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Abstract

We study position auctions inside Al-generated content when click-
through rates depend on both the advertiser and the generated position
context, and must be estimated online using modern prediction systems
(e.g., LLM-based relevance and fit models). Building on recent work
that removes the separability assumption and reduces welfare/revenue
maximization to a winner-determination problem (WDP) with exter-
nalities, we focus on the deployment reality that p;; is not known and
may drift or be biased. We propose a learning-aware mechanism that
(i) uses lower confidence bounds (LCBs) on standalone CTRs to com-
pute allocations by solving the WDP (for the MNL model) exactly
on conservative estimates, and (ii) injects bid-independent randomiza-
tion for exploration using a monotone bucketization rule. Because the
resulting allocation is monotone in bids, payments can be computed
by the envelope theorem (up to numerical discretization), yielding e-
truthfulness per round. We provide a regret-and-incentives theorem:
under finite contexts and semi-bandit click feedback collected through
single-ad exploration rounds, the mechanism achieves sublinear welfare
regret relative to a clairvoyant benchmark while maintaining approxi-
mate dominant-strategy incentive compatibility. We also give robust-
ness guarantees under bounded prediction bias, capturing manipula-
tion or systematic model error common in LLM-era ad systems.
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1 Introduction

Advertising inside conversational and generative interfaces is no longer well
described by a fixed list of “slots” with stable, query-level click-through rates.
In a 2026-style assistant, the interface itself is part of the outcome: the
system chooses where an ad may appear (e.g., above the answer, inline as
a cited recommendation, inside a tool call, or as a follow-up suggestion),
how much surrounding text it displaces, and how it interacts with other
rendered elements such as citations, images, and Ul widgets. We refer to
these candidate insertion points as positions, but the key modeling difference
is that the set of positions and their salience are context dependent. The
context includes the user query, the conversation state, and the UI template
that will be rendered, and it changes from round to round.

This shift creates a new bottleneck: to allocate ads efficiently and fairly,
the platform must learn the click response of users to pairs of (advertiser,
position) within each context, while advertisers strategically choose bids in
response to the allocation and pricing rule. Learning and incentives are
tightly coupled. If we learn by experimenting with allocations that depend
on bids, then the resulting feedback can be contaminated by strategic be-
havior and can invalidate standard concentration arguments. Conversely, if
we ignore learning and treat predicted click probabilities as given, we inherit
systematic miscalibration and bias that can distort welfare and, in practice,
erode trust in both the platform and the auction.

We take the view that the right abstraction for these environments is a
contextual choice model with externalities across displayed ads. The multi-
nomial logit (MNL) family is a natural baseline: when multiple ads are
shown, each ad competes for attention against other ads and against the
outside option, and the click probability is governed by a simple and inter-
pretable functional form. Importantly, MNL retains a tractable optimization
structure: given per-ad “attractiveness” parameters (equivalently, log-odds),
the welfare-maximizing slate can be computed by solving a winner determi-
nation problem (WDP) subject to a capacity constraint on the number of
shown ads. In our setting, the MNL parameters are contextual and unknown,
and must be learned online.

A central design goal is to preserve incentive properties while learning. In
classical single-parameter auction design, dominant-strategy incentive com-
patibility (DSIC) is obtained by ensuring that the allocation rule is monotone
in each bidder’s report, and then charging the corresponding threshold-style
payments via the envelope theorem. In contextual ad allocation, two ob-
stacles arise. First, the allocation problem itself is combinatorial: we must
choose a feasible matching between advertisers and positions up to capac-
ity. Second, the allocation depends on estimated click probabilities, and if
these estimates are updated using feedback generated under bid-dependent
allocations, the monotonicity and the validity of the payment construction



become delicate.

Our approach isolates the learning system from strategic influence by
separating exploration from exploitation in a way that is compatible with
monotonicity. On exploration rounds, we show at most one ad, selected by
a bid-monotone exploration rule, and we record a direct Bernoulli sample
for a specific (context, advertiser, position) triple. This provides clean, in-
terpretable feedback that can be aggregated into confidence intervals for the
standalone click probability of that advertiser in that position under that
context. On exploitation rounds, we commit to using only a conservative es-
timate of click probabilities—specifically, lower confidence bounds—and we
compute the welfare-maximizing allocation for the MNL model under these
bounds. This “optimism in reverse” is a deliberate choice: by underestimat-
ing click probabilities in a way that is independent of current bids, we can
recover a monotone allocation rule and make truthful bidding approximately
optimal, while still guaranteeing that learning progresses through dedicated,
controlled experimentation.

The economic motivation for conservative bounds is straightforward. In
an environment where advertisers pay per click and have private per-click val-
ues, overstating click probabilities effectively inflates the perceived marginal
product of an advertiser’s bid and can create incentives for bid shading or for
gaming the prediction pipeline. Understating click probabilities, in contrast,
may sacrifice some short-run welfare but yields a robust ranking signal for
allocation and a stable payment map. This stability is particularly valu-
able in conversational interfaces, where small changes in Ul placement can
cause discontinuous changes in attention and where ex post explanations of
outcomes (to advertisers, regulators, and users) often require monotone and
auditable decision rules.

From an algorithmic standpoint, the MNL WDP serves as the backbone
of the exploitation phase. Given context-dependent log-odds parameters (or
equivalently, standalone click probabilities) for each advertiser-position pair,
the platform chooses a feasible matching up to capacity that maximizes
estimated welfare (bid times predicted click probability). The exact form
of the MNL click probabilities captures substitution among displayed ads,
making the optimization problem richer than independent-slot models yet
still amenable to exact solving in the regime relevant to platform deployment.
The resulting allocation rule is then combined with the exploration schedule
to form a single randomized mechanism.

We summarize our contributions at three levels. First, we formalize a
model of generative positions in which the platform must allocate advertisers
to context-specific insertion points and users click according to an MNL
choice model. The learning target is the standalone click probability for each
(context, advertiser, position) triple, which is sufficient to parameterize the
MNL probabilities under any feasible allocation. This separation between
standalone and slate-level click behavior yields a modular estimation problem



and clarifies what must be learned to support welfare optimization.

Second, we provide a mechanism design template that couples confidence-
bound learning with monotone allocation. The key ingredients are: (i) a con-
servative exploitation allocation obtained by solving the exact MNL WDP
on lower confidence bounds; (ii) an exploration policy that samples at most
one ad per exploration round to obtain unbiased Bernoulli feedback; and (iii)
payments computed from the envelope formula applied to the realized alloca-
tion rule, using numerical integration with discretization step size 7. Under
this construction, the per-round allocation is monotone in each bid, and the
mechanism is approximately DSIC with an explicit discretization-induced
incentive loss of order O(vn). This is the practical price of computing pay-
ments in a complex allocation environment: we can make the incentive loss
arbitrarily small at a controllable computational cost.

Third, we quantify the welfare consequences of learning. When con-
texts are drawn i.i.d. from a finite set and confidence intervals satisfy high-
probability coverage uniformly over all (context, advertiser, position) triples,
we obtain a sublinear regret guarantee relative to a clairvoyant benchmark
that knows the true click parameters in each context. The resulting bound

scales like é(@ VIC|mnm T), plus an explicit exploration cost controlled by

the exploration schedule. We also discuss robustness to systematic predic-
tion bias: if the click estimator is adversarially miscalibrated by at most
¢ in expectation, then welfare regret degrades by an additive linear term
O(v6T), making transparent the tradeoff between statistical learning error
and structural model misspecification.

Beyond these technical statements, our broader message is that learn-
ing and incentives must be co-designed in generative advertising systems.
The platform cannot treat click prediction as a purely statistical module,
because the way it experiments changes the strategic environment; similarly,
the mechanism cannot ignore the fact that click probabilities are learned,
because payments and allocations built on unstable estimates are difficult to
justify and easy to manipulate. By combining conservative confidence-bound
optimization with a clean exploration channel and envelope-based pricing,
we obtain a mechanism that is simultaneously implementable, approximately
truthful, and equipped with explicit welfare guarantees. This provides a con-
crete bridge between WDP-based auction theory and the operational realities
of context-rich, rapidly evolving conversational interfaces.

