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Abstract

Fairness-aware contract design in repeated principal-agent environ-
ments is typically implemented by adding an altruism weight \ to the
principal’s objective, but such weighted-sum regularization is fragile:
small changes in A can flip outcomes from exploitative to overly altru-
istic, and learning dynamics can destabilize participation. Building on
recent principal-agent reinforcement learning and the empirical find-
ing that fairness regularization can improve both equity and welfare,
we propose a governance-aligned alternative: the principal maximizes
profit subject to explicit fairness and participation constraints (e.g.,
1 — Gini > 7, Rawlsian minimum wealth > p, and minimum accep-
tance). We formulate the resulting problem as a constrained Markov
Stackelberg program over stationary contract policies and develop a
two-timescale primal-dual actor-critic algorithm: agents learn best
responses on a fast timescale while the principal and dual variables
update slowly. Under standard ergodicity and smoothness assump-
tions (and smooth surrogates for non-differentiable fairness metrics),
we show convergence to a neighborhood of KKT-optimal contract poli-
cies, eliminating \-sensitivity while retaining interpretability via homo-
geneous linear contracts. Experiments in sequential social dilemmas
(Coin Game) and additional resource-allocation environments validate
that constrained contracting reliably hits fairness targets with high
welfare and avoids unstable behavior observed under welfare-weight
regularization.
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1 Introduction

We study a recurrent contracting problem in which a single principal re-
peatedly posts a simple, homogeneous linear share contract and a popula-
tion of agents decides whether and how to act. The economic tension is
familiar—surplus creation requires incentives, while the distribution of that
surplus matters for legitimacy, retention, and regulation—but the compu-
tational and governance environment has changed. By 2026, contracts are
increasingly mediated by automated platforms (e.g., marketplaces for dig-
ital labor, data labeling, micro-logistics, and API-based services), and the
resulting “terms of trade” are often implemented by learning systems that
update continuously in response to observed performance. In these settings,
it is rarely enough to say that the principal has a generic preference for eq-
uity with some weight A. What platform operators, regulators, and internal
governance committees typically require are auditable targets: a minimum
participation rate, a minimum earnings floor for the worst-off group, or a
bound on inequality as measured by a standardized statistic. These targets
are naturally expressed as constraints.

This observation motivates the central modeling choice of the paper:
rather than optimizing a weighted sum of profit and a fairness penalty,

mgx wp(¢) + AF(w(9)),

we treat fairness and participation as policy-relevant requirements,

max wp(6) st 1= Gw(6)) =7 minwi(0) = p. Ace(d) > r,

where w(¢) denotes the vector of long-run agent wealths induced by the
principal policy and the agents’ equilibrium responses. The distinction is
not semantic. A fixed A does not generally encode an actionable commit-
ment like “the bottom-decile earnings must exceed p” or “the inequality index
must stay below a regulatory threshold.” Worse, as we emphasize, the map-
ping from A to realized fairness can be flat, discontinuous, or environment-
specific: varying A may change the solution very little over wide ranges and
then trigger abrupt regime shifts once a participation threshold is crossed.
Such behavior is especially acute when agents have an explicit reject option,
because acceptance can change non-smoothly as incentives pass an individ-
ual rationality margin. In contrast, a constrained formulation is designed to
hit a target whenever the target is feasible, and to reveal infeasibility when
it is not.

The second motivation is dynamical. In repeated interaction, the prin-
cipal does not face a static supply curve; agents adapt. When the principal
updates contract terms online, and agents update their policies (or effort
choices) in response, we obtain a coupled learning system. In this regime,



a fairness weight A becomes a brittle “knob”: it must be tuned against non-
stationary responses, and a A\ that appears to yield acceptable outcomes
under one mix of agent types or one state visitation distribution may fail
under another. By contrast, primal-dual constrained optimization provides
a principled mechanism for automatic calibration: dual variables adjust en-
dogenously to the tightness of each requirement, and therefore act as shadow
prices of fairness and participation. This is precisely the language used in
governance: we want to know not only whether a target is met, but also the
opportunity cost of meeting it.

A third motivation is interpretability and accountability. In many ap-
plied contexts, the contract parameter itself—here, the share a or a state-
dependent distribution over shares—must be explainable. A constrained ap-
proach yields interpretable comparative statics: tightening a fairness thresh-
old 7 or a wealth floor p generally pushes the policy toward larger shares
for agents, and the associated dual multipliers quantify how much principal
profit is forgone at the margin. These objects are easier to communicate
than a chosen value of A, which typically has no direct operational meaning
and is difficult to justify ex ante.

Our model is intentionally austere: we focus on a homogeneous linear
share contract because it is ubiquitous in practice (revenue shares, commis-
sion rates, platform take rates) and because it cleanly isolates the distribution—
incentive tradeoff. Agents have heterogeneous, unobserved types that scale
their effective contributions, and they may reject the contract by choosing an
outside option that yields zero activity. The environment is a Markov game,
so incentives and fairness are evaluated over a long-run trajectory rather
than in a single period. This permits a precise discussion of dynamic partic-
ipation (will agents continue to engage?), dynamic inequality (do earnings
diverge over time?), and the effect of state-dependent contracting.

Against this background, we make four contributions.

(i) A constrained dynamic contracting formulation aligned with
policy targets. We formalize fairness and participation requirements as
constraints on long-run wealth outcomes. To accommodate gradient-based
learning while preserving the economic content of inequality and minimum-
wealth criteria, we replace the non-differentiable components (e.g., the Gini
coefficient and the pointwise minimum) with smooth surrogates. This creates
a differentiable constrained objective that can be optimized with standard
tools while remaining interpretable as an approximation to the original gov-
ernance goals.

(ii) Existence of stationary constrained solutions and KKT struc-
ture. Under standard compactness and continuity conditions, we establish
the existence of stationary feasible solutions, and under a Slater-type condi-



tion we obtain Karush—Kuhn—Tucker points for the smoothed problem. The
point is not merely technical: the KK'T multipliers provide a disciplined no-
tion of the “price” of fairness and participation in a dynamic environment,
clarifying when these requirements bind and how they interact.

(iii) A two-timescale primal-dual learning algorithm with conver-
gence guarantees. We analyze a two-timescale actor—critic scheme in
which agents learn (approximately) best responses on a fast timescale while
the principal updates its contract policy and the dual variables on a slow
timescale. The resulting limiting dynamics track a primal-dual gradient
flow. Under unbiasedness and bounded-variance assumptions on the gradi-
ent estimators, we show almost sure convergence to an invariant set contained
in an O(e)-neighborhood of the KKT set, where € captures function approx-
imation and critic error. Economically, this provides a guarantee that, in
the long run, the learning system implements contracts that are nearly opti-
mal for the principal among those that satisfy the fairness and participation
targets up to approximation error.

(iv) Why fixed-\ regularization is not a substitute for constraints.
We provide a conceptual and constructive argument that weighted-sum reg-
ularization with a fixed altruism parameter A need not recover intermediate
fairness targets and can exhibit discontinuities in realized participation and
inequality. This matters because common practice in multi-objective learn-
ing is to sweep A and select a point on a Pareto frontier. Our analysis shows
that when participation constraints and reject options are present, sweeping
A may skip policy-relevant thresholds, whereas the constrained formulation
is designed to meet them whenever feasible.

We also present comparative statics that connect model parameters to
contractual generosity and constraint tightness, and we include a one-shot
quadratic-effort illustration that yields closed-form mappings from fairness
floors to the optimal share. These pieces serve as economic “sanity checks”:
they clarify what the algorithm should do in benchmark cases and how the
shadow prices should move as we tighten governance requirements.

Finally, we emphasize limitations. Our focus on homogeneous linear
shares abstracts away from richer contract forms (bonuses, individualized
terms, history dependence) that may achieve better efficiency—equity trade-
offs. Our convergence statements are asymptotic and hinge on the quality
of value-function approximation; in high-dimensional problems, the residual
O(€) may be material. And while we treat fairness metrics as constraints
on realized wealth, the normative choice of metric and the appropriate pop-
ulation over which it is evaluated remain context-dependent. Nonetheless,
the model illuminates a core tradeoff faced by modern automated contract-
ing systems: learning can optimize profit, but governance requires targets,



and targets are most naturally enforced through constrained, primal-dual
dynamics rather than through ad hoc tuning of a fairness weight.

2 Related Work

Our setup draws on three literatures that have largely developed in parallel:
(i) contract theory and its canonical constraint sets (limited liability, partici-
pation, and incentive compatibility), (ii) reinforcement-learning formulations
of principal-agent interaction and incentive design, and (iii) constrained and
“fair” learning methods that treat distributional requirements as first-class
objects. Our contribution is to connect these strands in a dynamic Markov
environment where the principal updates a simple contract online, agents
adapt strategically, and the objectives of interest are explicit long-run fair-
ness and participation targets rather than a soft welfare penalty.

