∇F (p⋆) +

J∑
j=1

λ⋆
j∇cj(p

⋆) = 0, λ⋆
jcj(p

⋆) = 0, cj(p
⋆) ≤ 0.

The economic content is that governance introduces shadow prices: λ⋆
j mea-

sures the marginal revenue gained from relaxing constraint j by one unit.
In particular, under price-parity rules (bounding maxg p(g) − ming p(g)),
the multipliers encode how costly it is to prevent the platform from tai-
loring markups to group-specific elasticities. Under outcome-fairness rules,
the multipliers instead price the induced coupling across groups: compli-
ance requires shifting prices away from each group’s unconstrained revenue
optimum until expected outcomes align within tolerance.

This benchmark yields interpretable comparative statics that connect
directly to policy levers. If ∆ is the allowed parity dispersion, increasing ∆
weakly expands the feasible set, implying

F
(
p⋆(∆2)

)
≥ F

(
p⋆(∆1)

)
for ∆2 ≥ ∆1,
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and (generically) permits greater cross-group price dispersion. Similarly, in-
creasing the outcome-fairness tolerance ε weakly raises the optimal governed
value, reducing the extent to which high-elasticity groups “pull” other groups’
prices through coupled constraints. Operationally, these monotonicities clar-
ify what is being traded off when compliance teams debate tolerances: tighter
rules reduce legal or reputational exposure but impose an endogenous tax on
price discrimination that is often largest precisely when groups differ most.

Volatility constraints can be interpreted as adding intertemporal feasi-
bility that, period-by-period, resembles a local restriction around the status
quo. For example, with a per-period TV move limit vt, the seller effectively
solves

max
p

F (p) s.t. cj(p) ≤ 0 ∀j, ∥p− pt−1∥1 ≤ vt,

so tightening vt (or reducing the switch budget S in a piecewise-constant
regime) shrinks the feasible correspondence and can force persistence at sub-
optimal but “approved” prices. In KKT terms, an additional multiplier on
the movement constraint captures the marginal value of flexibility, which is
exactly what operational teams experience as the cost of slow price-approval
pipelines.

A limitation of the static characterization is that it is only as tractable
as the underlying geometry. Absolute-value fairness constraints, unknown
demand-induced outcomes, and high-dimensional p can easily break con-
vexity or differentiability, in which case closed-form characterization is un-
available and numerical methods are required even with full information. In
our setting the challenge is sharper: F and cj are unknown and must be
learned. This is why we next turn to a GP-based procedure that simulta-
neously searches for high revenue and enforces conservative feasibility while
respecting volatility.

5 5. Algorithm: Governed GP-UCB

We model both revenue and governance objects with Gaussian-process (GP)
surrogates, which provide a disciplined way to translate finite, noisy obser-
vations into (i) point predictions and (ii) uncertainty quantification that can
be carried forward into conservative compliance. Concretely, for each group
g ∈ G we treat the mean revenue curve fg : [pℓ, ph] → R as an unknown
function in the RKHS Hk with ∥fg∥Hk

≤ B. We place the corresponding
GP prior fg ∼ GP(0, k) (or interpret the GP posterior as a kernel ridge esti-
mator with calibrated uncertainty), and we update this posterior using the
realized group revenues

yFg,t = rg,t = pt(g)Dg,t

(
pt(g)

)
= fg

(
pt(g)

)
+ϵg,t, ϵg,t is σ-sub-Gaussian.

Given data DF
t = {(pτ (g), yFg,τ )}τ≤t, g∈G , standard GP regression yields, for

each group, a posterior mean µF
g,t(·) and posterior standard deviation σF

g,t(·).
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Because the seller’s objective is the sum across groups, we propagate these
group-level posteriors to total mean revenue

F (p) =
∑
g∈G

fg
(
p(g)

)
, µF

t (p) =
∑
g∈G

µF
g,t

(
p(g)

)
,

and we upper bound uncertainty in F by aggregating group uncertainties
(e.g., via a union bound across groups), which is what ultimately permits a
single optimistic score for any candidate price vector p ∈ [pℓ, ph]

G.
We treat governance constraints analogously. For each constraint j =

1, . . . , J , we posit an unknown function cj : [pℓ, ph]
G → R with ∥cj∥Hk

≤ Bc

and noisy feedback

ycj,t = cj(pt) + ηj,t, ηj,t is σc-sub-Gaussian.

Here ycj,t can be a direct measurement (e.g., a computed parity gap) or an
estimable proxy (e.g., an outcome disparity inferred from conversion esti-
mates); the GP abstraction simply requires that we can form a scalar obser-
vation whose conditional mean is cj(pt). Updating on Dc

t = {(pτ , ycj,τ )}τ≤t

yields µc
j,t(·) and σc

j,t(·).
The key deliverable from these posteriors is a sequence of high-probability

confidence bands. For revenue we form

UF
t (p) = µF

t (p) +
√

βt+1 σ̃
F
t (p), LF

t (p) = µF
t (p) −

√
βt+1 σ̃

F
t (p),

and for each constraint,

U c
j,t(p) = µc

j,t(p) +
√
βt+1 σ

c
j,t(p), Lc

j,t(p) = µc
j,t(p) −

√
βt+1 σ

c
j,t(p).

The exploration scale βt is chosen so that, with probability at least 1 − δ,
these bands hold uniformly over t and p (and over all g, j); operationally,
this is the statistical content behind conservative compliance: we certify
feasibility using an upper bound U c, rather than a point estimate that may
be wrong early on.

Finally, our regret and sample-complexity accounting is organized by the
GP information gain,

ΓT = max
A: |A|=T

1

2
log det

(
I + σ−2KA

)
,

where KA is the kernel Gram matrix on the queried price points. ΓT mea-
sures how quickly posterior uncertainty can shrink under kernel k; it is
the bridge from per-period confidence widths to cumulative learning per-
formance. Economically, it captures the effective complexity of the demand-
and-governance environment: smoother functions (under k) generate smaller
ΓT , meaning fewer exploratory price experiments are needed to both learn
and remain compliant. A limitation, which we treat as a modeling caveat
rather than a technicality, is that misspecified kernels or nonstationary be-
havior can inflate realized uncertainty relative to the nominal GP bands,
motivating diagnostics and conservative choices of k and βt in practice.
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6 5.1. GP surrogates for revenue and constraints;
confidence sets and information gain.

5.2. Safe action set construction (conservative constraints) and safe
set expansion. The confidence bands from Section 5.1 become operational
only once we convert them into an admissible set of price vectors that we are
willing to deploy online. Our guiding principle is simple: when constraints
represent governance rules (parity, outcome fairness, regulatory caps), we
prefer ex ante certification to ex post repair. In the GP language, this means
we enforce constraints using an upper confidence bound, so that any ac-
tion deemed feasible is feasible for the true (unknown) constraint with high
probability.

Formally, at the start of period t we construct the conservative feasible
region

Asafe
t =

{
p ∈ [pℓ, ph]

G : U c
j,t−1(p) ≤ 0 ∀j = 1, . . . , J

}
,

where U c
j,t−1(p) = µc

j,t−1(p)+
√
βtσ

c
j,t−1(p) is the period-(t−1) upper band for

constraint j. The economic interpretation is that we price as if the constraint
were at its most pessimistic level consistent with observed data: only if even
the pessimistic assessment is compliant do we treat p as implementable.
Under the same event on which the GP bands are valid uniformly over time
and actions, any realized choice pt ∈ Asafe

t satisfies cj(pt) ≤ 0 for all j, which
is the sense in which conservative feasibility turns statistical uncertainty into
a governance guarantee.

Two practical issues arise immediately. First, Asafe
t must be nonempty.

