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Abstract

Generative assistants in 2026 embed sponsored content inside free-
form text, tool outputs, and multi-step answers. Unlike classic posi-
tion auctions, insertion points are contextual and heterogeneous; more-
over, platforms face binding constraints from disclosure rules, brand-
safety policies, and user-trust objectives. We model ad insertion as a
matching problem with a hard attention/trust budget: each advertiser-
position pair yields predicted click probability and an additive disrup-
tion cost, and feasible allocations must respect both matching con-
straints and a global budget on disruption. Building on the non-
separable, context-dependent view of position auctions in Balseiro et al.
(2025), we study implementable mechanisms when the platform must
optimize under such constraints. We (i) characterize the constrained
winner determination problem as a budgeted matching variant, (ii) give
efficient approximation algorithms and identify when near-optimal so-
lutions reduce to a small family of candidate ‘cost classes,” (iii) design
a monotone constant-factor allocation rule under mild cost-structure
assumptions (bounded cost spread or few cost magnitudes), enabling
DSIC payments via the envelope theorem, and (iv) derive a price-of-
trust bound interpreting the welfare/revenue loss from tighter compli-
ance budgets via the budget’s dual variable. The resulting mechanism
provides an auditable knob—an explicit disruption budget—that reg-
ulators can verify and platforms can tune.
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1 Introduction

Large language models have shifted sponsored content from a separate “ad
block” into the body of a generated response. In a conversational interface,
the platform typically has many candidate places where a short sponsored
insertion could plausibly appear: a product recommendation in a list, a
cited source, a sidebar card, or a brief “sponsored” sentence inserted between
paragraphs. These generative insertion points are not fixed ex ante in the
same way as classical search slots; they are produced (and can be pruned)
as part of response generation. In practice, the platform evaluates a set of
candidates—which we can think of as potential advertiser—position pairs—
and decides which, if any, to insert.

The central economic tension in this environment is not only about rele-
vance and revenue, but also about trust and compliance. In 2026, disclosure
rules, brand-safety requirements, and user-experience constraints are binding
design parameters rather than afterthoughts. Many platforms now treat “ad
load” in generative responses as a hard constraint: too many disclosures, too
prominent a footprint, or too aggressive a placement can trigger user dis-
satisfaction, regulator scrutiny, or partner restrictions. Importantly, these
harms are not well captured by the classical objective of maximizing ex-
pected click value subject to per-slot feasibility. Instead, the platform must
manage a global budget of disruption across the entire response, reflecting
that user trust is a cumulative resource and that compliance teams often
approve experiences at the level of an interaction, not a slot.

This paper develops a mechanism-design formulation that makes this
tradeoff explicit. We model each potential insertion as producing two prim-
itives: a predicted click benefit and a predicted disruption cost. The click
side corresponds to standard auction inputs (expected click-through condi-
tional on placement), while the disruption side represents the expected “trust
footprint” of that insertion—for example, the visual salience of disclosure,
the sensitivity of the surrounding topic, the probability of user complaints,
or the incremental risk of confusing sponsored and non-sponsored content.
The platform faces a hard cap on total disruption in the interaction, which
can be interpreted as an auditable product policy or a regulator-imposed
constraint. The key question is then: how should the platform allocate spon-
sored insertions and set payments when feasibility is jointly constrained by
matching structure (at most one advertiser per position and vice versa), by
a cap on the number of insertions, and by a global trust budget?

A natural first guess is to treat this as “sponsored search with another
constraint” and to reuse separability arguments. That instinct is misleading
for two reasons. First, even under the simplest click model in which click
probabilities are additive across positions, the trust budget couples decisions
across edges: selecting a high-value insertion at one location may force the
platform to forgo several low-disruption insertions elsewhere. This destroys



the convenient decomposability that often underlies both optimal allocation
and incentive analysis. Second, the platform’s candidate positions are not
fixed slots with exogenous position multipliers; they are endogenous candi-
dates generated by a model, where the click and disruption primitives depend
on the local semantics of the response and on disclosure implementation. As
a result, the usual “rank by a score and fill all slots” logic can be infeasible:
the platform may have to leave some candidate positions empty, not because
demand is low, but because inserting ads would exceed the permissible dis-
ruption footprint.

At a high level, our approach is to separate what is conceptually sim-
ple from what is computationally and incentive-theoretically delicate. Con-
ceptually, the welfare objective remains linear in expected clicks, and the
constraints are transparent: a matching structure plus a single knapsack-
style constraint capturing trust. This immediately yields an interpretable
policy object: the marginal value of trust. Computationally, however, the
resulting optimization is a budgeted matching problem, which is substan-
tially harder than the unconstrained assignment that appears in classical
position auctions. Incentive-theoretically, even if one is willing to accept ap-
proximate welfare maximization, standard approximation schemes can fail
the monotonicity property needed for dominant-strategy truthfulness. The
main contribution of the paper is to show that in economically relevant
regimes—where disruption costs have limited heterogeneity or can be mean-
ingfully bucketed—there exist allocation rules that are simultaneously (i)
polynomial-time, (ii) approximately welfare-optimal up to a constant fac-
tor, and (iii) monotone in bids, enabling DSIC mechanisms via envelope
payments.

The paper is motivated by a pragmatic observation: disruption costs in
real systems are often coarsely structured. Compliance teams do not typically
provide a continuum of permissible footprints; instead, they define a small
number of disclosure templates (e.g., light, standard, heavy), a small number
of sensitive-topic levels, or a small number of Ul surfaces where sponsorship
is allowed. When combined, these features produce a modest number of dis-
ruption “classes.” Even when raw predictions are continuous, product policy
often requires rounding to a finite menu for auditability. This structure is
precisely what allows us to recover monotonicity and tractable approxima-
tion: by bucketing edges into a small number of cost scales, we can apply
deterministic greedy matching procedures within each scale and then com-
bine them using a standard knapsack comparison argument. The resulting
allocation is stable under bid increases, avoiding the non-monotonicities that
arise in PTAS-style “guess-and-optimize” routines.

We also emphasize a policy-relevant byproduct of the formulation: the
shadow price of trust. Relaxing the hard trust budget with a Lagrange mul-
tiplier yields a natural “tax” interpretation—each insertion is scored not only
by its bid-weighted click contribution but also by its disruption cost times a



common multiplier. This multiplier can be read as the platform’s marginal
willingness to trade welfare (or revenue) for an additional unit of permissible
disruption. In settings where the budget is externally set, the multiplier pro-
vides an economically meaningful diagnostic: when it is high, the system is
trust-constrained and additional “trust capacity” (e.g., better disclosure UI,
improved targeting to reduce disruption, or looser policy) would have large
welfare consequences; when it is low, the system is effectively constrained by
other limits (such as the cap on the number of insertions). While the exact
multiplier is defined most cleanly in the linear relaxation, it offers a concrete
bridge between mechanism design and auditable product governance.

Our formal results proceed in three steps, mirroring this logic. First,
we show that the welfare-maximizing feasible allocation under the base-click
model can be written as a matching problem with an additional knapsack
constraint on disruption. This step is mostly bookkeeping, but it is important
because it clarifies that the only source of coupling across positions, in the
base model, is the trust budget. Second, we study the Lagrangian relaxation
and interpret the dual variable as the price of trust. This yields compara-
tive statics that align with platform intuition: as the trust budget increases,
welfare rises and the shadow price weakly falls (in the relaxed problem),
reflecting diminishing returns to additional permissible disruption. Third,
we address incentives and computation. We show that, under structured
disruption costs (few distinct values after rounding, or bounded spread), we
can design deterministic monotone allocation rules with constant-factor ap-
proximation guarantees. Plugging these monotone rules into the standard
envelope formula yields DSIC and individually rational mechanisms. Under
regularity, the same construction can be applied to virtual values, produc-
ing an approximately revenue-optimal mechanism subject to the same trust
budget.

