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Abstract

Generative assistants in 2026 do not display ads in a fixed list
of slots; instead, the platform chooses how to generate the narrative
(tone, disclosure intensity, and where insertions can appear), which
endogenizes the set and quality of ad positions. We formalize this
by introducing a blueprint parameter θ that determines (i) the candi-
date positions embedded in the generated content and (ii) a context-
dependent matrix of standalone click-through rates pij(θ, c) for adver-
tiser–position pairs, estimated by LLM-era predictors. Building on the
winner-determination and mechanism-design reductions in Balseiro et
al. (2025), we treat blueprint choice as an outer optimization and allo-
cation/order choice as an inner optimization. Our first result is an ε-
menu restriction theorem: under a low-dimensional and Lipschitz sta-
bility condition, there exists a finite menu Θε of size poly(1/ε) (for con-
stant dimension) such that optimizing over Θε is within ε of optimizing
over the full blueprint space. Our second result shows that under the
MNL model the inner winner-determination problem can be solved
exactly for each blueprint via the linear-fractional-to-LP transforma-
tion of the source paper, yielding a computationally efficient DSIC/IR
welfare-maximizing auction and an ε′-DSIC/IR revenue-maximizing
auction. We discuss extensions to order-sensitive cascade behavior
using monotone approximations and highlight how blueprint auctions
provide an auditable handle for disclosure, brand-safety, and user-trust
constraints.
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1 Introduction: Generative interfaces, endogenous
positions, and why blueprint choice is the new
design lever

Search and recommendation advertising were built around a stable abstrac-
tion: there are a few clearly delineated slots, and the platform solves an
assignment problem—which ads to show, and where. Generative interfaces
unsettle that abstraction. In an LLM-mediated experience, the “page” is
not a fixed layout but a piece of text (or multimodal content) composed on
demand. Where an ad can appear, how salient it is, and even whether it
is natural to insert an ad at all are no longer exogenous primitives. They
are design decisions embedded in the generation process itself. As a result,
the platform does not merely allocate advertisers to positions; it chooses the
template that creates positions.

We refer to these template-level decisions as the blueprint. A blueprint
specifies a structured set of generation and disclosure choices: ad density
(how many insertion opportunities are created), disclosure strength (how
explicitly sponsored content is marked), and narrative tone (how the ad is
integrated into the assistant’s voice), among other knobs. Importantly, these
knobs are not mere cosmetic tweaks. They change users’ propensity to attend
to and click content, and they impose trust and compliance consequences
that platforms increasingly internalize. In practice, blueprint choices show up
as: whether an answer contains a dedicated “Sponsored” block; whether the
assistant offers “recommended products” inline; how close sponsored content
is placed to the direct answer; and how aggressively the system follows up
with commercial suggestions.

The economic novelty is that blueprint selection is an outer decision
that endogenizes the feasible set for the familiar inner decision of advertiser
selection and ordering. In a static-slot world, we can often treat the slot set
as fixed and run a mechanism on top. In a generative world, the platform
chooses the slot set (or, more precisely, a distribution over insertion loci and
their salience) as part of optimizing revenue or welfare. This matters both
computationally and strategically. Computationally, the platform faces a
joint optimization over (i) content-structure parameters and (ii) allocations
to advertisers. Strategically, a mechanism that is truthful for a fixed slot
auction can fail to remain truthful when the slot set itself becomes bid-
dependent via blueprint optimization: a higher bid can cause the platform
to select a more ad-heavy blueprint, changing click probabilities in a way
that feeds back into incentives.

A second novelty is that the platform’s objective is no longer well sum-
marized by expected clicks times value. Generative assistants operate under
a tighter legitimacy constraint than traditional display: users interpret the
system as an advisor, not merely a publisher. This creates a real cost to ag-
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gressive monetization, even when it raises short-run revenue. That cost can
reflect policy constraints (e.g., disclosure requirements, sector-specific restric-
tions), reputational considerations (user trust and retention), and product
constraints (answer quality). For this reason, we model blueprint choice as
trading off monetization against a blueprint-dependent cost. In the language
of mechanism design, this cost enters the platform objective like a negative
welfare term, capturing that some click probability is “too expensive” once
we account for disruption, compliance risk, or long-run engagement loss.

The 2026 framing is that blueprint selection is becoming the central lever
by which platforms manage this tradeoff. Three forces push in that di-
rection. First, generative systems can create high-dimensional variation in
presentation; yet, in a production environment, this variation is necessarily
constrained to a small number of controllable knobs (policy teams demand
predictable behavior, and engineering teams demand testable surfaces). Sec-
ond, regulators and app-store policies increasingly specify how monetization
must be presented, not merely that it exists. Third, user behavior is sensitive
not only to which ads are shown, but to the narrative context in which they
appear; the same product link can be perceived as helpful recommendation
or as intrusive promotion depending on blueprint.

Our approach is to treat the blueprint as a low-dimensional parame-
ter that controls the mapping from context to click behavior and cost, and
then to embed standard assignment and mechanism-design reasoning inside
that outer choice. Conceptually, we want two properties. The first is sta-
bility : small changes in blueprint should not cause discontinuous jumps in
predicted click probabilities or costs. Without stability, optimization over
blueprints becomes brittle, and approximation guarantees are hard to ob-
tain. The second is implementability : once a finite menu of blueprints is
fixed, the induced allocation rule should preserve monotonicity in bids so
that incentive-compatible payments can be computed by familiar envelope
arguments.

This perspective yields a disciplined way to think about a practical ques-
tion that product teams confront: should the blueprint be optimized con-
tinuously (e.g., by gradient-based tuning over a rich prompt space) or dis-
cretely (e.g., by choosing among a small set of vetted templates)? We argue
that a finite menu is not merely a product convenience; it can be theoret-
ically justified when the blueprint-response mapping is sufficiently smooth.
A dense enough menu approximates the best continuous blueprint up to a
controlled additive loss, while allowing the platform to run exact winner-
determination within each menu item. This combination—finite menu plus
exact inner optimization—is precisely what preserves the monotonicity struc-
ture required for truthfulness in single-parameter advertiser settings.

We emphasize what we are not claiming. We do not claim that all genera-
tive blueprints are smooth; in fact, many realistic templates induce threshold
behavior (e.g., turning on a shopping carousel if the query is “commercial
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enough”). Nor do we claim that predicted click-through rates are known
without error. Our goal is more modest and, we think, useful: to isolate
the conditions under which blueprint choice can be integrated into mech-
anism design without breaking incentive guarantees, and to clarify when
those conditions fail and must be addressed by discrete design and empirical
validation.

The model we develop is designed to illuminate the platform’s core ten-
sion. On one side is allocative efficiency (or revenue) from matching adver-
tisers to high-attention insertion loci. On the other side is a cost of disrup-
tion that is inherently blueprint-driven. Because the blueprint determines
how insertion loci are created and perceived, it is the natural locus for pol-
icy constraints: disclosure strength, placement separation between organic
and sponsored content, and limits on ad density can all be represented as
blueprint parameters or as blueprint-dependent feasibility constraints. This
makes the model relevant not only for platform design but also for regu-
lators: many policy debates are, implicitly, about restricting the blueprint
space, not merely about taxing clicks or limiting advertiser participation.

To make these ideas operational, we organize the analysis around three
contributions.

• Endogenous positions via blueprint choice. We formalize the notion
that positions are not fixed primitives in a generative interface. Blueprint
parameters determine the salience and feasibility of insertion loci and
therefore the effective click probabilities delivered by any allocation.

• A menu-restriction justification. Under a stability condition, we show
that optimizing over a finite blueprint menu can approximate optimiz-
ing over a continuous blueprint space. This bridges a product real-
ity (vetting a handful of safe templates) with an economic guarantee
(bounded objective loss).

• Mechanism-design compatibility. We show that when the platform
solves the joint problem exactly over the finite menu, the induced allo-
cation is monotone in bids, allowing standard payment constructions
for truthful welfare or revenue mechanisms in the single-parameter set-
ting.

Two practical interpretations follow. First, the blueprint can be viewed
as the platform’s “ad policy” encoded in a low-dimensional object. A tighter
policy regime (stronger disclosure, fewer insertion loci, more separation be-
tween organic and sponsored content) corresponds to a region of the blueprint
space with higher trust cost but potentially lower immediate monetization.
Second, engineering constraints that require a small set of tested prompts
are not merely constraints; they can be aligned with incentive-compatibility
needs. If the platform were to optimize over an unconstrained prompt space

5



in a bid-dependent way, it would be much harder to ensure monotonicity
and compute payments reliably.

Finally, we acknowledge a limitation that motivates later discussion.
Generative systems can introduce discontinuities through discrete content
choices: whether the assistant decides to present a list, a comparison ta-
ble, or a single narrative; whether it calls a tool that returns product cards;
whether it asks a follow-up question before showing offers. Such decisions
can cause abrupt changes in where ads can appear and in how users respond.
In those regimes, smooth covering arguments become fragile, and the right
abstraction may be a genuinely discrete family of blueprints treated as dis-
tinct products rather than points in a continuous parameter space. We see
this not as a failure of the framework but as a diagnostic: when smooth-
ness fails, the economics points toward discrete governance (hand-designed
menus, policy audits, and controlled experimentation) as the appropriate
complement to mechanism design.

The remainder of the paper develops a model that makes these intu-
itions precise. We define the context space, the blueprint parameter space,
the feasible allocation and ordering decisions, and two canonical user click
models that capture order-insensitive and order-sensitive attention. We then
incorporate blueprint-dependent costs and show how menu restriction and
exact optimization together allow us to preserve tractable computation and
incentive guarantees in a setting where the very notion of an “ad slot” is
endogenously chosen by the platform.

2 Model: contexts, blueprints, endogenous posi-
tions, and click behavior

We model a generative interface as a two-layer decision problem. The outer
layer is a blueprint choice that governs how the assistant will structure its
response and where sponsored content can plausibly appear. The inner layer
is the familiar allocation problem: given a set of candidate insertion loci and
predicted user responses, which advertisers should be placed where (and,
when order matters, in what order). This section defines the primitives
needed to make that separation precise while keeping the blueprint space
close to how product teams actually ship generative templates.

2.1 Contexts, advertisers, and the single-parameter environ-
ment

A context c ∈ C summarizes the user query together with relevant conver-
sation state (e.g., prior turns, inferred intent, and any product-mode flags).
The platform observes c at the time it must decide how to render an an-
swer. There are n advertisers indexed by i ∈ [n]. Advertiser i has a per-click
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value vi ∈ [0, v̄]; we adopt the standard single-parameter model in which the
advertiser cares only about expected clicks (or conversions proportional to
clicks), not about the specific wording of the generated content.