In applications this is typically handled by positing (or eliciting from policy)
at least one baseline safe price vector p(0) such that cj(p(0)) ≤ 0 for all j; for
example, a uniform price that is known to satisfy parity by construction, or
a historically used pricing scheme that has passed compliance review. If p(0)

is known safe, we can seed the GP with an initial observation at p(0) and, if
needed, impose the additional rule that p(0) ∈ Asafe

t for all t (e.g., by never
shrinking the safe set in a way that excludes it). When safety is not known
deterministically, a weaker but still disciplined alternative is to begin with
a short calibration phase in which we restrict attention to a conservative
subset P ⊂ [pℓ, ph]

G that is believed to be safe under minimal assumptions,
using those data to form the first nontrivial Asafe

t .
Second, feasibility must be reconciled with volatility limits. Let Vt de-

note the operational constraint set implied by the seller’s allowed price ad-
justments at time t. For example, under a total-variation budget we may
use a local TV ball

VTV
t =

{
p ∈ [pℓ, ph]

G : ∥p− pt−1∥1 ≤ vt

}
,

11



with
∑T

t=2 vt ≤ V , or under a hard switch budget we may enforce piecewise-
constant pricing by restricting changes to block boundaries. The action
actually available at time t is then the intersection Asafe

t ∩Vt. This intersec-
tion captures a policy-relevant tension: strict governance shrinks the feasible
set across groups, while volatility limits shrink it over time. The algorithmic
choice rule (stated earlier) simply maximizes the optimistic revenue score
over this doubly restricted region.

Safe sets expand endogenously with learning. Because σc
j,t(p) shrinks

around queried actions (at a rate governed by ΓT ), the conservative slack√
βt+1σ

c
j,t(p) contracts over time, and additional price vectors satisfy U c

j,t(p) ≤
0. Economically, compliance becomes less distortive as the platform accumu-
lates evidence about how prices map into parity gaps or outcome disparities:
rules that are initially binding due to uncertainty become binding only where
they are substantively restrictive. This expansion is not monotone for arbi-
trary βt, but with nondecreasing βt and standard GP updating, the dominant
force is variance reduction, so the seller typically experiences a growing menu
of certified actions.

We emphasize a limitation: conservative feasibility can be overly restric-
tive when constraint feedback is noisy or indirect (e.g., outcome fairness
inferred from conversion estimates). In such cases, Asafe

t may remain small
for long horizons, motivating either richer data collection (to reduce σc) or
a controlled relaxation via the primal–dual variant in which temporary vio-
lations are penalized rather than forbidden.

7 5.2. Safe action set construction (conservative
constraints) and safe set expansion.

5.3. Primal–dual extension when safety constraints are soft (bounded
violation). Conservative certification is attractive when governance rules
must hold period-by-period. In many deployments, however, regulators and
internal risk teams permit limited and auditable noncompliance—for in-
stance, a small, transient outcome disparity while a new market is explored,
or occasional parity deviations due to operational frictions—provided that
violations are controlled and converge to zero on average. When such soft
constraints are acceptable, we can replace the hard safe-set restriction with
a primal–dual mechanism that learns the shadow prices of governance.

We introduce the (unknown) constraint vector c(p) = (c1(p), . . . , cJ(p))
and define the Lagrangian objective

L(p, λ) = F (p)−
J∑

j=1

λj cj(p), λ ∈ RJ
+.

Economically, the dual variables λj act as endogenously chosen penalties: if
constraint j has been repeatedly violated, its multiplier rises, making future
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actions that risk further violation less attractive even when they promise
high revenue. This is precisely the “governance cost” interpretation that is
often used in compliance discussions: instead of banning actions outright,
we price their expected governance externality.

Operationally, we combine GP optimism for revenue with a conservative
(or simply point-estimated) assessment of constraints inside the Lagrangian.
A convenient choice rule is

pt ∈ argmax
p∈Vt

(
UF
t−1(p)−

J∑
j=1

λj,t U
c
j,t−1(p)

)
,

where Vt encodes the volatility restriction (block-constant pricing under a
switch budget, or a local TV ball under a variation budget). This rule is
intentionally modular: the platform continues to explore optimistically in
revenue space, but exploration that is predicted to increase governance risk
is automatically discounted by the current multipliers. In settings where U c

is overly pessimistic, one may instead use posterior means µc (or a one-sided
bound) to avoid paralyzing the policy; the analysis then tracks the additional
estimation error as an additive term.

After posting pt and observing noisy constraint feedback, we update λ
via projected gradient ascent (or mirror descent) on the dual:

λj,t+1 =
[
λj,t + ηt ĉj,t(pt)

]
+
, j = 1, . . . , J,

where ĉj,t(pt) is the observed proxy for cj(pt) (e.g., an estimated parity gap
or outcome disparity), ηt > 0 is a stepsize, and [·]+ denotes projection onto
R+. The mechanism is transparent: if a constraint is satisfied (negative
feedback), its multiplier drifts downward; if it is violated, the multiplier
increases and raises the future implicit cost of similar actions.

Under standard conditions familiar from online convex optimization—in
particular, a Slater-type condition ensuring that some action in Vt achieves
strict feasibility with margin, boundedness of cj(p), and convex (or convex-
surrogate) constraints—this primal–dual scheme yields two policy-relevant
guarantees. First, regret relative to the best feasible comparator in the same
volatility class remains sublinear, because the optimistic term UF drives ex-
ploration while the dual variables prevent persistent governance drift. Sec-
ond, cumulative violation

ViolT =

T∑
t=1

J∑
j=1

[cj(pt)]+

is o(T ), so that average violation vanishes even though occasional violations
are allowed. Intuitively, the platform may “borrow” governance slack early
to learn, but must “repay” it as multipliers rise; the long-run outcome is
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disciplined compliance without requiring an initially large certified action
set.

We stress two limitations. If constraints are highly nonconvex in prices
(as can occur with discontinuous parity rules or complex outcome metrics),
primal–dual updates may stabilize only around local solutions; in such cases,
convex relaxations or linearized constraints are often necessary. Moreover, if
constraint feedback is severely delayed or biased (e.g., fairness inferred from
sparse conversion data), the dual variables can react slowly, and stepsizes
must be tuned conservatively. These caveats reflect a broader point: soft
governance is most credible when measurement pipelines and auditing pro-
cesses are strong enough that violations are not only bounded in theory but
also observable and remediable in practice.

8 5.3. Primal–dual extension when safety constraints
are soft (bounded violation).

5.4. Volatility control: (i) batching for hard switch budgets; (ii)
regularized selection for switching costs/TV constraints. In many
pricing deployments, the binding constraint is not only governance but also
operational volatility : frequent price adjustments create engineering over-
head, complicate customer communication, and can themselves trigger fair-
ness scrutiny when groups observe rapidly changing differentials. We there-
fore treat volatility as a first-class constraint on the learning dynamics, rather
than as an afterthought imposed by manual throttling. Conceptually, volatil-
ity control plays the same role as governance constraints: it restricts the
action set over time and forces us to learn “under inertia.”
(i) Batching to satisfy a hard switch budget. Under a hard cap S on the
number of price changes, a simple and transparent design is to pre-commit
to B = S + 1 blocks and keep prices constant within each block. Let 1 =
τ1 < τ2 < · · · < τB+1 = T + 1 define a partition of periods into blocks
b = 1, . . . , B, where block b contains t ∈ {τb, . . . , τb+1 − 1}. We choose a
block price vector p(b) ∈ [pℓ, ph]

G and set pt = p(b) for all t in block b. This
immediately guarantees #{t ≥ 2 : pt ̸= pt−1} ≤ B− 1 = S deterministically,
while still allowing the algorithm to explore across blocks.