It is worth underscoring what we do not claim. We do not claim that
trust costs are truly exogenous or perfectly measurable; rather, we take the
measurement process as an institutional primitive, much like click-through
rate estimation in sponsored search. In practice, disruption costs will be
learned, audited, and sometimes disputed. Our framework is useful precisely
because it makes the dependence on these measurements explicit and because
it yields interpretable sensitivity objects (e.g., the shadow price) that can
be monitored as measurement pipelines evolve. We also do not claim that
the base-click model captures all user behavior. In conversational settings,
insertions may cannibalize organic engagement or affect the probability of
later clicks (substitution and spillovers), and the order of presentation can
matter. We view the base-click model as a deliberately transparent starting
point: it isolates the mechanism-design consequences of a hard trust budget,
and it provides a baseline against which richer behavioral models can be
compared.

The relationship to the recent literature is closest to work on constrained



auctions and online advertising with additional feasibility constraints. In
particular, ? emphasize that modern ad allocation problems increasingly in-
clude non-standard constraints—pacing, budgets, and platform-side limits—
and they develop tools for understanding welfare and revenue in such envi-
ronments. Our setting is complementary in two ways. First, we focus on
generative insertion points, where the platform’s feasible actions resemble a
matching over a set of candidate opportunities that are local to a generated
response rather than a fixed slate of slots. This makes the trust constraint
interaction-level and naturally modeled as a knapsack budget across candi-
date insertions. Second, we place incentive compatibility at the center of
the analysis: our primary design requirement is DSIC in a single-parameter
environment, which forces us to confront monotonicity failures that are often
benign in purely algorithmic approximations. In that sense, our results can
be read as identifying structural conditions (coarse cost classes or bounded
spread) under which constrained allocation remains compatible with truthful
mechanisms without sacrificing computational tractability.

A further distinction is interpretability. In many applied constrained-
allocation systems, constraints are treated as engineering requirements, and
the auction is tuned around them. Our formulation treats the trust budget as
a first-class economic constraint and gives it a dual interpretation that can be
reported, audited, and potentially regulated. This is especially relevant for
disclosure compliance. A regulator might not dictate the platform’s ranking
rule, but it can set or verify a bound on permissible disruption (or require
reporting of the implied shadow price). Conversely, a platform can use the
shadow price internally to decide whether investments in safer ad formats or
improved disclosure design would relax the constraint effectively (reducing
d;j) and thereby increase welfare or revenue without increasing ad load.

Finally, we note that generative interfaces raise a subtle but important
normative issue: the constraint is not only about “how many” ads appear,
but about where and how they appear. A single highly intrusive insertion
may be worse than two mild ones, and this depends on context. Modeling
disruption at the edge level, and then constraining it globally, accommodates
this heterogeneity while keeping the mechanism analyzable. It also makes
clear why classic separability fails: even if clicks decompose additively across
insertions, trust does not. The platform is solving a problem of allocating
a scarce, interaction-level resource (trust capacity) across heterogeneous op-
portunities.

The rest of the paper formalizes this setting and develops mechanisms
that are both economically principled and operationally plausible. We begin
by specifying the primitives—candidate positions, click and disruption pre-
dictions, and feasibility constraints—and we contrast the base-click bench-
mark with brief extensions that capture substitution effects. We then derive
the welfare program, interpret the dual, and construct monotone approxi-
mation algorithms under structured costs, leading to DSIC mechanisms with



transparent performance guarantees.

2 Model

We fix a conversational context ¢ (a user query together with any relevant
conversational state) and study the platform’s problem of inserting sponsored
content into the generated response. Unlike classical position auctions in
which the set of slots is fixed ex ante, a generative system typically produces
a menu of plausible insertion opportunities as part of response construction.
We take this menu as given within the interaction: there are m candidate
insertion positions indexed by j € [m]. A candidate position can be in-
terpreted broadly—a sentence-level insertion between paragraphs, a short
product card adjacent to a list item, or a “sponsored” citation embedded in a
recommendation. The platform may also choose to leave a candidate empty.

There are n advertisers indexed by ¢ € [n]. Each advertiser has a single-
parameter private value v; > 0, interpreted as value per click (or per at-
tributable action, normalized to a click). Advertisers are risk-neutral and
have quasi-linear utility. The platform designs an allocation rule and a pay-
ment rule and commits to them before bids are submitted. We focus on
dominant-strategy incentive compatibility (DSIC), which is operationally at-
tractive in advertising settings because it does not require bidders to reason
about others’ beliefs or equilibrium selection in a fast-moving environment.

Predicted primitives: clicks and disruption. For each advertiser—
position pair (i, j), the platform observes a pair of primitives

(pij, dij) € [0,1] x Ry

The first component p;; is a predicted standalone click probability if adver-
tiser 7 is inserted at position j H The second component d;; is a predicted
disruption or trust/compliance cost associated with placing advertiser i at
position j. This cost is meant to summarize the incremental footprint of
sponsorship in that local semantic and UI context: disclosure salience, topic
sensitivity, brand-safety risk, likelihood of user dissatisfaction, or the proba-
bility that the insertion triggers a policy violation. In applications, both p;;
and d;; may be learned from data, but for the mechanism-design analysis we
treat them as known inputs to the platform at allocation time.

A key modeling choice is that disruption is treated as a resource constraint
rather than as a term in the platform’s objective. We impose a hard budget
B > 0 on the total disruption in the interaction. This captures the fact that
compliance and product policy are often expressed as requirements of the

!«Gtandalone” here means that p;; abstracts from cross-effects of other sponsored in-
sertions. We use this as the baseline model and return to interaction effects below.



form “the experience must not exceed a certain disclosure or risk footprint,”
and that such requirements are audited at the interaction level. Formally, the
platform must choose an allocation whose total disruption does not exceed
B. We think of B and the measurement protocol for d;; as institutional
primitives: they may be set by an internal governance process, by a regulator,
or by contractual obligations with partners.

Allocations as matchings with caps. An allocation specifies which ad-
vertiser, if any, is inserted at each candidate position. We represent allo-
cations by binary variables x;; € {0,1}, where z;; = 1 means advertiser
1 is assigned to position j. The generative setting naturally imposes two
matching-style constraints: each advertiser can be inserted at most once in
the response, and each position can contain at most one advertiser. We also
impose a cap K < m on the total number of sponsored insertions in the
response, reflecting an “ad load” limit that is separate from (and potentially
less binding than) the disruption budget. The feasible set of matchings is

X = {%6{0,1}nxm : i(ﬂijSlVi, Zn:xijglw, Zn:ixm SK}

j=1 i=1 i=1 j=1

The trust/compliance constraint then restricts X further to the budget-
feasible subset

X(B) = {zeX : iidiﬂm < B}.

i=1 j=1

The distinguishing feature of this environment is that the disruption bud-
get couples decisions across positions: even when click values add across
insertions, feasibility does not. In particular, a high-disruption placement
can crowd out multiple low-disruption placements that would otherwise be
permissible under the ad-load cap K.

Timing and information. The timing within an interaction is as follows.
First, context ¢ arrives and the platform determines the candidate positions
J € [m] and associated primitives (p;;, d;;) for each advertiser. The platform
commits to the mechanism (allocation rule and payment rule) and to the
disruption accounting protocol and budget B. Second, advertisers submit
bids b;; under DSIC we interpret b; as a truthful report of v; in equilibrium,
but we keep the bid notation to separate the reported type from the private
value. Third, the platform computes an allocation x(b) € X (B) and gener-
ates the response with the corresponding sponsored insertions. Fourth, user
clicks are realized. Finally, payments are assessed.

Advertisers observe their own values v; and the mechanism, but do not
observe others’ values. The platform observes (p;;,d;;) and B. For the



theoretical development we treat (p;;, d;;) as common knowledge primitives,
in the same spirit that classical models treat click-through rates or quality
scores as known inputs to the auction; the mechanisms we study remain
well-defined when these primitives are estimated, provided the estimation is
not manipulable by individual bidders.