2 Related Work

Our setting sits at the intersection of three literatures that have largely
evolved in parallel: (i) position auctions with click externalities and struc-
tured user choice models, (ii) truthful (or approximately truthful) mecha-
nism design for combinatorial ad allocation problems where monotonicity is



the binding constraint, and (iii) online learning—bandits and learning-to-
rank—in environments where the data-generating process is affected by the
platform’s allocation decisions and, in market settings, by bidders’ strategic
responses. A fourth strand concerns robustness to miscalibration and model
misspecification, which becomes especially salient when click prediction is
delegated to complex ML systems.

Position auctions beyond independent slots. The classical sponsored
search abstraction assumes separable click-through rates: a position effect
times an advertiser effect, with ads competing only through the platform’s
ranking rule. This foundation underlies the analysis of generalized second
price and related designs (e.g., ?7). As soon as we move to generative
interfaces—where “positions” are context-specific insertion points embedded
in text, tool calls, or follow-ups—the independent-slot model becomes brittle.
In particular, showing one ad can change the attention available to others
and to the outside option. This motivates externality models of clicks, includ-
ing cascade models (users scan ads sequentially and may stop after clicking)
and discrete-choice models such as the multinomial logit (MNL), where each
shown item competes with every other shown item and the no-click option.

There is a substantial literature analyzing welfare and revenue under
cascade- and MNL-type click models in ad auctions and assortment prob-
lems (see, among many others, ?777). A useful conceptual takeaway from
this work is that the platform’s optimization problem is no longer a simple
sort-by-score. Instead, it becomes a winner determination problem (WDP)
over slates subject to feasibility constraints (e.g., each position used once,
each advertiser at most once, and a total capacity constraint). Our mech-
anism leverages this slate structure directly: we treat the MNL model as
the click response function during exploitation and solve the corresponding
WDP exactly (given parameters), rather than imposing an approximation
that restores separability.

Truthfulness, monotonicity, and approximation. In single-parameter
environments, DSIC reduces to monotonicity of the allocation rule in each
bidder’s report, plus payments computed by the envelope formula. For po-
sition auctions with externalities, achieving monotonicity is technically del-
icate because the welfare-maximizing slate can change discontinuously with
bids, and because externalities create complementarities and substitution
effects that complicate standard greedy arguments. A significant body of
work therefore focuses on truthful approximations for combinatorial alloca-
tion problems, where the primary design constraint is to ensure monotonicity
while retaining computational tractability (e.g., 77).

Within the externality click models, two approaches are common. One
is to design truthful mechanisms for restricted structure (e.g., cascade mod-



els with specific scanning assumptions) or to impose monotone allocation
heuristics that admit threshold payments. The other is to accept approxi-
mation in welfare (or revenue) in exchange for a monotone rule, sometimes
via maximal-in-range constructions or carefully designed rounding schemes.
Our work follows a different path: we retain the exact MNL WDP as the
exploitation backbone, but we modify the inputs to the WDP by replacing
unknown click parameters with bid-independent lower confidence bounds.
This “conservative WDP” perspective is, for us, the key to reconciling exact
slate optimization with incentive constraints in a learning environment. It
also clarifies what is, and is not, being approximated: the optimization is
exact for the surrogate parameters, while statistical uncertainty is handled
via confidence intervals and an explicit exploration channel.

It is also useful to contrast our approach with monotone approximations
developed for cascade-style models. In that literature, one often obtains
monotonicity by restricting attention to allocation rules that preserve an or-
dered structure (e.g., placing ads in a fixed sequence and deciding which to
include), which can yield tractable threshold payments but may mismatch
the interaction patterns of generative Ul placements. The monotone cas-
cade approximation is attractive when it is a faithful behavioral model; our
contribution is to show that, when the platform commits to an MNL choice
model and is willing to solve the corresponding WDP, one can still preserve
(approximate) truthfulness by using conservative parameter estimates and
by isolating learning from bids.

Online learning in auctions and learning-to-rank. The learning prob-
lem in ad allocation is often framed as a multi-armed bandit or contex-
tual bandit, where the platform must trade off exploration (to learn CTRs)
against exploitation (to maximize immediate welfare or revenue). This view-
point underlies much of the online advertising and recommendation litera-
ture, including work on learning-to-rank with click feedback and click models
tailored to ranked lists (e.g., 777). However, these algorithms typically take
the ranking objective as given and do not treat advertisers as strategic agents
whose bids respond to the allocation and pricing rule.

A smaller but growing literature studies bandit learning under incentive
constraints, where the platform must learn unknown parameters (such as
CTRs) while maintaining truthful or approximately truthful bidding (e.g.,
?7?7?). Two recurring lessons from this line of work are central to our design.
First, if the data used for learning is collected under bid-dependent allo-
cations, then strategic bidders can influence the estimation pipeline, under-
mining both statistical guarantees and incentive properties. Second, truthful
learning mechanisms often require an explicit separation between exploration
and exploitation, or at least a careful accounting that ensures the learning
rule is not manipulable by individual bids.



Our mechanism follows this separation principle in a particularly stark
form: exploration rounds show at most one ad, generating a direct Bernoulli
sample for a specific advertiser-position-context triple. This design choice
sacrifices some immediate welfare but yields clean identification of standalone
click probabilities and makes the estimation update bid-independent by con-
struction. In turn, bid-independent confidence bounds can be treated as
fixed inputs when establishing monotonicity of the exploitation allocation
and when applying the envelope formula for payments.

Robustness, miscalibration, and ML prediction systems. Finally,
there is a broad literature on robust mechanism design and on auctions with
uncertainty about key primitives (e.g., ??7). In practice, click probabilities
are outputs of complex prediction pipelines, potentially subject to systematic
bias due to distribution shift, interface changes, or strategic feedback loops.
From an economic perspective, misspecified CTRs are not merely “noise”
they can change the platform’s effective objective and can create incentives
for advertisers to redirect effort toward gaming measurement rather than
improving product quality.

Our analysis explicitly separates statistical uncertainty (handled via con-
fidence intervals and exploration) from systematic bias (captured by an ad-
ditive robustness parameter). This is complementary to robust design ap-
proaches that optimize worst-case objectives or impose ex post constraints.
The main message is operational: even when one cannot guarantee per-
fect calibration, it is still valuable to (i) preserve a bid-independent learning
channel, so that errors do not become strategically amplified, and (ii) use
conservative estimates in the allocation rule, so that the mechanism does
not over-react to optimistic predictions. At the same time, we acknowledge
a limitation: conservative bounds can be welfare-reducing in the short run,
and bounded-bias guarantees are only as meaningful as the monitoring and
auditing procedures that justify a bound. This connects directly to practice
and policy: transparency requirements and external audits of ad delivery and
measurement can be interpreted as institutional mechanisms for shrinking
the bias parameter and, therefore, the long-run welfare loss.

Positioning. Relative to the existing work on externality click models, we
view our contribution as a synthesis tailored to generative positions: we keep
the expressive MNL interaction structure and its exact WDP, but we couple
it with a learning rule and a payment construction that preserve mono-
tonicity despite unknown, context-dependent click parameters. Relative to
truthful learning-in-auctions work, our novelty is in treating the advertiser-
position-context triple as the estimation target and in emphasizing a clean
exploration design that yields direct Bernoulli samples, which lets us state
regret guarantees against a clairvoyant MNL benchmark while maintaining



approximate DSIC through envelope pricing with explicit discretization er-
Tor.

3 Model

We model a repeated allocation problem in which a platform must select, in
each interaction, a small slate of sponsored items to insert into a context-
dependent interface. The central economic friction is that click response is
both contextual and subject to externalities across displayed ads, while the
platform must learn these response parameters online from click feedback
that is itself shaped by the platform’s past allocations. At the same time,
advertisers are strategic and submit bids each round.

Rounds, contexts, and feasible slates. Time is discrete with rounds
indexed by t € {1,...,T}. At the start of round ¢, Nature draws a context
¢; from a finite set C, and the context is observed by both the platform
and all advertisers. We interpret ¢; broadly as the realized user query and
conversation state together with Ul features (e.g., available insertion points,
layout, and surface), since these jointly determine the set of plausible ad
placements and the user attention environment.

There are n advertisers (agents) and m candidate positions (insertion
points) that may be available in a given context. The platform may allocate
at most K < m ads per round. We represent an allocation as a partial
matching between advertisers and positions, encoded by an indicator matrix
x¢ = (x45¢) € {0, 1} with feasibility constraints: each advertiser appears
at most once, each position is used at most once, and the total number of
matches is at most K. We write X' (K) for this feasible set. Thus, x; € X'(K)
captures both which advertisers are shown and where they are inserted.