From a learning perspective, batching converts the original T -period
problem into a B-round GP bandit with aggregated feedback. If we define
the block-average revenue observation

r̄(b) =
1

τb+1 − τb

τb+1−1∑
t=τb

∑
g∈G

rg,t,

then r̄(b) is a noisy sample of F (p(b)) with reduced variance (sub-Gaussian
scale shrinks with block length under conditional independence). Opera-
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tionally, this aggregation is attractive: it matches common experimentation
practice (hold a policy fixed long enough to measure it) and makes gover-
nance auditing easier because each block is a well-defined “pricing episode.”
The cost is adaptivity: mistakes persist for the duration of a block, so the
regret bound scales with the effective horizon B, and block lengths must be
chosen to balance measurement quality against responsiveness.
(ii) Regularized selection under switching costs or total variation (TV) bud-
gets. When volatility is better modeled as a cumulative budget V (or as an
explicit switching cost), we can encode it directly in the period-by-period
choice rule. A convenient device is to maintain remaining variation Vt−1 and
restrict choices to a local neighborhood:

Vt(Vt−1) =
{
p ∈ [pℓ, ph]

G : ∥p− pt−1∥1 ≤ vt,
∑
s≤t

∥ps − ps−1∥1 ≤ V
}
,

where vt can be a per-period cap that prevents abrupt jumps even when
budget remains. We then select prices by solving a regularized optimistic
problem, for example

pt ∈ arg max
p∈Vt(Vt−1)

(
UF
t−1(p) − ρt∥p− pt−1∥1

)
,

or, when combined with governance penalties (hard-safe or primal–dual), by
adding the corresponding constraint terms inside the same objective. Eco-
nomically, ρt acts like an endogenous adjustment cost: it prices the oper-
ational disruption of changing group prices, and it prevents the algorithm
from chasing small optimistic gains that are statistically fragile.

This regularization view is useful in practice because it admits continu-
ous tradeoffs: rather than a brittle “change/no-change” rule, the algorithm
can move gradually as posterior uncertainty shrinks. Computationally, the
ℓ1 term also encourages sparse adjustments (only a few groups move each
period), which often matches how pricing teams implement rollouts.
Limitations and design guidance. Batching is robust and easily auditable,
but it delays reaction to demand shifts and can amplify regret under non-
stationarity. TV-regularized policies respond more smoothly, but require
careful calibration of ρt (or vt) to avoid getting stuck near an early baseline.
In both cases, volatility control interacts with governance: stable pricing
makes fairness metrics less noisy and easier to certify, but it also means that
any initial fairness miscalibration can persist longer. Our recommendation
is therefore pragmatic: use batching when operational change control is the
primary constraint, and use TV regularization when gradual adaptation is
feasible and monitoring pipelines are strong enough to detect drift quickly.
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9 5.4. Volatility control: (i) batching for hard switch
budgets; (ii) regularized selection for switching
costs/TV constraints.

6. Theory. We now formalize the guarantees that justify governed learning
under operational inertia. The technical core is standard GP concentration
in RKHS combined with a restriction of the admissible action set induced
by either (i) a hard switch budget or (ii) a total-variation (TV) budget.
The main message is that volatility control changes where we are allowed
to optimize and explore, but (under mild regularity) it does not change how
posterior uncertainty accumulates: regret remains controlled by information
gain, up to the effective horizon implied by the volatility constraint.
Confidence structure. Let µF

t−1(p) and σF
t−1(p) denote the GP posterior mean

and standard deviation for total revenue F (p), and analogously (µc
j,t−1(p), σ

c
j,t−1(p))

for each constraint cj(p). For a confidence parameter βt chosen as in GP-
UCB (scaling with Γt and log(1/δ)), define

UF
t−1(p) = µF

t−1(p) +
√
βt σ

F
t−1(p), U c

j,t−1(p) = µc
j,t−1(p) +

√
βt σ

c
j,t−1(p).

Under the RKHS assumptions ∥fg∥Hk
≤ B, ∥cj∥Hk

≤ Bc, and σ-sub-
Gaussian observation noise, we have with probability at least 1 − δ the
simultaneous concentration event

∀t, ∀p ∈ [pℓ, ph]
G : |F (p)−µF

t−1(p)| ≤
√

βt σ
F
t−1(p), |cj(p)−µc

j,t−1(p)| ≤
√
βt σ

c
j,t−1(p).

This event is the sole ingredient needed to obtain both safety (via conserva-
tive feasibility) and regret control (via optimism).
Safety under conservative feasibility. Define the safe set

Asafe
t =

{
p ∈ [pℓ, ph]

G : U c
j,t−1(p) ≤ 0 ∀j

}
.

Choosing pt ∈ Asafe
t guarantees cj(pt) ≤ 0 for all t, j on the concentration

event, because cj(pt) ≤ U c
j,t−1(pt) ≤ 0. In applications, we emphasize the

practical implication: as long as the constraint feedback (possibly via prox-
ies such as conversion-rate disparities) is calibrated so that the GP model
is valid, governance auditing can be reduced to checking the algorithm’s
conservative bound U c rather than the unknown c.
Regret with volatility classes. Let ΠS denote feasible price sequences with at
most S switches and ΠV those with TV at most V . Consider the governed
optimistic rule

pt ∈ arg max
p∈Asafe

t ∩Vt

UF
t−1(p),

where Vt encodes either the batching restriction (hard-switch) or a local TV
restriction. On the concentration event, instantaneous regret is bounded by
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the posterior width at the chosen point:

F (p∗t )− F (pt) ≤ UF
t−1(pt)− F (pt) ≤ 2

√
βt σ

F
t−1(pt),

for any comparator p∗t that remains feasible whenever pt is chosen (in par-
ticular, for the best feasible policy in the same volatility class). Summing
over t and applying the standard information-gain inequality yields

RegT (Π) = Õ
(√

T ΓT

)
,

with ΓT the maximum information gain under kernel k on [pℓ, ph]
G (extended

in the usual way to vector-valued observations when learning group revenues
and constraints jointly).
Hard switches via batching. If we pre-commit to B = S + 1 blocks and
use aggregated observations within each block, then the effective decision
horizon becomes B. Under conditional independence, the block-average noise
is sub-Gaussian with scale shrinking with block length, improving estimation
within each chosen price. The resulting bound takes the form Õ(

√
B ΓB) in

block-time, which translates to a period-time regret that trades off infrequent
updates against more reliable measurements.
TV budgets and switching costs. For TV control, we restrict to Vt = {p :
∥p − pt−1∥1 ≤ vt} or equivalently maximize a regularized optimistic objec-
tive UF

t−1(p) − ρt∥p − pt−1∥1. The theory proceeds identically, except that
Vt can reduce exploration early; accordingly, the comparator class must be
restricted to sequences with comparable variation, matching the operational
premise that rapid experimentation is infeasible.
Scope and limitations. These guarantees are only as strong as the mod-
eling assumptions: severe nonstationarity, misspecified kernels, or biased
constraint proxies can invalidate safety. In practice, we view the theory as a
disciplined baseline: it clarifies which quantities must be monitored (poste-
rior widths, safe-set non-emptiness, and variation consumption) and where
additional robustness mechanisms (change-point tests, conservative priors,
or primal–dual soft constraints) are needed.

9.1 6.1. High-probability feasibility (always-safe constraints)
or sublinear cumulative constraint violation (primal–dual).

Our first governance objective is ex ante operational: at every period t,
the posted price vector should satisfy the (unknown) constraints cj(pt) ≤ 0.
The central idea is to convert an unobserved feasibility requirement into an
observable one by acting only on the conservative region implied by the GP
posterior. Concretely, whenever we enforce feasibility through the upper
confidence bounds U c

j,t−1(·), we are not “predicting” that a policy is safe; we
are requiring that it is safe under the most adverse realization consistent
with past data at confidence level 1− δ.
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Formally, let E denote the joint concentration event for the constraint
models: for all t and all p ∈ [pℓ, ph]

G,

cj(p) ≤ U c
j,t−1(p) ∀j ∈ {1, . . . , J}.