Base-click model and welfare. Our baseline behavioral model assumes
that click probabilities are additive across positions and insensitive to the
presence of other sponsored insertions. Under an allocation x, advertiser ¢’s
total click probability is

m
mi(z) = ) pijij.
j=1

Given bids b, the induced interim “allocation” in the single-parameter sense
is y;(b) = mi(z(b)), i.e., the total click probability assigned to advertiser .
Advertiser ¢’s quasi-linear utility when her true value is v; and the bid profile
is b is
ui(b;vi) = wviyi(b) — ti(b),

where t;(b) is the payment charged by the platform.

The platform’s welfare objective, given a value profile v, is the expected
total value from clicks:

n n m
W(zv) = Y wimi(x) = )Y vipiuis.
i=1 i=1 j=1

Thus, under the base-click model, welfare is linear in the allocation variables
with edge weights v;p;;. This linearity is conceptually useful: it isolates the
role of the trust budget as the sole source of interaction across candidate
insertions in the baseline model. However, linearity does not imply that
the allocation problem is easy, because the disruption budget introduces a
knapsack-style constraint on top of matching structure.

Mechanism requirements: DSIC, monotonicity, and envelope pay-
ments. Because each advertiser has a single private parameter, DSIC re-
duces to the standard monotonicity-and-envelope structure. An allocation
rule is DSIC-implementable (with appropriate payments) if y;(v;, v_;) is non-
decreasing in v; for every fixed v_;. Once monotonicity holds, payments are
pinned down (up to a constant normalization) by the envelope formula:

ti(v) = t:(0,v—;) + viyi(v) —/ lyi(Z,vfi)d%
0

and we adopt the individually rational normalization ¢;(0,v_;) = 0. The
substantive design challenge in our setting is that the trust budget makes the



winner determination problem a constrained combinatorial optimization, and
many natural approximation algorithms for such problems are not monotone
in bids. Our aim is therefore not only to allocate efficiently subject to B,
but to do so with an allocation rule that respects monotonicity and can be
coupled with envelope payments.

Interpretation of disruption costs and the role of structure. While
our results treat d;; as an input, it is helpful to be explicit about why d;; is
modeled at the edge level. In generative systems, the same advertiser can be
more or less disruptive depending on where the insertion lands: a brief prod-
uct mention in a shopping query may require minimal disclosure, whereas an
insertion in a medical or political context may be heavily constrained or ef-
fectively disallowed. Edge-level disruption captures precisely this interaction
between advertiser identity and local context.

At the same time, there is an important limitation: in reality, disruption
is unlikely to be perfectly cardinal and additive. The total harm from two
insertions may be more than the sum of their harms (e.g., compounding loss
of trust), or less (e.g., disclosures share Ul real estate). We nevertheless im-
pose an additive budget as a transparent benchmark that supports auditing
and policy communication. In later sections, when we interpret the shadow
price of trust, the additivity assumption is what gives the dual variable a
clean “marginal value” meaning.

A further pragmatic motivation for our later algorithmic conditions is
that disruption assessments are often coarsely categorized. Compliance pro-
cesses frequently map contexts and disclosure templates into a small menu
(e.g., light /standard /heavy disclosure; low /medium/high sensitivity). Even
when raw scores are continuous, they are often rounded for governance and
reproducibility. This kind of structure is not merely a modeling convenience:
it is what makes monotone approximate allocation feasible in polynomial
time.

Beyond the base-click model: substitution and interaction effects
(brief). The additive click model is intentionally conservative: it assumes
the platform can estimate p;; independent of other insertions and that user
attention is not reallocated. Generative interfaces plausibly violate both
assumptions. Two broad classes of extensions are natural.

First, substitution or cannibalization may occur when multiple sponsored
insertions compete for the same user attention. One reduced-form way to
capture this is to let the effective click probability at position j depend on
the total number of insertions:

m
mi(z) = E Pij g E Tirjr | Tig,
Jj=1 i’g’

10



where ¢(-) is a nonincreasing “attention dilution” function. This preserves
separability across advertisers conditional on the total sponsored load, but
introduces an additional coupling term beyond the disruption budget. In
such a model, the cap K becomes not only a policy constraint but also an
endogenous welfare-relevant parameter.

Second, trust spillovers may affect user behavior even when the number
of insertions is fixed. For example, a high-disruption insertion may reduce
the likelihood that the user engages with subsequent content, including other
sponsored items. A simple way to express this is to let the click probability
be scaled by a function of total disruption:

m
7-(-1(55) = E pijh E di/j/xi/j/ i,
Jj=1 i’

where h(-) is nonincreasing. Here, the disruption budget B can be viewed
as an institutional substitute for directly optimizing such spillovers: rather
than requiring the platform to trade off continuous trust effects in the ob-
jective, policy imposes a hard constraint that keeps the system within a safe
region where h(+) is not too small. This interpretation aligns with real gover-
nance practice: teams often prefer enforceable limits (with audit trails) over
delicate objective-function tuning.

We do not attempt to solve the general interactive model in this paper.
The base-click benchmark provides a clean separation between (i) linear
welfare and (ii) a global feasibility constraint representing trust/compliance.
This separation is what allows us to focus sharply on the computational and
incentive consequences of the budget. In the next section, we formulate the
platform’s allocation problem under the base-click model as a constrained
winner determination problem, and we show how the trust budget induces
a budgeted matching structure with a natural dual interpretation.

3 Constrained Winner Determination Under a Trust
Budget

Fix the context ¢ and a bid profile b € R’} . The platform’s immediate compu-
tational task is to choose which sponsored insertions to make—and where to
place them—subject to both the matching constraints (at most one insertion
per advertiser and per position) and the hard disruption budget. Because
the click model is linear in x, this task takes the form of a constrained winner
determination problem with a single knapsack-style coupling constraint.

WDP-B: an integer program with matching and a knapsack con-

straint. Let w;;(b) = b;p;; denote the welfare weight of assigning advertiser
i to position j under bids b (equivalently, the reported value per click times

11



predicted click probability). The constrained winner determination problem
is

(WDP—B) max) i i wij(b) Ti; = 1max i i bipij Tij- (1)

weX(B) weX(B)

We emphasize two structural features. First, is a bipartite matching
problem when the disruption budget is removed: if we drop Ei, j dijri; < B,
the remaining constraints define a standard assignment polytope with an
additional cardinality cap Z” z;; < K, solvable in polynomial time (e.g.,
by reducing to a min-cost flow). Second, it becomes a pure knapsack problem
when matching constraints are removed: if each advertiser could be selected
independently (no position conflicts), we would simply pick up to K items
under a budget. The generative setting forces us to confront both types of
constraints at once.

Why the trust budget is the source of computational difficulty.
Absent the disruption constraint, the feasible region is described by a totally
unimodular matrix, so the natural LP relaxation is integral; in other words,
we do not face fractional allocations in the classical assignment environment.
The trust budget breaks this property: intersecting an integral matching
polytope with a single knapsack inequality can create fractional extreme
points and, more importantly, pushes the problem into the terrain of NP-
hard “budgeted matching” (also called knapsack-matching).

A simple reduction makes this precise. Consider an instance in which
each advertiser i is eligible for at most one position (say, a unique j(i) with
pijiiy = 1 and p;; = 0 for j # j(i)), and set K = m = n so the ad-
load cap never binds. Then the matching constraints force z;;;) € {0,1}
independently, and reduces to

n n
max szazz s.t. Zdl.% <B, x; € {0, 1},
=1 =1

which is exactly the 0-1 knapsack problem. Thus WDP-B is NP-hard in
general, even under very sparse eligibility structure. In richer cases where
multiple advertisers compete for the same positions, the problem remains
hard for essentially the same reason: the platform must decide not only which
advertisers to include but also how to resolve conflicts across positions under
a global budget. This is why we treat as the computational bottleneck
in the mechanism.

Exact solution methods and what they buy us. In practice, a plat-

form could attempt to solve exactly via integer programming (branch-
and-bound with cutting planes) or via specialized combinatorial methods for

12



budgeted matchings. Exact methods are useful in two ways: (i) they can
be deployed at moderate scale for offline evaluation, policy calibration, or
as an oracle in learning-to-rank pipelines; and (ii) they provide benchmarks
for the welfare—trust frontier. However, exact solution is not a satisfying de-
fault for an online mechanism, both because worst-case running time can be
large and because DSIC requires a deterministic, well-specified tie-breaking
policy that is stable across inputsE] These considerations motivate studying
relaxations and approximation algorithms, and in particular studying which
approximations can be made compatible with monotonicity.