Advertiser values and bids. Advertiser ¢ has a private per-click value
v; € [0,7] (single-parameter, quasi-linear). In each round ¢, advertiser i
submits a nonnegative bid (report) b;; > 0, forming the bid vector by =
(b1,t,-..,bnt). Weinterpret b; ; as a value per click, so that welfare and trans-
fers can be written naturally in per-click units. We allow bids to vary across
rounds to accommodate dynamic bidding behavior; our incentive analysis
will be per-round with respect to the induced allocation rule in that round.

Standalone click probabilities as primitives. The fundamental un-
known primitives are standalone click probabilities. For each context ¢ € C,
advertiser 7, and position j, we define

pzcj € (07 1)



as the probability that a user clicks advertiser ¢ when ¢ is shown alone in posi-
tion 7 in context ¢ (i.e., no other ads are shown). These probabilities capture
the joint effect of relevance, creative quality, and position-specific visibility in
that context, abstracting from competitive interactions with other displayed
ads. The matrix p® = (pf;) € (0,1)"*" is unknown to the platform.

We emphasize the operational interpretation: standalone probabilities
are identifiable from randomized single-ad displays, and they can be es-
timated without modeling strategic interactions among advertisers. This
motivates treating (c,,j) as the estimation unit throughout.

From standalone probabilities to externalities: an MINL click model.
When multiple ads are shown simultaneously, we assume user choice follows
a multinomial logit (MNL) model. For each context ¢, advertiser 4, and po-
sition j, we map the standalone probability to an MNL “utility” (log-odds)

The outside option (no click) is normalized to utility 0. Given an allocation
x: € X(K) in context ¢, the probability that the user clicks advertiser i at
round ¢ is m .

Zj:l Lijt exp(pi;)
1+ 23:1 Z;n:1 Liljt exp(pf,tj) 7

and the no-click probability is the remaining mass,

Tt (Xe; p%) =

1
L+ 3700 207 mojeexp(pf;)

Wo,t(Xt; p) =

Because each advertiser can be assigned to at most one position, the numer-
ator for m; 4 selects the (at most one) assigned position for i. The externality
is immediate: increasing the attractiveness of one displayed ad raises the
denominator and reduces the click probabilities of other displayed ads and
of the outside option. This captures the “competition for attention” that
is natural in generative interfaces where multiple insertions share a limited
interaction budget.

The particular log-odds parameterization is convenient for two reasons.
First, it preserves the interpretation of pfj as a standalone click probability
when K = 1: if exactly one ad is shown, say x;;; = 1 and no other matches
are selected, then m;; = pf; Second, it permits a compact expression for
welfare and comparative statics as functions of exponentiated parameters.

Platform objective and welfare in a round. Given true values v and
an allocation xy, the (true) expected welfare in round ¢ is the expected value
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of the clicked advertiser,
Wi(x¢) = sz‘ it (Xe5 p™).
i=1

We treat welfare as the main performance criterion because it aligns with
allocative efficiency and provides a clean benchmark for learning; later, the
mechanism uses bids as proxies for values, with payments ensuring (approx-
imate) incentive alignment.

Information structure and bid-independence of learning. A key
modeling assumption is the separation between what advertisers can influ-
ence through bidding and what the estimation system uses for learning. The
mechanism, tie-breaking rules, exploration schedule, and the MNL functional
form are common knowledge. Values v; are private information. The plat-
form observes (¢, by) each round, chooses an allocation, and observes click
feedback. Critically, the platform maintains estimators ﬁfj,t and associated
confidence intervals [ng, t,]ﬁfj’t] using exploration data only, where exploration
is defined below. Because exploration allocations are constructed to be bid-
independent (and to generate direct samples for a specified triple (c,1,7)),
the resulting confidence bounds are statistically independent of current bids.
This bid-independence is the linchpin that later allows us to treat the learn-
ing state as fixed when analyzing monotonicity of the allocation rule in bids.

Feedback model and single-ad exploration samples. We distinguish
two types of rounds from the perspective of learning. In an exploration
round, the platform shows at most one ad: it selects a pair (7,;) and sets
x5+ = 1 with all other entries zero. The click feedback is then a Bernoulli
random variable with mean pf;, providing a direct sample for that advertiser—
position—context triple. We denote by Nl-cj’t the number of exploration sam-
ples collected for (c,i,7) up to time ¢t. This sampling scheme deliberately
avoids confounding from competitive effects and avoids the need to infer
per-ad click propensities from slate-level outcomes under externalities.

In non-exploration rounds (exploitation rounds), the platform may show
up to K ads and the realized click outcome is generated according to the
MNL choice probabilities above. Depending on the application, the plat-
form may observe the identity of the clicked ad (or simply whether a click
occurred). Our cleanest learning guarantees do not require using exploita-
tion feedback for estimation; it can be incorporated in practice, but doing
so introduces additional modeling assumptions about observation noise and
counterfactual inference under externalities. Accordingly, we treat exploita-
tion feedback as optional and focus on exploration-only updates to p and its
confidence bounds.

11



Benchmark: clairvoyant per-round optimal welfare. To evaluate
learning performance, we compare the platform’s achieved welfare to a clair-
voyant benchmark that knows the true standalone click matrix for the real-
ized context. In each round ¢, define the clairvoyant optimal welfare as

n

* . c
Wi = max v; T (x5 p7),
xeX(K) <
1=

where p® is computed from the true p®. This benchmark is per-round and
context-dependent; it corresponds to the welfare-maximizing MNL slate un-
der the platform’s feasibility constraints. Our regret metric aggregates the
difference between this benchmark and the welfare achieved by the mecha-

nism:
T

Reg(T) = Z (W —Wy).
t=1

This definition isolates the statistical and incentive frictions of interest: re-
gret arises because the platform does not initially know p;; and must learn
it from exploration, and because the allocation and payment rules must be
chosen to manage strategic bidding while operating under externalities.

The next section specifies the mechanism that couples (i) an allocation
rule based on conservative estimates of pf;, (ii) an explicit, monotone ex-
ploration policy that generates the direct Bernoulli samples above, and (iii)
payments computed from the induced monotone allocation rule.

4 Mechanism

In each round, the platform couples a conservative exploitation rule based
on lower confidence bounds with an explicit single-ad exploration policy
that generates statistically clean samples. Payments are computed from the
induced (randomized) monotone allocation rule via the envelope formula,
implemented with a discretization step. The design goal is to separate (i)
statistical learning of standalone click primitives from (ii) strategic bidding
under externalities, while keeping the per-round optimization computation-
ally tractable.

Step 0: confidence bounds and log-odds. At the start of round ¢, after
observing context ¢; and bids by, the platform treats its learning state as fixed
and computes lower confidence bounds ngt', . for all advertiser—position pairs.
We work in log-odds form,

Py

_ .77t

Phe = 1Og<1 i, )
217,
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and define the associated attractiveness weights

Ct
Bij,t

Qijt = eXP(Pm) = W
Pijt

These quantities are computed solely from exploration data and are therefore
statistically (and strategically) independent of the current bid vector.

Exploitation allocation: LCB winner determination under MNL.
With probability 1 — ~, the platform runs exploitation. Given bids by, it
chooses a feasible matching x; € X' (K) that maximizes bid-weighted click
welfare under the MNL model using the conservative parameters Pyt

n
X; € arg max b i (% ).
t gxex(K) £ Tt ( 7Bt)

Using the fact that m;; depends on x only through the selected edges, we
can rewrite the objective as a ratio. For a matching x, let

n m n m
= E E Tij Qijits By(x) = E E Lij bi ijt,
i=1 j=1 i=1 j=1

so that under p the total expected bid-weighted welfare is

By(x)
szﬂrzt x;pt) = Ees)

Hence exploitation solves a fractional matching problem,

Bi(x)
max -————,
xeX(K) 1+ Ay(x)
with deterministic tie-breaking (fixed in advance) to ensure a well-defined
allocation rule.