Contract theory: LL/IR/IC constraints and dynamic agency. In
classical principal-agent models, the basic design problem is expressed as
profit maximization subject to constraints that encode feasibility and strate-
gic behavior: limited liability (LL), individual rationality (IR, or partici-
pation), and incentive compatibility (IC) ???. These constraints are not
merely technical; they reflect institutional features (e.g., transfers cannot be
negative), outside options (agents can walk away ), and moral hazard /adverse
selection (actions and types are private information). Our environment re-
tains this logic but implements it through a Markov game with an explicit
reject action and a restricted contract class. The reject action is a direct op-
erationalization of participation: rather than writing an inequality constraint
in the planner’s program, we allow agents to choose “no trade” endogenously.
Meanwhile, restricting contracts to homogeneous linear shares can be viewed
as a reduced-form version of limited liability and simplicity /implementability
considerations: many platforms and organizations impose a small menu of
auditable take rates, commissions, or revenue shares, even when richer mech-
anisms are theoretically available.

Dynamic contract theory studies repeated or continuous-time interac-
tions under private information, limited commitment, and persistent het-
erogeneity, often yielding complex history-dependent optimal contracts ?7.
In that tradition, state dependence and continuation values play central
roles, and the set of constraints expands to include dynamic IC and promise-
keeping conditions. We deliberately step back from full optimal contracting
in that sense: the aim of our model is not to characterize the unrestricted
optimal mechanism, but to analyze a practically common contract class in a
setting where policy targets (e.g., inequality limits, earnings floors, partici-
pation mandates) are imposed by governance. In this respect, our “fairness
constraints” are of a different nature than IC/IR: they are distributional re-



quirements imposed on the long-run outcome vector rather than feasibility
constraints implied by private information alone. They resemble, in spirit,
regulatory constraints on outcomes (minimum earnings standards, inequality
caps) that are now increasingly discussed for platform-mediated work.

Principal—-agent reinforcement learning and computational contract
design. A growing body of work models incentive design as a learning prob-
lem, where a principal (or designer) adapts payments or reward shaping rules
to induce desirable behavior by self-interested agents ??77. This literature
includes both mechanism-design-flavored approaches (learning a contract or
transfer rule) and multi-agent RL approaches (learning incentives that re-
shape the game). Related strands study Stackelberg games with learning fol-
lowers, bilevel optimization, and meta-learning of rewards. A recurring chal-
lenge is the endogenous non-stationarity created by adaptive agents: as the
principal changes incentives, agents update policies, which changes state vis-
itation and observed performance. Our analysis lives squarely in this regime,
but we emphasize two points that are sometimes underdeveloped in purely al-
gorithmic treatments. First, we insist on policy-relevant constraints—targets
that can be audited—rather than a soft preference parameter. Second, we
explicitly exploit the economic interpretation of primal-dual methods: the
dual variables act as shadow prices of constraints, providing a quantitative
measure of the marginal cost of compliance.

There is also a closely related line on contract design in Markov decision
processes, sometimes phrased as “dynamic mechanism design” with learning,
where the principal selects payment rules contingent on observed outcomes
to influence actions 7. Our setting is more modest in contract space but
richer in learning dynamics: we allow the principal to use policy-gradient
updates over a state-dependent distribution of shares, while agents best re-
spond (approximately) on a faster timescale. This two-timescale viewpoint
allows us to connect algorithmic learning to stationary equilibrium objects
(KKT points) in a way that supports comparative statics and governance
interpretation.

Constrained reinforcement learning and primal-dual actor—critic
methods. The algorithmic core of our approach is closest to constrained
Markov decision processes (CMDPs) and their Lagrangian solution methods
?. Modern constrained RL has developed practical actor—critic algorithms
and analyses that justify primal-dual updates under stochastic approxima-
tion assumptions 777. Two-timescale stochastic approximation, in partic-
ular, provides a standard route to convergence claims for actor—critic and
primal—dual schemes ?7?. We build on this toolbox but apply it in a differ-
ent equilibrium setting: the constraints are functions of the wealth vector
induced by strategic agents, so the principal’s optimization problem is effec-



tively a constrained bilevel problem. The fast-timescale dynamics correspond
to follower (agent) adaptation toward a regularized best response, while the
slow timescale corresponds to the leader (principal) updating a constrained
objective with endogenous multipliers. This is conceptually analogous to
constrained learning in games, but the economic content of the constraints
(inequality and minimum-wealth floors) is specific to contracting and gover-
nance.

A technical distinction is that fairness metrics such as the Gini coefficient
or the minimum operator are typically non-smooth, whereas most conver-
gence analyses assume differentiability. Our use of smooth surrogates mirrors
a common practice in constrained RL (and more broadly in differentiable
programming): one replaces hard non-smooth constraints with differentiable
approximations so that policy-gradient estimators and primal-dual updates
remain well-defined. The point is not to weaken the governance goal, but
to obtain a tractable learning and analysis pipeline that approximates the
intended constraint as the smoothing parameter is tightened.

Fairness and inequality objectives in sequential and multi-agent
learning. Fairness in learning has been studied under many definitions:
demographic parity and equalized odds in classification, individual fairness,
and group-based constraints in sequential decision-making and bandits 77?.
In RL, fairness constraints have been imposed on visitation, risk, or return
distributions across groups, often to ensure equitable treatment over trajec-
tories rather than one-step decisions ??. In multi-agent settings, researchers
have explored equitable equilibria, bargaining-based solutions, and welfare
aggregation rules that trade off efficiency and equality (including max—min
objectives and inequality indices) ??. Our fairness criteria are outcome-
based and economic: we constrain long-run wealth dispersion and guarantee
a minimum wealth floor, which aligns with how platforms and regulators
often speak (earnings floors, inequality caps). Moreover, because agents
have heterogeneous hidden types and can reject, inequality is not merely an
artifact of stochasticity; it reflects both incentives and selection into partici-
pation. This makes the fairness constraint interact tightly with the incentive
constraint—an interaction that is sometimes abstracted away when fairness
is imposed directly on actions or immediate rewards.

Positioning relative to welfare or variance regularization. Our work
is also motivated by (and contrasts with) a common practice in multi-
objective learning and incentive design: replacing explicit constraints with
a weighted-sum objective that includes a welfare term (e.g., utilitarian so-
cial welfare) or a dispersion penalty (e.g., variance of agent returns). Such
regularizers are appealing because they preserve unconstrained optimization
structure and can be tuned to trace a Pareto frontier. However, in contract-



ing environments with reject options and non-convex response mappings, a
fixed weight is often not an operational control: wide ranges of the weight
can leave outcomes nearly unchanged, while small additional changes can
trigger abrupt participation shifts once an IR margin is crossed. In other
words, the mapping from a regularization weight to realized fairness and ac-
ceptance can be flat or discontinuous, and it is typically environment- and
population-dependent. By treating fairness and participation as constraints
and updating dual variables endogenously, we obtain a mechanism that is
explicitly designed to meet auditable targets when feasible and to quantify
the opportunity cost of meeting them. This difference is not merely philo-
sophical; it changes what can be guaranteed and what can be communicated
to stakeholders.

Taken together, these literatures suggest both the opportunity and the
gap: we have strong tools for dynamic agency and strong tools for con-
strained learning, but we need models that make governance-style distribu-
tional targets explicit in a learning principal-agent system. Our framework
is intended to fill that gap while remaining close to the contract forms and
accountability requirements that motivate the problem in practice.

3 Model

We model contracting as an infinite-horizon discounted interaction between
one principal and n strategic agents in a Markov environment. The state
space S is finite, and time is indexed by ¢t = 0,1,2,.... The key economic
ingredients are (i) persistent heterogeneity in agents’ productivities, which is
hidden from the principal, (ii) an explicit participation option implemented
as a reject action, and (iii) a restricted but practically common contract
class: a homogeneous linear revenue share a € [0, 1] that the principal can
adjust over time.

Hidden types and contributions. Each agent i € {1,...,n} has a fixed
type parameter 6; > 0 that scales how effectively their behavior translates
into observable output. The principal does not observe 6;, and we do not as-
sume that #; can be inferred perfectly from short-run performance. Instead,
we treat types as a structural source of cross-sectional inequality that inter-
acts with incentives: for a fixed contract share, higher-type agents can gen-
erate larger contributions and hence (depending on the payment rule) larger
wealth. This heterogeneity is precisely what makes distributional constraints
non-trivial in our setting.

At each step, after actions and the next state realize, the environment
produces a raw contribution signal 7;(s¢, at, st+1) for each agent 7. This can
be interpreted as revenue, completed tasks, or another auditable performance
measure. The effective output attributable to agent i is 6;7;(-), so that both



the level and dispersion of realized contributions depend on the latent vector

O1,...,600).

Actions, reject option, and timing. FEach agent ¢ has a finite action
space A; of “productive” actions and an augmented space A; = A; U {reject}.
Choosing reject is interpreted as non-participation: the agent generates no
output and receives no transfer in that period. We emphasize this model-
ing choice because it makes participation an endogenous equilibrium object
rather than an exogenous constraint; operationally, it captures that plat-
forms and organizations cannot force effort when outside options are avail-
able.