3.1 LP Relaxation and a Dual “Price of Trust”

The LP relaxation. A natural first step is to relax integrality and allow
fractional assignments x;; € [0, 1]:

semax D) wi(b)a

i=1 j=1

m
s.t. Z.ﬁ@‘ <1 V’i,

7=1

n

=1

n m
ZZIEU <K,

i=1 j=1

i i dijxij S B.

i=1 j=1

We denote the optimal value by W (B;b) to emphasize the dependence on
the budget B and bids b. When the budget constraint is removed, this LP
is integral; with the budget constraint present, the relaxation can be loose,
but it is still extremely informative: it yields (i) an upper bound on the
integral optimum, and (ii) a dual certificate that admits a clean economic
interpretation.

The dual program and interpretable multipliers. Associate dual vari-
ables a; > 0 with the advertiser constraints ) j Tij <1, B; > 0 with the
position constraints ), x;; < 1, A > 0 with the cardinality cap >, ;% < K,

2Tie-breaking is not an implementation footnote in DSIC environments: even when
the objective is well-defined, arbitrary tie-breaking can create non-monotonicities in the
induced allocation rule y;(-) at measure-zero bid profiles, which complicates the payment
definition and auditing.

13



and p > 0 with the trust budget Zij dijr;; < B. The dual of can be
written as

min Zai—l—Zﬁj—l—K)\—{—B,u
S j=1 (3)
s.t. oy +5j +>\+,Mdij > wz‘j(b) v(i7j>7
aiaﬁj7)‘7u > 0.

Two points matter for our purposes. First, the constraint
a; + B+ A+ pdi; > wij(b)

is a ‘“no-arbitrage” condition: the adjusted cost of using advertiser ¢ and
position j, plus the global per-insertion charge A and the per-disruption
charge pud;;, must cover the edge value w;;(b). Second, the objective makes
the policy parameters transparent. The multiplier A prices the ad-load cap
(how much welfare we gain from one more allowed insertion), while p prices
the disruption budget (how much welfare we gain from one more allowed
unit of disruption). It is p that we interpret as a shadow price of trust.

A Lagrangian view: ‘“tax” disruption and solve a matching. The
dual variable p also emerges from a Lagrangian relaxation. If we move the
budget constraint into the objective with penalty p > 0, we obtain the
penalized problem

max ) <wij(b) _ﬂdij)xij + uB, (4)
2y

where X is the feasible set without the disruption constraint (but still with
matching and the cap K). For a fixed p, is simply a maximum-weight
matching (with a cardinality cap) under modified weights

wij(p;b) = wij(b) — pdi;.

This observation is operationally important. It says that if governance can
agree on a trust price p, then the platform can implement the allocation
by running a standard assignment algorithm on trust-adjusted edge weights,
effectively treating disruption as a linear “tax.” Conversely, if governance
insists on a hard budget B, then p is the implicit exchange rate between
welfare and trust required to rationalize the constrained choice.

The welfare-budget frontier and diminishing returns. Define the
relaxed value function B + WP (B;b). Standard LP sensitivity analysis
implies that this function is nondecreasing and concave in B, capturing di-
minishing returns to additional permitted disruption: the platform spends

14



the first units of budget on the most cost-effective edges (high w;; per unit
d;j), and later units buy progressively less. Moreover, any optimal dual so-
lution (o, 5%, A*, u*) at budget B furnishes a local bound on the slope: p*
is a subgradient of WP (B;b) with respect to B. In words, if governance
were to loosen the budget marginally from B to B + A, the relaxed welfare
upper bound increases by approximately pu*A for small A.

We view this as more than a mathematical convenience. A recurring
operational question in generative advertising is how to communicate the
consequences of changing disclosure or risk policy. The scalar u* offers a
compact, auditable statistic: it is the marginal welfare value of trust budget
in the current context and bid environment. Reporting p* (or a robustified
version of it) can therefore serve as a governance interface between product
policy (which controls B and the accounting of d;;) and auction design (which
controls allocation and payments).

Complementary slackness as an “explainability” tool. The primal—
dual pair f also yields a useful explanation vocabulary. Complementary
slackness implies that if an edge (i, j) receives positive fractional assignment,
then its adjusted value must be exactly tight:

wij(b) = of + B85 + X+ p*dy.

Thus, in the relaxed model, every chosen insertion can be “explained” as
having value equal to the sum of (i) an advertiser-side scarcity term, (ii)
a position-side scarcity term, (iii) an ad-load term, and (iv) a trust term
proportional to d;;. While we do not claim this decomposition is a complete
interpretability solution, it is the correct economic accounting for why some
edges are excluded: they fail to clear the combined scarcity prices.

From relaxation to mechanisms: what remains difficult. The LP
and its dual do not resolve the full mechanism design problem. First, LP
solutions can be fractional and must be rounded to obtain a valid matching;
rounding can lose welfare and can interact poorly with incentive constraints
if done naively. Second, even if one uses the Lagrangian form to produce
integral matchings for each p, tuning p to meet the hard budget can lead
to nontrivial discontinuities: small bid changes can flip which u (or which
matching at a fixed p) is selected, and such flips are precisely what can break
monotonicity for approximation procedures. Third, the integrality gap of the
relaxation can be meaningful, so dual prices should be interpreted as prices
for the relazed frontier unless accompanied by a rounding argument.

These caveats sharpen the role of the next section. The constrained win-
ner determination problem is computationally hard, but we can still ask:
how well can we approrimate it in polynomial time if we ignore incentive con-
straints? And, once we know the algorithmic frontier, which approzimation
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approaches can be made monotone so that envelope payments yield a DSIC
mechanism? Section 4 takes up these questions by separating approxima-
tion benchmarks (what is achievable computationally) from the additional
structure required for truthfulness under a hard trust budget.

4 Approximation Benchmarks and Why Truthful-
ness is Nontrivial

Our next step is to separate two questions that are easy to conflate in prac-
tice. The first is purely algorithmic: if we ignore incentives, how close can
we get to the welfare optimum of WDP-B in polynomial time? The second is
mechanistic: can we make such approximations compatible with dominant-
strategy truthfulness under a hard trust budget? The short answer is that
the algorithmic frontier is surprisingly strong (PTAS-style guarantees exist),
but these procedures typically fail the monotonicity property required for
DSIC payments. This section develops that benchmark and explains where
the incentive difficulty comes from.

Approximation as a benchmark for the welfare—trust frontier. Even
when the platform is not literally maximizing welfare (e.g., it maximizes rev-
enue via virtual values), approximation results for welfare are the right first
yardstick. They quantify how much computational loss we incur relative to
the best feasible matching under the same budget B and cap K, holding fixed
the primitives (p;;, d;;). Put differently, approximation guarantees describe
the attainable frontier in the engineering sense: what can be implemented
at scale if we temporarily ignore the strategic response of advertisers.
We write

OPT(0:B) = gy, 2 v (®) o

for the integral optimum. An algorithm A is a (1 — ¢)-approximation if it
returns an allocation ¥ = A(b) with value at least (1 — ¢)OPT(b; B). In
the present setting this is the relevant notion because, absent truthfulness
constraints, welfare approximation composes cleanly with standard ex post
evaluation: one can compare achieved welfare and total disruption to offline
optima or upper bounds from .

4.1 PTAS-style approximation for budgeted matching (ig-
noring incentives)

Why a PTAS is plausible despite NP-hardness. WDP-B is NP-hard
by the knapsack reduction already discussed, so exact polynomial-time op-
timization is out of reach unless P = NP. Nonetheless, the structure of the
problem—a matching constraint system plus a single knapsack budget—is
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precisely the kind of hybrid feasibility where polynomial-time approximation
schemes are often possible. Intuitively, one can “factor” the hardness into a
small number of “heavy” decisions: the few edges that consume a nontrivial
fraction of the budget. Once those are fixed (or guessed), what remains is
a lower-impact residual instance in which discretization and rounding intro-
duce only e-level loss.