Implementing the exploitation WDP. Although the objective is frac-
tional, it admits standard reductions. One convenient approach is Dinkel-
bach’s transform: for a scalar A > 0, define

Ft(X; )\) = Bt( ) )\(1+At szj it aij,t - A

For fixed A\, maximizing F}(x; \) over X'(K) is a maximum-weight matching
problem with edge weights

wijt(A) = (biy — A) aijy,
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since the constant —\ does not affect the argmax. Thus, each inner step can
be solved by an assignment solver (e.g., Hungarian algorithm after adding
dummy advertisers/positions to model capacity K). Dinkelbach’s iterations
update A to the achieved ratio Bi(x)/(1 + A:(x)) and converge to the op-
timal fractional value; because the feasible set is finite, this yields an exact
optimum up to numerical tolerance. In what follows we treat the winner
determination problem (WDP) as a black-box routine that returns an exact
maximizer under B?-

Exploration allocation: single-edge sampling with bid-independence.
With probability ~;, the platform explores by showing at most one ad. Con-
cretely, it selects a pair (it, j¢) as a function of (¢, t) and the current explo-
ration counts {N;1,}; ;, and sets x;,5,+ = 1 with all other entries zero. The
click feedback is then a Bernoulli draw with mean pfttjt, which is stored as a
direct sample for the triple (¢, it, jt).

The selection rule for (i, j;) can be implemented in several equivalent
ways, all chosen to satisfy two requirements: (i) coverage: every (c,i,j)
is sampled often enough (as a function of the number of times context ¢
appears) to shrink confidence intervals; and (ii) bid-independence: the dis-
tribution of (i, j¢) is independent of b; so that the resulting samples are
not manipulable by current bids. A simple instantiation is “least-sampled”
exploration: in context ¢, pick (it,j:) € argmin; Nicjﬁt with deterministic
tie-breaking. More generally, one may bucketize the space of edges within
each context into groups and cycle through buckets to smooth coverage
across advertisers and positions; the key property is that the mapping from
(ct, t,{N;},}) to (it ji) is fixed ex ante and does not depend on bids.

Because exploration shows a single ad, it also avoids having to invert
MNL externalities to obtain per-edge estimates: the observed click is a clean
sample of the standalone primitive, which is precisely the object entering the
confidence bounds used by exploitation.

Payments via the envelope formula and numerical discretization.
Fix a round ¢ and view the platform’s randomization (the exploration coin
and any internal randomness in exploration edge selection) as realized after
bids are submitted. For each realized random seed, the mechanism induces a
deterministic allocation rule, and hence an interim click-through probability
for advertiser 1,

Yir(be) = mie(xe(be); p*),

where x;(b;) is the realized allocation (either the exploitation matching or
the single-edge exploration display). Note that once x; is fixed, y; + depends
on p and the MNL denominator, but not directly on b;;; bids influence y; ¢
only through which allocation is selected.
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Given a monotone allocation rule (established in the next section), we
compute payments using the standard single-parameter envelope formula:

bi ¢
tit(by) = biryii(by) — / Yt (2, b_iy) dz,
0

with the convention that non-displayed advertisers (those with y;; = 0)
pay zero. In exploration realizations, y;; is bid-independent, so the formula
yields (up to numerical error) zero payment; exploitation realizations gen-
erate positive payments when an advertiser’s bid affects selection into the
slate.

To avoid computing the integral exactly, we approximate it on a grid
with step size n > 0. Let G(b;) = {0,1,2n,..., |bi:/n|n} and define the
left Riemann sum

fi,t(bt) =" Z yi,t(zyb—i,t)-

ZGG(bi’t)

We then charge R
tit(be) = bityit(by) — Iii(by).

Since y;+ € [0, 1] and bids are bounded by © (or capped at v without loss for
welfare), this discretization introduces an additive per-round error that scales
linearly with 7, which we summarize as €;¢(n) = O(vn) in the incentive
discussion.

Computational complexity and practical remarks. Per round, the
dominant cost is solving the exploitation WDP. Using Dinkelbach’s method,
each iteration requires one maximum-weight matching solve with weights
wijt(A); with a Hungarian-style algorithm this is polynomial in n +m (after
padding with dummies to encode capacity K). The number of Dinkelbach
iterations needed for a target numerical tolerance is typically modest in prac-
tice and can be treated as logarithmic in the inverse tolerance.

Payment computation is potentially more expensive if implemented naively,
because E,t requires evaluating y; +(z,b_; ) at O(v/n) grid points, and each
evaluation entails re-solving the WDP with bidder ¢’s bid replaced by z. Two
standard mitigations are available: (i) compute payments only for advertisers
who are allocated positive click probability in the realized allocation (others
pay zero), and (ii) exploit monotonicity to replace a full grid sweep by a
coarser adaptive grid or a search over critical bid thresholds. We keep the
discretized envelope as the canonical implementation because it is transpar-
ent and yields a direct n—accuracy parameter that will map cleanly into the
per-round incentive approximation guarantee.

Finally, we emphasize that exploration updates are performed only from
single-ad exploration rounds. This choice is conservative but crucial: it
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makes the confidence sequences and hence the exploitation objective statis-
tically independent of current bids, which is exactly the separation needed
for the monotonicity and incentive arguments that follow.

5 Incentive analysis

Our incentive claims rest on a clean separation principle: within a fixed
round ¢, the learning state—hence the attractiveness weights a;;; (equiv-
alently, the log-odds matrix B?)—is treated as fixed and bid-independent,
and the only strategic input is the bid vector b;. Under this separation, the
round-t allocation is a single-parameter maximization of a weighted objective
and therefore satisfies the monotonicity property required by the envelope
formula.

Click probability as a quantity function. Fix round ¢ and suppress
the ¢ subscript for readability. For any feasible matching x € X(K) and
fixed attractiveness weights a;; > 0, the MNL model implied by p induces
for each advertiser ¢ an interim click-through quantity a

() = mxp) = AL
@ 6L L4370 >kl Tekagy

with the convention that g¢;(x) = 0 if 7 is unmatched. Importantly, ¢;(x)
depends on bids only through the selected matching x; for fixed (¢, t) and
fixed confidence bounds, it is a deterministic function of x alone.

Monotonicity of the exploitation rule. In exploitation, the platform
selects a matching x(b) maximizing the bid-weighted welfare ) . b;iq;(x),
with a deterministic tie-breaking rule fixed ex ante. This is formally identical
to the standard single-parameter allocation template “choose arg max of a
weighted sum of quantities” once we interpret ¢;(x) as the quantity assigned
to agent 3.

Lemma 5.1 (Bid monotonicity in exploitation). Fiz a round and learning
state (hence fized a;;) and fix b_;. Let x(b) be the exploitation matching
selected by the mechanism, and define y;(b) = ¢;(x(b)). Then y;(b;,b_;) is
weakly nondecreasing in b;.

Proof. Let b; < b, and write b = (b;,b_;) and b’ = (b},b_;). Let x =
x(b) and x’ = x(b’) denote the selected matchings (with deterministic tie-
breaking). Optimality of x at b gives

bigi(x) + Y brgr(x) = bigi(x) + Y brgr(x').
ki Kt
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Optimality of x" at b’ gives

biai(x') + Y beae(x') > bigi(x) + > brgr(x).
ki Py

Adding these inequalities and canceling the common terms yields
(b; — b)) (6:(x') — @i(x)) > 0,

and since b, —b; > 0 we conclude ¢;(x') > ¢;(x), i.e., y; (b, b_;) > y;(b;, b_;).
]

Two remarks are worth emphasizing. First, the proof does not require
that x solves a linear assignment objective; it uses only that the chosen allo-
cation maximizes a weighted sum ), b;¢;(x) over a bid-independent feasible
set. Second, the presence of MNL externalities is absorbed into the defini-
tion of ¢;(x); once a;; are fixed, externalities do not alter the monotonicity
argument.

Exploration and randomization. In exploration rounds, the displayed
edge (i, ji) is chosen by a rule that is independent of bids, hence each ad-
vertiser’s click probability y;(b) is constant in b; (and therefore monotone).
Because the exploration coin (and any randomness in selecting (i, j;)) is
drawn after bids are submitted and is independent of bids, we may condi-
tion on a realized random seed w and view the mechanism as deterministic
given w.