By standard RKHS–GP concentration (with βt chosen to account for a union
bound over t and j), we have Pr(E) ≥ 1 − δ. On E , feasibility becomes
immediate: if the algorithm selects pt such that U c

j,t−1(pt) ≤ 0 for every j,
then cj(pt) ≤ 0 for every j. In other words, always-safe behavior is achieved
not by learning constraints perfectly, but by never stepping outside a set
that is provably feasible given current uncertainty. This yields a pathwise
guarantee: with probability at least 1− δ, there are no constraint violations
at any time.

Two operational caveats are worth making explicit. First, the safe set
must be non-empty at the times we need to act. In practice, we treat this as a
design requirement: we initialize from a known compliant baseline price vec-
tor p(0) (often supplied by policy, prior auditing, or legacy pricing rules), seed
the constraint GP with conservative prior mean, and restrict early optimiza-
tion to a neighborhood of p(0) until posterior uncertainty shrinks. Second,
safety depends on the fidelity of the constraint feedback channel. When con-
straints are computed from proxies (e.g., estimated conversion gaps used to
audit outcome fairness), we require that the proxy error is either explicitly
modeled as part of the observation noise or bounded so that the GP con-
fidence band remains valid; otherwise, conservative feasibility can provide
false reassurance.

When strict per-period safety is too conservative—for example, because
early uncertainty makes Asafe

t small, or because the organization is willing to
tolerate rare, small violations in exchange for faster learning—we can instead
target sublinear cumulative violation. A convenient approach is primal–dual
learning on a Lagrangian relaxation. Let λt ∈ RJ

+ be dual variables (inter-
pretable as shadow prices of governance). At time t, we choose a price vector
by solving a penalized optimistic problem such as

pt ∈ arg max
p∈[pℓ,ph]G∩Vt

(
UF
t−1(p) −

J∑
j=1

λj,t U
c
j,t−1(p)

)
,

and then update λt by projected subgradient ascent using realized (or esti-
mated) constraint feedback, e.g.

λj,t+1 =
[
λj,t + ηt cj(pt)

]
+
.

Under standard conditions used in online convex optimization—most im-
portantly, a Slater-type condition ensuring a strictly feasible point exists,
and bounded gradients for the chosen constraint surrogates—one obtains
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a tradeoff: regret against the best feasible comparator remains sublinear
while ViolT =

∑T
t=1

∑J
j=1[cj(pt)]+ satisfies ViolT = o(T ). Economically,

λj,t learns the “price” of governance: if the algorithm repeatedly drifts to-
ward infeasible regions, dual penalties grow and redirect future choices back
toward compliance.

We view the always-safe and primal–dual modes as complementary. The
former is appropriate when governance is a hard requirement (regulated par-
ity, contractual obligations), whereas the latter matches settings where gover-
nance is enforced through audits, remediation, or expected-penalty regimes
and where the organization prefers a smooth learning–compliance frontier
rather than a hard feasibility barrier.

9.2 6.2. Regret versus the best feasible policy under volatil-
ity constraints; dependence on the number of groups and
constraints.

We now turn from feasibility to performance: how much revenue we forego,
relative to the best governed pricing policy that respects the same operational
limits on price movement. Given a comparator class Π (e.g., a hard-switch
class ΠS or a total-variation class), we measure learning performance by
cumulative regret

RegT (Π) :=
T∑
t=1

(
F (p⋆t )−F (pt)

)
, {p⋆t } ∈ arg max

{pt}∈Π

T∑
t=1

F (pt) s.t. cj(pt) ≤ 0 ∀j, t,

so that the benchmark internalizes both governance and volatility.
The key observation is that conservative governance changes where we

may search but not how uncertainty translates into regret. On the joint
concentration event for the revenue model, we have F (p) ≤ UF

t−1(p) for all
p, hence for any feasible comparator action p⋆t admissible at time t,

F (p⋆t )− F (pt) ≤ UF
t−1(p

⋆
t )− F (pt) ≤ UF

t−1(pt)− F (pt),

where the final inequality uses that the algorithm maximizes UF
t−1 over the

admissible set Asafe
t ∩Vt. Standard GP-UCB algebra then bounds instanta-

neous regret by the posterior width at the chosen point, typically

UF
t−1(pt)− F (pt) ≤ 2

√
βt σ

F
t−1(pt),

and summing these widths over time yields

RegT (Π) = Õ
(√

T ΓT

)
,

up to constants depending on (B, σ) and logarithmic factors in (1/δ). The
role of governance enters through the requirement that the comparator se-
quence remains feasible and, under always-safe operation, that it lies within
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the safe region induced by the confidence bounds (or that the safe set is
rich enough to contain an optimal governed action). When we instead use
a primal–dual relaxation, the same uncertainty accounting controls the ob-
jective regret, while the dual analysis ensures ViolT = o(T ) under the usual
Slater-type condition.

Volatility constraints affect regret through an effective reduction in the
decision horizon. Under a hard switch budget S, a canonical construction
is batching: partition {1, . . . , T} into B = S + 1 blocks and restrict pt to
be constant within each block. We then learn in B decision rounds with
aggregated (lower-variance) feedback, obtaining GP-UCB regret Õ(

√
B ΓB)

at the block level, which translates into period regret of order Õ(
√
T 2ΓB/B)

after accounting for block lengths. Under a total-variation budget V , one can
instead restrict Vt to an ℓ1 ball around pt−1, which typically yields similar
bounds with additional terms reflecting how tightly Vt restricts exploration.

Finally, we highlight how the number of groups G and constraints J en-
ter. Statistically, G raises the complexity of the action space [pℓ, ph]

G, and
thus the information gain ΓT ; for many kernels, ΓT grows at least polyloga-
rithmically in T with exponents that worsen in dimension, making large-G
problems intrinsically harder without additional structure. Governance can
partially offset this by coupling prices across groups (e.g., parity constraints
reduce dispersion and can lower the effective dimension). The constraint
count J mainly appears through confidence calibration—βt must absorb
a union bound over (t, j), producing logarithmic dependence on J—and
through computation, since each candidate p must be screened against J
conservative bounds. In practice, scaling to many groups and constraints
hinges on exploiting shared structure (e.g., low-rank kernels, hierarchical
group models, or constraint decompositions) and on reliable numerical max-
imization of the constrained acquisition problem.

9.3 6.3. Discussion of kernel misspecification and practical
hyperparameter tuning.

Our analysis has treated the kernel k (and the associated RKHS radius
bounds B,Bc) as known, which is analytically convenient but empirically
demanding. In practice, the principal failure mode is kernel misspecifica-
tion: the true mean revenue and constraint functions may not lie in Hk,
or they may satisfy the smoothness assumptions only approximately. This
matters twice. First, the usual GP concentration inequalities that under-
write F (p) ≤ UF

t (p) and cj(p) ≤ U c
j,t(p) can become anti-conservative, in

which case both regret bounds and (more importantly) period-by-period
safety may fail. Second, an ill-tuned kernel can slow learning by allocating
posterior variance in the wrong regions of price space, effectively shrinking
the useful safe set Asafe

t .
A useful way to interpret misspecification is as an approximation error
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decomposition. Suppose the true function admits a best RKHS approxi-
mation f †

g ∈ Hk with ∥f †
g∥Hk

≤ B, and write fg = f †
g + ξg, where ξg is a

residual. Then the GP-UCB regret logic typically persists but acquires an
additive bias term proportional to the cumulative impact of ξg. Heuristically,
one expects bounds of the form

RegT (Π) ≲ Õ(
√

TΓT ) + T · sup
p∈[pℓ,ph]G

∣∣∣∑
g

ξg(p(g))
∣∣∣,

and an analogous degradation in constraint guarantees, where a residual ξcj
can be interpreted as an unmodeled constraint drift. While such statements
are necessarily informal without additional structure, they emphasize an op-
erational lesson: when governance is binding, it is typically more important
to be conservative about constraint modeling than to be perfectly efficient
about revenue modeling.