At a high level, PTAS frameworks for knapsack-coupled combinatorial
problems proceed by combining two ideas:

1. Guessing or enumerating heavy structure. Identify a small set of edges
whose costs or contributions are large relative to B or to the optimum
value. Because there can be only O(1/¢) such edges in any feasible
solution, we can enumerate their identities in time polynomial in n,m
for fixed e.

2. Solving the residual instance optimally (or near-optimally). After re-
moving conflicts caused by the guessed edges and reducing the remain-
ing budget, the residual problem has bounded granularity: costs can
be scaled and rounded so that dynamic programming, min-cost flow
variants, or LP rounding becomes near-exact.

The tension is that matching constraints make the residual problem non-
separable across advertisers and positions, but they are also the reason why
the residual subproblem is algorithmically well behaved: matchings admit
polynomial-time optimization under many types of weight perturbations and
side constraints.

One concrete PTAS template. To make the above intuition more con-
crete, consider the following stylized PTAS template (we present it as a
benchmark rather than as an implementation recipe). Fix € > 0 and define
an edge (¢,7) to be budget-heavy if d;; > eB. Any feasible allocation uses
at most 1/e budget-heavy edges, since their total disruption is at most B.
We can therefore enumerate every feasible set H of at most [1/¢] edges that
is matching-feasible (no shared advertiser or position) and respects the cap
K E| For each such guess H, we (i) commit to inserting all edges in H, (ii)
delete their incident advertisers and positions from the graph, (iii) reduce
the remaining budget to B(H) = B — }_; sy dij and the remaining cardi-
nality to K(H) = K — |H|, and then (iv) solve the residual problem on the
remaining bipartite graph with small edge costs d;; < eB.

In the residual instance, we can discretize costs by rounding each d;; up
to the nearest multiple of e2B/K (or another scale chosen to control the ad-
ditive error). Because any feasible solution uses at most K edges, rounding

30ne can also enrich the guessing step by including “value-heavy” edges, or by guessing
the top few edges in the optimal solution under an appropriate profit density. The precise
choice does not matter for our purposes; what matters is that the heavy part has bounded
cardinality.
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introduces at most €2B additional disruption, which can be absorbed by a
small tightening of the budget or by a standard “repair” step. After round-
ing, the remaining costs take only O(K/e?) distinct values, and the residual
problem can be solved to near-optimality via pseudo-polynomial dynamic
programming layered over a matching oracle (equivalently, one can view it
as a min-cost flow with an additional discretized resource dimension). Taking
the best solution over all guesses H yields an overall (1—¢) approximation for
fixed & with running time polynomial in n, m (and typically quasi-polynomial
or polynomial with a large constant in 1/e).

This is the content of Proposition 3 in the global summary: algorith-
mically, budgeted matching admits PTAS-style approximation benchmarks.
The important point for our narrative is not the exact details of the scheme,
but the shape of the guarantee: we can get arbitrarily close to OPT(b; B) if
we are willing to accept an e-dependent polynomial and to ignore incentive
compatibility.

Alternative benchmark: Lagrangian search plus rounding. A sec-
ond, operationally appealing benchmark derives from the Lagrangian per-
spective. For any p > 0, let z(p) € argmaxzex _; ;(wi;(b) — pdij)xij be
an optimal matching under trust-adjusted weights. As p increases, the al-
gorithm penalizes disruption more heavily and the selected matching tends
to use less budget. One can therefore perform a search over p to find two
neighboring matchings z(p~) and z(u™) whose disruption straddles B and
then combine them (e.g., by randomized mixing or by selecting one and re-
pairing) to obtain a near-feasible solution. This paradigm often performs
extremely well in practice because each inner problem is a standard assign-
ment instance. As a benchmark, it also links back to the dual interpretation:
the approximation loss can be viewed as the cost of converting a soft trust
price into a hard trust budget.

However, this benchmark already foreshadows the incentive issue. The
mapping b — x(u) can change discontinuously when small bid perturbations
alter which matching maximizes trust-adjusted weights, and the outer search
over y introduces additional discontinuities when it selects different bracket
points (", ™). Such discontinuities are not inherently problematic for wel-
fare approximation, but they are precisely what can break monotonicity in
bids.

4.2 Why PTAS-style procedures typically fail monotonicity

Monotonicity is the binding constraint for DSIC. In single-parameter
environments, DSIC and IR reduce to a simple condition: each advertiser’s
allocation probability y;(b) must be nondecreasing in b; holding b_; fixed,
and payments must follow the envelope formula. Under WDP-B, y;(b) is
induced by a combinatorial choice among matchings. In principle, a welfare-
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maximizing rule is monotone (it is an exact maximizer of a linear objective in
b; over a bid-independent feasible set). The difficulty is that we cannot com-
pute the exact maximizer in polynomial time in general. Once we move to
approximation algorithms, monotonicity is no longer automatic: a procedure
can be near-optimal yet behave erratically as a function of bids.

This issue is not an artifact of our generative-ad setting; it is the mechanism-
design analogue of a familiar algorithmic phenomenon. Approximation schemes
often rely on case distinctions (which heavy edges are guessed, which price
w is chosen, which rounded instance is solved). These case distinctions are
typically functions of the entire bid profile. From the perspective of a sin-
gle advertiser, raising b; can move the instance across a case boundary and
thereby reduce (or eliminate) that advertiser’s allocation.

Where non-monotonicity enters: guessing and global decisions.
Consider the heavy-edge enumeration template. The algorithm evaluates
many candidate heavy sets H and returns the best overall feasible solution
among them. Whether advertiser ¢ is served is determined not only by the
relative order of edges incident to 7, but by which global heavy set wins the
final comparison. A small increase in b; can make a particular candidate
solution involving ¢ appear more attractive, but it can also change the iden-
tity of the winning heavy set in a way that crowds out i through matching
conflicts or through budget usage.

The same tension arises in Lagrangian search. The map p +— z(u) is typ-
ically piecewise constant, with jumps when two matchings swap optimality
under trust-adjusted weights. If the algorithm selects p by comparing ob-
jective values that depend on bids, then increasing b; can shift the selected
w1 into a region where advertiser 4 is no longer chosen because the algorithm
now prefers a different bundle of high-density edges that exhaust the budget.

A simple illustrative failure mode. We can illustrate the logic with a
minimal thought experiment. Take K =1 (at most one insertion) so match-
ing constraints are trivial, and suppose the algorithm uses a common knap-
sack heuristic: it compares (a) the best single edge and (b) a density-based
candidate (or, more generally, it compares solutions produced by different
subroutines and returns the best). Let advertiser ¢ have an edge with mod-
erate value and low disruption, while advertiser £ has an edge with slightly
higher value but higher disruption. For some bids, the algorithm may pick
i because the density heuristic prefers low disruption. If ¢ slightly increases
b;, the algorithm might switch to the “best single edge” subroutine that now
picks k (because k’s value is still higher), thereby reducing i’s allocation
from 1 to 0. Welfare approximation is unaffected (the chosen solution is still
near-optimal), but monotonicity is violated.

This is the core difficulty: approximation algorithms frequently combine
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multiple candidate solutions and then take the maximum. The max opera-
tion over candidate solutions is benign for welfare but hostile to monotonicity
because it creates bid-dependent regime switches.

Why deterministic tie-breaking is not enough. One might hope that
careful, deterministic tie-breaking could resolve the issue. Deterministic tie-
breaking is necessary for DSIC implementability, but it is not sufficient. The
problem is not only ties; it is that the identity of the candidate solution
being compared can change with bids. Even with a fixed, lexicographic rule
within each subroutine, the outer selection among subroutines can flip. In
other words, we can have strict inequalities throughout and still obtain non-
monotone outcomes.