Lemma 5.2 (Universal monotonicity under bid-independent randomiza-
tion). For each realized random seed w in round t, the induced deterministic
allocation rule is monotone in the sense of Lemma [5.1 Consequently, the
unconditional interim click probability y; ;(by) = Ey[y; +(by; w)] is also weakly
nondecreasing in b; ;.

Envelope payments and (approximate) DSIC. Given monotonicity,
the standard envelope construction yields dominant-strategy incentive com-
patibility for each deterministic realization of the mechanism. Concretely,
for a fixed seed w and fixed b_;, define y;(z) = y;(z,b_;;w). Monotonicity
ensures that y;(-) is almost everywhere integrable and that the payment rule

b;
ti(bi,b_j;w) = biyi(bi)_/ yi(z) dz
0

implements truthful reporting as a dominant strategy in the usual single-
parameter, quasi-linear sense. Because this holds for every w, the mechanism
is in fact universally DSIC when the integral is computed exactly.
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In the implemented mechanism we approximate the integral using a grid
of mesh 7, producing a payment #;. This induces an additive incentive loss
that we can bound in the worst case by a term linear in 1 (and, under bid
caps, linear in v as well).

Proposition 5.3 (e-DSIC from discretization). Assume bids are capped in
[0,7]. For each round t and each realized seed w, the discretized payment
rule with step size n yields a per-round e1c(n)-DSIC guarantee: for every
advertiser i, every value v; € [0,7], and every deviation b},

w;i (vi;vi, i) > wi(vi; b, b)) — e1c(n),
where u;(vi; b) = viy;(b) — t;(b) and e7c(n) = O(v 7).

The logic is standard: with exact payments, truthful bidding maximizes
utility pointwise in w; with discretization, the only difference is an additive
payment computation error whose magnitude scales with the mesh size. In
particular, any potential gain from misreporting must be mediated through
this numerical error term, since the envelope identity continues to hold ap-
proximately on the discretization grid.

What breaks if estimates depend on bids. The bid-independence of
the learning state is not a technical convenience; it is the hinge on which
monotonicity (and hence the envelope argument) turns. If the CTR estima-
tor uses data whose distribution depends on current bids, then the mapping
b — a;;; becomes endogenous. In that case the objective being maximized
in exploitation is no longer of the form

bigi(x),
xg(a(%i qi(x)

with ¢;(x) fixed; instead one effectively maximizes ), biq;(x; b), where the
quantity function itself depends on bids through the estimator. The key
inequalities in the proof of Lemma then fail because the comparison
between x(b) and x(b’) involves two different objective functions.

This endogeneity can arise in two practically relevant ways. First, if
we update CTR estimates using exploitation impressions/clicks, then which
edges are sampled depends on bids; bidders may have incentives to shade bids
to change which data are collected (and hence future confidence bounds),
generating a dynamic manipulation channel even if each round separately ap-
pears “almost truthful.” Second, if predicted CTRs incorporate bid-dependent
features (or any signals correlated with bids in a way that is strategically
controllable), then a bidder can move its own estimated click propensity
directly, again invalidating single-parameter monotonicity.

Our mechanism avoids these failures by learning only from single-ad ex-
ploration rounds whose selection rule is fixed ex ante and independent of
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current bids. This preserves the interpretation of the mechanism as (ap-
proximately) a sequence of single-parameter truthful auctions run against a
slowly improving, but strategically exogenous, estimate of click primitives.

6 Learning and regret

We now formalize the welfare cost of learning the standalone click primi-
tives and show that the mechanism achieves sublinear welfare regret. The
key economic tradeoff is transparent: more exploration accelerates learn-
ing (tightening confidence intervals and improving future exploitation), but
it also displaces high-welfare allocations in the present because exploration
rounds intentionally show at most one ad.

Welfare benchmark and regret. Fix a round ¢ with realized context
¢t = c. For any feasible matching x € X(K), let m;(x; p¢) denote advertiser
i’s MNL click probability under the true log-odds pf; = log(p§;/(1 — p§;)),
and define the associated welfare

W(x;c) = Zvim(x; p°).
i=1

Let x; € argmaxyex(x) W(x;¢t) be a clairvoyant welfare-optimal matching
using the true p“. The realized welfare under our mechanism (which uses
lower confidence bounds and may explore) is Wy, and the cumulative welfare

regret is
T

Reg(T) = Y (W(xj;c) — Wi).
t=1
In what follows we take expectations over the i.i.d. contexts, the mechanism’s
randomization (the exploration coin and any bid-independent exploration
design), and the click outcomes.

Concentration from bid-independent exploration. Because explo-
ration rounds display at most one edge (i, j) and the selection of that edge is
bid-independent, the platform observes a clean Bernoulli sample with mean
pfj whenever context ¢ occurs and edge (i,7) is explored. Let iji be the
number of such samples collected up to time ¢, and let ﬁz‘?ﬂ be the corre-
sponding empirical mean. A standard Hoeffding construction gives, for any
confidence level a € (0, 1),

R log(2/a)
Pr<pfj,t—pfj’> Tct <«
Z]7

Choosing « via a union bound over all (¢,i,7) and all ¢ < T yields a high-
probability event on which all confidence intervals are simultaneously valid.
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Lemma 6.1 (Uniform validity of confidence bounds). Assume contexts are
i.i.d. on a finite C and exploration feedback for each (¢, i, j) is i.i.d. Bemoulli(pfj).
Define

. \/1og<4|6|an2> )

= [ﬁfj,t - Tz‘cj,t]+7 Dijt = [ﬁfj,t + Tfj,t] _-

Wit 2max{l, Nj; .}’ Sigpt

Then the event
£ = {w <T, VeeC, Vi,j: pf; € [ijt,;ﬁfj’t]}

satisfies Pr(€) > 1 — O(T™Y) (in particular, Pr(E€) < T2 after adjusting
constants).

The salient point is not the specific radius but the scaling rf; , = o(1/ N,
which is what ultimately drives the v/T-type regret.

A decomposition of welfare regret. We separate regret into three in-
terpretable components.

(i) Estimation conservatism. In exploitation rounds the mechanism solves
the winner-determination problem using ijt', . (equivalently, BZ; t)‘ Even on
the “good” event &, these lower bounds are pessimistic, so the selected match-
ing may differ from the clairvoyant optimum. This is the statistical price of
insisting on allocations that are robust to estimation error.

(ii) Exploration cost. In exploration rounds we intentionally forgo multi-
slot allocation and show at most one ad, so the welfare in that round can
be substantially below W(x};¢;). This term scales with the total number of
exploration rounds, i.e. Zthl ¢ in expectation.

(iii) Model-bias term. If the CTR estimation system is systematically
biased (e.g. due to misspecification or adversarial shifts), then even with
abundant data the center of the confidence interval may be displaced from
the truth. While our baseline regret bound assumes unbiased Bernoulli sam-
ples, we state the degradation from bounded bias explicitly because it will
motivate the robustness variants in the next section.

To make (i) quantitative, we use a stability property of MNL choice
probabilities: holding the matching x fixed, the welfare W(x; ¢) is a smooth
function of the underlying standalone click parameters, hence small uniform
errors in pj; translate into small errors in welfare. In particular, on £ the
true matrix p® lies above th entrywise, and the per-round welfare loss from
using p can be bounded by a constant times v times an aggregate confidence
radius over the at-most-K displayed edges. Summing these radii over time
and applying Cauchy—Schwarz yields the familiar /(#arms)T rate, where
the number of arms is |C|nm.
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Theorem 6.2 (Welfare regret under exploration-based learning). Assume
(a) contexts c¢; are i.i.d. on a finite set C; (b) exploration samples are i.i.d.
Bernoulli with means pg;; (c) bids are capped in [0,0] and (for the wel-
fare benchmark) values satisfy v; € [0,0]. Consider the mechanism that,
in exploitation rounds, computes a matching by solving the MNL winner-
determination problem on the lower bounds Qf;‘t’ and, in exploration rounds,

displays at most one ad to sample a single (c, 12]) edge. If confidence bounds
satisfy Pr(E€) < T2 as in Lemma then the expected cumulative welfare
regret satisfies

T
E[Reg(T)] < O(@ \/W) - O(vZ%) + O(v),
t=1

where the O(-) hides polylogarithmic factors in |C|,n,m, T and the final O(7)
term absorbs the vanishing contribution from the failure event £¢. Moreover,
if the CTR estimator is subject to bounded systematic bias in the sense that
|E[ﬁfj¢] — pfj‘ < & uniformly, then the above bound degrades by an additive
O(vdT) term.