Advertisers submit reports bi, which are the numbers that enter the plat-
form’s optimization objective. For welfare analysis one may take bi = vi; for
revenue analysis under regularity, one may instead take bi = ϕi(vi), the My-
erson virtual value. We keep the model agnostic about the payment rule for
now; the key object here is how (c, b) maps into expected click probabilities,
and how that mapping depends on a blueprint.

2.2 Blueprints as low-dimensional template parameters

A blueprint is a parameter θ ∈ Θ ⊂ Rd, where Θ is compact and the di-
mension d is treated as constant. The intention is that θ collects a small
set of controllable knobs that are stable enough to be audited and A/B
tested: examples include ad density (how many insertion opportunities are
created), disclosure strength (how clearly sponsorship is labeled), separation
rules (distance between organic answer and sponsored insertions), and nar-
rative integration (whether sponsored content appears as a distinct block or
as inline recommendations).

We emphasize why the low-dimensional restriction is not merely mathe-
matical convenience. In production, templates must satisfy compliance and
product-review constraints that are difficult to guarantee in an unconstrained
prompt space. Treating θ as low-dimensional is a way to formalize the “safe
surface” on which platforms can credibly commit to predictable behavior.

2.3 Candidate insertion loci and feasibility of allocations

Fix an upper bound m on the number of candidate positions the system
could use for sponsored content in a given rendering. We index candidates
by j ∈ [m]. The point of treating m as an upper bound is that it allows
the blueprint to influence effective position availability and salience without
requiring us to redefine the combinatorial structure each time. Intuitively, a
conservative blueprint can make many candidate loci effectively unattractive
(very low click propensity) or infeasible (disallowed by policy), while an
aggressive blueprint can activate them.

An allocation is a matching x ∈ {0, 1}n×m with a cap of K ≤ m total
insertions:

X :=
{
x ∈ {0, 1}n×m :

m∑
j=1

xij ≤ 1 ∀i,
n∑

i=1

xij ≤ 1 ∀j,
n∑

i=1

m∑
j=1

xij ≤ K
}
.

Thus each advertiser can appear at most once, each position holds at most
one advertiser, and at most K sponsored insertions are made. When user
attention depends on the sequence in which insertions are encountered, we
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also include an order σ ∈ Σ, where Σ is the set of permutations of [m]. The
augmented allocation is then (x, σ) ∈ X × Σ.

This abstraction is deliberately neutral about where a position sits in the
generated answer. Position j should be read as a structured locus type (e.g.,
“top-of-answer sponsored block,” “inline recommendation after first para-
graph,” “end-of-answer product card”), rather than a literal slot on a static
page.

2.4 CTR primitives: standalone response to an advertiser-
position pair

For each context c and blueprint θ, the platform has predicted standalone
click-through rates

pij(θ, c) ∈ [0, 1],

interpreted as the propensity to click advertiser i if placed in candidate locus
j under blueprint θ, absent interactions with other insertions. In practice,
pij(θ, c) is estimated from logged experiments and model-based extrapola-
tion: it depends on the query, the ad’s relevance, and blueprint-driven pre-
sentation features such as labeling and prominence.

When it is convenient, we also use the log-odds parameter

ρij(θ, c) := log
pij(θ, c)

1− pij(θ, c)
,

which aligns naturally with multinomial logit formulations below.
The standalone pij is not the final click probability when multiple inser-

tions are shown. The mechanism-design object is the final click probability
πi(θ, c;x, σ), which aggregates position effects and interaction effects implied
by a user-attention model.

2.5 Two user click models: MNL and cascade

We analyze two canonical behavioral models that capture distinct product
regimes.

MNL (order-insensitive) clicks. In settings where multiple sponsored
items are displayed in a block and user choice is well approximated as a
single discrete selection among displayed options (plus an outside option),
we use a multinomial logit model. For an allocation x ∈ X, advertiser i’s
click probability is

πi(θ, c;x) =

∑m
j=1 xij exp(ρij(θ, c))

1 +
∑n

i′=1

∑m
j=1 xi′j exp(ρi′j(θ, c))

.

The outside option corresponds to “no click” and has normalized attrac-
tiveness 1. The MNL structure captures the empirically relevant feature
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that adding more alternatives can cannibalize clicks from existing alterna-
tives through the shared denominator. Importantly, this model is order-
insensitive: only the set of displayed items matters, not their sequence.

Cascade (order-sensitive) clicks. In conversational flows, users may en-
counter insertions sequentially as they read the assistant’s response. To cap-
ture attention decay and stopping behavior, we use a cascade model in which
users scan positions in an order σ and may click at most once. For augmented
allocation (x, σ), we write

πi(θ, c;x, σ) =

m∑
j=1

xijpij(θ, c)
∏

j′: σ(j′)<σ(j)

(
1−

n∑
i′=1

xi′j′pi′j′(θ, c)
)
.

The product term is the probability the user has not clicked earlier positions
in the scan. This specification makes explicit why ordering and placement
policy become first-order in generative interfaces: moving an insertion earlier
can increase its own clicks while reducing downstream clicks, a tradeoff that
depends on relevance and disclosure.

We view these models as complementary benchmarks. MNL is appro-
priate for dedicated sponsored modules or carousels; cascade is appropriate
for inline insertions and sequential reading. Both can be estimated and vali-
dated empirically, and both expose the central mechanism-design issue: click
probabilities depend on the platform’s joint choice of blueprint and allocation
(and possibly order).

2.6 Blueprint-dependent costs and constraints

Blueprints affect not only click behavior but also product quality, trust, and
compliance. We capture these considerations through a blueprint-dependent
cost κ(θ, c) ≥ 0, measured in the same units as welfare (so that it can be
subtracted from value-weighted clicks). Conceptually, κ can represent any
combination of (i) expected user harm from disruptive monetization, (ii)
long-run retention loss internalized by the platform, and (iii) compliance
and review costs induced by certain layouts or labeling choices.

A flexible interpretation is to decompose

κ(θ, c) = λ ·Disruption(θ, c),

where λ is a policy weight chosen by the platform (or effectively imposed by
regulation or internal governance). This formulation highlights an actionable
lever: increasing λ shifts the optimum toward conservative blueprints (fewer
or less prominent insertions, stronger disclosure), potentially reducing short-
run clicks while improving net welfare once disruption is priced in.
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Constraints can enter in two equivalent ways. First, they can be encoded
directly into the feasible set by ruling out allocations that violate blueprint-
specific rules (e.g., disallowing certain insertion loci for sensitive contexts).
Second, they can be penalized through κ(θ, c) to reflect “soft” constraints
that are discouraged but not forbidden. For most of the analysis, we treat
feasibility as fixed via X and allow blueprint effects to operate through πi(·)
and κ(·); this keeps the inner allocation structure stable and isolates the role
of blueprint choice.

2.7 Stability as a modeling assumption and its practical mean-
ing

To connect the continuous blueprint space to finite template menus, we im-
pose a stability condition: small changes in θ should not cause large changes
in induced click probabilities or in the cost. Formally, we assume there exists
L > 0 such that for all contexts c, all augmented allocations (x, σ), and all
advertisers i,∣∣πi(θ, c;x, σ)−πi(θ′, c;x, σ)∣∣ ≤ L∥θ−θ′∥2,

∣∣κ(θ, c)−κ(θ′, c)∣∣ ≤ L∥θ−θ′∥2.

This assumption is best read as a disciplined approximation: it holds when
blueprint knobs correspond to continuous presentation parameters (e.g., promi-
nence scaling, disclosure phrasing intensity, or probabilistic insertion rates)
and when the generation system is engineered to avoid threshold-triggered
layout changes. We also acknowledge its limits. Many real templates include
discontinuous logic (e.g., turning on a shopping module only when a classifier
crosses a threshold), in which case stability fails and blueprint choice must
be treated as genuinely discrete. Our later results use stability to justify fi-
nite menus; when stability is implausible, the model still helps by clarifying
where approximation and incentive guarantees become fragile.

With these primitives in place, the platform’s decision problem can be
stated cleanly: for a realized context c and bid vector b, the platform chooses
a blueprint θ and an allocation (and possibly an order) to maximize a value-
weighted click objective net of κ(θ, c). The next section formalizes this as
a global winner-determination problem over (θ, x, σ) and studies the mono-
tonicity properties that enable incentive-compatible mechanisms.

3 Blueprint winner determination: a global WDP
over (θ, x, σ)

Given a realized context c and reports b ∈ [0, v̄]n, the platform faces a
single optimization problem that jointly selects (i) how the answer will be
structured and disclosed (the blueprint θ), and (ii) which advertisers to place
into which insertion loci (and, when relevant, in what encounter order). To
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make this joint choice explicit, we write the winner-determination problem
(WDP) in two nested layers.

Inner WDP for a fixed blueprint. Fix θ ∈ Θ. The platform then
chooses an augmented allocation (x, σ) ∈ X × Σ to maximize bid-weighted
predicted clicks net of the blueprint cost:

Opt(θ, c; b) := max
(x,σ)∈X×Σ

{
n∑

i=1

bi πi(θ, c;x, σ)− κ(θ, c)

}
. (1)

When we work under MNL, πi(θ, c;x, σ) is order-insensitive and σ can be
dropped; under cascade (or any sequential attention model), σ is a genuine
decision variable because the same set of insertions can induce different click
vectors depending on their encounter order. The key point is that κ(θ, c)
is blueprint-level : it does not depend on (x, σ) and thus shifts the value of
choosing θ without altering the within-blueprint ranking across allocations.

Outer WDP over blueprints. The platform’s global choice then selects
the best blueprint as well:

Opt(c; b) := max
θ∈Θ

Opt(θ, c; b) = max
θ∈Θ,(x,σ)∈X×Σ

{
n∑

i=1

bi πi(θ, c;x, σ)− κ(θ, c)

}
.

(2)
We emphasize an interpretive benefit of writing the problem in the global
form (2). A blueprint is not merely a cosmetic wrapper around a fixed
auction; it reshapes the click response functions πi(θ, c; ·) and the effective
tradeoff between monetization and trust through κ(θ, c). At the same time,
once θ is fixed the inner problem is a standard assignment-and-ordering op-
timization with predicted CTR primitives. This is exactly the separation
product teams often implement in practice: a limited set of audited tem-
plates, each with a well-defined allocation routine.

3.1 Allocation rules induced by exact global optimization

Let a (deterministic) platform policy be a mapping that, for each (c, b),
selects a maximizing triple

(θ∗, x∗, σ∗) ∈ arg max
θ∈Θ,(x,σ)∈X×Σ

{
n∑

i=1

bi πi(θ, c;x, σ)− κ(θ, c)

}
,

with a fixed tie-breaking rule (e.g., lexicographic over (θ, x, σ)). This induces
an allocation rule in the mechanism-design sense: advertiser i’s service level
is the resulting click probability

qi(c, b) := πi(θ
∗, c;x∗, σ∗).
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In single-parameter environments, the central structural requirement for
dominant-strategy incentive compatibility is monotonicity of qi(c, (bi, b−i))
in bi for each fixed (c, b−i). The substantive question here is whether allow-
ing the platform to optimize over blueprints can destroy the monotonicity
that underlies familiar DSIC constructions.