Randomization helps, but changes the incentive notion. A natural
response is to randomize: mix two matchings (for example, the two bracket
matchings from Lagrangian search) so that expected disruption meets the
budget and expected welfare is high. Randomization can smooth disconti-
nuities and is compatible with Bayesian incentive compatibility (BIC) under
suitable constructions. But it does not, in general, deliver DSIC, and it com-
plicates governance and auditing in the present application: a hard trust
budget is most naturally interpreted as an ex post constraint, while ran-
domized mixing enforces it only in expectation unless one adds additional
machinery.

4.3 Implications for mechanism design under hard budgets

The “algorithmic” and “incentive” frontiers do not coincide. The
upshot is that Proposition 3 should be read as a computational benchmark,
not as a mechanism. It tells us that, absent incentives, near-optimal welfare
under a hard trust budget is achievable in polynomial time (for fixed accu-
racy). But DSIC introduces an additional constraint that is qualitatively
different from feasibility and approximation: it is a global shape restriction
on how the allocation changes with bids. There is no general reason to expect
a PTAS to satisfy it.

This gap matters for policy and practice. In a generative advertising
system, the trust budget B is precisely the object likely to be audited: reg-
ulators and internal risk teams want a hard guarantee that the aggregate
disruption does not exceed a specified threshold. If the platform also wants
DSIC (for transparency, simplicity, or robustness), it cannot simply take the
best-performing approximation heuristic. It must commit to an allocation
rule whose dependence on bids is monotone and whose tie-breaking is fixed.
Otherwise, the envelope payment formula is not well defined (or yields nega-
tive transfers in some regions), and strategic manipulation becomes possible
exactly at the regime boundaries created by the approximation.
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What kind of structure should we look for? The natural design lesson
is that we should search for approximation algorithms whose decision logic is
order-based and stable: increasing b; should move edges incident to 7 earlier
in a fixed ordering, rather than changing the set of cases the algorithm con-
siders. In knapsack settings, this is precisely where structural assumptions
on costs become valuable. If disruption costs live on a small number of scales
(few buckets) or have bounded spread, then the budget constraint becomes
“almost” a cardinality constraint within each scale. This opens the door to
greedy maximal-matching rules with deterministic tie-breaking, which are
both approximately efficient and monotone.

That is the direction we take next. Section[5]builds a monotone, constant-
factor allocation rule under structured disruption costs, and then uses en-
velope payments to obtain a DSIC and IR mechanism under the same hard
trust budget.

5 A Monotone Constant-Factor Allocation Rule Un-
der Structured Costs

The previous section explains why “near-optimal” algorithms for WDP-B are
not automatically usable in a DSIC mechanism: once the procedure makes
global, bid-dependent case distinctions (e.g., which heavy set to guess, which
Lagrange price to bracket), it becomes easy for a bidder to increase b; and
nonetheless end up with a smaller click allocation y;. We now show that
this pathology is not inevitable. Under mild structure on disruption costs—
either a constant number of distinct magnitudes after rounding, or bounded
spread—we can design an allocation rule whose decision logic is order-based
and stable, and which therefore satisfies the monotonicity condition needed
for DSIC payments.

5.1 Structured costs and bucketing
We study two related assumptions, each of which limits how “knapsack-like”

the budget constraint is.

Case A (few cost magnitudes). After a publicly committed rounding
scheme (auditable and context-dependent), assume that each edge cost be-
longs to a constant-sized set

di]’ € {(51,...,(5[}, L:O(l),

with 61 < -+ < d7. The point is not that costs are literally discrete, but
that a platform can credibly commit to a coarse cost scale (for disclosure
intensity, brand-safety tiers, etc.), and these tiers become the mechanism’s
primitives.

21



Case B (bounded spread). Assume dpax/dmin < ¢ for a constant c. In
this case we define geometric buckets: let 6, = 2¥dy;, for k = 0,1, ..., [logy ¢],
and assign each edge (7, j) to the smallest k with d;; < 5. This reduces Case
B to Case A with

L <1+ [logyc],

which is constant when c¢ is constant. The bucketing is conservative: we
treat an edge in bucket k as if it costs dg, i.e., we upper bound disruption
inside each bucket.

In either case, let E = {(¢,7) : d;; is in bucket k} and define a bucket-

specific cardinality cap
B
qx = min{K, {—J}
O

Any matching that uses at most g, edges from Fj is automatically budget-
feasible, because its total disruption is at most ¢xd; < B (and also respects
the global insertion cap K by construction). The central simplification is
that within a single bucket, the hard knapsack constraint is replaced by a
pure size constraint.

5.2 Greedy maximal matching within a bucket

Fix bids b and define weights w;;(b) = b;p;;. For each bucket k, we run the
following deterministic greedy routine on the bipartite graph with edge set

Ey.

Greedy subroutine GreedyMatch(Ey,qr). Order edges (i,j) € Ej by
decreasing weight w;;(b), breaking ties deterministically by a fixed lexico-
graphic rule (e.g., increasing i, then increasing j). Initialize an empty match-
ing My = (). Scan edges in this order; whenever an edge (i, j) is encountered
with both endpoints currently unmatched and |My| < g, add it to Mj.
Output the allocation z*)(b) corresponding to M.

This is a weighted analogue of a maximal matching algorithm. Two
properties are immediate: (i) it is polynomial time, and (ii) it produces a
feasible allocation in X (B) because it is a matching and uses at most g
edges from a bucket that costs at most d; per edge.

We also compute the best feasible single edge

6*(()) € arg max{wij(b) : dij < B},

with deterministic tie-breaking. This “single-edge” candidate is the standard
knapsack safeguard: if the optimal solution relies on one very expensive but
very valuable insertion, a bucket that enforces uniform per-edge costs can
miss it.
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Final allocation rule. Let the candidate set be

c(b) = {zM®),...,zB(b), 2% (b)},

where 2 (b) allocates only e*(b). We output

b) € arg max Zw ) T
z(b) g mmax i (D) T4,

with deterministic tie-breaking over candidates (e.g., prefer ™) last, and
otherwise prefer smaller k).

The salient design feature is that the only bid dependence is through
a single global ordering by w;;(b) inside each bucket, plus a deterministic
comparison of a constant number of candidate matchings. There are no
guessed sets and no Lagrange-price searches whose regime changes can be
hard to control.

5.3 Why the rule is monotone

We now argue that the induced click allocation
b) = pijwi;(b)
J

is nondecreasing in b; for each ¢ holding b_; fixed.

Step 1: monotonicity within a bucket. Fix a bucket k and hold b_;
fixed. Increasing b; scales all incident weights {w;;(b)}; by the same factor
while leaving all other weights unchanged. Therefore, in the sorted order used
by GreedyMatch(FE}, gx), every edge incident to ¢ can only move (weakly)
earlier relative to edges not incident to ¢, while the relative order among ’s
own edges is unchanged (since it is determined by p;; and fixed tie-breaking).

Because the greedy routine accepts the first incident edge it sees whose
position endpoint is free (and then never revisits advertiser i), moving i’s
incident edges earlier can only weakly expand the set of available positions at
the moment ¢ is matched. Consequently, if bidder 7 is matched under l‘(k)(b)
to some position j, then under a higher bid o} > b; she is still matched in
bucket k, and the resulting matched position j’ satisfies

Dijt = Dij-

In particular, the bucket-level click allocation

sz] %J )€ {0} U {pz] 1 (i,7) € By}
is nondecreasing in b;.
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A closely related (and operationally important) stability property also
holds: if 7 is not matched by the greedy routine in bucket k, then changing
b; cannot affect which edges among other advertisers are accepted. The
reason is simply that edges that are rejected do not change the matching
state; if none of i’s edges are ever accepted, the evolution of the matching
among other vertices is identical. This “loser-independence” is exactly what
fails in many PTAS templates, where even a losing bidder can affect which
global case is selected.

Step 2: monotonicity of selecting the best candidate. Consider the
overall rule that picks the best candidate in C(b). Suppose that at bids
(b;, b—;) the winning candidate allocation x(b) gives advertiser i positive click
probability, i.e., y;(b) > 0. Increase the bid to b > b;.