We adopt stationary Markov timing. At time ¢ the public state s; € S is
observed. The principal then offers a contract share ay € [0, 1], potentially
randomized as a function of s;. Agents observe (s, ;) and simultaneously
select actions a;; € A;. The environment transitions according to

Ser1 ~ P(- | s¢,a4), ar = (a1, ant),

and raw contributions r;(s¢, as, s¢41) realize. Finally, contractual transfers
are executed and payoffs accrue. This sequence repeats indefinitely with
discount factor v € (0, 1).

Contracts as linear shares. The contract space is B = [0, 1], where «
represents a homogeneous share applied to all agents. Economically, o can
be read as a take-rate complement: the principal keeps (1 — «) of measured
output and pays « to the agents. Homogeneity is a deliberate restriction: it
captures environments in which individualized contracts are infeasible or un-
desirable (e.g., due to regulation, simplicity, or transparency), and it makes
distributional objectives meaningful because the principal cannot trivially
equalize outcomes by agent-specific transfers.

The principal’s stationary policy over contracts is denoted m,(- | s;¢), pa-
rameterized by ¢. Agent i’s stationary policy is m; (- | s, a;1;), parameterized
by ;. Allowing 7, to be state-dependent reflects that contracting can re-
spond to observable operating conditions (demand, congestion, seasonality),
even if types remain hidden.

Per-period payoffs. Given state s;, joint action a;, next state s;11, and
share «y, agent i receives contractual reward

Ri(st,at, Sp41,04) = (at 0; 1i(St, at, St+1) — ci) 1[a;; # reject],

where ¢; is a per-step cost of acting (potentially type- or state-dependent,
but treated as exogenous primitives). The principal receives the residual

10



share of total effective output from participating agents:

n

Rp(St, Aty St+41, Oét) = Z(l — Oét) 91 ’I“i(St, ag, St+1) l[aiyt 75 reject].
=1

Two features are worth highlighting. First, the reject option makes trans-
fers and output jointly endogenous: as «y falls, participation may collapse
discretely, creating non-convexities in the mapping from contracts to long-
run outcomes. Second, costs ¢; create an incentive/insurance tradeoff even
absent rejection: higher « increases agents’ marginal returns to productive
actions but reduces the principal’s residual claim.

Long-run wealth as the outcome of interest. For any stationary policy
profile (mp, 71,...,my,), define discounted wealth for player j € {1,...,n,p}
as

wj(dmﬂ) = E[ZW’tRj(Suat,StH,Oét) )

>0

where ¢ = (11, ...,1,) and the expectation is taken over the Markov chain
induced by the stationary policies and the transition kernel P. We focus on
stationary objects because they correspond to stable operating regimes: a
platform’s long-run take-rate policy and the steady-state behavior it induces.

To connect to a Stackelberg interpretation, we treat the principal as
choosing ¢ anticipating that agents adapt to an equilibrium response. For
analysis and learning, it is convenient to impose a regularized best-response
selection that is unique and stable. Concretely, we posit that agents’ re-
sponses can be represented by a mapping ¥*(¢) (e.g., the fixed point of
entropy-regularized policy-gradient dynamics), and we define the induced
agent wealth vector

w() = (wi(e,97()), - ., wn(9, 1" (9))).

This vector is the object to which fairness and distributional constraints will
be applied.

Fairness metrics and participation. We take fairness to mean con-
straints on the distribution of long-run wealth across agents. Two canoni-
cal choices are inequality indices and worst-off guarantees. Let G(w) de-
note the Gini coefficient computed from the agent wealth vector, and let
Rawls(w) = min; w; denote the Rawlsian minimum wealth. In addition,
because agents can reject, we track an acceptance (participation) statistic,
denoted Acc(¢), such as the stationary discounted frequency of non-reject

actions:
n

Ace(d) = B[ 3200~ - 3" 1fass # reject]]

>0 i=1

11



Participation is not merely a welfare criterion; it is often a policy mandate
(e.g., maintaining service coverage) and a practical constraint (a contract
that induces mass exit is not implementable).

Differentiable surrogates. A technical complication is that G(-) and
min(-) are non-smooth, whereas the principal’s update will rely on policy-
gradient estimators. To keep the learning and comparative statics analysis
within a differentiable framework, we replace non-smooth operators with
smooth approximations. For the minimum wealth, a standard soft-min sur-
rogate is

— 1

ming(w) 5

which converges to min; w; as § — oo while remaining smooth for finite 5.
For the Gini coefficient, one convenient route is to use its pairwise absolute-
difference form and smooth the absolute value, for instance by replacing |z|
with Va2 + 62 for a small § > 0. Writing

1 n n 1 n
G(W):%ZZ\W—W, u‘):n;wi,

i=1 j=1

log > _ exp(—Buw;),
i=1

we obtain a differentiable surrogate Gs(w) by smoothing | - | and, if needed,
stabilizing the denominator when w is near zero. The economic content is
unchanged: these surrogates still penalize dispersion and enforce floors, but
they do so in a way compatible with gradient-based optimization.

We view smoothing as an approximation device rather than a normative
compromise. As 3 increases (and J decreases), the surrogate constraints
approach their intended hard counterparts, at the cost of potentially higher
gradient variance and less numerical stability. This tradeoff is intrinsic: exact
enforcement of non-smooth constraints is possible, but typically requires non-
differentiable methods or substantially more complex estimators.

What the model abstracts from. Finally, we acknowledge two lim-
itations. First, restricting to homogeneous linear shares rules out richer
instruments (bonuses, nonlinear tariffs, individualized contracts) that could
simultaneously improve efficiency and equity. Second, treating types as fixed
and hidden focuses attention on persistent inequality, but it abstracts from
learning about types and from endogenous human-capital accumulation. We
adopt these simplifications because they isolate the core governance tension
we study: when incentives and participation are strategic and the principal’s
control is limited, meeting explicit long-run distributional targets requires
treating fairness and participation as first-class constraints rather than as a
soft preference term.

12



4 Constrained contracting as a policy problem

We now formalize the principal’s objective as a profit mazimization problem
subject to explicit long-run distributional and participation requirements. The
economic motivation is straightforward: in many applications the “policy”
variable is not an abstract social preference weight, but rather a mandated
target (e.g., a minimum earnings floor, a cap on inequality, or a minimum
service coverage rate). In such settings, the principal’s problem is natu-
rally posed as choosing a stationary contract policy that maximizes residual
surplus while meeting targets that are specified in the same units that stake-
holders monitor.

Formally, for a stationary principal policy parameterized by ¢, let ¥*(¢)
denote the induced (regularized) stationary agent response mapping, and
let w(¢) collect the resulting agent wealths. The principal’s constrained
contracting problem is

max wp(6.0"(¢) st 1= G(w(0) 2 7. minwi(d) = p, Acc(9) = r,
(1)

together with the implicit feasibility requirement that the principal’s policy
remains in the contract simplex (e.g., a € [0,1] in the tabular case, or its
appropriate parametric analogue). We emphasize that the constraints in
bind the endogenous long-run outcomes of the interaction, not per-period
transfers; they therefore encode both incentive effects and selection effects
arising from rejection.

Smooth constraint surrogates and constraint functions. Because
the principal will ultimately rely on gradient information, we work with
smooth surrogates of the non-smooth fairness operators. Concretely, let
G5(w) and ming(w) be differentiable approximations to the Gini coefficient
and the minimum, respectively, as described in Section [3] We then define
differentiable constraint functions

01(6) = T—(1-Ga(w(9))),  ga(9) = p-ming(w(9)),  gs(0) = n—A(a)z(qzs),

2
and impose gx(¢) < 0 for k& € {1,2,3}. Economically, this replacement
does not change the nature of the tradeoff: higher 7 or p still demands a
contract that shifts expected surplus toward agents (directly via transfers
and indirectly via induced behavior), and higher x limits how aggressively
the principal can push contracts toward the participation margin. What
smoothing does change is how constraints “speak” to the gradient: instead
of responding only to the single worst-off agent or to exact wealth order
statistics, the surrogate produces informative marginal signals that are well-
behaved under stochastic approximation.

13



Lagrangian formulation and KKT conditions. Given , the corre-
sponding Lagrangian is

3
L($,A) = wp(¢, 0" () = D Meg(0), A e R (3)
k=1

At an interior stationary solution (for the smoothed problem), the Karush—
Kuhn—Tucker conditions take the familiar form

VoL(¢*,A") =0, A >0,  gk(¢") <0, fon(0%) =0 VE. (4)

Complementary slackness in provides a useful economic interpretation
of the dual variables: when, say, the Rawlsian floor is binding, A5 > 0
measures the marginal profit cost of tightening that floor at the optimum;
when it is slack, A5 = 0 and marginal changes in the floor do not affect the
locally optimal contract. This interpretation matters for practice because it
distinguishes environments where fairness targets are expensive (high shadow
price, strong tension with profit) from environments where they are cheap
(low shadow price, little efficiency loss).