Kernel choice is our first lever for robustness. When little is known
about smoothness, we prefer kernels that do not hard-code excessive differ-
entiability (e.g., Matérn kernels with modest smoothness) over very smooth
squared-exponential kernels. When G is large, structure helps: additive ker-
nels across groups, low-rank multi-task kernels, or hierarchical priors that
share hyperparameters can substantially reduce sample complexity by pool-
ing information, while still allowing group idiosyncrasies. For constraints
that encode parity or outcome fairness, the relevant function may be closer
to a difference of two smooth surfaces (e.g., µg(p)− µg′(p

′)), suggesting ker-
nels that respect such algebraic structure.

Hyperparameter tuning must be handled with particular care because
our data are adaptively collected. A common practical approach is empirical
Bayes: at each update, re-fit kernel hyperparameters (lengthscales, output
variance, noise scale) by maximizing the GP marginal likelihood (possibly
with priors/regularization), and then recompute posteriors. This often per-
forms well, but it breaks the strict assumptions behind fixed-k concentration
unless one inflates confidence widths. A simple safeguard is to treat hyper-
parameter learning as part of uncertainty: choose βt and the norm bounds
(B,Bc) conservatively enough that, for a range of plausible hyperparameters,
the resulting confidence bands remain valid. In governed applications, we of-
ten recommend a “safety-first” calibration: err on the side of larger σ (noise)
and larger βt, accepting slower learning in exchange for fewer governance
surprises.

Two additional engineering details are worth emphasizing. First, one
should seed the procedure with at least one certifiably feasible baseline price
vector psafe (e.g., a uniform price satisfying parity by construction, or a
regulator-approved menu). This ensures Asafe

t is non-empty even if early
hyperparameter estimates are unstable. Second, constraint feedback is fre-
quently indirect (conversion proxies, survey-based parity metrics, delayed
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chargeback rates), so the observation model for cj may be heteroscedas-
tic and non-Gaussian. In that case, a Gaussian likelihood is a pragmatic
approximation, but we can further stabilize safety by using robust regres-
sion (e.g., Student-t likelihoods) or by placing conservative caps on effective
signal-to-noise when forming U c

j,t.
Finally, we note a limitation that interacts sharply with volatility bud-

gets. If S (or V ) is very tight, the algorithm has few opportunities to correct
a poor kernel fit, and hyperparameter learning itself may “overfit” to a small
set of queried prices. Practically, batching can be paired with periodic re-
estimation of hyperparameters at block boundaries, using aggregated data
to reduce variance. More broadly, when governance risk is material, the eco-
nomically relevant objective is not the tightest theoretical regret rate, but
a stable operating procedure whose safety conclusions remain credible un-
der mild misspecification; conservative tuning is often the right institutional
choice.

10 6.3. Discussion of kernel misspecification and
practical hyperparameter tuning.

Our theoretical development conditions on a known kernel k and known
complexity radii (B,Bc). This is a deliberate simplification: in deployed
pricing systems the kernel is itself a modeling choice, and its hyperparam-
eters (lengthscales, output variance, observation noise) are estimated from
adaptively collected data. The central practical concern is misspecification.
If the true mean revenue fg or a constraint surface cj is rougher, more non-
stationary, or structurally different than Hk permits, then the GP posterior
can become systematically overconfident. In governed settings this is not
merely a statistical nuisance: anti-conservative confidence bands can cause
the safe set Asafe

t to contain points that are in fact infeasible, undermining
period-by-period guarantees precisely when the institution cares most about
them.

A useful lens is an approximation-error decomposition. Let f †
g ∈ Hk de-

note the best approximation to fg under the chosen kernel and norm budget,
and write fg = f †

g + ξg, with residual ξg capturing the misspecification com-
ponent. Then the classical optimistic-regret argument still bounds the part
of regret attributable to uncertainty about f †

g , but it cannot remove the bias
introduced by ξg. Heuristically, for a feasible comparator class Π,

RegT (Π) ≲ Õ
(√

TΓT

)
+

T∑
t=1

sup
p∈[pℓ,ph]G

∣∣∣∑
g∈G

ξg(p(g))
∣∣∣,

and an analogous term appears for each constraint via cj = c†j+ξcj . The oper-
ational message is that misspecification is “paid” in a linear-in-T way unless
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the residuals are uniformly small. This is why, when governance constraints
bind, we generally prefer to spend modeling effort (and conservatism) on
constraints rather than on marginal improvements in revenue fit.

Kernel choice is our first robustness lever. When smoothness is uncertain,
overly rigid priors (e.g., squared-exponential kernels with long lengthscales)
can be fragile: they interpolate aggressively and can underestimate uncer-
tainty away from observed prices. Matérn families with moderate smooth-
ness, or mixtures that allow multiple lengthscales, tend to degrade more
gracefully. When G is large, the challenge is not only statistical but com-
putational: multi-task structure (e.g., a separable kernel k((g, p), (g′, p′)) =
kG(g, g

′)kP (p, p
′)) or additive decompositions can pool information across

groups while still permitting group-specific idiosyncrasies. For parity- or
disparity-type constraints, kernels that respect the algebraic form (differ-
ences across groups, monotone transformations of demand) can materially
improve sample efficiency because the constraint learns from structured com-
parisons rather than from raw levels.

Hyperparameter tuning must be handled carefully because our data are
collected under feedback: the algorithm’s past posteriors shape future price
queries, which in turn shape the likelihood surface. Empirical Bayes (re-
estimating hyperparameters by marginal likelihood maximization at each
step) is often effective, but it breaks the fixed-kernel concentration logic
unless we hedge. In practice, we recommend treating hyperparameter un-
certainty as part of the safety margin: inflate βt, and choose (B,Bc) and the
noise scale conservatively so that confidence bands remain credible across a
plausible hyperparameter set. A complementary approach is to update hy-
perparameters only at coarse timescales (e.g., block boundaries under batch-
ing), which reduces adaptivity and stabilizes estimation.

Two implementation safeguards are especially valuable. First, the pro-
cedure should be initialized with a certifiably feasible price vector psafe so
that Asafe

t is non-empty even under unstable early fits. Second, constraint
feedback is often indirect and heteroscedastic (conversion proxies, audits,
delayed complaints). If Gaussian observation models are used as approxi-
mations, one should cap effective signal-to-noise or adopt robust likelihoods
(e.g., Student-t) when forming U c

j,t, since outliers in constraint measurements
can otherwise cause spurious “permission” to explore.

Finally, volatility budgets interact sharply with misspecification. If S
(or V ) is tight, the platform has few opportunities to recover from an early,
poorly tuned kernel: exploratory corrections are expensive, and hyperpa-
rameter learning can overfit to a narrow region of prices. In such environ-
ments, conservative kernels, slow hyperparameter adaptation, and regulator-
approved safe baselines are not merely technical choices; they are institu-
tional risk controls that trade a small amount of revenue optimality for sub-
stantially greater credibility of governance compliance.
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10.1 Synthetic environments (nonstationary, non-monotone)
with fairness ground truth.

We begin our experimental analysis in synthetic environments where the
seller faces group-dependent, nonlinear demand responses, yet we retain full
knowledge of the ground-truth revenue and governance constraints. The
purpose is twofold. First, we can compute credible comparators (including
volatility-constrained ones) and therefore report meaningful regret and viola-
tion statistics. Second, we can deliberately introduce the kinds of nonstation-
arity and non-monotonicity that are difficult to rule out in practice, thereby
stress-testing whether governed exploration remains disciplined when the
model class is only an approximation.

Groups, prices, and non-monotone demand. We fix G ∈ {3, 5, 10}
groups and a compact price interval [pℓ, ph], and generate for each group a
mean demand curve that is not globally decreasing in price. Concretely, we
construct

µg,t(p) =
(
a
(1)
g,t exp

(
− (p−b

(1)
g,t)

2

2(s
(1)
g )2

)
+ a

(2)
g,t exp

(
− (p−b

(2)
g,t)

2

2(s
(2)
g )2

))
+
,

so that each group has two “preference modes” (e.g., bargain-seekers and
convenience buyers) and the implied revenue surface fg,t(p) = p µg,t(p) can
exhibit multiple local maxima. We cap µg,t(p) if needed to ensure bounded
rewards. This construction yields a controlled violation of the canonical
monotone-demand assumption without resorting to adversarial worst cases.