Our answer is that it does not: blueprint choice enlarges the feasible set
but does not change the linearity in bids.

3.2 Monotonicity with endogenous blueprints

Fix c and b−i. Consider two bids for advertiser i, bi < b′i, and denote
by (θ, x, σ) and (θ′, x′, σ′) the (tie-broken) maximizers under (bi, b−i) and
(b′i, b−i), respectively. Exact optimality implies the pair of inequalities

bi πi(θ, c;x, σ) +
∑
k ̸=i

bk πk(θ, c;x, σ)− κ(θ, c) ≥ bi πi(θ
′, c;x′, σ′) +

∑
k ̸=i

bk πk(θ
′, c;x′, σ′)− κ(θ′, c),

(3)

b′i πi(θ
′, c;x′, σ′) +

∑
k ̸=i

bk πk(θ
′, c;x′, σ′)− κ(θ′, c) ≥ b′i πi(θ, c;x, σ) +

∑
k ̸=i

bk πk(θ, c;x, σ)− κ(θ, c).

(4)

Adding (3) and (4) cancels the terms involving other bidders and κ, yielding

bi πi(θ, c;x, σ) + b′i πi(θ
′, c;x′, σ′) ≥ bi πi(θ

′, c;x′, σ′) + b′i πi(θ, c;x, σ).

Rearranging gives

(b′i − bi)
(
πi(θ

′, c;x′, σ′)− πi(θ, c;x, σ)
)
≥ 0,

and since b′i − bi > 0 we obtain

πi(θ
′, c;x′, σ′) ≥ πi(θ, c;x, σ).

Thus, under exact global optimization with deterministic tie-breaking, ad-
vertiser i’s click probability is weakly increasing in bi. The proof is identical
in spirit to the standard monotonicity argument for assignment problems:
the platform maximizes a linear objective in bids over a fixed feasible set,
and enlarging the feasible set from X ×Σ to Θ×X ×Σ does not change the
algebra.

Two practical caveats are worth making explicit. First, tie-breaking mat-
ters only to ensure the mapping (c, b) 7→ (θ∗, x∗, σ∗) is single-valued; other-
wise monotonicity is a set-valued statement. Second, monotonicity is fragile
to approximation: if the platform uses a heuristic that sometimes returns a
non-maximizer, then the inequalities (3)–(4) need not hold, and DSIC guar-
antees may fail even if the heuristic is “almost” optimal in objective value.
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3.3 Mechanism-design reduction: from global WDP to DSIC
payments

Once we have monotonicity, the remaining mechanism-design work is con-
ceptually standard. The blueprint variable θ simply becomes part of the
allocation outcome that the mechanism selects. What changes is not the
truthfulness logic but the domain over which the platform must compute
counterfactual objectives (e.g., leave-one-out maxima).

Welfare: VCG with blueprint choice. If we interpret reports as values
(bi = vi) and the platform selects (θ∗, x∗, σ∗) to maximize

∑
i viπi(θ, c;x, σ)−

κ(θ, c), then we can apply VCG on the augmented outcome space Θ×X×Σ.
Let

Opt−i(c; v−i) := max
θ,(x,σ)

∑
k ̸=i

vk πk(θ, c;x, σ)− κ(θ, c)


denote the optimal objective when advertiser i is removed. A standard VCG
payment takes the form

ti(v) = Opt−i(c; v−i)−

∑
k ̸=i

vk πk(θ
∗, c;x∗, σ∗)− κ(θ∗, c)

 , (5)

i.e., i pays the externality it imposes on others including any blueprint-
induced cost changes. This is important: removing i may cause the platform
to choose a different blueprint θ with a different κ(θ, c), and VCG properly
charges the difference. Under quasilinear utilities and exact optimization,
the usual DSIC and individual rationality conclusions follow.

Revenue: virtual surplus and envelope payments. For revenue max-
imization under regularity, we replace values by virtual values bi = ϕi(vi) and
maximize virtual surplus

∑
i ϕi(vi)πi(·)−κ(·). The monotonicity result above

implies the resulting click-through allocation yi(vi, v−i) := πi(θ
∗, c;x∗, σ∗)

is weakly increasing in vi (because ϕi is non-decreasing). Therefore, by the
envelope theorem for single-parameter DSIC mechanisms, there exists a pay-
ment rule implementable via

ti(v) = ti(0, v−i) + vi yi(v)−
∫ vi

0
yi(z, v−i) dz,

with ti(0, v−i) chosen to satisfy individual rationality (often 0). In other
words, blueprint optimization does not require a new payment theory; it
requires that we can compute (or approximate) the interim click allocation
as a function of the bid, which is ultimately an algorithmic question.
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3.4 Why we isolate exact global WDP as the key primitive

The discussion above motivates treating Opt(c; b) as the fundamental object:
if we can solve the global WDP exactly, then the monotonicity needed for
truthful mechanisms is automatic, and familiar payment formulas apply with
blueprint choice folded into the outcome. This perspective also clarifies where
the real difficulty lies.

First, the feasible set Θ×X×Σ can be computationally burdensome even
when each component is manageable: Θ may be continuous, and Σ may be
enormous under order-sensitive models. Second, even when computation is
feasible, production systems often rely on learned predictors and approxi-
mate solvers; these approximations can introduce non-monotonicities that
are small in objective value but large for incentives. These are not merely
technicalities: in ad auctions, slight non-monotonicities can be exploited and
can create instability in bidding dynamics.

This is precisely why we next develop an ε-menu restriction for blueprints.
By reducing the outer optimization from a continuous Θ to a finite Θε while
controlling objective loss, we make global optimization—and hence truthful
implementation—closer to the operational reality of audited template menus.

3.5 ε-menu restriction for low-dimensional blueprint spaces

The computational and incentive arguments above place essentially all weight
on a single primitive: the ability to solve the global optimization problem
exactly. The obstruction, of course, is that the blueprint space Θ is typically
modeled as a compact subset of Rd (to capture continuous knobs such as
disclosure strength or ad prominence), and exact maximization over a con-
tinuous set is not what production systems implement. In practice, platforms
commit ex ante to a finite set of audited templates—a menu of blueprints—
and then optimize allocations within whichever template is chosen. We now
formalize when this operational restriction is without much loss: if changing
θ slightly only changes induced click probabilities and blueprint cost slightly,
then an appropriately fine finite menu approximates the continuous optimum
up to a small additive error.

Stability and the covering-number intuition. Fix a context c and
bids b. For any fixed augmented allocation (x, σ), define the blueprint-level
objective

F (θ; c, b;x, σ) :=

n∑
i=1

bi πi(θ, c;x, σ)− κ(θ, c).

Under the Lipschitz-stability assumption in the enclosing scope, θ 7→ πi(θ, c;x, σ)
and θ 7→ κ(θ, c) move continuously and at most linearly in ∥θ − θ′∥2. Con-
sequently, so does F , with Lipschitz modulus proportional to the total bid
mass

∑
i bi. This is the core reason a finite ε-net is sufficient: we do not need
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to preserve the identity of the optimal blueprint, only the objective value. If
objective values cannot change too sharply as θ varies, then sampling Θ at a
sufficiently fine resolution guarantees that at least one sampled blueprint θ′

lies near the true optimizer θ∗ and hence attains nearly the same objective.

A finite menu with an additive approximation guarantee. We make
the preceding heuristic precise by constructing an ε-menu Θε ⊂ Θ using a
standard covering-number argument. Because Θ is compact in Rd, for any
radius δ > 0 there exists a finite δ-net N(δ) ⊂ Θ such that for every θ ∈ Θ
there is θ′ ∈ N(δ) with ∥θ − θ′∥2 ≤ δ. Moreover, the size of the net can be
bounded by the usual volumetric estimate

|N(δ)| ≤
(
diam(Θ)

δ

)d

,

up to an absolute constant factor (which we suppress since d is treated as
fixed).

Menu Restriction (Covering) Lemma. Fix any ε > 0. Let δ := ε/(2L),
and let Θε be any δ-net of Θ in ℓ2. Then |Θε| ≤ (diam(Θ) · 2L/ε)d, and for
every context c and bid vector b ∈ [0, v̄]n,

max
θ∈Θ

Opt(θ, c; b) ≤ max
θ∈Θε

Opt(θ, c; b) + ε · (1 + nv̄). (6)

An identical statement holds if we replace bids b by values v (welfare) or by
virtual values ϕi(vi) (virtual welfare), provided the reports are bounded in
[0, v̄] and the same Lipschitz condition applies to π and κ.

Proof sketch and where the additive term comes from. The proof
is a direct application of Lipschitz continuity plus the fact that the objective
is linear in the click probabilities. Let θ∗ ∈ argmaxθ∈ΘOpt(θ, c; b) be an
optimizer, and choose θ̂ ∈ Θε such that ∥θ̂ − θ∗∥2 ≤ δ. For any fixed (x, σ),

F (θ∗; c, b;x, σ)− F (θ̂; c, b;x, σ) =
n∑

i=1

bi

(
πi(θ

∗, c;x, σ)− πi(θ̂, c;x, σ)
)
−
(
κ(θ∗, c)− κ(θ̂, c)

)
≤

n∑
i=1

bi · L∥θ∗ − θ̂∥2 + L∥θ∗ − θ̂∥2

≤ Lδ ·
( n∑
i=1

bi + 1
)
.

Since bi ∈ [0, v̄], we have
∑

i bi ≤ nv̄, and by the choice δ = ε/(2L) we obtain

F (θ∗; c, b;x, σ) ≤ F (θ̂; c, b;x, σ) + ε · nv̄ + 1

2
.
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Finally, letting (x∗, σ∗) be the maximizer under θ∗ and taking maxima over
(x, σ) under θ̂ can only improve the right-hand side, which yields (6) after
absorbing the factor 1/2 into a slightly looser ε · (1+nv̄) presentation. Con-
ceptually, the only role of the bid bound

∑
i bi ≤ nv̄ is to translate a uniform

per-advertiser Lipschitz bound into a bound on total objective deviation.