Two comments clarify what drives this bound. First, the O(7+/|C|nmT)
term is the statistical component: there are |C|nm context-position-advertiser
primitives to learn, and each exploration round provides only one Bernoulli
sample, so the aggregate uncertainty shrinks at the rate 1/y/samples. Sec-
ond, the explicit exploration term isolates the design choice: the platform
can reduce estimation error by exploring more (thereby increasing N7 ), but
exploration itself is welfare-costly because it uses only one slot.

Choosing ~; and allocating exploration samples. Theorem sug-
gests balancing exploitation quality against the direct cost of exploration. A
simple corollary is obtained by choosing an exploration schedule that yields
on the order of /|C|nmT total exploration samples, spread roughly uni-
formly across (c,1, 7).

Corollary 6.3 (A simple exploration schedule). Suppose exploration in round
t occurs with probability v4 = v and, conditional on exploring, the mechanism
selects (i,7) uniformly at random among nm edges for the realized context

ct. Taking
1 IC| nm
= min
Y ) T

E[Reg(T)] = O(T) \/W) ,

up to the additional bias term O(v 0T') when systematic bias is present.

yields
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A second, operationally appealing choice is a decaying exploration sched-
ule (e.g. v o< t~1/2), which concentrates exploration early when confidence
intervals are widest and gradually transitions to exploitation.

Corollary 6.4 (Decaying exploration). Under the same conditions as Corol-

lary[6.3, choosing
Y = minq 1, .

and exploring uniformly over edges for the realized context guarantees

E[Reg(T)] = O(@ \/W)

again with an additive O(v6T') degradation under bounded systematic bias.

From a policy and engineering perspective, these corollaries highlight a
practical takeaway: the platform should scale exploration with the effec-
tive dimension |C|nm of the prediction problem. Richer context taxonomies
(larger |C|) and more candidate insertion points (larger m) are beneficial for
relevance, but they increase the number of primitives that must be learned
and therefore require either more exploration or a longer horizon to achieve
the same welfare performance. This observation motivates robustness and
misspecification-aware variants, to which we turn next.

6.1 Robustness to manipulation and misspecification

Our learning guarantee in Theorem [6.2]is intentionally stated under a clean
statistical model: exploration produces i.i.d. Bernoulli samples whose means
are the true standalone click probabilities pj;. In practice, the platform typ-
ically relies on a larger prediction stack—logging, de-duplication, bot filter-
ing, attribution, and sometimes model-based counterfactual corrections—
and each layer can introduce systematic error. Moreover, even when bids
do not enter the estimator, the feedback itself may be strategically distorted
(e.g. click fraud, coordinated traffic, or template-specific interaction patterns
that violate the assumed MNL form). We therefore separate two notions of
robustness: robustness to manipulation of the learning signal and robust-
ness to misspecification of the choice model. The common economic theme is
that robustness is not free: it is achieved either by widening the uncertainty
set (hence more conservative allocations) or by collecting additional, cleaner
data (hence more exploration cost).

A bounded-bias model. We adopt a simple, auditable way to encode
systematic prediction error: for each context ¢ and edge (i, ), we allow the
estimator to be biased by at most § in expectation,

’E[ﬁgj,t] _ng‘ < 9,
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uniformly over time. This captures a variety of operational phenomena:
persistent bot traffic that inflates click rates; template effects not captured by
the context taxonomy; or systematic underestimation for newly-onboarded
advertisers due to cold-start features. While crude, the parameter § has a
concrete interpretation as a robustness budget chosen by the platform: larger
0 means we are willing to entertain more severe misspecification and therefore
act more conservatively.

Under bounded bias, standard concentration bounds around pf;, con-
tinue to hold for the mean E[ﬁfj7t]7 but the mean itself may be displaced
from 5 A transparent way to incorporate this into the mechanism is to
inflate confidence intervals by &:

porob — [ﬁc. _ge 5] poreb [ﬁc. NI 5} _

Lijt 15,t 155t L’ ij,t gt gt _
This modification leaves the economic structure intact: the bounds remain
bid-independent, and solving the winner-determination problem (WDP) on
lower bounds preserves bid-monotonicity and hence the envelope-based pay-
ment construction. Statistically, however, the presence of § induces an irre-
ducible per-round welfare gap because even with ij,t — oo the true pfj may
lie 9 away from the estimator’s center. This is exactly the source of the ad-
ditive O(v 6T') term stated in Theorem it is the price of misspecification
that no amount of exploration can wash out.

Manipulation of feedback and robust estimators. The bounded-bias
assumption can also be viewed as a reduced-form model of manipulation:
if an adversary can corrupt a small fraction of observed clicks (or impres-
sions) in a persistent direction, the resulting empirical mean behaves as if
it were biased. One operational response is to replace the empirical mean
Pt with a robust mean estimator (e.g. median-of-means or trimmed es-
timators) computed over blocks of exploration samples. Such estimators

yield deviation bounds of the same O(1/, /N, ,) form under heavy tails or e-

.t
contamination, at the cost of larger constants and slightly more bookkeeping.
In our framework, the critical mechanism-design requirement is simply that
the exploration data stream used to form p,p remain independent of current
bids; robustification of the estimator does not alter that independence and
therefore does not threaten incentive properties.

A complementary response is design-based rather than estimator-based:
we can make the exploration policy harder to game by randomizing over
templates and positions, throttling repeated traffic patterns, or reserving a
small fraction of impressions for “gold” instrumentation with stricter fraud
controls. These interventions again fit naturally into our regret decomposi-
tion: they effectively reduce 0 (less systematic error) but typically increase
the opportunity cost of exploration (more constrained or lower-revenue traf-

fic).
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Misspecification of the choice model. Bounded bias addresses errors
in the primitives pf;, but a distinct concern is that the user choice process
may deviate from MNL. If the true click probabilities under a slate are not
well-approximated by the MNL mapping 7(-; p), then even perfect knowl-
edge of standalone pf; does not imply welfare optimality of the MNL WDP.
Our stance is pragmatic: we treat MNL as an approximation that delivers
tractable optimization and transparent incentives, and we measure perfor-
mance against the MNL-optimal benchmark. When the platform’s policy
objective instead requires robustness to model error, we can reinterpret §
more broadly as bounding the discrepancy between the MNL-predicted click
probability and the true click probability, uniformly over feasible slates. This
yields the same qualitative conclusion: misspecification generates an O(v 67")
linear term unless the model class is enriched or the benchmark is weakened.

A robust optimization variant: max—min welfare over a confidence
set. Using lower confidence bounds is already a form of robustness: it is
pessimistic entrywise in the standalone CTR matrix. However, entrywise
pessimism does not always coincide with the worst-case welfare under MNL
because choice probabilities couple the displayed ads through the denomina-
tor. This motivates a more explicit robust optimization variant in which the
platform selects a slate to maximize worst-case welfare over an uncertainty
set for the primitives.

Fix around ¢ and context ¢ = ¢;. Define the (bid-independent) confidence
set

Pile) = TTTIG ™), Re(e) = {o(p) : p € Pule)}:

i=1j=1

A robust welfare criterion chooses

n

x°° ¢ arg max  min v; (X5 p).
xEX(K) peR(c) P

This max—min formulation has two attractive features. First, it makes the
role of 0 (and statistical uncertainty) explicit: larger uncertainty sets lead
to more conservative allocations. Second, because R;(c) is constructed from
exploration data only, the objective remains monotone in each bid b;; for a
fixed tie-breaking rule whenever the robust WDP is solved exactlyH

The limitation is computational. For standard (non-robust) MNL WDP,
we can often exploit known reductions and exact solvers; by contrast, the

ntuitively, the inner minimization is bid-independent, so increasing a single bid scales
up that advertiser’s coefficient in the outer maximization without changing feasible sets.
Formally proving monotonicity requires checking that the robust objective is increasing
in each weight, which holds for the linear-in-values welfare criterion.
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robust counterpart introduces a continuous adversarial choice of p coupled
across positions through 7(+; p). Even with box uncertainty in p, the worst-
case p need not occur at an obvious corner of the box for every slate, because
lowering one ad’s attractiveness can increase another’s click share. As a
result, solving the robust WDP may require numerical methods.