Nonstationarity mechanisms. To model drift and regime changes, we
let the bump locations and amplitudes vary over time:

b
(i)
g,t = b(i)g + ρ(i)g sin

(2πt
τ

)
+ κ(i)g 1{t ≥ t0}, a

(i)
g,t = a(i)g

(
1 + ν sin(2πtτa

)
)
,

where the sinusoidal terms represent seasonal fluctuations and the indicator
term represents a one-time shock (e.g., a competitor entry) at t0. By varying
(ρ, κ, ν), we sweep from nearly stationary environments (where RKHS priors
are plausible) to strongly nonstationary ones (where any fixed-kernel model
is inevitably misspecified). Importantly, the governance constraints below
are defined on µg,t and therefore inherit the same temporal structure.

Observation model and constraint feedback. At each period t, we
generate realized revenue

rg,t = fg,t
(
pt(g)

)
+ ϵg,t,

with ϵg,t drawn from a mean-zero noise distribution calibrated to be sub-
Gaussian, and optionally heteroscedastic in price (larger near pℓ and ph)
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to mimic thin data regimes. For outcome-based constraints, we separately
generate a noisy proxy for expected purchase outcomes, e.g.,

µ̂g,t

(
pt(g)

)
= µg,t

(
pt(g)

)
+ ζg,t,

which we interpret as an estimable conversion or audit signal; this allows us
to evaluate algorithms that maintain a distinct GP (or surrogate) for cj(·).

Fairness ground truth and feasibility. We include (i) price parity con-
straints |p(g)− p(g′)| −∆ ≤ 0 and (ii) outcome-fairness constraints defined
directly from the synthetic demand,

coutg,g′,t(p) =
∣∣µg,t(p(g))− µg′,t(p(g

′))
∣∣− ε ≤ 0,

with ε chosen so that the feasible set is non-empty but nontrivial. We also
specify a certifiably feasible baseline psafe (typically a common midrange
price) and verify cj,t(p

safe) ≤ 0 for all t by construction, ensuring that
safety-oriented methods are well-posed from the first round.

Evaluation protocol and comparators. For each environment instance
we run multiple random seeds and report: cumulative regret against the best
feasible comparator in the same volatility class (hard-switch budget S via
batching, or TV budget V ); cumulative and peak violations

∑
t,j [cj,t(pt)]+

and maxt,j [cj,t(pt)]+; and realized volatility (switch count and total varia-
tion) as a diagnostic of implementation fidelity. Because the action space
is continuous, we approximate the comparator by discretizing prices on a
fine grid and solving the resulting volatility-constrained planning problem (a
shortest-path or dynamic program under S or V ), which yields an explicit,
auditable benchmark. This synthetic suite therefore isolates the fundamen-
tal question of governed learning: how quickly can we approach the best
feasible and operationally stable policy when the true environment is smooth
only in parts and changes over time.

11 7.1. Synthetic environments (nonstationary, non-
monotone) with fairness ground truth.

We construct a family of synthetic testbeds that are deliberately rich along
the dimensions that matter for governed learning: (i) group heterogeneity,
(ii) non-concavity in the per-group revenue landscape, and (iii) time variation
that ranges from mild drift to abrupt regime change. The central benefit of
working synthetically is that we can treat both the revenue objective and
the governance constraints as ground truth objects, so that regret, feasibility,
and operational stability can be audited without ambiguity.
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For each instance we draw G ∈ {3, 5, 10} groups and restrict prices to a
compact interval [pℓ, ph]. Group-level demand is generated from a two-mode
specification,

µg,t(p) =
(
a
(1)
g,t exp

(
−
(p− b

(1)
g,t )

2

2(s
(1)
g )2

)
+a

(2)
g,t exp

(
−
(p− b

(2)
g,t )

2

2(s
(2)
g )2

))
+
, fg,t(p) = p µg,t(p),

where the truncation (·)+ avoids negative demand when we add noise or
shocks. Intuitively, the two bumps represent two latent buyer segments
within each protected class (e.g., a price-sensitive segment and a convenience
segment). Because the bumps can overlap, fg,t is typically non-unimodal,
and its maximizer can move non-monotonically as the environment drifts.
To avoid degenerate reward scales across groups, we cap µg,t(p) at a fixed µ,
which also ensures bounded revenues on [pℓ, ph].

Nonstationarity enters by allowing both locations and amplitudes to
evolve:

b
(i)
g,t = b(i)g + ρ(i)g sin

(2πt
τb

)
+ κ(i)g 1{t ≥ t0}, a

(i)
g,t = a(i)g

(
1 + ν sin

(2πt
τa

))
,

where ρ controls smooth seasonal drift and κ induces an interpretable one-
time shock (e.g., entry, policy change, or a measurement pipeline update)
at time t0. By tuning (ρ, κ, ν) we obtain a spectrum from near-stationary
instances—where a fixed-kernel GP prior is a reasonable approximation—
to instances where any time-invariant model is misspecified, so that safety
mechanisms must operate under model error rather than purely statistical
uncertainty.

Given posted prices pt ∈ [pℓ, ph]
G, we generate realized revenue observa-

tions via
rg,t = fg,t

(
pt(g)

)
+ ϵg,t,

with ϵg,t mean-zero and calibrated to be σ-sub-Gaussian; in some instances
we let the variance increase near the boundaries pℓ and ph to mimic thin-
data regions. For outcome-based governance, we also generate a distinct
noisy proxy for purchase outcomes,

µ̂g,t

(
pt(g)

)
= µg,t

(
pt(g)

)
+ ζg,t,

which we interpret as an auditable conversion estimate, allowing separate
learning for revenue and for constraint-relevant quantities.

We impose two canonical constraint families. Price parity is enforced
through |p(g)− p(g′)| −∆ ≤ 0. Outcome fairness is defined directly on the
demand primitives,

coutg,g′,t(p) =
∣∣µg,t(p(g))− µg′,t(p(g

′))
∣∣− ε ≤ 0,
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with ε chosen so that the feasible set is non-empty yet meaningfully restric-
tive. To ensure well-posed safe learning from t = 1, we explicitly construct
a certifiably feasible baseline psafe (typically a common midrange price) and
verify by construction that cj,t(p

safe) ≤ 0 for all t and all imposed con-
straints.

Evaluation proceeds by averaging over multiple random seeds per in-
stance and reporting (i) cumulative regret relative to the best feasible com-
parator within the same volatility class (hard switch budget S via batch-
ing, or total variation budget V ), (ii) cumulative and peak constraint viola-
tions

∑
t,j [cj,t(pt)]+ and maxt,j [cj,t(pt)]+, and (iii) realized volatility (switch

counts and total variation). Because the action space is continuous, we ap-
proximate the comparator by discretizing [pℓ, ph] on a fine grid and solving
the resulting constrained planning problem (a shortest-path dynamic pro-
gram under S, or a knapsack-like recursion under V ). This delivers an ex-
plicit benchmark that is both strong and auditable, clarifying the extent to
which governed learning can track the best feasible and operationally stable
pricing policy even when the environment is nonlinear and evolving.

11.1 7.2. Semi-synthetic marketplace data: offline replay +
safe online simulation.

Purely synthetic instances give us full control, but they may understate the
institutional frictions that motivate governed learning in practice (missing co-
variates, selection in who sees which prices, and noisy fairness measurement).
We therefore complement the synthetic testbeds with a semi-synthetic con-
struction that starts from real marketplace logs and then layers a controlled,
auditable simulation on top. The goal is to retain the empirical distribution
of contexts and group composition while still giving ourselves a ground truth
environment in which regret and constraint violations can be computed for
counterfactual pricing rules.