Interpretation: a low-dimensional “template knob” model. The
lemma is easiest to interpret when d is genuinely small, so that the cov-
ering number |Θε| grows moderately as ε shrinks. This corresponds to a
design stance that we view as both economically and operationally nat-
ural: blueprints should be parameterized by a small set of interpretable
knobs (e.g., number of insertion opportunities, prominence scaling, disclosure
phrasing strength, or a scalar “commercial intensity” control). Under that
stance, an ε-menu is not merely an existence claim; it is the formal analogue
of an internal policy that restricts the product surface area to something au-
ditable. The lemma then says that, provided user response and compliance
cost are stable in those knobs, we lose at most an additive ε · (1+nv̄) in the
platform’s objective by restricting to a finite set of approved designs.

When the Lipschitz assumption is reasonable. Although Lipschitz
stability is a modeling assumption, it is not arbitrary. It is plausible when θ
affects π through smooth, bounded transformations: for example, if θ con-
tinuously scales the attractiveness of sponsored content, adjusts disclosure
intensity in a way that monotonically depresses attention to ads, or interpo-
lates between two prompt templates via mixture weights. Under both MNL
and cascade-style click models, if the underlying standalone probabilities
pij(θ, c) are Lipschitz in θ and K is bounded, then the induced πi(θ, c;x, σ)
inherits a Lipschitz bound (with a constant that can worsen with K be-
cause of multiplicative continuation terms in cascade). Similarly, if κ(θ, c)
is a smooth proxy for trust, policy risk, or long-run engagement loss, it is
natural for it to vary continuously with disclosure and prominence knobs.

When stability fails: discontinuous blueprints and template cliffs.
The main limitation is also the practically important one: real template
systems often contain discontinuities. The set of candidate loci j ∈ [m] can
change abruptly with θ (turning on/off an insertion type), or the rendering
logic can switch regimes (e.g., moving a sponsored unit from inline to a
dedicated block once a threshold is crossed). In such cases, the map θ 7→
π(θ, c;x, σ) can have jumps even if user behavior is itself smooth, because the
meaning of (x, σ) changes with the available positions. Likewise, disclosure
can be categorical (a label either appears or does not), which can induce step
changes in click propensities and in compliance cost. When these “template
cliffs” occur, a covering argument in a continuous metric space is the wrong
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tool: no finite ε-net can control objective loss if arbitrarily small parameter
changes can flip the feasible layout.

Design responses: discrete families, mixtures, and smoothing. When
stability fails, we should treat blueprint choice as fundamentally discrete,
which is anyway closer to governance practice. One approach is to replace Θ
by a finite union of smooth families (a small number of template archetypes,
each with a few continuous knobs) and apply the covering argument within
each family. Another is to model θ as a randomization parameter over a
finite set of base templates, so that the induced click probabilities become
continuous in mixture weights even if the base templates are discrete; this can
restore Lipschitz continuity at the level of expected π. A third is to relax the
notion of “position availability” so that insertion types fade in continuously
(e.g., via probabilistic insertion or soft gating), which can be interpreted as
smoothing the discontinuity and thus making an ε-menu guarantee meaning-
ful again. Each response has a policy interpretation: it is a way of aligning
the economic desire for exact optimization and incentive guarantees with the
operational constraints of audited, version-controlled template menus.

What the theorem does not claim. Finally, we stress two boundaries
of the result. First, the lemma is an additive approximation guarantee,
not multiplicative; when the objective scale is small (e.g., very weak de-
mand), additive bounds can be loose, and one may want normalization by
the welfare scale or a context-dependent ε. Second, the lemma assumes the
primitives πi(θ, c;x, σ) and κ(θ, c) are known and stable; estimation error,
non-stationarity, and strategic user adaptation can all violate the effective
Lipschitz property even if the structural model is smooth. The main value
of the ε-menu theorem is therefore as a structural reduction: it tells us that,
in low-dimensional and stable blueprint spaces, we can reduce continuous
blueprint choice to finite menu enumeration without sacrificing much objec-
tive value, thereby bringing exact global optimization (and hence truthful
implementation) within reach of the mechanisms we study next.

3.6 Efficient mechanisms under MNL: exact optimization
within each blueprint

Once we restrict attention to a finite, audited menu of blueprints, the re-
maining technical question is whether the platform can still perform the
exact maximization required by the incentive arguments. Under the multi-
nomial logit (MNL) click model, the answer is affirmative: for each fixed
blueprint θ ∈ Θε, the inner winner-determination problem (WDP) has a
tractable linear programming formulation, and the global problem over the
menu is solved by enumerating θ and selecting the best inner optimum. We
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then obtain (i) a welfare-maximizing DSIC/IR mechanism via VCG pay-
ments on the enlarged outcome space that includes blueprint choice, and (ii)
a revenue-oriented mechanism that implements Myerson’s virtual-surplus ob-
jective with payments computed by an envelope formula, up to a small ε′

due only to numerical integration.

The MNL inner WDP as a linear-fractional program. Fix a context
c, a blueprint θ, and reports b ∈ [0, v̄]n. Under MNL, order does not matter
and click probabilities depend on the set of shown ads only through their
attractiveness. It is convenient to write

aij(θ, c) := exp(ρij(θ, c)) ≥ 0,

so that, for a feasible matching x ∈ X,

πi(θ, c;x) =

∑m
j=1 xijaij(θ, c)

1 +
∑n

i′=1

∑m
j=1 xi′jai′j(θ, c)

.

The blueprint-specific objective is therefore

Opt(θ, c; b) = max
x∈X

{ ∑n
i=1

∑m
j=1 bi aij(θ, c)xij

1 +
∑n

i=1

∑m
j=1 aij(θ, c)xij

− κ(θ, c)

}
. (7)

The key point is that, for fixed θ and c, the dependence on x is linear-
fractional : both numerator and denominator are linear functions of the as-
signment variables xij .

LP transformation and integrality. Problem (7) can be solved exactly
by the standard Charnes–Cooper transformation. Introduce

z :=
1

1 +
∑

i,j aij(θ, c)xij
and yij := z xij .

Substituting into (7), the fractional term becomes
∑

i,j biaij(θ, c)yij , while
the denominator normalization becomes a linear constraint:

z +

n∑
i=1

m∑
j=1

aij(θ, c)yij = 1, z ≥ 0, yij ≥ 0.

The matching constraints
∑

j xij ≤ 1,
∑

i xij ≤ 1, and
∑

i,j xij ≤ K trans-
form into

m∑
j=1

yij ≤ z (∀i),
n∑

i=1

yij ≤ z (∀j),
n∑

i=1

m∑
j=1

yij ≤ Kz.
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Thus, for each θ, we obtain the linear program

max
y≥0,z≥0

n∑
i=1

m∑
j=1

biaij(θ, c)yij −κ(θ, c) s.t.



∑
j yij ≤ z ∀i,∑
i yij ≤ z ∀j,∑
i,j yij ≤ Kz,

z +
∑

i,j aij(θ, c)yij = 1.

(8)
Two observations matter for mechanism design. First, (8) is polynomial-time
solvable in (n,m). Second, despite the original binary constraint xij ∈ {0, 1},
we do not lose exactness: the feasible region of the matching constraints is
an assignment-type polytope, and the transformation preserves the property
that extreme points correspond to scaled matchings. With deterministic tie-
breaking, we can recover an optimal x ∈ X from an optimal (y, z) without
sacrificing objective value. Operationally, one may view (8) as a disciplined
way to exploit the special structure of MNL: it collapses the strategic problem
to a tractable exact optimizer over the menu.

Global optimization over the blueprint menu. Given Θε, the plat-
form solves (8) separately for each θ ∈ Θε and selects the best resulting
outcome. The total running time is therefore poly(n,m, |Θε|), and the only
dependence on continuous blueprint choice is through the menu size. In par-
ticular, the platform’s commitment to a finite set of audited templates is
compatible with exact maximization, which is the enabling condition for the
monotonicity and incentive results.

Welfare maximization: VCG with blueprint choice. For welfare, we
set bi = vi and choose the outcome (θ∗, x∗) maximizing

n∑
i=1

vi πi(θ, c;x)− κ(θ, c),

where θ ranges over Θε and x over X. This is precisely a VCG setting with
an outcome space enlarged to include blueprint selection. The standard VCG
payment for advertiser i is the externality imposed on others:

ti(v) = max
θ∈Θε,x∈X

∑
ℓ̸=i

vℓ πℓ(θ, c;x)− κ(θ, c)

−

∑
ℓ̸=i

vℓ πℓ(θ
∗, c;x∗)− κ(θ∗, c)

 .

(9)
Because κ(θ, c) is part of the platform’s objective and does not depend on
any single advertiser’s report, it enters (9) exactly as any other common-
value term would in VCG: removing advertiser i can change the optimal
blueprint, and the payment correctly internalizes that effect. DSIC follows
from the VCG theorem (the mechanism selects an exact welfare maximizer),
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while individual rationality follows because an advertiser can always report
0 and thereby guarantee non-negative utility under quasilinear preferences.

A practical implication of (9) is computational: computing all payments
requires n additional global solves (one “leave-one-out” problem per adver-
tiser), each of which is again poly(n,m, |Θε|) under MNL. This is not con-
ceptually problematic—it is the standard price of VCG—and it is often op-
erationally acceptable because the solves are embarrassingly parallel across
advertisers and across θ.

Revenue maximization: Myerson virtual surplus and envelope pay-
ments. For revenue, we move to the Myerson objective under the usual
regularity condition that each ϕi(·) is weakly increasing. The mechanism
selects (θ∗, x∗) maximizing virtual surplus,

n∑
i=1

ϕi(vi)πi(θ, c;x)− κ(θ, c),

again over Θε×X. Exact optimization implies the induced allocation rule is
monotone in each vi (holding v−i fixed), which is the implementability con-
dition in single-parameter environments. Thus, there exists a payment rule
achieving DSIC and IR in principle, and it can be written via the envelope
formula. Let

yi(vi, v−i) := πi(θ
∗(v), c;x∗(v))

denote advertiser i’s realized click probability under truthful reports v. Then
the DSIC payment can be expressed as

ti(v) = ti(0, v−i) + vi yi(v)−
∫ vi

0
yi(z, v−i) dz. (10)

In this environment the integral is rarely available in closed form because
yi(·, v−i) is induced by an optimization that may switch between different
matchings and different blueprints as vi varies. The computational remedy
is to approximate the integral numerically.

Discretization and ε′-DSIC. A simple implementation is to discretize
values on a grid {0, η, 2η, . . . , v̄} and approximate the integral in (10) by a
Riemann sum: ∫ vi

0
yi(z, v−i) dz ≈ η

⌊vi/η⌋−1∑
k=0

yi(kη, v−i).

Each term yi(kη, v−i) is obtained by running the same exact global optimizer
with bidder i’s report set to kη. As η → 0, the numerical approximation
converges, and the resulting mechanism is ε′-DSIC with ε′ controlled by
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the discretization granularity (and the boundedness of yi ∈ [0, 1]). Impor-
tantly, the ε′ term is conceptually separate from the ε-menu approximation:
ε controls how close we are to the best continuous blueprint, whereas ε′

controls how accurately we compute payments for the (exactly optimized)
menu-based allocation rule.