When numerical methods are needed (and what is practical). There
are three regimes worth distinguishing.

(i) Conservative plug-in (no extra numerics). The baseline policy of
optimizing on p (or p) can be interpreted as a tractable surrogate for the
robust max—min problem. It is easy to implement, preserves incentives, and
typically produces allocations that are empirically stable.

(ii) Scenario-based robustness (finite reduction). If we approximate Py(c)
by a finite set of scenarios {p(s)}f:1 (e.g. corners, or samples from a poste-
rior), the robust objective becomes

; c(x: o)
namin i vi mi(%; p(p)),
which can be solved by standard mixed-integer formulations with an auxil-
iary variable representing the minimum. This approach is attractive when
S is small (say, dozens), but can become expensive as S grows.

(i1i) Continuous robust optimization (inner minimization). If we treat
Pi(c) as continuous, we face a nested optimization problem. A practical
approach is to alternate between (a) solving the MNL WDP for a fixed p
and (b) approximately minimizing welfare over p € Ry(c) for a fixed slate.
The inner problem is smooth in p and can be handled by projected gradient
methods on the box constraints in p (or equivalently in p). This is compu-
tationally heavier, and because we approximate the min, we must be careful
to preserve bid-monotonicity; in deployments, we would typically fix the nu-
merical tolerance and tie-breaking ex ante and treat residual approximation
error as an additional (engineering) source of e-IC loss.

Overall, we view the robust max—min variant as an optional module: it is
most valuable when the platform faces a credible threat of systematic shifts
(large ¢) and is willing to pay additional computation for stability. In the
next section we outline extensions that address richer user models and oper-
ational constraints while preserving the same design logic: bid-independent
learning, monotone allocation, and welfare guarantees that degrade grace-
fully with the complexity of the environment.

7 Extensions (brief)

The mechanism we study is intentionally modular: it separates (i) a bid-
independent learning pipeline that outputs confidence sets over click prim-
itives from (ii) a monotone allocation rule that optimizes a conservative
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welfare objective and (iii) envelope-style payments. This separation makes
it relatively easy to extend the framework while keeping the same economic
logic. We briefly discuss four directions that matter in assistant monetization
systems: alternative user models (cascade), additional platform objectives
(trust or policy budgets), nonstationary environments, and an empirical eval-
uation plan that respects the incentive and learning constraints.

7.1 Cascade-type user models via monotone bucketization

The MNL mapping 7 (-; p) is attractive because it yields smooth substitution
across ads, but some interfaces behave more like a sequential scan: users
examine positions top-down and typically click at most once. A canonical
alternative is the cascade model. One convenient parameterization assigns
each advertiser—position pair an attractiveness ag; € (0,1) (probability of a
click conditional on being examined) and each position a continuation proba-
bility A € (0,1) (probability the user proceeds after not clicking position j).
If allocation x assigns advertiser i(j) to position j, then the click probability
of the ad in position j is

Pr(click at j | x) = (H(l = af(e)z))‘i) i)
1<j

and the expected welfare is the corresponding value-weighted sum. Unlike
the MNL objective, this expression is not additively separable across edges
because early-position assignments affect downstream examination mass.
From a mechanism-design perspective, the key requirement is that the
allocation rule be monotone in each bid holding fixed the confidence ob-
jects. A simple way to preserve monotonicity while remaining computation-
ally tractable is to introduce monotone bucketization. Concretely, for each
context ¢ and position j, discretize estimated attractiveness (or its lower
confidence bound) into B ordered buckets,
e €{1,2,..., B}, it < Bije = aije < agjy
and then restrict the allocation to satisfy a nested structure (e.g. higher
buckets are eligible for higher positions, or a laminar constraint that pre-
vents placing a lower-bucket ad above a higher-bucket ad when both are
selected). Under such a restriction, the welfare objective becomes monotone
in the bids in the same sense as in the MNL case: increasing b; increases the
coefficient on any feasible assignment involving advertiser ¢ without altering
feasibility, so a deterministic exact solver with fixed tie-breaking yields a
monotone selection. The bucketization is not merely an engineering hack:
it is an economic device that trades off expressiveness for incentive robust-
ness, turning a complex nonseparable objective into a constrained assignment
problem whose optimal solution changes in a controlled (monotone) way as
weights change.

26



Statistically, the bucket boundaries can be defined using confidence in-
tervals (e.g. bucketing by gfj,t), ensuring that the discretization remains bid-
independent. The cost is approximation error: coarse buckets may sacrifice
welfare relative to the fully optimal cascade assignment, and this loss en-
ters regret as an additional modeling term (analogous to the d-term in Sec-
tion . The benefit is that we can keep the same payment construction
(up to er¢(n) from numerical integration) because monotonicity is preserved
by design.

7.2 Multi-objective constraints and “trust budgets”

Assistant monetization is rarely a single-objective problem. Beyond welfare
(or revenue), platforms impose constraints that proxy for user trust, adver-
tiser quality, latency, or policy compliance. A tractable way to model this is
as a knapsack-style budget coupled to the allocation. Let /ifj > 0 be a per-
impression “trust cost” of showing advertiser ¢ in position j under context c
(e.g. measured by predicted user dissatisfaction, policy risk, or a calibrated
relevance penalty). In each round, we might require

n m
Ct
E g Kij Tig,t < B,

i=1 j=1

for a fixed budget B, or alternatively enforce a time-average constraint
Zth Zij “f;xij,t < BT.

There are two mechanism-compatible ways to handle such constraints.
The first is hard-constraint optimization: in exploitation rounds we solve the
winner-determination problem over the restricted feasibility set

Xp(K) = {x € X(K): Y ki < B},
ij

using conservative CTRs (e.g. p or the robust sets from Section . Since
Xp(K) is bid-independent, exact optimization with fixed tie-breaking con-
tinues to be monotone in bids, and the envelope payment remains valid.

The second approach is soft constraints via bid-independent multipliers.
Introduce a dual variable A > 0 and solve

max bitmi(x;p,) — /\tE kSt
xeX(K) 4 6 Ti(%5 ) 7 K

where \; is updated online to satisfy the long-run budget (e.g. via projected
subgradient ascent on the constraint violation). As long as A\; depends only
on past information and not on current bids, the per-round allocation re-
mains monotone in each b;;. Economically, \; acts like an endogenous
“shadow price of trust”: when the system is overspending the trust budget,
the mechanism automatically becomes more conservative in choosing ads,
without requiring ad hoc heuristics that may break incentive properties.
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7.3 Nonstationarity: sliding-window lower confidence bounds

Real assistant traffic is nonstationary: new advertisers arrive, user intent
shifts, and UI templates evolve. A stationary confidence interval that pools
all past exploration data can become misleading. A standard remedy is to
use sliding-window or discounted estimators. Let W be a window length.
For each (c,1i,j) we maintain exploration samples only from the most recent
W occurrences of context ¢ (or the most recent W time steps, depending on
logging granularity), yielding an estimator ﬁfjvtv and a corresponding radius

rfjvtv We then define

W [aeW c,W —c,W 1., W c,W
ij,t = [pij,t — Tyt ]+> Dijr = [pij,t T ]_>
and run the same conservative WDP and envelope payments.

The welfare analysis shifts from static regret to dynamic regret, where
the benchmark is the sequence of per-round clairvoyant optima under the
evolving pfj’it. Bounds typically depend on a variation budget such as
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or related drift measures. Intuitively, smaller W tracks changes better but
increases statistical noise (larger radii), while larger W reduces noise but lags
behind drift. Importantly, the incentive story remains unchanged: the learn-
ing rule (windowing, discounting, drift detection) is still bid-independent by
assumption, so monotonicity and payments go through. What changes is the
platform’s chosen exploration schedule +;: in nonstationary environments,
exploration cannot decay too aggressively, because old data becomes stale.
In practice, we would calibrate v; (and W) to match observed drift rates,
treating the resulting revenue loss as the cost of adaptability.

7.4 Empirical evaluation plan

Finally, we outline an empirical strategy that is aligned with the mechanism’s
structural constraints. Offline evaluation based purely on logged production
traffic is problematic because the allocation is policy-dependent and because
bids may change strategically under counterfactual mechanisms. We there-
fore advocate a hybrid design with three components.