For any candidate allocation that does not allocate to ¢ at the higher
bid (i.e., yields y; = 0), loser-independence implies that its total weight is
unchanged when we vary b; (since ¢ remains unmatched throughout that
subroutine, the selected edges and thus the realized weights of other bidders
are identical). In contrast, for the candidate that did allocate to i at b;, Step
1 implies that when we rerun it at b} it still allocates to ¢ and with weakly
larger click probability, so its total weight weakly increases.

Therefore, a candidate that excludes 7 cannot overtake the previously
winning, i-including candidate when we raise b;. It follows that 7 cannot lose
allocation by bidding more:

by >bi = yi(bi,b—i) > yi(bi, ).

This is precisely the single-parameter monotonicity condition required for
DSIC with envelope payments.

Two remarks clarify what is doing the work. First, deterministic tie-
breaking is essential: without it, equal-weight perturbations can lead to bid-
dependent selection among ties, which is indistinguishable from a hidden
case distinction. Second, we are not claiming that every greedy heuristic
is monotone; rather, bucketing collapses the budget to a size constraint,
and the particular maximal-matching greedy has the key loser-independence
property that makes the outer “take the best” step safe.

5.4 Approximation guarantee
We finally show that the above monotone rule achieves a constant-factor

approximation to the optimal welfare subject to the hard trust budget.

Within-bucket approximation. Fix a bucket k£ and consider the best
feasible matching that uses only edges in Fj and at most g edges; denote
its value by OPTy(b). The greedy maximal matching in nonincreasing weight
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order is a standard 1/2-approximation for maximum weight matching under
a cardinality cap{]

1
> wi(v) 2l (b) > 5 OPTi(b).
,J

From buckets to a global bound. Let OPT(b; B) be the true optimum
over X (B). Partition the edges used by an optimal solution by their buckets.
If Case A holds (true discrete costs), then the optimal solution’s value is
exactly the sum of its bucket contributions. By the pigeonhole principle,
there exists a bucket k such that the value contributed by edges in bucket &
is at least OPT(b; B)/L. Feasibility of the optimal solution implies it uses
at most g edges from that bucket, so this bucket-contribution is at most
OPTy(b). Hence

1
mkaXOPTk(b) > EOPT(b; B).

Combining with the within-bucket 1/2 bound and the fact that our final rule
takes the best bucket output yields

by B 1 .
m]?x%:w”(b) zij (b) > o7 OPT(b; B).

The role of the best single edge. The bucket argument can be pes-
simistic when the optimum is dominated by a single expensive edge (a com-
mon knapsack corner case). Including z*)(b) ensures we do not lose more
than a constant factor in that regime. In particular, if an optimal solution
derives at least half its value from its highest-value edge, then :U(*)(b) alone
achieves at least % OPT(b; B). Taking the best of the bucket matchings and

) (b) therefore yields an overall approximation factor
a=0(L) in Case A,
and under bounded spread,
a = O(logc) in Case B,

which is a constant when c is a fixed structural parameter of the application.

4The argument is the usual charging proof: each edge in an optimal matching conflicts
with at most two edges in the greedy matching (one per endpoint), and the greedy edge
encountered first has weight at least that of the conflicting optimal edge. Summing over
conflicts yields W (Greedy) > W (OPT).
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Interpretation and limitation. The economic content of the approxi-
mation is straightforward: when disruption costs live on only a few scales,
the platform can restrict attention to “homogeneous-cost” insertion plans,
where the trust budget behaves like an insertion count constraint. Within
each scale, a simple greedy matching already captures a constant fraction of
the best feasible plan, and the entire procedure can be made monotone. The
limitation is equally clear: if costs span many orders of magnitude (large L or
large ¢), then the knapsack aspect is genuinely multi-scale and we should not
expect a constant-factor monotone rule without sacrificing either welfare or
generality. The next section shows how to convert this monotone allocation
rule into a DSIC mechanism via envelope payments, and how the same logic
extends to revenue objectives via virtual values under standard regularity
conditions.

6 Mechanism Design: Payments for Welfare and
Revenue Variants

Having constructed a deterministic allocation rule A that is feasible and
monotone in each reported bid, we can now complete the mechanism by
specifying transfers. In our setting each advertiser ¢ has a single private
parameter v; (value per click), and the outcome relevant for incentives is the
total click probability assigned to i,

yi(b) = mi(x(b)) = > pijwii(b) €[0,1],
j=1

where z(b) = A(b) € X(B) is the (budget-feasible) matching computed from
bids b. Because A is monotone, y;(b;, b—;) is nondecreasing in b; for each fixed
b_;. This is the only substantive requirement for dominant-strategy truthful-
ness in single-parameter environments; the budget constraint and matching
structure affect feasibility, but do not alter the incentive characterization.

6.1 Envelope payments for welfare maximization

We consider the direct-revelation implementation in which bidders report b;
(truthfully b, = v; under DSIC) and the platform runs z(b) = A(b). The
standard envelope theorem implies that any DSIC payment rule must satisfy,
up to a constant chosen by normalization,

b;
ti(b) = tz‘(O, b_i) + biyi(b) — /0 yi(z,b_i) dz. (5)

Imposing individual-rationality normalization ¢;(0,b_;) = 0 yields ex post IR
(since ui(v) = viyi(v)—t;(v) = [y yi(2,v-3)dz > 0) and pins down payments
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uniquely for our deterministic rule. We emphasize an interpretation that is
operationally useful: ¢;(b) is an expected transfer per impression. If the
platform prefers charging per click, it can equivalently levy a per-click price

_t(b) ,
cpe;(b) = i) when y;(b) > 0,

so that the expected payment equals cpc;(b) - y;(b). (When y;(b) = 0, we set
ti(b) =0.)

Two points are worth making explicit. First, the payment depends on
the entire allocation curve z — y;(z,b_;), not only on the realized y;(b). This
matters because our allocation may assign bidder ¢ to different positions at
different bids, so y; can increase in steps that correspond to jumps among
distinct p;; values. Second, the budget constraint does not enter directly;
it affects transfers only through its effect on the allocation curve. In particu-
lar, “paying for disruption” is not required for truthfulness: we enforce trust
via the feasibility constraint x(b) € X (B), not via bidder-facing pricesﬂ

Given monotonicity, DSIC follows in the usual way: for fixed b_;, ad-
vertiser ¢ faces a one-dimensional choice. The envelope formula ensures that
truthful reporting maximizes viyi(i)i, b_i)— ti(l;i, b_;) over b;, and the mono-
tonicity of y; ensures that the induced utility is the integral of the allocation
curve up to v;. Thus our approximation guarantee from the allocation rule
transfers verbatim to a truthful welfare mechanism: when all advertisers re-
port truthfully, the realized welfare is within the same constant factor « of
the optimal welfare subject to the trust budget.

6.2 Computing payments: exact thresholds versus numerical
integration

While is conceptually clean, implementing it requires computing the in-
tegral of a monotone, piecewise-constant function. In principle, for a de-
terministic allocation algorithm A, y;(z,b_;) changes only when varying z
changes the relative order of some i-incident edge (4, j) (whose weight is z p;;)
against an edge not incident to i (whose weight is fixed at byp;;/), or when
it changes which candidate among a constant set (our buckets plus the best
single edge) is selected. Therefore, for fixed b_;, there exists a finite set of
critical bids at which y; can jump.

One can compute t;(b) exactly by enumerating these breakpoints. Con-
cretely, fix advertiser ¢ and consider a given bucket k. In that bucket, the
greedy routine sorts edges by weights w;;(b) = b;p;;. Holding b_; fixed, the
only comparisons that depend on b; are of the form

°In applications where d;; also represents an advertiser-specific compliance burden,
one can add explicit terms to utilities; our analysis isolates the case where d;; is a
platform /user-side constraint.

27



Thus, for each (4, j) € Ej, and each competitor edge (7', j') € Ej, with p;; > 0,
there is a threshold
_ bipiy
T = —
Pij
at which the order between those two edges flips. Between successive thresh-
olds, the relative order of all edges is fixed, and hence the greedy scan

(with deterministic tie-breaking) produces a fixed matching, implying a con-

stant ygk)(bi,b,i). The outer step that selects the best candidate among
L+1 = O(1) matchings can only introduce additional (but still finite) break-
points coming from comparisons of total weights of candidate matchings as
functions of b;. Since those weights are affine in b; within each region (they
equal a fixed constant plus b; times the realized click probability of ¢ in that
candidate), we can also locate candidate-switch thresholds exactly.