Limitations and policy-facing interpretation. Two caveats are worth
keeping in view. First, the efficiency statements rely on the MNL struc-
ture, which yields the linear-fractional objective and makes exact optimiza-
tion compatible with polynomial time. When user models become order-
sensitive or involve richer externalities, exact inner optimization may cease
to be tractable, and the monotonicity that underpins payments becomes frag-
ile. Second, even under MNL, the mechanism inherits whatever modeling
error is present in pij(θ, c) (or ρij(θ, c)) and in κ(θ, c). From a governance
perspective, the appeal of the menu-based approach is that it aligns with
auditing: we can certify a finite set of templates, solve each exactly, and
then apply canonical truthful mechanisms on top. The economic content is
that, under MNL, the platform can simultaneously (i) optimize across an
auditable blueprint menu, (ii) preserve exactness of allocation within each
blueprint, and (iii) obtain incentive guarantees with only controlled, explic-
itly parameterized approximations coming from discretizing payments rather
than from heuristic optimization.

3.7 Extensions to order-sensitive users (cascade): what can
be salvaged, and when we need heuristics

The MNL formulation is attractive not because it is behaviorally perfect, but
because it turns winner determination into an exact polynomial-time opti-
mization problem, which is exactly the condition we need to invoke canonical
incentive arguments. Once we move to an order-sensitive user model, the
economic logic does not disappear, but the computational and incentive con-
clusions become more conditional: we can still obtain truthful mechanisms if
we can optimize exactly over a suitably chosen outcome range, yet for general
cascade interactions we should expect to rely on approximations, numerical
methods, and carefully designed restrictions on what blueprints are allowed
to do.

Cascade clicks and the source of hardness. Under the cascade model,
the platform’s ordering decision matters because early insertions reduce at-
tention (or available click probability mass) for later ones. Using the notation
from the global context, for an augmented allocation (x, σ) ∈ X×Σ we have

πi(θ, c;x, σ) =
m∑
j=1

xijpij(θ, c)
∏

j′:σ(j′)<σ(j)

(
1−

∑
i′

xi′j′pi′j′(θ, c)
)
.
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If we write the realized sequence of shown ads in display order as {(it, jt)}Tt=1

(with T ≤ K), then the virtual-surplus (or welfare) part of the objective can
be written as

T∑
t=1

bit pitjt(θ, c)
∏
s<t

(
1− pisjs(θ, c)

)
,

which is a nonlinear function of the chosen set and its order. This is qualita-
tively different from MNL: there is no linear-fractional reformulation of the
same simplicity, and the induced optimization problem resembles sequenc-
ing problems with assignment constraints and multiplicative externalities. In
broad generality (arbitrary pij(θ, c) and free choice of σ), one should expect
NP-hardness by reduction from well-known ordering/assignment problems:
the platform is effectively choosing a permutation to manage negative exter-
nalities across positions, while simultaneously solving a matching problem.

This has an immediate mechanism-design consequence. Our earlier mono-
tonicity logic continues to apply if the platform can solve

(θ∗, x∗, σ∗) ∈ arg max
θ∈Θε,(x,σ)∈X×Σ

∑
i

biπi(θ, c;x, σ)− κ(θ, c)

exactly with deterministic tie-breaking: exact maximization over a fixed fea-
sible set yields a monotone allocation rule in each bid coordinate. The prob-
lem is therefore not conceptual; it is computational.

Tractable structure: when exact optimization is still plausible.
There are several practically relevant restrictions under which cascade win-
ner determination can be solved exactly (or nearly exactly) and thus remains
compatible with DSIC.

First, if the blueprint fixes an order rule σ = σ(θ, c) independently of
bids, then the platform only chooses x ∈ X. This does not remove the non-
linearity, but it eliminates one combinatorial dimension and often makes the
remaining problem amenable to dynamic programming when K is small. For
example, when K is a small constant (as is often the case in conversational
interfaces where inserting many ads is infeasible), we can optimize over the
top K insertion loci by enumerating which subset of positions is filled and
running a DP over the resulting short sequence. The running time is still
exponential in K, but polynomial in n,m, which can be acceptable when K
is truly small and treated as a design constraint.

Second, if predicted CTRs are separable in advertiser and position, e.g.,

pij(θ, c) = αj(θ, c) · qi(θ, c),

then the cascade objective takes a more structured form. In the simplest
case with a fixed sequence of positions (say σ is the natural order), the
ordering problem becomes closer to classic results on optimal sequencing
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under multiplicative survival. Pairwise swap arguments imply that, holding
positions fixed and considering two advertisers r and s in two successive
opportunities with the same α, advertiser r should precede s if

br qr + (1− qr) bs qs ≥ bs qs + (1− qs) br qr,

equivalently,
br qr
1− qr

≥ bs qs
1− qs

.

Thus, an “adjusted value” index can determine the efficient order within a
block. While real blueprints will rarely satisfy perfect separability, even ap-
proximate separability (capturing a strong position effect times an advertiser
effect) can justify designing Θε so that the inner optimization is much closer
to sorting than to general integer programming.

The broader lesson is blueprint-facing: when we allow arbitrary order-
sensitive interactions, we should not be surprised to lose exact tractability. If
we want DSIC guarantees, we may need to co-design the blueprint menu so
that each template induces an inner problem with known exact algorithms.

Maximal-in-range as the main salvage operation. When full opti-
mization is hard, the cleanest way to preserve incentive guarantees is to
restrict the platform to a range of outcomes over which it can optimize ex-
actly. Concretely, fix a (possibly blueprint-dependent) subset R ⊆ X ×Σ of
augmented allocations, and define the mechanism to pick

(θ∗, x∗, σ∗) ∈ arg max
θ∈Θε,(x,σ)∈R

∑
i

biπi(θ, c;x, σ)− κ(θ, c).

Because the mechanism is now an exact maximizer over a fixed range, it
is maximal-in-range (MIR). For welfare, VCG payments on the restricted
outcome space yield DSIC/IR within that range. For revenue (regular case),
exact optimization still yields monotonicity, so envelope payments remain
valid (with the same numerical-integration caveat as before). The cost is
purely allocative: we only compete against the best outcome in Θε ×R, not
against the unrestricted optimum.

Designing R is therefore the substantive modeling choice. Examples that
are natural in conversational settings include: (i) restricting to a small set
of allowed insertion loci and a fixed narrative-consistent order; (ii) allow-
ing only “one ad per segment” layouts so that interference is bounded; or
(iii) permitting only a few canonical orderings σ per blueprint, chosen for
readability and disclosure compliance. Each of these makes the platform’s
commitment more auditable, and simultaneously makes exact optimization
more plausible.
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Monotone surrogate objectives and calibrated weights. A second
approach is to optimize a surrogate objective that is linear in x (hence easily
optimized and compatible with VCG), while treating the cascade effect as a
correction absorbed into predicted weights. One simple family is

Ôbj(θ, c;x) =
∑
i,j

biwj(θ, c) pij(θ, c)xij − κ(θ, c),

where wj(θ, c) ∈ [0, 1] is interpreted as an ex ante attention weight for posi-
tion j under blueprint θ and context c. If wj is fixed independently of bids,
then maximizing Ôbj over X is a weighted matching problem, and the in-
duced allocation rule is monotone under exact optimization. Payments can
then be computed exactly (VCG) for welfare with respect to Ôbj, yielding
a truthful mechanism for the proxy environment.

What we gain is strong incentive compatibility and computational tractabil-
ity; what we lose is exact alignment with the true cascade welfare. This loss
can be bounded in regimes where cascade interference is modest (e.g., small
K, small pij , or when earlier positions have limited effect on later ones).
In practice, one can set wj(θ, c) by calibration: estimate expected survival
probabilities from historical data under the blueprint’s typical fill pattern,
and update them as the system learns. Economically, this is a controlled
form of model misspecification: we preserve truthful bidding while accepting
that the platform optimizes a smoothed approximation to user attention.

Where greedy and local search run into incentive problems. A
natural impulse under cascade is to use greedy selection: add the next (i, j)
that maximizes the current marginal gain

∆(i, j | prefix) = bi pij(θ, c)
∏

earlier (i′,j′)

(
1− pi′j′(θ, c)

)
,

and then continue. Greedy can be effective as a heuristic, but from a
mechanism-design standpoint it is treacherous: because the “prefix” depends
on bids, increasing bi can reshuffle earlier choices and reduce i’s eventual
chance of being placed, violating monotonicity. The resulting allocation rule
need not be implementable with any payment rule satisfying DSIC/IR. Sim-
ilar warnings apply to local search, simulated annealing, and mixed-integer
solvers with early stopping: they can be excellent optimizers, but absent
additional structure they will not be monotone algorithms.

This is the practical boundary line. If we insist on strict DSIC, we should
either (i) optimize exactly over a fixed range (MIR/MIDR-style thinking),
or (ii) use an algorithm whose monotonicity can be proved for the induced
allocation rule. Otherwise, we should be explicit that we are implementing
an approximately incentive compatible system and quantify the deviation.
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Numerical methods and ε-IC in the fully general case. When the
platform’s cascade WDP is genuinely hard, the realistic alternative is to ac-
cept approximation in the allocation and then reason about approximate
incentives. One operational route is to use an approximate optimizer that
returns an α-approximate solution to the virtual-surplus objective. Approx-
imation alone does not imply ε-DSIC; the key object is still how far the
induced allocation rule deviates from monotonicity. In practice, one can (a)
monitor monotonicity empirically by perturbing bids and measuring alloca-
tion changes, and (b) smooth the optimization numerically (e.g., randomized
tie-breaking, or regularization of the objective) to reduce discontinuous allo-
cation switches that create profitable bid manipulations. These steps do not
restore theorem-level DSIC, but they can bound incentives in a way that is
meaningful for governance: we can report an empirical ε such that no bidder
gains more than ε by unilateral deviation within a tested bid range.

The policy-facing interpretation is that order-sensitive user behavior forces
an explicit tradeoff between allocative optimality and incentive guarantees.
If we want auditable, incentive-aligned ad insertion into LLM responses, we
should view “which cascade effects we model” and “which blueprint behaviors
we permit” as joint design choices, not independent engineering details.

3.8 Practical considerations: estimating pij(θ, c), validating
Lipschitz stability, blueprint parameterization, and au-
diting/disclosure constraints

The formal results above treat the primitives {pij(θ, c)}i,j and κ(θ, c) as
given and common knowledge. In a real LLM system, they are neither: they
must be estimated from interaction data, stress-tested for robustness, and
embedded in a blueprint parameterization that is simple enough to optimize
and to audit. We can read the theory as a design specification: if we can
(i) build stable prediction and cost models and (ii) restrict blueprints to
a low-dimensional, well-behaved family, then the mechanism logic becomes
operational rather than aspirational.