Existence of constrained stationary solutions. Although the problem
is dynamic and strategic, existence of solutions for the smoothed constrained
formulation follows a standard compactness-and-continuity route once we re-
strict attention to stationary policies. Under our standing assumptions that
(i) the induced Markov chain is ergodic for any stationary profile, (ii) the
best-response selection ¢*(¢) is well-defined and continuous (indeed Lips-
chitz), and (iil) wp(¢,¢*(¢)) and gi(¢) are continuous in ¢ on a compact
parameter set @, the feasible set

Dfons = {¢ €d: gk(¢) <0 Vk}

is compact. If ®g,s is nonempty, Weierstrass’ theorem yields existence of
at least one maximizer of the smoothed constrained problem. Moreover, if
a Slater-type condition holds—namely, there exists some ¢ € ® such that
gr(¢) < 0 for all k—then KKT points (¢*, \*) exist for the smoothed prob-
lem and characterize stationary optima via . We view Slater’s condition
as an economically meaningful feasibility assumption: it requires that the
principal can satisfy the targets with some slack, ruling out knife-edge sit-
uations where meeting the constraints forces the system onto a boundary

where small perturbations break feasibility.

Why a fixed weighted-sum is not a policy knob. It is tempting to
replace (1)) with a weighted-sum objective such as

max wp(¢, ¥*(¢)) + AF(w(¢)), ()

ped
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where F' is an inequality penalty or welfare aggregator and A > 0 is inter-
preted as “altruism.” We caution against treating A as an implementable
policy lever in our setting for two related reasons.

First, the mapping from contracts to fairness and participation can be
non-convexr and discontinuous because of rejection. In a simple one-state,
one-step instance with two types 0 > 61, suppose each agent participates
only if the offered share crosses an individual threshold: agent i accepts iff
ab;r — ¢; > 0. Then as « increases, the set of participants can change dis-
cretely: for low a both reject (no output, no wealth); for intermediate « only
the high type participates (high inequality, possibly high principal profit); for
high a both participate (lower inequality, potentially lower principal profit).
Any fairness statistic computed on realized wealth (Gini, minimum wealth,
or acceptance) will inherit these discontinuities. In such an environment,
varying A in (b)) need not trace fairness levels smoothly: the optimizer can
jump from a low-a regime (high profit from the high type only) directly to a
high-a regime (both participate) at a critical A, skipping intermediate target
levels altogether. Consequently, there may exist target values (7, p, k) that
are feasible under but are not attained by any optimizer of for a wide
interval of A.

Second, even absent discontinuities, a single scalar A generally cannot
encode multiple operational targets. Our problem features at least three
conceptually distinct constraints: inequality control, worst-off protection,
and participation. Increasing A in may improve one dimension while
worsening another (e.g., raising the minimum wealth by increasing « might
reduce acceptance if higher effort costs lead to strategic rejection in some
states). In practice, stakeholders specify thresholds (“at least x participa-
tion,” “no agent below p”) precisely because they are legible and enforceable;
a fixed weight does not provide this governance guarantee, and it lacks an
interpretable unit that would allow regulators or designers to choose it ex
ante.

These considerations motivate treating fairness and participation as con-
straints with endogenous dual variables rather than as a fixed regularization
term. The constrained formulation makes the policy question transparent
(which targets are feasible, and at what shadow price), and it sets up a
natural primal-dual learning procedure in which A is not tuned but instead
adjusts endogenously to enforce the specified targets. This is the perspec-
tive we operationalize in the next section via a two-timescale primal-dual
actor—critic algorithm.
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5 5. Algorithm: two-timescale primal-dual actor-
critic (agents fast, principal+dual slow); practi-
cal implementation details (projection, smooth-
ing, critic approximation).

We now describe the learning procedure that operationalizes the constrained
formulation: a two-timescale primal-dual actor—critic in which agents adapt
quickly to the currently offered contract policy, while the principal updates
the contract policy and the associated dual variables slowly. The economic
logic mirrors the comparative-statics intuition: agents are the “price takers”
of the contract terms in the short run (they best respond to «), whereas the
principal is the “policy maker” who adjusts « to satisfy long-run requirements
at minimal shadow cost.

Parameterization and projections. We let the principal’s stationary
policy m,(- | s;¢) be either tabular (a categorical distribution over a dis-
cretized « grid) or continuous (e.g., a Gaussian policy over « followed by
clipping). In either case we enforce feasibility by projection. Writing ® for
the admissible parameter set, the slow update takes the projected form

Gt1 = H@(th + oy §¢£(¢t, At)),

where Il denotes Euclidean projection (or, in practice, an equivalent repa-
rameterization such as a sigmoid output ensuring « € [0, 1] pointwise). Sim-
ilarly, dual variables are constrained to remain nonnegative, and we typically
also cap them at a large Anyax for numerical stability:

Ak 1 = H[O,Amx]()\k,t +at §k(¢t)>, ke {1,2,3}.

This update is the stochastic-approximation analogue of complementary
slackness: persistent positive violation g > 0 increases \g, which in turn
tilts the principal’s gradient toward satisfying constraint &; when a constraint
is comfortably slack, g < 0 pushes A\, back toward zero.

Fast agent adaptation. Each agent ¢ maintains policy parameters t; for
mi(+ | 8, a51;) over A; (including reject). On the fast timescale, agents ascend
their own regularized objective using policy gradients:

Vi1 = Vit + Bt (6@-%’(@, Ye) +n ﬁmE[ZQO YEH (5(- | st, 0u; wz))]),

with stepsizes {f;} chosen so that a;/5; — 0. In economic terms, [3; being
large relative to oy is what makes the principal’s environment “approximately
stationary”: before the principal materially changes the contract distribution,
agents have largely adjusted their acceptance and effort decisions to the
current terms.
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Actor—critic structure and what the critics approximate. Both lev-
els use critics to reduce variance and to accommodate function approxima-
tion. Concretely, each player j € {1,...,n,p} learns a value function Vj(s)
(or an action-value Q;(s, ) for the principal) under the current joint policy.
With temporal-difference learning, a typical update is

witr1 = wjp+& 05 Vo, Vi(stswin), 850 = Ri(0)+7Vi (51413 wj) — V(56 wje),

where w; are critic parameters and ; is a critic stepsize. The principal’s
policy gradient can then be written in advantage form,

§¢wp x E[Vd,logﬂp(at | st50) //l\p(st,at)],

and analogously for each agent with V, logm;(ass | s¢, ou; ) A\i(st, Q, Qit).
The crucial point is practical rather than conceptual: the gradient estimator
treats the current behavior of the other players as part of the data-generating
process, and the timescale separation is what justifies interpreting this as
approximating V4w, (¢, 1*(¢)) rather than the gradient of a moving target.

Estimating and differentiating the constraints. The constraint func-
tions gx(¢) depend on long-run wealth objects w(¢) and on acceptance. Op-
erationally, we maintain running estimates of each agent’s discounted wealth
w;, e.g., by evaluating the agent value critic at a reference start distribution
s ~
Wi(¢) ~ Esomp [Vi(s0)],

or by episodic Monte Carlo returns when episodes are available. We then
compute smooth fairness statistics on w = (w1, ...,w,). For example, a
standard soft-min surrogate is

— 1 n .
ming(w) = 3 log (Ze"gw’),
i=1

and we use any differentiable ég (e.g., based on smoothed pairwise absolute
differences) to form g1, go. Acceptance is estimated directly from behavior:

T-1 n
— 1= ' ) _
Acc(¢) = > - > 1fais # reject], g3 =k — Acc(g).
t=0 =1

Because these are smooth functions of critic outputs (and of ¢ through ),
we can backpropagate through the computation graph to obtain @d,gk((ﬁ)
as needed for §¢[, = §¢wp — > kM @d)gk. Economically, smoothing plays
a second role here beyond existence theory: it ensures that “nearly worst-
off” agents and “nearly binding” inequality changes generate usable marginal
signals for the principal, instead of producing a gradient that is identically
zero except at kinks.

17



Putting the updates together. At iteration ¢, we (i) sample a batch
of transitions under the current policies; (ii) update agent critics and agent
actors using [y; (iii) update the principal critic and then the principal ac-
tor using oy and the current multipliers; (iv) compute g from the updated
critics (and observed acceptance) and update A using the same slow step-
size a¢. In implementations with neural policies, it is often helpful to (a)
normalize rewards and constraint signals, (b) use gradient clipping, and (c)
update A using a slightly smaller effective stepsize to avoid oscillations when
constraints are tight.