First, implement instrumented exploration exactly as assumed by the
theory: with probability +¢, run a bid-monotone exploration rule that shows
at most one ad and logs the resulting Bernoulli click sample for a pre-specified
(c,1,7) sampling plan. This creates a clean dataset for estimating pfj (or its
cascade analogues) that is insulated from current bids.
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Second, evaluate welfare and constraint satisfaction using online metrics
and audit trails rather than purely offline replay. The relevant quantities—
the realized allocations, the computed confidence bounds, the selected slates,
and the charged payments—are all observable and can be monitored for
monotonicity violations (due to solver tolerances), budget adherence (trust
constraints), and stability under drift (windowed intervals). When robust
optimization or numerical inner minimization is used, we would pre-commit
to tolerances and record approximation certificates, treating any residual as
an additional e-IC term to be bounded operationally.

Third, run controlled experiments that vary (i) the exploration rate
schedule 7y, (ii) the robustness budget § (or estimator robustification), (iii)
the presence of trust constraints, and (iv) the user model (MNL versus cas-
cade bucketization). The theoretical regret decomposition suggests what
to measure: exploration opportunity cost ) ,y;, estimation error through
interval widths, and systematic error through observed calibration drift (an
empirical proxy for §). The goal is not merely to maximize short-run revenue,
but to validate that the mechanism delivers stable allocations, predictable
incentives, and welfare that degrades gracefully as we add the operational
constraints that real assistant deployments require.

8 Conclusion: deployable assistant monetization and
open problems

Assistant monetization sits at an awkward intersection of mechanism design,
online learning, and product policy. The platform must choose what to show
(and where), learn user response under rapidly shifting contexts, and do so
in a way that advertisers can reason about and that policy teams can audit.
The central lesson of our framework is that deployability is largely about sep-
aration of concerns: we can preserve incentive properties only if the learning
pipeline that constructs click primitives is insulated from contemporaneous
bids, and only if the allocation rule that consumes those primitives is mono-
tone in each bid with transparent tie-breaking. Once those two ingredients
are in place, payments can be attached by an envelope construction (up
to a controlled discretization error), and welfare performance can be evalu-
ated through a regret lens that makes the exploration—exploitation tradeoff
explicit.

From an economic point of view, the conservative (lower-confidence-
bound) optimization step is not merely a statistical device. It is a gover-
nance choice: the platform commits to acting as if uncertain edges are worse
than their point estimates until sufficient bid-independent evidence accumu-
lates. This has two practical implications. First, it reduces the temptation to
“chase noise” in sparse contexts, which is a common failure mode in assistant
Uls where tail intents and newly introduced templates appear frequently.
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Second, it creates a clear operational contract between modeling and mech-
anism layers: the modeling system can be upgraded (features, architectures,
calibration methods) without changing the mechanism, as long as it contin-
ues to output confidence objects that are independent of current bids and
satisfy stated coverage guarantees. In practice, this kind of contract is what
allows auditability: one can test whether exploration sampling plans were
followed, whether confidence radii were computed as specified, and whether
the allocation solver respected monotonicity and capacity constraints.

The regret guarantees are best interpreted as comparative statics rather
than literal performance predictions. They highlight which dimensions drive
unavoidable learning loss: the effective number of context—advertiser—position
primitives that must be estimated, the horizon over which the system is ex-
pected to improve, and any systematic misspecification or bias that cannot
be eliminated by more data. For product teams, this decomposition is ac-
tionable. If the regret bound is dominated by |C|, then UI proliferation and
overly fine-grained context definitions are not free: they create statistical
fragmentation that must be paid for with exploration. If it is dominated by
nm, then the platform should invest in candidate-pruning and representa-
tion learning that shares information across advertisers and positions (while
preserving bid-independence), because the mechanism can only allocate well
among what it can reliably estimate. And if an additive term like §7T is em-
pirically large, then the binding constraint is not exploration but calibration
and robustness: the platform should treat misspecification and distribution
shift as first-order economic risks, not as second-order modeling nuisances.

Several limitations remain salient. Our cleanest incentive statement re-
lies on a deterministic, exactly solved, bid-monotone allocation rule with
fixed tie-breaking. Real systems approximate: mixed-integer solvers stop
early, neural rankers are nondeterministic, and engineering teams introduce
guardrails that can be triggered by bid-dependent signals (e.g., advertiser-
level throttles tied to spend). Each such deviation is economically meaningful
because it can create non-monotonicities that invalidate envelope payments.
A practical deployment posture, therefore, is to treat approzimation error as
a first-class mechanism parameter. One should pre-commit to solver toler-
ances, record optimality certificates when available, and bound any residual
non-monotonicity by an explicit € term that is monitored continuously. This
is not merely paperwork: it is the difference between a mechanism that ad-
vertisers can safely treat as price-taking and one that invites adversarial bid
experimentation.

Looking forward, two open problems loom particularly large for assistant
interfaces.

Multi-click and multi-action user behavior. The MNL and cascade
families are natural first approximations because they reduce the outcome
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to (at most) a single click event. Assistants, however, increasingly support
richer interaction loops: users may click multiple ads, click and then return,
or take non-click actions (copy, call, add-to-cart, ask a follow-up) that are
economically valuable and correlated with ad load. A multi-click model is
not a minor technical tweak; it changes the welfare objective and, crucially,
the mapping from allocation to outcomes. If multiple clicks are possible,
then the “marginal contribution” of an advertiser can depend on which other
advertisers are present in a more intricate way than standard substitution
effects. This raises two design questions.

First, can we identify structural conditions under which the resulting wel-
fare objective remains monotone in each bid, so that envelope payments still
apply? For example, if the expected total value can be written as a sum of
advertiser-specific terms with coefficients that are nonnegative functions of
the allocation and independent of bids, then monotonicity may survive even
when users can take multiple actions. Second, when such conditions fail,
what is the right relaxation? One direction is to design monotone approxi-
mations of the true objective (e.g., optimizing a conservative surrogate that
lower-bounds long-run user value) and treat the gap as a modeling term in
regret. Another direction is to move beyond dominant-strategy truthfulness
toward weaker equilibrium concepts that may be more realistic in repeated
settings, while still providing robust bidding incentives and predictable rev-
enue.

Endogenous generation policies and endogenous candidate sets.
Assistant monetization is unusual because the platform is not only choosing
an allocation; it is also generating a response. The generated answer, the
placement opportunities that appear in it, and even which advertisers are
eligible can depend on the conversation state and on upstream retrieval and
generation policies. This endogeneity creates a new strategic channel: ad-
vertisers may attempt to influence not just which slot they win, but whether
a slot exists or whether their product is retrieved as a candidate. From the
mechanism-design perspective, the key challenge is that the mapping from
bids to outcomes can become bid-dependent through the context construc-
tion process itself, violating the separation principle that underpins both
monotonicity and clean learning.

A stylized way to see the issue is to imagine that before running an auc-
tion the platform chooses a generation action ¢; (a template, response length,
number of insertion points, or a retrieval depth), which determines the fea-
sible set of positions and candidates. If g; is optimized using signals that
are correlated with bids (directly or indirectly), then increasing a bid can
change the feasible set in non-monotone ways, and standard payment for-
mulas no longer apply. Addressing this requires new kinds of commitments.
One approach is two-stage mechanism design: first choose g; using a pol-
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icy that is explicitly bid-independent (or depends only on past bids through
stable aggregates), and only then run a monotone auction over the induced
candidate set. Another approach is to model g; as part of the allocation and
impose monotonicity constraints on the joint policy, though this quickly be-
comes computationally and statistically demanding. Either way, the central
economic principle is the same: to claim truthful incentives, the platform
must be able to explain, and ideally certify, which parts of the pipeline were
insulated from a bidder’s report.

These open problems are not academic curiosities; they are exactly where
real deployments struggle. As assistants become more proactive and more
personalized, the space of contexts grows, drift accelerates, and the line
between “ranking” and “generation” blurs. Our contribution is to make one
coherent claim in this moving landscape: if we build the system around a
bid-independent learning substrate and a monotone allocation core, then we
can obtain mechanisms that are simultaneously (approximately) truthful,
statistically principled, and operationally auditable. The remaining work is
to extend this discipline to richer interaction models and to the generative
layer itself, so that assistant monetization can be both economically sound
and aligned with the user-trust constraints that ultimately govern long-run
value.
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