What exactly is pij(θ, c) in an LLM interface? In the model, pij(θ, c)
is a standalone click-through probability: the probability advertiser i would
be clicked if it were shown at candidate locus j under blueprint θ in context
c, abstracting away from interference created by other inserted ads. In an
LLM response, a “position” may correspond to qualitatively different inser-
tion types (inline sentence, card after a paragraph, sidebar module, etc.),
so j is best interpreted as a candidate insertion locus in a blueprint-specific
rendering plan. Practically, it is useful to define

pij(θ, c) ≡ Pr(click on i | i is shown at locus j under blueprint θ in context c, no other ads shown),
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even if we never literally run “no other ads shown” for every observation. This
definition clarifies that pij is a causal object, not merely a predictive one:
it is the effect of showing i at j, holding fixed the user and conversational
context.

Estimation and identification: from logs to causal CTRs. If we
naïvely regress clicks on features of (i, j, θ, c) using historical data, we inherit
selection bias because the platform historically chose (θ, x, σ) in a bid- and
prediction-dependent way. The usual remedy is to log the platform’s propen-
sity to select each outcome and apply off-policy estimation. Concretely, let a
denote the platform action (blueprint plus allocation/order), and let µ(a | c)
be the logging policy. For any candidate policy π, we can estimate expected
click outcomes using inverse propensity scoring (IPS) or doubly robust (DR)
estimators. In the simplest IPS form for a scalar outcome Y ,

Êπ[Y ] =
1

T

T∑
t=1

1{at = π(ct)}
µ(at | ct)

Yt,

and in practice we prefer DR estimators that combine a click model with
propensity weighting to reduce variance. The key operational point is that
identifying pij(θ, c) at fine granularity requires exploration: every (θ, j) pair
that might be used by the mechanism must receive nontrivial probability
under µ, at least within neighborhoods of contexts where it could be optimal.
Otherwise, the menu restriction lemma is moot because the mechanism will
compare blueprints whose CTRs are extrapolated rather than learned.

A second identification issue is that in LLM systems, the content sur-
rounding an insertion is itself influenced by θ: disclosure phrasing, narra-
tive tone, and placement can change user attention even holding i and j
fixed. This is not a bug; it is precisely why θ is economically meaning-
ful. But it implies that pij(θ, c) should be estimated in a way that respects
blueprint-induced distribution shift. A practical compromise is to fit a model
pij(θ, c) = g(ψ(i), ζ(j), hθ(c)) where ψ(i) is an advertiser embedding, ζ(j) is
a locus embedding, and hθ(c) is a blueprint-conditioned context representa-
tion. This keeps statistical strength while preserving the causal interpreta-
tion under randomized blueprint assignment.

Estimation error and conservative optimization. Our theoretical ob-
jectives use point predictions. In deployment, uncertainty matters: if p̂ij is
noisy, exact maximization of a plug-in objective can overfit to estimation
error. A standard fix is to use lower confidence bounds,

p̃ij(θ, c) = p̂ij(θ, c)− β ŝeij(θ, c),

and optimize using p̃ij (and similarly for κ). This converts winner determi-
nation into a risk-adjusted problem that is more stable and typically easier
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to justify in audits, at the cost of some foregone surplus. The same idea can
be applied to the Lipschitz constant: we can treat L as a high-probability
sensitivity bound rather than a deterministic one.

Validating Lipschitz stability: what we can test and what we can-
not. The Lipschitz hypothesis is the mathematical hinge behind finite
menus: small changes in θ should not cause large changes in πi or κ. In
an LLM system, there are two distinct failure modes.

(i) Behavioral discontinuities. Small changes in disclosure wording, lay-
out spacing, or “ad density” can trigger sharp shifts in user trust and at-
tention. These are genuine non-smooth preferences, not merely modeling
artifacts.

(ii) Rendering discontinuities. A blueprint parameter may flip a discrete
switch (e.g., enabling a new insertion type), changing the feasible set of loci
J(θ, c) and thus altering π and κ even if the user response function is smooth.

We cannot prove away these discontinuities; we can only engineer against
them. A workable approach is to treat Lipschitzness as an empirical contract:
choose a parameterization in which small perturbations of θ correspond to
small, localized rendering changes, and then validate with randomized ex-
periments. For example, for sampled contexts c and small perturbations δ,
we can estimate local sensitivities

Ŝ(θ, c; δ) = max
(x,σ)∈A(c)

max
i∈[n]

∣∣π̂i(θ + δ, c;x, σ)− π̂i(θ, c;x, σ)
∣∣

∥δ∥2
,

where A(c) is a test set of representative allocations/orders. If Ŝ is frequently
large, we should not respond by inflating L and accepting a huge menu; we
should instead redesign Θ (or accept that the outer problem is intrinsically
discrete, as discussed earlier).

A practical trick that often restores approximate smoothness is gener-
ation smoothing : randomize over a small set of equivalent renderings (e.g.,
paraphrases of disclosure text) with fixed mixture weights, so that the map-
ping θ 7→ π becomes an average over variants and hence less discontinuous.
This improves stability but raises governance questions, since randomness
must be logged and reproducible for audits.

Blueprint parameterization: keeping d small and interpretable.
The menu restriction bound is only meaningful when d is genuinely small.
This pushes us toward a blueprint representation that captures the main
economic levers without encoding the full generative policy of the LLM. In
practice, we want θ to be a vector of a few interpretable “knobs” that product
teams already reason about, such as:

• Ad density: expected K or a soft penalty for additional insertions;
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• Prominence: visual size, distance from the user’s requested content, or
salience of the module;

• Disclosure strength: label wording, prefixing, or explicit separation
from organic content;

• Narrative integration: whether ads are presented as cards, inline sug-
gestions, or appended recommendations;

• Eligibility filters: sensitive-topic exclusions, advertiser-category con-
straints, or jurisdictional rules.

We emphasize that interpretability is not merely aesthetic: it is what makes
κ(θ, c) defensible and what makes commitment credible. If θ is an opaque
embedding controlling many latent behaviors, then even if the mechanism is
DSIC in theory, it will be difficult to persuade advertisers or regulators that
the platform is not implicitly conditioning on bids through hidden channels.

Modeling and measuring κ(θ, c): from norms to welfare units. The
cost κ(θ, c) is where trust, compliance, and long-run platform value enter the
formal objective. The main practical difficulty is units: clicks and advertiser
values are monetizable, while trust and compliance are not directly. A typical
implementation treats κ as a weighted sum of measurable proxies,

κ(θ, c) = λdiscl ·D(θ, c) + λsat · S(θ, c) + λrisk · Risk(θ, c),

where D might capture disclosure weakness (lower is better), S might cap-
ture predicted user dissatisfaction or abandonment, and Risk might capture
policy-violation probability. The economics here is straightforward but im-
portant: these weights λ are policy parameters. They encode the platform’s
willingness to trade revenue for trust and regulatory safety, and they are
therefore natural objects for internal governance (and, potentially, for regu-
latory scrutiny). This is also where comparative statics in the next section
become actionable.

Auditing, disclosure constraints, and “mechanism compliance” as
invariants. Because blueprints modify an LLM response, we should treat
disclosure and separation rules as hard constraints whenever feasible, not
as soft penalties. Concretely, let F(c) ⊆ Θ ×X × Σ denote outcomes that
satisfy invariants such as: disclosure text present; label font size above a
threshold; ad modules separated from organic content; no ads in sensitive
conversational segments; and no advertiser shown more than once. Then
winner determination should be solved over F(c), not merely penalized by κ.
This has two benefits: (i) it simplifies auditing, because compliance reduces
to verifying membership in F(c); and (ii) it prevents pathological optima
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where the platform “pays” for non-compliance in κ but still chooses it when
bids are high.

Auditability also requires replay : given logged (c, b), the platform should
be able to reconstruct (θ∗, x∗, σ∗) and payments. Deterministic tie-breaking
is not just a proof convenience; it is what makes the allocation rule well-
defined and dispute-resilient. If any stochasticity is used (e.g., smoothing),
its random seeds and distributions must be logged as part of the mechanism
state.

Payments in practice: discretization, monotonicity checks, and
numerical robustness. Even when the allocation is monotone in the-
ory (under exact optimization), payments can be fragile numerically. For
welfare/VCG, the issue is computational: we must compute counterfactual
optima with advertiser i removed, which multiplies runtime by n (times |Θε|).
For envelope-based payments (virtual surplus), the issue is approximation:
we discretize the integral

ti(v) = ti(0, v−i) + viyi(v)−
∫ vi

0
yi(z, v−i) dz,

and any discretization error becomes an incentive issue. A practical safe-
guard is to pair the payment computation with monotonicity regression (or
ironing) on the empirically estimated allocation curve yi(·, v−i), ensuring
the numerical implementation respects weak monotonicity even when solver
tolerances or estimation noise would otherwise induce small violations.

Finally, we emphasize a limitation that is easy to miss: if the system uses
early-stopped mixed-integer solvers, heuristic search, or non-deterministic
caching in production, then “exact optimization” may fail silently, and with
it the DSIC guarantee. Operationally, this argues for mechanism imple-
mentations that are simple enough to be solved to certified optimality (or
optimized over a restricted range), rather than relying on best-effort solvers
whose failure modes are hard to audit.

Putting it together: a deployable workflow. A coherent engineering
interpretation of the model is a loop: (i) design a low-dimensional, inter-
pretable Θ and a compliant feasible set F(c); (ii) explore to estimate pij(θ, c)
and κ(θ, c) with logged propensities; (iii) empirically validate local stability
and redesign Θ if discontinuities are common; (iv) construct a finite menu
Θε aligned with the validated smoothness; and (v) run exact (or certified)
optimization with deterministic tie-breaking and auditable payment com-
putation. This workflow makes clear why the next section’s comparative
statics are not merely theoretical: the policy parameters embedded in κ and
the granularity ε directly govern the platform’s observable behavior, and
hence the practical tradeoff between monetization and trust.
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3.9 Comparative statics and policy: the price of disclosure
intensity, welfare–trust tradeoffs, and transparency reg-
ulation

A useful feature of the blueprint-augmented mechanism is that it makes sev-
eral policy-relevant tradeoffs explicit. The platform is not merely choosing
a matching x (and possibly an order σ); it is also choosing θ, which governs
the disclosure style, prominence, density, and other presentation choices that
affect both user behavior πi(θ, c;x, σ) and the non-revenue cost κ(θ, c). This
section uses the objective as a lens for comparative statics: how does the cho-
sen blueprint move when we change (i) the weight placed on trust/compliance
costs, (ii) the granularity of the allowable blueprint menu, and (iii) the de-
gree of user attention scarcity (outside-option strength)? We then connect
these movements to questions of transparency regulation and platform com-
mitment.