Approximation error and practical stability. Finally, we emphasize
a limitation that is also a guide to practice: with function approximation,
w; and the resulting V are biased/noisy, and the algorithm converges only
to a neighborhood whose radius is governed by this approximation error e.
In applied terms, the relevant tuning is therefore not an “altruism weight,”
but rather the numerical regime that keeps € small: sufficient critic capacity,
stable TD learning, and strong timescale separation so that the principal
does not chase transitory agent behavior. When these conditions hold, the
primal-dual mechanism makes the policy content of the problem explicit: the
learning dynamics adjust A endogenously to enforce the stakeholder targets,
and the principal’s contract policy adapts accordingly without requiring ex
ante calibration of an opaque regularization weight.

Two-timescale limit and why KKT points are the right notion.
The update rules above define a coupled stochastic process in (1, dr, A¢),
and the central technical difficulty is the endogenous non-stationarity: the
principal’s gradient is taken while agents are simultaneously learning. Our
standing assumptions (ergodicity under stationary policies, unique regular-
ized agent best responses, and differentiability of smoothed constraints) allow
us to reduce this moving-target problem to a familiar constrained optimiza-
tion object. The key step is to view the learning dynamics through their two-
timescale ordinary differential equation (ODE) limit: because oy /8, — 0, the
agent parameters evolve on a fast timescale and the principal-dual variables
on a slow one. Intuitively, by the time the principal noticeably changes ¢,
the fast recursion has largely settled near the fixed point ¥*(¢).

Formally, writing B(¢, 1) for the mean agent actor (and critic) drift under
quasi-static ¢, the fast limit is

b = B(g, ),

and assumption (H2) implies this ODE has a globally asymptotically stable
equilibrium ¢*(¢) that is Lipschitz in ¢. On the slow timescale, the principal
sees an effectively stationary Markov chain induced by (¢, ¥*(¢)), so its mean
drift is the projected primal-dual gradient flow for the smoothed constrained
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problem:

K
0 =1a(VoL(6 V),  A=Tar(9(6).  L(d,N) = wp(d,9"(9)) =Y Mgr(9)-
k=1

In this limit, stationary points coincide with KKT points of the smoothed
constrained problem (under Slater-type conditions), which is precisely the
equilibrium concept that corresponds to “profit-maximizing subject to policy-
relevant fairness and participation targets.”

Convergence to a neighborhood: what is guaranteed and what is
not. Under tabular policies or sufficiently accurate linear approximation
(so that critic error can be controlled), standard two-timescale stochastic
approximation theory implies that the iterates (¢, \;) converge almost surely
to an internally chain-transitive invariant set of the slow ODE. When the
critic and gradient estimates are exact, this invariant set is contained in
the KKT set. With function approximation, the invariant set inflates to an
O(e)-tube around the KKT set, where e measures the worst-case error in (i)
value approximation and (ii) the induced policy-gradient /constraint-gradient
estimates. Economically, € captures the principal’s “perception error” about
long-run profit and the long-run distribution of agent wealth; the result tells
us that the dual mechanism cannot enforce constraints more tightly than the
information quality embodied in the critics.

A convenient way to state the implication is in terms of asymptotic pri-
mal suboptimality and constraint violation. Let [z]y = max{z,0}. For a
suitable Lyapunov function associated with the projected primal-dual flow
(e.g., a smoothed saddle residual), one can show that, along subsequences
and in expectation (and almost surely under stronger mixing and stepsize
conditions),

limsup max [gx(¢)], < Cie, limsup (wp(¢*, 9" (¢%))—wp(¢r, ¥*(41))) < Cae,
t—o0 k t—o0

for constants C1,C depending on Lipschitz moduli (of ¥*, the smoothed
constraints, and the policy class), projection radii, and the mixing rate of

the ergodic Markov chain. The qualitative message is robust: improving

critic accuracy and strengthening timescale separation reduces both long-

run constraint slackness and profit loss, whereas simply increasing training

time cannot drive these errors below the € floor.

Why ergodicity and Lipschitz best responses matter economically.
Assumption (H1) (ergodicity) is not merely a technical convenience: it is
what makes “long-run wealth” well-defined and learnable from on-policy
data. If the chain were not mixing, then the same contract policy could
generate different wealth vectors depending on transient path dependence,
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and the principal could not interpret empirical constraint estimates g as
stable objects. Assumption (H2) (unique, Lipschitz best response) plays
a similarly economic role. With a reject option and heterogeneous types,
agents’ acceptance and effort can change sharply as a crosses an implicit
participation threshold. Entropy regularization smooths this response and
ensures that small policy changes by the principal do not cause discontinuous
swings in behavior. Without such regularity, the principal’s slow recursion
can “chase” a discontinuous correspondence 1*(¢), and the ODE approx-
imation breaks down in precisely the regimes where constraints are most
policy-relevant (near binding fairness or participation limits).

Stability via primal-dual updates versus greedy principal dynam-
ics. It is useful to contrast the primal-dual mechanism with a tempting but
flawed alternative: a greedy principal actor update that ascends estimated
profit §¢wp while treating constraints as either (i) ex post diagnostics or
(ii) fixed penalties with hand-tuned weights. In our setting, greediness is
destabilizing for two related reasons. First, because agents adapt quickly, a
profit-increasing move in ¢ today can induce a best-response shift tomorrow
that reduces acceptance, collapses output, and changes the wealth distribu-
tion nonlinearly. Second, fairness and participation constraints create effec-
tive “kinked” feasible regions even after smoothing: near the boundary, the
principal must trade off profit against shadow costs that are endogenous and
state-dependent.

The dual variables provide precisely the missing state variable. When
some constraint k is persistently violated, A increases and the principal’s
update becomes

VoL(),A) = Vowp(d, ™ (8) = Y MVogr(9),
k

so the algorithm endogenously reweights directions in contract space that
repair the binding constraint. In economic terms, Ay is the shadow price
of violating the target; its adaptation is what stabilizes learning near the
boundary. By contrast, a greedy principal that ignores A can repeatedly push
the system into low-acceptance regimes (agents reject), at which point profit
gradients become uninformative (no output) and the process may exhibit
oscillations: high « temporarily restores acceptance, then greed pushes «
down again, and so on. The primal-dual dynamics damp these oscillations
because constraint violations accumulate “debt” in A, making it increasingly
unattractive to revisit the same infeasible region.

What the O(¢) bound means in practice. The neighborhood result is
often interpreted pessimistically, but its policy implication is concrete. If
the planner’s goal is to meet a participation floor x and a fairness target
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7 reliably, the central tuning is not an altruism weight but the learning
regime that controls e: critic capacity, adequate exploration of (s, a), stable
temporal-difference learning under ergodicity, and strong timescale separa-
tion so that constraint estimates track the quasi-stationary wealth vector.
When these conditions are satisfied, the algorithm behaves like a constrained
policy optimizer: it approaches contracts whose induced stationary equilib-
rium is nearly feasible, with constraint violation proportional to the unavoid-
able approximation error, and with multipliers that are interpretable as the
marginal cost of tightening each target. This sets up the next section’s pur-
pose: in a tractable one-shot model we can compute, in closed form, how
tightening a Rawlsian or inequality target maps into a higher optimal share
o*, providing a sanity check for the monotone comparative statics that the
learning dynamics implement in the Markov setting.

Closed-form sanity check: how fairness targets map into a higher
linear share. Before turning to simulation evidence, we find it useful to
pin down a tractable case where we can compute the contract implied by an
explicit fairness threshold. The point is not realism—a one-shot environment
strips away state dependence and dynamic incentives—but transparency.
In particular, the Markov analysis above predicts monotone comparative
statics: tightening equality, minimum-wealth, or participation targets should
weakly increase the optimal share offered to agents (or increase the frequency
of high-a contracts in the dynamic case). A stylized model lets us verify this
prediction algebraically and clarifies when such targets are feasible at all
under a homogeneous linear-share instrument.

Environment and agent behavior (one period with reject). Con-
sider a single period in which the principal offers a common linear share
a € [0,1]. Each agent i either rejects (yielding zero activity and zero wealth)
or chooses effort e; > 0. Output is

Y = bie;,

and effort has quadratic disutility plus a fixed operating cost ¢; > 0 (inter-
pretable as the per-step cost in the Markov model, collapsed into one period).
If agent ¢ participates, her payoff is

1
wi(a) = ay; — 56? - Gi,

and if she rejects, her payoff is 0. The principal receives the residual claim
on output from participating agents:

n
wp(a) = (1 —a) Z y; - 1[i participates].
i=1
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1e2 — ¢}, yielding the

Given a, a participating agent solves max,,>o{af;e; — 5€;

interior best response

% 1 1
e; (a) = ab;, max (a@iei — 56%) = 50429?.

Thus participation is a simple threshold rule: agent i participates iff her net
surplus is nonnegative,
vV 261'

1
fa29i2—ci20 = o> = .
2 0;

The resulting realized (gross) wealth profile is therefore

wi(a) = [%Ozz@? - cl} ) and wp(a) = (1 — a)aZH? lla > o4
i=1

+

Two features mirror the Markov game. First, the reject option makes out-
comes piecewise and potentially kinked in « (precisely where participation
constraints matter). Second, heterogeneity in 6; creates unequal rents even
under a common share, so equality constraints bind through entry (who
participates) and through the compression created by the fixed cost ¢;.