We begin with an offline replay protocol. The logged dataset consists of
tuples {

(xt, g, p
log
t (g), rlogg,t , µ̂

log
g,t )

}T

t=1
,

where plogt (g) is the historically posted group price, rlogg,t is realized revenue,
and µ̂log

g,t is an auditable proxy for purchase outcomes (e.g., estimated conver-
sion). When the logging policy randomizes prices (even mildly), we exploit
known or estimable propensities πlog

t (p | xt, g) to evaluate candidate policies
π via weighted replay. Concretely, for any policy that selects pt(g) = π(xt, g)
(possibly with volatility restrictions encoded in π), an inverse-propensity es-
timator of mean revenue is

R̂(π) =
1

T

T∑
t=1

∑
g∈G

1{plogt (g) = π(xt, g)}
πlog
t (plogt (g) | xt, g)

rlogg,t ,
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and similarly for constraint-relevant outcomes by replacing rlogg,t with µ̂log
g,t

inside the constraint definition. Because exact matching is brittle in contin-
uous price spaces, we use a discretized price grid (or a small set of operational
“price buckets”) and treat policies as mapping into that finite action set; we
also report stabilized and clipped weights to control variance. To reduce bias
from limited overlap, we restrict attention to policy classes that do not stray
far from the support of the logging policy—a restriction that is economically
natural when governance requires incremental changes and audit trails.

Offline replay alone cannot provide the full suite of governed-learning di-
agnostics we want, because constraint satisfaction under π is only partially
observed: we see outcomes at the logged prices, not at the counterfactual
prices. We therefore fit flexible response models f̂g(p, x) and µ̂g(p, x) (using
nonparametric regressors or GPs on (p, x) with group-specific components)
and combine them with replay through doubly robust scores. This pro-
duces policy-value and fairness estimators that remain consistent if either
the propensity model or the outcome model is correctly specified, while re-
taining an explicit decomposition into statistical uncertainty (finite data)
versus model uncertainty (misspecification). In reporting, we treat this step
as an audit primitive: it makes clear which part of the evaluation is “as
observed” and which part is model-imputed.

The second stage is a safe online simulation that is anchored in the replay
data but restores a controlled ground truth. We construct a simulator in
which the context sequence {xt} is taken directly from the logs (or resampled
in blocks to preserve seasonality), while the conditional mean outcomes are
given by a calibrated structural proxy,

µg,t(p) = µ̂g(p, xt) + ηµg,t(p), fg,t(p) = p µg,t(p),

where ηµg,t(p) is a mean-zero residual process fitted to match empirical disper-
sion and, when desired, engineered to include regime shifts at known dates
(e.g., policy changes) to stress-test safety under nonstationarity. Revenues
are then generated as rg,t = fg,t(pt(g))+ ϵg,t, and governance constraints are
computed from the simulator’s µg,t so that violations are objectively mea-
surable at every t. We also impose an explicit certified baseline psafe (often
a uniform price) and, by construction, ensure cj(p

safe) ≤ 0 for all simulated
periods, so that safe exploration is feasible from t = 1.

This semi-synthetic pipeline reflects how governed pricing is deployed
in practice: offline evidence is necessary but insufficient, and any credible
evaluation must separate (i) what can be justified from historical exposure,
from (ii) what is a model-based extrapolation that should be treated con-
servatively. Its main limitation is the usual one: if the logs lack support
for certain price regions or if unobserved confounding drives both price as-
signment and demand, then neither replay nor simulation can fully identify
counterfactual effects. We therefore treat the semi-synthetic results as com-
plementary to the fully synthetic benchmarks, not as a substitute for them.
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11.2 7.3. Metrics: revenue, regret proxies, fairness viola-
tions, volatility, stability, and auditability.

Our evaluation metrics mirror the objective and constraint language of the
model while remaining implementable in offline replay and in semi-synthetic
online simulation. We report metrics at the horizon level (T ) and, when
informative, as trajectories over t.

Revenue and uplift. The primary performance metric is realized cumu-
lative revenue

RevT =
T∑
t=1

∑
g∈G

rg,t, rg,t = pt(g)Dg,t(pt(g)).

Because governance is often justified relative to an operational baseline, we
also report uplift versus a certified baseline policy (typically a uniform or
historically used price vector psafe):

UpliftT =
RevT − RevsafeT

RevsafeT

,

which is interpretable even when the true optimum is unknown. In non-
stationary semi-synthetic environments we additionally report block-level
revenue to reveal whether performance is driven by early exploration or by
sustained improvements under volatility restrictions.

Regret and regret proxies. When a ground-truth simulator is avail-
able (fully synthetic or calibrated semi-synthetic), we compute pseudo-regret
against the best feasible comparator in the relevant volatility class:

RegT (Π) =
T∑
t=1

(
F (p∗t )−F (pt)

)
, {p∗t } ∈ arg max

{pt}∈Π

T∑
t=1

F (pt) s.t. cj(pt) ≤ 0.

In offline replay, F (·) is not directly observable counterfactually, so we use
regret proxies that make explicit what is estimated versus what is observed.
Concretely, we compute (i) a replay-based value estimate R̂(π) on a dis-
cretized action set, and (ii) a model-based value

∑
t

∑
g f̂g(pt(g), xt) from

the fitted response model. We then benchmark a candidate policy against
the best policy within the same class found by exhaustive search on the dis-
cretized grid using the same estimator; this yields an in-class pseudo-regret
that is comparable across algorithms even if it is not an oracle regret.
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Fairness and governance violations. For any constraint cj(p) ≤ 0, we
track per-period violation and cumulative violation:

violj,t = [cj(pt)]+, ViolT =

T∑
t=1

J∑
j=1

[cj(pt)]+.

To separate “rare but large” from “frequent but small” failures, we also report
the maximum violation

MaxViolT = max
t≤T

max
j≤J

[cj(pt)]+,

and the fraction of periods with any violation. For price-parity governance,
we present the realized dispersion

Dispt = max
g,g′∈G

|pt(g)− pt(g
′)|,

and compare it to ∆. For outcome fairness, we report both the worst-pair dis-
parity maxg,g′ |µg(pt(g))−µg′(pt(g

′))| (in simulation) and its empirical proxy
obtained by substituting µ̂log or model-imputed µ̂g(·) (in replay). When a
method enforces safety via conservative bounds, we additionally report the
constraint margin −U c

j,t−1(pt), which is an operational measure of how close
decisions are to the certified boundary.

Volatility, stability, and operational smoothness. To reflect imple-
mentation costs, we measure volatility both as a hard-switch count and as
total variation:

SwitchT = #{t ≥ 2 : pt ̸= pt−1}, TVT =

T∑
t=2

∥pt − pt−1∥1.

Beyond feasibility, we summarize stability by the distribution of step sizes
∥pt − pt−1∥1 and by run-to-run variability under repeated simulations with
different noise seeds (holding contexts fixed). This distinguishes policies that
satisfy a budget mechanically from those that produce economically smooth
trajectories.

Auditability and statistical reporting. Because governed learning must
be explainable ex post, we treat auditability as a measurable output: for each
t we log (xt, pt), the objective bounds (LF

t−1(pt), U
F
t−1(pt)), the constraint

bounds {U c
j,t−1(pt)}j , and (when applicable) dual variables {λj,t}j . We then

report average posterior widths (a proxy for epistemic uncertainty), empirical
coverage of confidence intervals in simulation, and the share of decisions that
would remain feasible under a small tightening of thresholds (∆, ε), which
serves as a robustness-to-audit metric. All headline numbers are presented
with Monte Carlo standard errors (simulation) or block bootstrap intervals
(replay) to reflect time dependence in {xt} and the induced correlation in
revenues.
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11.3 8. Policy and deployment implications: audit logs from
GP posteriors, interpretability, and how to choose fair-
ness/volatility parameters in practice.