A parametric cost of disruption and its envelope implications. To
sharpen the discussion, it is convenient to separate a measurable disruption
index from its welfare weight. Let

κ(θ, c) = λ ·D(θ, c),

where D(θ, c) ≥ 0 aggregates factors such as disclosure weakness, visual
intrusion, policy-risk, or predicted dissatisfaction, and λ ≥ 0 is a governance
parameter translating disruption into welfare units. For a fixed context c
and bid vector b, define the optimized value

V (λ; c, b) = max
θ∈Θε

max
(x,σ)∈X×Σ

{ n∑
i=1

bi πi(θ, c;x, σ)− λD(θ, c)
}
.

Two general facts follow from standard envelope reasoning. First, V (λ; c, b) is
weakly decreasing and convex in λ (a pointwise supremum of affine functions
of λ). Second, whenever the maximizer (θ∗λ, x

∗
λ, σ

∗
λ) is essentially unique

(or more generally, selecting a measurable maximizer with deterministic tie-
breaking), the right and left derivatives satisfy

∂V

∂λ+
(λ; c, b) = −D(θ∗λ, c),

∂V

∂λ−
(λ; c, b) = −D(θ∗λ− , c),

so the realized disruption at the chosen blueprint is a (sub)gradient of the
platform’s value with respect to the trust/compliance weight. Operationally,
this turns λ into a dial: increasing λ monotonically increases the platform’s
willingness to sacrifice click surplus in order to reduce disruption. The com-
parative static is transparent because the cost is separable in λ.

This representation also suggests a principled way to interpret internal
debates about “how strict disclosure should be.” If we calibrate λ so that a
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unit reduction in D corresponds to an empirically estimated long-run benefit
(retention, complaint reduction, enforcement risk reduction), then the mech-
anism’s chosen blueprint is the efficient one under that valuation. If instead
λ reflects only short-run or private costs to the platform, then the resulting
blueprint is privately optimal but may under-provide disclosure relative to a
social optimum.

The “price of disclosure intensity.” Many governance discussions are
phrased in terms of constraints on disclosure strength rather than a contin-
uous penalty. We can connect these views by introducing a scalar disclosure
parameter s embedded in θ, where higher s means more explicit labeling
or stronger separation from organic content. Suppose θ = (s, η), where η
collects other blueprint knobs. A regulator who strengthens disclosure effec-
tively imposes a lower bound s ≥ s, shrinking the feasible set from Θε to
Θε(s) = {θ ∈ Θε : s(θ) ≥ s}. Let

V (s; c, b) = max
θ∈Θε(s)

max
(x,σ)∈X×Σ

{∑
i

bi πi(θ, c;x, σ)− κ(θ, c)
}
.

Then V (s; c, b) is weakly decreasing in s, and the welfare impact of raising
disclosure standards is precisely the loss in optimized objective from restrict-
ing the blueprint set. This loss is a direct analogue of the “price” of disclosure
intensity: it is the opportunity cost in foregone virtual surplus (or welfare,
depending on whether bi = vi or bi = ϕi(vi)) needed to meet the stricter
disclosure requirement. In contexts where users strongly discount ads once
disclosed, the slope of V in s will be steep; in contexts where disclosure does
not materially reduce attention (or improves trust enough to offset attention
loss), the slope may be small or even effectively zero over relevant ranges.

One can also define a local price when disclosure enters linearly into the
disruption index, e.g., D(θ, c) = D0(η, c) + α(c) · s, with α(c) > 0. Then
increasing λ raises the shadow price of s: holding other dimensions fixed, the
mechanism trades off an incremental change in click surplus against λα(c).
Even when s is not separable, the envelope relation ∂V/∂λ = −D(θ∗λ, c)
implies that stronger disclosure (to the extent it reduces D) is chosen pre-
cisely when the induced click-loss is dominated by the weighted reduction in
disruption.

Welfare versus revenue objectives: where the tradeoff bites. The
welfare mechanism (with bi = vi) and the revenue mechanism (with bi =
ϕi(vi) under regularity) can select different blueprints even holding λ fixed.
Intuitively, virtual values reweight clicks toward advertisers on the steep
part of the revenue curve, so revenue optimization is more willing to sacri-
fice low-virtual-value clicks for a modest increase in high-virtual-value clicks.
This matters for disclosure because disclosure changes the composition of
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clicks: it can disproportionately reduce clicks on low-quality or low-relevance
ads (which users would have clicked under confusion) while leaving high-
relevance ads relatively intact. In such cases, stronger disclosure can lower
total click volume but improve welfare (by reducing misclicks) and might
even increase revenue if it shifts attention toward high virtual value advertis-
ers. Conversely, if disclosure reduces attention uniformly, then both welfare
and revenue objectives will typically move toward less intrusive blueprints
as λ increases, but revenue may remain relatively more aggressive at a given
λ because it places higher marginal value on the remaining clicks.

This observation has a policy corollary: if regulators care about alloca-
tive efficiency and consumer protection, it is not enough to ask whether
disclosure reduces revenue. The relevant question is how disclosure changes
πi(θ, c;x, σ) across advertisers and positions—that is, whether it removes pri-
marily low-value, potentially misleading engagement or whether it suppresses
high-value matches. The blueprint framework forces this heterogeneity into
the primitives pij(θ, c) (and hence πi) rather than treating disclosure as an
undifferentiated tax.

Menu granularity ε as a governance tool, not only a computational
knob. The ε-menu restriction is usually motivated by tractability: smaller
ε yields a denser menu Θε and hence better approximation but higher run-
time. There is also a governance interpretation. A very fine menu allows
the platform to micro-optimize θ to each context c, potentially producing
blueprints that are hard to describe, audit, or explain, even if each knob is
nominally interpretable. A coarser menu (larger ε) forces the platform to
choose among a small number of discrete, documented templates. The addi-
tive approximation loss can then be interpreted as the cost of standardization
and predictability.

This is especially salient for transparency regulation. If the platform
publicly commits to a finite menu and deterministic tie-breaking, then third
parties can (at least in principle) replicate decisions ex post. The menu
restriction lemma provides an economic argument for why such commitment
need not be too costly when the system is stable in θ: the welfare/revenue
loss scales with ε(1 + nv̄). Conversely, if achieving high revenue requires an
extremely fine menu, that is indirect evidence that the blueprint space is
effectively high-dimensional or unstable, and thus that any claim of simple,
auditable ad presentation is likely to be fragile.

Dimensionality d, interpretability, and the limits of “transparent
optimization.” The covering-number bound makes explicit the curse of
dimensionality: |Θε| grows on the order of ε−d. Practically, this is not
merely a computational warning; it is a transparency warning. A high-
dimensional θ makes it difficult to articulate what the platform is committing
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to. Even if the mechanism is DSIC under exact optimization over Θε, a
large and complex menu can undermine perceived fairness and can frustrate
auditing, because small undisclosed changes in θ may be hard to detect yet
economically meaningful.

From a policy standpoint, this suggests a substantive interpretation of
“meaningful disclosure of advertising practices”: it is not only the presence
of an “Ad” label, but also the restriction of the platform’s policy space to a
manageable number of verifiable blueprint variants. In that sense, limiting
d (or committing to a coarse Θε) is a form of mechanism transparency. It
reduces the degrees of freedom through which the platform could implicitly
tailor user experience in bid-dependent ways, even when the formal mecha-
nism is bid-monotone.

Outside-option strength and endogenous ad load. Under the MNL
specification, the outside option (the baseline propensity to not click any-
thing) enters through the denominator. When the outside option is strong,
incremental changes in attractiveness exp(ρij(θ, c)) have smaller effects on
click probabilities, and the platform’s objective exhibits sharper diminishing
returns to filling additional loci. In such regimes the optimized solution often
chooses fewer than K ads even when K is allowed: leaving positions empty
can be optimal because additional ads mostly cannibalize attention rather
than expand total clicks.

This interacts with disclosure in a subtle way. Stronger disclosure can be
modeled either as (i) reducing ρij for ads (users treat them as less attractive),
or (ii) increasing the outside option (users prefer to continue reading without
clicking). Both channels push toward concentration on the highest-quality
matches and away from aggressive ad density. Thus, when user attention is
scarce, the marginal revenue benefit of weaker disclosure is often small, while
the trust/compliance benefit (via reduced D(θ, c)) may remain substantial.
The framework therefore predicts a pattern that aligns with practice: in
high-stakes or high-friction contexts (e.g., sensitive topics, complex multi-
turn tasks), optimal blueprints should be conservative—fewer insertions and
stronger disclosure—even absent hard constraints.

Implications for transparency regulation and credible commitment.
We can view transparency regulation as acting on three distinct layers of the
model. First, it can impose hard feasibility constraints on F(c), such as
mandatory disclosure text or forbidden insertion loci. Second, it can ef-
fectively increase λ by raising expected penalties for disruptive behavior,
converting external enforcement into an internalized cost. Third, it can re-
quire commitment and auditability : public documentation of the menu Θε,
deterministic tie-breaking, and reproducible logging sufficient to reconstruct
(θ∗, x∗, σ∗) and payments.
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The blueprint mechanism clarifies why commitment matters. Even if
the platform promises to be “transparent,” advertisers and users may worry
about time-varying or context-dependent presentation that is hard to ob-
serve. A committed finite menu is a concrete object that can be audited:
the regulator can test whether the deployed blueprint is one of the declared
θ ∈ Θε and whether the declared disclosure parameters match what is ren-
dered. Moreover, because the winner determination is an explicit maximiza-
tion over a fixed feasible set, deviations (e.g., switching to an unannounced
blueprint when bids spike) are, in principle, detectable.

At the same time, the model highlights a limitation: regulation that
only mandates disclosure text but leaves the blueprint space otherwise un-
constrained may not achieve robust transparency if other dimensions of θ
can subtly shift salience or placement. In our language, that is regulation
targeting a single coordinate s while allowing the platform to optimize freely
over η. Effective policy likely requires either broader constraints on Θ (e.g.,
restrictions on loci or prominence) or an explicit accounting of those dimen-
sions in D(θ, c) with sufficiently large λ.

Summary: comparative statics as a design and policy checklist.
The comparative statics are not merely qualitative. They tell us what to
measure and what to govern. Estimating how πi and D move with dis-
closure, prominence, and density directly identifies the “price” of stronger
transparency. Choosing λ (or imposing constraints on Θ) determines how
aggressively the platform monetizes attention in the face of trust and compli-
ance costs. Finally, ε and d determine whether commitment to an auditable
menu is feasible without large surplus loss. These are precisely the levers
that product teams and regulators can manipulate; the model’s contribution
is to place them in a single optimization problem where the tradeoffs are
legible and, when stability holds, computationally implementable.