Rawlsian and participation thresholds as lower bounds on «. A
Rawlsian floor min; w;(a) > p (with p > 0) immediately implies full partic-
ipation and a uniform lower bound on the share. Since w;() > p requires
%0‘291'2 — ¢; > p for every i, we obtain

& > anas(p) = max Y2GEP)
i 0;
Likewise, an acceptance/participation constraint of the form Acc(a) >
reduces here to requiring that at least a s-fraction of agents satisfy a > a.
Writing oy < -+ < @, for the order statistics of the thresholds, a minimal
share satisfying acceptance is

a > aACC(K/) = Q((’i”“)

Both constraints therefore enter as explicit lower bounds on «, and hence
tighten monotonically in p and «.

An explicit mapping for an inequality target (two-agent case). To
get an explicit expression for an inequality constraint, it is convenient to look
at n = 2 with common fixed cost ¢; = ¢co = ¢ and types 0y > 07 > 0. When
both participate (i.e., @ > v/2¢/f), wealths are

wy(a) = 0% — ¢, wr (o) = 50429% —c.
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For two agents, the Gini coefficient has the closed form

— 2
G(w) = H "L 1-Gw)= 2L
wg + wy, wyg + wr,

Imposing an equality target 1 — G(w(a)) > 7 (with 7 € (0,1)) is equivalent
to a lower bound on the wealth ratio:

wr, () T

wy(a) = 2—171

Substituting the expressions above yields an explicit threshold for o?. Let-
ting z = o2, the constraint becomes

xﬁ%—2c T
xQ%{—Qc - 2—-7

which rearranges to

:1:(9%— T 9%) > M
5 >

-7 2—T
Hence, provided the coefficient on z is positive (a feasibility condition),
T 202
02 > — 02 — r1<-—L
L= 0% + 02
the inequality constraint is satisfied iff

a > agni(T) == \/ del = 7)

(2=7)(0F - 3550%)

This formula makes two economic points precise. First, when heterogeneity
is too large relative to the desired equality level (large 0y /61 and large 7),
the target is simply infeasible under a common linear share: no choice of «
can sufficiently compress wealth. Second, conditional on feasibility, agin;(7)
is increasing in 7: a tighter equality target forces a higher share because
higher « raises both wealths while diminishing the relative impact of the
common fixed cost ¢, thereby reducing measured inequality.

Optimal share and monotone comparative statics. In the region
where the relevant agents participate, principal profit is a concave quadratic

wp(ar) = (1 — a)o Z 07,

1€P ()

in a:

where P(«) = {i : @ > o;}. Conditional on a fixed participant set, the un-
constrained maximizer is " = 1/2. With fairness/participation constraints,
the constrained optimum therefore takes the simple form

= H[O,l} (max {aua QRawls(P), Qace(k), aGini(T)})7
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interpreting agini(7) only when the feasibility condition holds and both
agents are required to be active. This delivers the comparative statics we
rely on in the Markov setting: tightening p, x, or 7 weakly increases the op-
timal share, and increasing heterogeneity tightens feasibility and raises the
implied shadow price of equality. The same logic also clarifies why, in more
complex environments, fairness constraints often bind through participation
margins: once the unconstrained optimum a" is below the most restrictive
lower bound, the optimum is pulled to the boundary and the principal gives
up profit to avoid rejections and to meet distributive targets.

Limitations and why this still matters for the dynamic case. This
one-shot model is intentionally narrow: it abstracts from state dependence,
from persistence in wealth, and from the possibility that optimal dynamic
contracts vary with s;. Nevertheless, it serves as a diagnostic for our learning-
based approach. It shows (i) how a policy target (a numerical 7 or p) trans-
lates into an interpretable minimum generosity level, (ii) how heterogene-
ity generates feasibility limits for common-share instruments, and (iii) why
piecewise behavior (entry/reject) can generate sharp changes that motivate
smoothing and primal-dual adaptation. With this sanity check in hand, we
now turn to experiments in a canonical Markov environment (Coin Game),
where we can test whether the algorithm reproduces these monotone patterns
under dynamics, partial observability of types, and function approximation.

Experimental testbed: reproducing Coin Game patterns under
contracting. We next move from the one-shot sanity check to a canonical
Markov environment where distributive concerns and strategic interaction
are both salient. Our goal is twofold: (i) reproduce the qualitative “fairness—
efficiency” patterns reported for the Coin Game under reward shaping, and
(ii) stress-test whether our constrained contracting formulation (with primal—
dual updates and smoothed constraints) achieves policy-relevant targets—
1 — Gini > 7, min; w; > p, and Acc > k—without hand-tuning a fixed
altruism weight. The key empirical object is the learned stationary princi-
pal policy mp,(- | s;¢) over linear shares «, together with the induced agent
responses.

Coin Game with a principal and hidden types. We consider a grid-
world Coin Game variant with n € {2,4} agents. At each step, agents move
and may collect coins; raw contribution signals r; (s, at, S¢+1) correspond to
environment-defined increments in value attributable to agent i (e.g., the
value of coins collected, potentially including externalities from who bene-
fits). Hidden types 6; scale these contributions, so two agents who behave
identically can generate systematically different effective outputs. Agents
additionally face a per-step operating cost ¢;, and retain a reject option
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(implemented as an action that yields no movement and no output). The
principal observes the public state s; and realized contribution signals (or
their contractual basis), but not 6;, and chooses a; € [0, 1] each step. We
evaluate performance using discounted wealths w, and w, along with realized
constraint statistics computed from long-run rollouts.

Algorithmic instantiation and evaluation protocol. Agents update
on the fast timescale via entropy-regularized actor—critic, which operational-
izes the unique best-response mapping required by (H2). The principal up-
dates ¢ on a slower timescale using stochastic gradients of the Lagrangian,
while dual variables Ay follow projected ascent on the (smoothed) constraint
violations. To separate learning transients from stationary behavior, we
report two sets of metrics: during training (moving averages of constraint
satisfaction and profit) and post-training (evaluation rollouts with fixed poli-
cies, reporting means and variability across seeds). For fairness, we compute
the empirical Gini coefficient on agent wealths (agents-only) as well as the
Rawlsian minimum; for participation, we report the fraction of non-reject
actions.

Main reproduction: constrained contracting traces a controlled
fairness—efficiency frontier. Across seeds, we find that tightening tar-
gets produces the monotone patterns predicted by the Markov/KKT analysis
and the one-shot algebra. Increasing 7 (more equality) raises the learned av-
erage share E[oy], and reallocates mass in m,(- | s) toward higher-a actions;
similarly, increasing p pushes the policy toward higher shares until either
the minimum-wealth floor is met or a saturates near 1. Increasing x reduces
rejection episodes primarily by lifting the lower tail of offered shares, which
is consistent with participation margins being the binding channel in envi-
ronments with costly effort or risky dynamics. In all three sweeps, principal
profit w), declines smoothly once the relevant constraint becomes binding,
while constraint violations shrink to the expected O(e) neighborhood de-
termined by critic/gradient error. Importantly, the learned dual variables
become informative diagnostics: when a target is slack, its multiplier re-
mains near zero; when binding, the corresponding Ax grows and stabilizes,
providing an endogenous “shadow price” of the policy target.

Sensitivity to heterogeneity and costs: feasibility becomes the
binding issue. We then vary the heterogeneity ratio Omax/0min and the
level /spread of costs ¢;. Two regularities emerge. First, as heterogeneity
increases, equality targets become harder to satisfy with a homogeneous
linear-share instrument: the algorithm responds by increasing o and the
fairness multiplier, but beyond a point it cannot fully close the gap (mir-
roring the feasibility limits highlighted by the closed-form two-agent cal-
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culation). Second, higher costs shift behavior toward reject unless shares
rise; consequently, participation constraints interact strongly with distribu-
tive constraints, and the “cheapest” way to satisfy 1 —Gini > 7 often becomes
keeping more agents active rather than attempting to equalize wealth con-
ditional on a fixed participant set. These observations matter operationally:
when targets are infeasible under the instrument class, the constrained ap-
proach does not hide the problem—it reveals it through persistent positive
violations and exploding multipliers.