A governed pricing system is only as deployable as it is auditable. The
central operational benefit of a GP-based approach is that every decision
comes with a quantitative certificate of what we believed at the time. In
deployment we therefore recommend a decision log that is natively aligned
with the algorithm: for each period (or block, under batching) we store
the chosen vector pt, the posterior summaries for the objective and each
constraint at that point

(
µF
t−1(pt), σ

F
t−1(pt)

)
and {(µc

j,t−1(pt), σ
c
j,t−1(pt))}Jj=1,

and the derived bounds
(
UF
t−1(pt), {U c

j,t−1(pt)}j
)

that justify feasibility and
optimality within the certified action set. This log should also include the
candidate set used by the numerical optimizer (e.g., grid, random restarts),
the winning argmax, and a hash of the training data snapshot so that an
auditor can reproduce the posterior ex post.

Interpretability then becomes a matter of mapping the argmax rule into
statements a regulator or product team can understand. We have found
it useful to report a short “reason code” per decision: (i) whether pt was
constrained primarily by parity, by outcome fairness, or by volatility; (ii) the
most binding constraint margin minj −U c

j,t−1(pt); and (iii) the opportunity
cost of governance, approximated by the gap between the best unconstrained
optimistic value and the best safe optimistic value,

Costsafet ≈ max
p∈[pℓ,ph]G

UF
t−1(p) − max

p∈Asafe
t ∩Vt

UF
t−1(p).

This separates “we did not raise price because it violated fairness” from “we
did not change price because the switch budget forbids it,” which is essential
for internal accountability.

Choosing (∆, ε) is ultimately a policy question, but we can make the
trade-offs legible. In practice we recommend a two-stage procedure. First,
feasibility screening: select candidate thresholds that admit a robust interior
point (a Slater-type condition) under conservative bounds, i.e., there exists
p with U c

j,0(p) ≤ −m for all j and some margin m > 0. This prevents early
periods from collapsing to a trivial safe set. Second, value-of-fairness calibra-
tion: run an offline stress test (replay or semi-synthetic) to trace a frontier
(∆, ε) 7→ (R̂evT , V̂iolT ), and choose the pair at which marginal revenue gains
per unit relaxation are no longer compelling. When a primal–dual variant is
used, the realized dual variables {λj,t} serve as shadow prices : persistently
large λj,t indicates that the organization is operating at the boundary and
should revisit whether the corresponding constraint is appropriately tight or
whether measurement noise is being mistaken for disparity.

Volatility parameters (S or V ) should be set from operational constraints
rather than statistical convenience. A simple translation is to treat each
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price change as incurring a fixed change-management cost K (engineering,
comms, customer support), in which case batching with B = S + 1 blocks
approximates a solution to a penalized objective

∑
t F (pt)−K 1{pt ̸= pt−1}.

For teams that can tolerate small continuous adjustments but not frequent
large jumps, a TV budget V is more faithful; it also yields a monitoring
target that can be tracked in real time.

Finally, deployment should incorporate “safety valves” that acknowledge
model limitations. Outcome fairness constraints rely on estimable proxies
(e.g., conversion), and proxy drift can make a previously certified boundary
misleading. We therefore recommend (i) periodic re-estimation of the GP
with rolling windows, (ii) drift detectors that trigger a revert-to-psafe mode,
and (iii) routine subgroup audits to validate that protected-class definitions
and data pipelines match the governance intent. These practices do not
eliminate the normative tensions in fairness-aware pricing, but they make the
trade-offs explicit, reproducible, and contestable—which is precisely what
policy-facing learning systems require.

11.4 9. Conclusion and extensions: contextual pricing, com-
petition, and discrete demand likelihoods.

We studied dynamic, group-dependent pricing under two forms of gover-
nance: constraints that encode normative requirements (such as price parity
or outcome fairness) and constraints that encode operational limits (such as
switch budgets or total variation). Our main message is that these require-
ments can be integrated directly into the exploration–exploitation problem
by treating both revenue and constraints as unknown functions over the price
space and learning them with a common statistical object—a GP posterior.
This yields a transparent decision rule: optimize an optimistic revenue bound
over a conservatively feasible (or penalized) action set. The resulting guar-
antees formalize a pragmatic aspiration in policy-facing learning systems:
we can learn what we do not know while maintaining ex ante commitments
about what we will not do.

Several extensions are immediate and, in our view, essential for realism.
First, contextual pricing. In many applications the seller observes time-
varying covariates xt (inventory, macro conditions, user mix) that shift de-
mand. The natural formulation is fg(p, x) and cj(p, x), with decisions pt
chosen after observing xt. One route is a product kernel k

(
(p, x), (p′, x′)

)
=

kp(p, p
′)kx(x, x

′), which preserves GP-UCB-style confidence bounds at the
cost of higher information gain ΓT . Another is a semiparametric model, e.g.,

fg(p, x) = ⟨θg, ϕ(x)⟩+ hg(p),

combining a low-dimensional context effect with a nonparametric price com-
ponent. In either case, governance constraints become context-conditional:
outcome fairness may be required only within comparable contexts (e.g.,
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within risk bands), which suggests constraints of the form cj(p, x) ≤ 0 or
constraints averaged over a reference distribution of contexts. The policy
implication is subtle: conditioning can reduce spurious disparity findings
(by comparing like with like) but can also create loopholes if contexts are
themselves correlated with protected status; any contextual extension should
therefore be paired with an explicit governance decision about what variables
may enter xt.

Second, competition. If multiple sellers set prices simultaneously, the rev-
enue function for a focal seller depends on rivals’ prices p−i

t , and governance
may interact strategically (e.g., parity constraints can soften competition or,
conversely, constrain undercutting). A reduced-form extension treats rivals
as part of the context, xt = (p−i

t ,market signals), and asks for regret guar-
antees relative to a best-response class subject to the same constraints. A
more structural extension models a repeated game in which each firm runs a
learning algorithm; then the relevant benchmark shifts from regret to equi-
librium concepts (coarse correlated equilibrium, Nash in stationary policies)
under feasibility constraints. Our safe-set construction remains conceptu-
ally useful—it defines actions that are compliant regardless of beliefs about
competitors—but formal results will typically require assumptions on how
p−i
t evolves (bounded variation, mixing, or oblivious adversaries). From a

policy perspective, competition also raises a separate governance layer: con-
straints that are individually well-intentioned may have market-level effects
(price floors, reduced dispersion), so auditing should be complemented with
market monitoring.

Third, discrete demand likelihoods and non-Gaussian feedback. The base-
line analysis uses sub-Gaussian noise on realized revenues, but many plat-
forms observe counts: purchases, clicks, or conversions, often well-modeled
by Binomial or Poisson likelihoods. Two practical approaches preserve much
of the framework. One is to place a GP prior on a latent utility and use a
generalized likelihood (GP classification or log-GP intensity), yielding pos-
terior approximations (Laplace, EP, variational) and replacing closed-form
UCBs with calibrated credible bounds. The other is to model µg(p) via a
GLM with a nonparametric link in p, which can deliver finite-sample con-
centration under boundedness conditions. In both cases, constraint learning
is often the harder part: fairness metrics are ratios or differences of rates,
and careful propagation of uncertainty is required to avoid either unjustified
violations or excessive conservatism.

We close with two limitations that are not merely technical. First, gov-
ernance constraints are only as meaningful as the measurement system that
instantiates them; proxy misspecification and drift can turn a formally safe
policy into a substantively unfair one. Second, the choice of (∆, ε) (and the
choice of which fairness metric to constrain) is normative and cannot be dele-
gated to the algorithm. What our model offers is a disciplined way to surface
the opportunity costs and the shadow prices of those normative choices, and
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a modular platform for extending governed learning to richer settings where
context, strategic interaction, and discrete outcomes are unavoidable.
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