3.10 Conclusion and open problems: beyond Lipschitz, richer
advertiser types, and dynamic blueprint choice

We have treated “blueprints” as a low-dimensional, economically meaningful
policy instrument: a vector of design choices that shapes both the mapping
from bids to click probabilities and the platform-side cost of disruption, trust
loss, or compliance risk. The key modeling move is to bring blueprint choice
inside the winner determination problem, so that the platform optimizes
jointly over θ and the augmented allocation (x, σ). Once we do so, familiar
mechanism-design logic largely survives: with exact optimization over a fixed
feasible set, monotonicity in bids is preserved, and DSIC/IR mechanisms
are available (VCG for welfare; Myerson-style virtual surplus with envelope
payments under regularity). The ε-menu restriction lemma then gives a
concrete tractability story: if the system is stable in θ, a finite, auditable
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menu can approximate the best continuous blueprint with a transparent
additive loss.

At the same time, the analysis makes clear where the fragility lies. Our
clean approximation and implementability results rely on a strong smooth-
ness hypothesis: Lipschitz stability of πi(θ, c;x, σ) and κ(θ, c) in θ, uniformly
over contexts and allocations. This assumption is plausible when θ modulates
intensities (e.g., disclosure strength, prominence, density) within a fixed lay-
out family, and when user response varies continuously with those intensities.
But real systems often exhibit step changes: a small change in a template
parameter can create or eliminate an insertion locus, flip a disclosure label
from “below the fold” to “above the fold,” trigger a policy classifier, or switch
generation into a qualitatively different style. These discontinuities are not a
technical nuisance; they are a substantive feature of LLM-mediated presen-
tation. Understanding mechanism design in the presence of such non-smooth
blueprint effects is, in our view, the first open problem.

Beyond Lipschitz: non-smooth blueprints, discrete families, and
smoothing. When θ changes the feasible position set J(θ, c) or the ren-
dering grammar, the map θ 7→ π(θ, c;x, σ) may fail to be continuous, and the
covering argument behind Θε can collapse. There are several directions one
might pursue. A conservative approach is to abandon the pretense of continu-
ity and treat blueprint choice as a discrete design problem: a hand-curated
family {θ1, . . . , θM} justified by product constraints, policy requirements,
and auditability. The outer optimization is then simply a finite maximiza-
tion, and the main theoretical task becomes to characterize how large M
must be to compete with richer, less interpretable policies.

A more structural approach is to recover a form of stability via random-
ization or smoothing. For instance, one could allow the platform to sample
a blueprint θ from a distribution q over a finite set and evaluate expected
clicks and costs. If πi and κ are discontinuous pointwise but well-behaved in
expectation under small perturbations, then the relevant object becomes

π̄i(q, c;x, σ) = Eθ∼q[πi(θ, c;x, σ)], κ̄(q, c) = Eθ∼q[κ(θ, c)],

which may admit Lipschitz-like control in an appropriate metric on distri-
butions q (e.g., total variation or Wasserstein). This suggests an engineering
interpretation: injecting controlled randomness into rendering (within ac-
ceptable UX bounds) can make optimization more stable and, paradoxically,
more amenable to transparent approximation. A central open question is
whether such smoothing can be done while retaining incentive guarantees
(truthfulness is delicate when allocations are randomized) and while respect-
ing regulatory demands that disclosures be consistent rather than stochastic.

Approximate optimization and the re-emergence of incentives. Even
under smoothness, DSIC in our discussion leans on exact maximization (with
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deterministic tie-breaking). In practice, platforms use heuristics, approxi-
mate solvers, and learned ranking models. Approximation can break mono-
tonicity and hence invite strategic bidding. Designing algorithms that are
simultaneously (i) computationally efficient, (ii) approximately optimal over
Θε × X × Σ, and (iii) approximately truthful with quantifiable incentive
loss remains an important open problem. One promising route is to com-
bine menu restriction with monotone algorithm design: restrict attention
to algorithmic families that are monotone by construction, even if they are
not globally optimal, and then bound the welfare/revenue gap relative to
the true optimum. Another route is to characterize conditions under which
small optimization errors imply small deviations from monotonicity, thereby
yielding explicit ε-DSIC bounds tied to solver tolerances. The difficulty is
that monotonicity is a global property in bids, while optimization error is
typically local.

Learning and uncertainty: when pij(θ, c) is estimated, not known.
Our primitives treat predicted CTRs pij(θ, c) (or ρij) and costs κ(θ, c) as
given. In deployed systems, these are estimated with error, subject to non-
stationarity, and potentially manipulable. This raises both statistical and
strategic questions. Statistically, the platform’s objective is computed using
π̂i and κ̂, but welfare and payments depend on realized clicks; the gap be-
tween these two can produce systematic distortions in blueprint choice (e.g.,
underestimating the trust penalty pushes toward aggressive θ). Strategically,
advertisers may attempt to influence predictions via creatives or landing
pages, effectively making the click model endogenous.

A natural research direction is robust blueprint optimization: replace the
point estimate with an uncertainty set U(θ, c) and maximize worst-case or
risk-adjusted value, e.g.,

max
θ,(x,σ)

min
(π,κ)∈U(θ,c)

{∑
i

biπi − κ
}
.

How this interacts with truthfulness is not obvious: robust objectives can
introduce non-linearities in bids that complicate monotonicity. Another di-
rection is to integrate exploration directly into the mechanism, so that the
platform learns π(θ, c; ·) while running auctions. Here one confronts a clas-
sic tension: exploration changes allocations, which changes incentives, which
changes the data-generating process. Understanding what forms of online
learning preserve approximate DSIC (or at least BIC) in the blueprint-
augmented setting is largely open.

Multi-parameter advertisers and the limits of single-parameter re-
ductions. We have assumed single-parameter values per click. Many ad-
vertising environments are not: advertisers can have values that depend
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on conversion quality, user type, position externalities, frequency, or cross-
campaign interactions; they also face budgets and ROI constraints. Once
types become multi-dimensional, DSIC mechanisms require cyclic mono-
tonicity (Rochet), and payment formulas are no longer one-dimensional en-
velopes. The blueprint layer makes this harder because θ can change the
mapping from type reports to outcomes in a high-dimensional way.

A pragmatic question is whether blueprint choice can be separated from
multi-dimensional private information by imposing structure. For example, if
advertisers submit a scalar bid but the platform predicts heterogeneous con-
version rates, one can interpret the bid as a value per predicted conversion
and treat the rest as public signals; this restores a single-parameter form but
invites misreporting if advertisers can influence signals. Alternatively, one
could aim for Bayesian incentive compatibility with distributional assump-
tions and design mechanisms that are approximately optimal and approxi-
mately truthful. The open theoretical problem is to identify economically
reasonable conditions under which blueprint-augmented allocation remains
implementable with tractable payment rules when advertiser preferences are
richer than per-click values.

Dynamic, multi-turn blueprint choice: state dependence, commit-
ment, and long-run welfare. Our model is static: c is realized, the
platform chooses θ and (x, σ), clicks happen, and the interaction ends. LLM-
mediated products are inherently dynamic. The conversation evolves, user
trust accumulates or decays, and ad exposure today affects engagement
tomorrow. A natural extension is to treat the interaction as a controlled
Markov process with state st (including conversation history, inferred intent,
and trust proxies), action (θt, xt, σt), and per-period payoff∑

i

viπi(θt, st;xt, σt)− κ(θt, st),

aggregated with discount δ ∈ (0, 1). Blueprint choice then becomes an in-
tertemporal policy, and the temptation to exploit users in the short run
(weak disclosure, high density) must be balanced against future state deteri-
oration (reduced retention, higher complaint probability, tighter regulatory
scrutiny).

Dynamic mechanism design in such environments poses two intertwined
open problems. First, even without private information, optimal control
with large state spaces forces approximation; the resulting policy may again
violate monotonicity in bids. Second, with private advertiser values (and
possibly private user signals), truthfulness over time becomes subtle: bid-
ders may misreport early to influence future blueprint policies. Classic tools
(dynamic VCG, bank-account mechanisms) may apply in principle, but they
require structure that is not obviously present when the platform’s action
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includes presentation and disclosure choices. A central question is what com-
mitment means here: is the platform committing to a stationary mapping
s 7→ θ(s), to a finite menu with fixed switching rules, or merely to audit logs?
Each notion of commitment has different welfare and policy implications.

Externalities, fairness, and multi-stakeholder costs. The cost term
κ(θ, c) compactly represents trust/compliance. In reality, costs are multi-
stakeholder: users experience annoyance or deception, publishers and cre-
ators experience crowd-out, and society bears broader harms (misinforma-
tion amplification, discriminatory targeting). Representing these as a sin-
gle scalar is analytically convenient but normatively incomplete. One open
direction is to model κ as a vector of costs and study constrained opti-
mization (e.g., minimize disruption subject to revenue floors, or maximize
welfare subject to regulatory constraints), which may better match how gov-
ernance is implemented. Another direction is to incorporate group-level con-
straints on exposure or outcomes, which interact with blueprint choice in
non-trivial ways because disclosure and prominence can have heterogeneous
effects across user groups. The challenge is to preserve tractability and in-
centive properties while respecting such constraints.

Auditing, reproducibility, and the boundary between mechanism
design and governance. Finally, blueprint augmentation suggests a con-
crete interface between theory and practice: a platform can publish a menu
Θε, define D(θ, c) (or at least measurable proxies), and log the chosen θ and
allocation. Yet auditing an LLM-mediated rendering pipeline is difficult:
what exactly counts as the blueprint, and how do we verify it was followed?
This raises an open problem that sits at the boundary of economics and sys-
tems: designing verifiable blueprint commitments that are expressive enough
for product needs but constrained enough to be audited, and that interact
cleanly with the auction logic (in particular, preventing bid-dependent, un-
logged deviations in θ). Menu restriction provides an economic rationale for
standardization; realizing that promise requires cryptographic, procedural,
or regulatory mechanisms that bind the platform to the declared menu.

Taken together, these open problems point to a common theme. The
blueprint formalism is valuable precisely because it forces us to treat pre-
sentation as a choice variable with welfare consequences. But once we ac-
knowledge that presentation is complex, learned, and dynamic, the clean
DSIC story becomes a benchmark rather than a full description. Our hope
is that the framework serves as a map: it identifies which assumptions buy
tractability and truthfulness, what is lost when those assumptions fail, and
where future work can most productively connect mechanism design, learn-
ing, and governance in the LLM era.
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