Baselines: Greedy, Fixed, welfare regularization, and variance reg-
ularization. We compare against four baselines. (1) Greedy optimizes wy,
without constraints; it reliably yields low «, frequent rejection when costs
are nontrivial, and high inequality, even when modest shares would preserve
profit while stabilizing participation. (2) Fized uses a constant a chosen by
oracle grid search to maximize profit under each target; it provides a useful
upper bound for stationary constant contracts but is typically dominated by
state-dependent 7, when the Coin Game has phases with differing marginal
returns to effort. (3) Welfare reqularization optimizes w,+ AF (w) for a fixed
A and a chosen fairness proxy F'; consistent with our theoretical caution, it
often fails to hit prescribed thresholds except at finely tuned values of A, and
can exhibit discontinuous jumps in behavior as A varies (notably when rejec-
tion becomes optimal for some agents). (4) Variance regularization penalizes
Var(w); it can reduce dispersion, but it is neither threshold-calibrated nor
aligned with Rawlsian floors, and it may “equalize by depressing” by reducing
output rather than stabilizing participation. Across settings, the constrained
method is the only approach that reliably targets (7, p, k) directly.

Ablations: smoothing is a stability tool, not a cosmetic choice.
We ablate the smoothing of the Gini and minimum operators by varying
the surrogate temperature parameter 3. With insufficient smoothing (large
B, close to nonsmooth), the dual updates become high-variance near kinks
induced by reject, and training exhibits oscillations: X spikes, o overshoots,
and policies alternate between generous and extractive regimes. With ex-
cessive smoothing (small ), training is stable but biased: constraints are
satisfied for the surrogate while the true (nonsmoothed) statistics can drift,
especially for the Rawlsian floor which is sensitive to tail events. An in-
termediate smoothing regime yields the best tradeoff: stable learning with
small surrogate—true gaps, supporting our use of smooth constraints as an
analytically motivated approximation rather than an ad hoc trick.

Ablations: timescale separation governs constraint adherence un-
der learning. Finally, we test the two-timescale prediction directly by
varying the principal-to-agent learning-rate ratio. When the principal up-
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dates too quickly relative to agents, the induced environment becomes non-
stationary; empirically, we observe persistent constraint violations and cycles
in oy and A, consistent with the ODE intuition that the slow variables fail
to track ¥*(¢). As the principal step size is reduced (holding agent learning
fixed), training becomes markedly smoother: acceptance stabilizes, multipli-
ers settle, and post-training evaluation satisfies targets up to approximation
error. This ablation is practically important: in deployments where agents
adapt online (or where the principal faces model misspecification), conser-
vative principal updates act as a safeguard against transient unfairness.

Summary of what the experiments establish. Taken together, the
Coin Game experiments support three claims. First, target-based constraints
produce interpretable, monotone shifts in contracts that mirror the alge-
bra of the tractable model, but now under dynamics and partial observ-
ability of types. Second, compared to fixed-A regularization, primal-dual
learning is materially easier to operationalize because it directly enforces
policy thresholds and exposes infeasibility. Third, the two methodological
“details”—smoothing and timescale separation—are in fact central to mak-
ing constrained contracting behave predictably in environments with reject-
induced kinks and strategic adaptation.

Discussion and limitations: beyond the controlled testbed. Our
analysis and experiments are intentionally organized around a clean mes-
sage: if a policymaker cares about targets (e.g., a minimum-wealth floor or
an equality threshold), then formulating contracting as a constrained prob-
lem and learning via primal-dual updates is operationally closer to the gov-
ernance question than tuning a fixed fairness weight. That said, the step
from this message to deployment in real marketplaces or multi-agent digital
ecosystems is not automatic. The key limitations are not merely engineer-
ing details; they are structural features of dynamic principal-agent environ-
ments: non-convexity of the induced optimization landscape, multiplicity
of equilibria and equilibrium selection, and the normative and statistical
fragility of any chosen fairness metric under meaningful heterogeneity.

Non-convexity: KKT points are not global solutions. Even with a
single scalar instrument o € [0, 1], the mapping ¢ — wy(¢,9*(¢)) is typi-
cally non-concave once the environment is dynamic and agents can reject.
Policy-gradient methods therefore target stationary points of a smoothed La-
grangian rather than globally optimal constrained contracts. In practice, this
means two things. First, we should expect sensitivity to initialization and
optimization hyperparameters, and we should interpret the resulting con-
tract policy as one attainable governance-compatible solution rather than
the unique “best” one. Second, constraints can interact with non-convexity
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in a distinctive way: the algorithm may satisfy targets while leaving sub-
stantial principal surplus on the table, or conversely may extract high profit
while hovering near constraint boundaries where estimation error causes oc-
casional violations. For applications where violations are legally or ethically
costly, it is not enough to rely on asymptotic statements of O(e) constraint
error; one needs explicit finite-sample safety margins (e.g., tightening 7, p, k
by slack terms) or robust variants of the constraints that incorporate uncer-
tainty sets.

Multiple equilibria and path dependence: uniqueness is an assump-
tion, not a fact. Our theoretical convergence guarantee leans on a unique
and Lipschitz agent response 1*(¢), implemented empirically via entropy
regularization. This device is analytically convenient and often stabilizing,
but it is also a strong modeling choice: real strategic environments can have
multiple equilibria even under stationary contracts, and different learning dy-
namics can select different equilibria. When equilibrium selection is endoge-
nous, the principal is not merely optimizing payoffs subject to constraints;
the principal is effectively influencing which equilibrium the population coor-
dinates on. This raises two deployment-relevant concerns. One is predictabil-
ity: an audit based on one equilibrium selection mechanism may fail under
a different learning rule or under a different population composition. The
second is manipulability: if some agents can anticipate how the principal
updates ¢ and A, they may steer learning toward equilibria that are pri-
vately favorable while still satisfying coarse aggregate constraints. A natural
research direction is to replace single-equilibrium analysis with set-valued
best responses and to adopt equilibrium-robust objectives (e.g., maximize
worst-case principal profit over equilibria consistent with observed adapta-
tion), though this will likely sharpen the tradeoff between tractability and
realism.

Fairness metrics are not neutral: what is being equalized? Target-
ing 1 — Gini and a Rawlsian minimum is a deliberate choice because these
objects are interpretable and correspond to familiar policy desiderata (dis-
persion control and floors). But metrics embed values. In environments
with hidden types 6; that scale contributions, equalizing realized wealth can
be defended as solidarity, or criticized as blunting rewards for productiv-
ity, depending on the normative frame. Moreover, if 6; captures not only
“skill” but also differential access to resources, discrimination, or structural
disadvantage, then equalizing outcomes may be closer to a corrective jus-
tice view than equalizing opportunities. Our framework can accommodate
alternative targets, but the burden shifts to the modeler to justify them.
For example, one may constrain inequality in wutility net of costs rather than
transfers alone, or impose group-conditional constraints when agents belong
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to protected categories. Conversely, if heterogeneity is deemed morally rel-
evant (e.g., training investment), a policymaker may prefer constraints that
protect minima without compressing the entire distribution. The main limi-
tation is that constrained optimization enforces the metric one writes down;
it does not resolve which metric is legitimate.

Meaningful heterogeneity creates identification and measurement
problems. When types are hidden and contributions are noisy, the princi-
pal does not observe the welfare object it is constraining; it observes a proxy
based on realized trajectories and an accounting rule for r;. In the Coin
Game this accounting is unambiguous; in deployments it often is not. Con-
sider settings where outputs are delayed, jointly produced, or strategically
attributable (e.g., collaborative code, content moderation, or supply-chain
tasks). Then the mapping from behavior to r; is itself contestable and can
be gamed. If we constrain fairness in wealth computed from a flawed attri-
bution model, we risk “fairness by accounting” rather than fairness in lived
outcomes. This suggests that the governance problem is partly upstream: de-
signing auditable contribution signals and cost models that are stable under
strategic behavior. In practice, this may require combining our contracting
layer with mechanism-design tools (peer prediction, anti-collusion rules, or
randomized audits) so that r; is both informative and incentive-compatible.

Auditability and transparency: state-dependent policies can be
hard to justify. A principal policy m,(a | s;¢) can be statistically effec-
tive yet institutionally unacceptable if it is opaque. Many 2026 deployment
contexts (platform compensation, autonomous labor allocation, or enterprise
AT copilots) require that compensation rules be explainable, predictable, and
contestable. State dependence is a double-edged sword: it can improve effi-
ciency by tailoring incentives to phases of the task, but it can also look like
discretionary treatment unless the state variables are clearly defined and non-
sensitive. One practical constraint is therefore policy class restriction: we
may need monotone or sparse contract policies (e.g., a small menu of « values
triggered by coarse, audited state features) rather than a high-dimensional
neural policy. This restriction can be integrated into our framework as a
parameterization choice, but it will generally tighten feasibility and lower
achievable profit, making the feasibility diagnostics (persistent gi(¢) > 0
and growing multipliers) more central, not less.

Statistical compliance requires monitoring, not just training. Even
if a learned contract satisfies targets on average during evaluation, deploy-
ments face distribution shift: new agents enter, costs drift, and the environ-
ment changes. Since our constraints are expressed in long-run discounted
wealth, they are inherently statistical and require ongoing estimation. A
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compliance-minded implementation would therefore treat (Ax) not only as
training variables but as monitoring signals: rising multipliers can flag when
a target is becoming expensive or infeasible under current conditions. How-
ever, this also creates an implementation challenge: if multipliers are allowed
to grow without bound, short-run responses can become extreme (e.g., very
high « to “buy” participation), which may be unacceptable or financially
destabilizing. Real systems may need bounded multipliers, change-control
procedures, and human-in-the-loop review when constraints approach viola-
tion.

Instrument limits and institutional constraints. We deliberately fo-
cus on homogeneous linear shares to isolate the governance logic, but this
instrument is often too blunt under high heterogeneity. When 6y,ax /Omin is
large, hitting a Rawlsian floor with a common « can force transfers that are
excessively generous for high types, or can push « to corners where prin-
cipal incentives collapse. In many real settings, institutions also restrict
how transfers can be made: payments may be episodic rather than per-
step, contracts may not condition on fine-grained states, and personalization
may be legally constrained due to discrimination risk. These constraints can
and should be modeled explicitly (e.g., episodic contracts, limited menus, or
group-blindness constraints), but they will change both feasibility and the
shape of the attainable frontier.

What we can credibly claim. The practical takeaway is thus condi-
tional. Constrained contracting is a governance-ready template: it translates
high-level policy targets into enforceable learning objectives, produces inter-
pretable shadow prices, and surfaces infeasibility rather than hiding it behind
a tuned . But its real-world reliability depends on (i) whether equilibrium
selection is stable under agent adaptation, (ii) whether the welfare metrics
correspond to legitimate normative commitments under heterogeneity, and
(iii) whether the measurement and auditing stack for r;, costs, and accep-
tance is itself trustworthy. These are not peripheral caveats; they are the
boundary conditions under which the methodological advantage of target-
based constraints can be converted into institutional practice.

Conclusion: constrained contracting as the governance-ready al-
ternative to A-regularization. We can now restate the organizing claim
of the paper in the language of the model. When the principal cares about
policy targets—a minimum wealth floor p, an inequality bound 7 (e.g., 1 —
Gini > 7), and a participation requirement x—the economically natural
object is a constrained problem with explicit feasibility and explicit shadow
prices. In contrast, a weighted-sum objective wy,+AF(w) is a preference rep-
resentation only when the frontier is well-behaved; in the dynamic Markov
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setting with reject options, non-convexities, and state dependence, A be-
comes an unstable surrogate for governance. Our contribution is therefore
not merely an algorithmic trick. It is a translation: from informal notions of
“fairness” to auditable constraints, from ad hoc tuning to KKT conditions,
and from a fixed altruism parameter to endogenous multipliers A\, that quan-
tify the marginal cost of meeting a stated target.

What the constrained formulation buys us, operationally. The con-
strained viewpoint makes three operational differences salient. First, it sep-
arates preference from compliance: rather than asking the designer to pick
A so that an emergent fairness statistic lands near a desired level, the de-
signer specifies the level and the learning rule seeks policies whose stationary
outcomes satisfy it. Second, it produces diagnostics that are legible to gov-
ernance stakeholders. Persistent positive constraint residuals gx(¢) > 0 in-
dicate infeasibility under the policy class and instrument limits, while rising
multipliers A\, reveal which requirement is binding and how expensive it is
at the margin. Third, it aligns with the institutional fact that many deploy-
ments are accountable to thresholds (minimum pay, non-discrimination stan-
dards, participation guarantees) rather than to a continuous social-welfare
weight. In that sense, primal-dual learning is not only a computational
method for solving our model; it is a model of how a regulator-like principal
can adapt incentives while keeping the targets explicit.

What we have (and have not) established theoretically. Under
standard assumptions that make the induced control problem well-posed—
ergodicity, smooth surrogates for fairness functionals, and a unique reg-
ularized best response ©*(¢)—the smoothed constrained problem admits
KKT points, and a two-timescale actor—critic dynamic tracks a neighbor-
hood of that set, with asymptotic constraint violation on the order of the
critic/gradient error e. The key economic content of this statement is that
the principal can treat the agent population as approximately equilibrated
on the fast timescale and can then adjust the contract policy and shadow
prices on the slow timescale as if solving a constrained optimization problem.
At the same time, we do not claim global optimality, finite-time guarantees
of exact satisfaction, or robustness to arbitrary equilibrium selection. These
gaps are not merely technical; they delineate the boundary between “target-
based learning” as a persuasive governance template and as a fully reliable
mechanism.

Reading the multipliers as prices of policy. A useful way to inter-
pret the dual variables is as shadow prices of legitimacy. If Arawis is large,
then raising the minimum-wealth floor by one unit imposes a large profit
cost at the margin under the current instrument class (here, a homogeneous
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share a). If Aacc spikes, then participation is being “purchased” via con-
tract generosity, suggesting either that the environment has shifted (costs
¢; rose, types 6; changed) or that the state-dependent policy has entered
regions where agents’ outside option dominates. This economic interpreta-
tion matters because it is actionable: multipliers can be monitored as part
of compliance operations, can trigger re-training or review, and can inform
whether institutional constraints (budgets, legal limits on personalization,
menu restrictions) are binding in a way that makes some targets unattain-
able without expanding the contract space B.

From a single scalar share to richer contract spaces. We deliber-
ately study B = [0,1] to isolate the governance logic, but the conclusion
points to a broader design problem: what is the minimal contract language
that makes a given set of targets feasible without destroying incentives?
Even small generalizations—state-dependent menus, episodic bonuses, or
two-part tariffs—can relax the tension between profit and minima when het-
erogeneity in 6; is large. The constrained approach scales naturally to these
spaces: we still maximize w, subject to gi(¢) < 0, but now the feasibility
set may expand dramatically. The open question is not whether we can
write down richer B, but how to do so while preserving auditability and non-
discrimination constraints (e.g., contracts that are group-blind, monotone in
coarse task states, or implementable under limited observability of s;). In
practice, the economically relevant frontier is the one induced by institu-
tional constraints on what can be conditioned upon, not the one induced by
mathematical convenience.

Open problem I: equilibrium selection without assuming unique-
ness. The most conceptually important extension is to drop the assump-
tion that ¢*(¢) is single-valued. With multiple equilibria, the principal’s
problem becomes intrinsically bilevel and partly adversarial: the same con-
tract policy can induce different wealth vectors depending on learning dy-
namics, coordination devices, or population composition. A governance-
relevant principal would want guarantees that targets hold across plausible
equilibrium selections, i.e., constraints of the form supyecy-(4) gk (¢, 1) < 0,
or at least high-probability satisfaction under a model of adaptation. Devel-
oping tractable surrogates for such equilibrium-robust constraints, and un-
derstanding when dual ascent remains stable in that set-valued setting, are
central theoretical tasks if we want to move from “works under a stabilizing
regularizer” to “works under realistic strategic diversity.”

Open problem II: measurement, attribution, and incentive-compatible
signals. A second bottleneck is the welfare accounting layer. Our con-
straints are written in terms of wealth w;, which in turn depends on the
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reward basis 7;(s,a,s’) and on costs ¢;. In deployments, both objects are
measured with error and are strategically contestable. This suggests an in-
teraction between contracting and mechanism design: we may need to design
contribution signals that are robust to manipulation (peer prediction, audits,
randomized checks), and we may need constraints that are robust to mis-
measurement (distributionally robust or ambiguity-averse versions of g;). A
promising direction is to replace point estimates of w(¢) by confidence sets
and to enforce constraints with statistical margins, turning compliance into
a statement like gi(¢) < —J) where Jy, is calibrated to monitoring error and
desired risk tolerance.

Open problem III: risk, dynamics, and non-stationarity. Finally,
policy targets are rarely stationary in practice. Costs drift, new agents en-
ter, and the meaning of “participation” changes with outside options. This
raises two related extensions. One is to move from expected discounted con-
straints to risk-sensitive or tail constraints (e.g., CVaR-style constraints on
low-wealth events) so that compliance is not only average-case. The other is
to treat the primal-dual updates as an online control problem with change
detection and bounded adjustment rates, reflecting real institutional fric-
tions. Technically, this pushes us beyond stationary Markov analysis toward
non-stationary objectives and regret-style notions of performance subject to
constraints. Substantively, it forces us to articulate what it means to be
“fair over time”: is the constraint on long-run wealth, on per-period pay, on
opportunity sets, or on transition dynamics between states?

Closing perspective. The broader message is that constrained contract-
ing provides a coherent vocabulary for bringing economic governance ques-
tions into learning systems: we specify targets, we expose feasibility, and we
interpret multipliers as the price of policy commitments. Weighted-sum reg-
ularization remains useful as an exploratory tool, but it is not a substitute for
target-based compliance when the mapping from X to outcomes is discontin-
uous, non-monotone, or institutionally opaque. The open problems above do
not weaken the case for constraints; they clarify what must be built around
them—equilibrium-robustness, incentive-compatible measurement, and risk-
aware monitoring—for the promise of “governance-ready” learning to survive
contact with heterogeneity, strategic behavior, and shifting environments.
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