This “exact critical-bid” approach is polynomial-time but can be heavy in
the worst case, because the number of raw pairwise thresholds 7 scales with
the number of edges. In practice, we can take a simpler view: we only need
to evaluate the integral in , not to explicitly describe all discontinuities. A
standard black-box approach is to approximate the integral numerically by
querying the allocation rule at a grid of bids. Let A > 0 be a step size and
let zp = A for £ =0,1,...,[b;/A]|. Define the Riemann-sum approximation

bi/A]~1
ti(b) = biyi(b) — A > wyiz,0-4).
=0

Because 0 < y; < 1, the absolute integration error is at most A, and hence
the induced deviation from exact DSIC is small: bidder ¢ can gain at most
O(A) in utility by misreportingﬁ This yields an e-IC' mechanism (domi-
nant strategies up to additive ) that is often sufficient when values are large
relative to the discretization unit and when regulators accept auditable nu-
merical procedures.

A closely related implementation is to discretize the bid space itself (e.g.,
bids in cents) and run the mechanism on the discrete grid. On a finite grid,
one can compute exact discrete envelope payments by summation, obtain-
ing exact DSIC on the grid and e-1C relative to the underlying continuum.
We flag this explicitly because in policy-constrained environments the pay-
ment computation is part of what must be explainable and verifiable: dis-
cretization makes both the allocation (via deterministic tie-breaking) and
the payment rule mechanically auditable.

5More precisely, if we hold b_; fixed and use the approximate payment rule a, then the
difference between truthful utility and best-response utility is bounded by the maximal
integration error of the Riemann sum, which is at most A since y; € [0, 1]. This yields an
e-1C guarantee with e = A.
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6.3 Revenue objective: virtual values under regularity

The same mechanism-design logic extends to revenue once we invoke Myer-
son’s transformation. Suppose each v; is drawn independently from a known
distribution F; with density f;, and define the virtual value

1-— Fi (U)
oi(v) = v— ———.
«(v) fi(v)
Myerson’s lemma states that for any DSIC and IR mechanism, expected
revenue equals expected virtual surplus,

E{Zti(v)] = E[qui(vi) yz’(v)},

up to standard boundary conditions satisfied by our normalization. There-
fore, a natural revenue-oriented variant of our mechanism is: replace each
bid b; used in weights by the corresponding virtual value ¢;(b;), run the same
monotone allocation template on weights

wii(b) = ¢i(bi) pij,

and then compute payments via the envelope formula with respect to the
allocation curve y?(b) induced by this virtual-weighted rule.

This construction relies on a regularity condition. If F; is reqular so that
¢;(+) is nondecreasing, then monotonicity of the allocation in the “virtual bid”
implies monotonicity in the true bid: increasing b; weakly increases ¢;(b;),
which (by the same order-based argument as before) cannot decrease yfb.
Under regularity, we thus obtain a DSIC and IR mechanism whose expected
revenue is within the same approximation factor « of the optimal constrained
revenue benchmark (the optimum virtual surplus subject to X (B)).

Two practical refinements are standard and carry over directly. First,
since negative virtual values reduce virtual surplus, one typically imposes
a reserve by truncating ¢; at zero (or, equivalently, refusing to allocate to
advertisers whose virtual values are negative), which preserves IR and im-
proves revenue. Second, if distributions are not regular, one can iron ¢; to
a monotone virtual value ¢;; the allocation remains monotone in b; and the
revenue guarantee applies with respect to the ironed benchmark.

6.4 What the mechanism does (and does not) claim

It is tempting to read the above as saying that trust constraints are “just
another feasibility constraint.” This is true for incentives in the narrow
single-parameter sense: DSIC depends on monotonicity of y; and the en-
velope payments, and the budget only shapes which outcomes are feasible.
However, two limitations are worth keeping in view.
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First, our revenue result is an approximation to an information-theoretic
optimum that itself respects the trust budget. If B is tight, the revenue-
maximizing truthful mechanism may rationally leave high-paying ads un-
served to preserve trust; this is a feature, not a bug, but it means revenue
comparisons must always condition on the compliance regime. Second, im-
plementing virtual values presumes either known distributions or a defensi-
ble empirical estimation procedure. In many ad markets, distribution shift
across contexts is material; here the transparent option is to treat the welfare
mechanism as the robust baseline and to interpret revenue optimization as
a secondary layer whose assumptions (regularity, stationarity, sample size)
can be audited.

These remarks set up the next step in the analysis. Having specified
a truthful mechanism, we can now ask how welfare changes as the trust
budget B varies, how to interpret the dual shadow price p as a “trust tax,”
and how to derive auditable welfare-loss bounds from tightening compliance
constraints.

7 Price of Trust: Comparative Statics in B and
Dual-Based Welfare Bounds

We now treat the trust/compliance budget B not as a fixed engineering pa-
rameter, but as a policy-relevant lever. The central object is the constrained
welfare value function

n m
W*(B) = max szipijxija

z€X(B) =1 =1

and its algorithmic counterpart (from our monotone approximation rule)
which we denote by W4 (B) for the welfare achieved by x = A(v) at budget
B. The economic question is: how much welfare is “purchased” by relaxing
B, and how can that marginal tradeoff be stated in an auditable way?

7.1 Monotonicity, saturation, and the role of K

The most robust comparative static is immediate: the feasible set expands
in B, so

B'>B = X(B)CX(B) = W B)<WB).

However, the shape of W*(B) is not smooth in general because the under-
lying problem is integer. Indeed, W*(B) is typically a step function: as B
increases, additional matchings become feasible only when B crosses disrup-
tion totals Z” d;;x;; of candidate allocations.

30



A second operational point is saturation induced by the cardinality cap
K. Let x> denote an optimal allocation in the unconstrained problem with
budget constraint removed (but still respecting matching and K). If B is
large enough that > € X (B), then the trust constraint ceases to bind and
further increases in B have no effect:

In particular, when K is small, saturation can occur at relatively modest
B because at most K edges can be chosen. This matters for governance:
a regulator may be tempted to infer that “more budget always buys more
value,” but if K is binding then marginal returns are literally zero beyond
the saturation point.

7.2 LP relaxation, concavity, and the shadow price u

Because the integer objective is discontinuous in B, it is useful to introduce
the LP relaxation value function
WEP(B) =  max ViPiiLiis
=, S
where X7 (B) relaxes integrality to x;; € [0,1] while keeping the same
matching, cap, and budget constraints. This relaxation has two advantages
that are directly interpretable:

1. WEP(B) is concave and nondecreasing in B, so it supports well-defined
marginal values.

2. The dual variable on the budget constraint yields a shadow price of
trust that can be used both as an economic summary and as an audit
certificate.

Formally, the Lagrangian of the relaxed problem separates the budget
constraint via a multiplier p > 0:

£(gj“u) = Zvipijwij + M(B—deﬂ:m).
i,9 1,

For fixed p, maximizing £(z, 1) over matchings (and the cap K) is equivalent
to maximizing a penalized weight on each edge:

(vipij) — pd;.

Thus, at the level of first principles, the shadow price converts the hard trust
budget into a per-unit “tax” on disruption, and the platform behaves as if
each insertion pays a penalty proportional to its predicted disruption. In
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this sense, p plays the role of a trust tax rate: a higher p makes disruptive
edges less attractive even if their click value is high.

Let p*(B) be an optimal dual multiplier for the LP at budget B. Stan-
dard LP sensitivity results imply the subgradient inequality: for any B’ > 0,

WH(B') < WHP(B) + p*(B) (B' — B). (6)

Concavity means that p*(B) is a marginal welfare proxy: it upper bounds
the welfare gain from relaxing the budget by one unit (locally, and exactly
as a subgradient).

Two limiting cases are economically informative:

o If the budget is slack at the LP optimum, then complementary slack-
ness yields p*(B) = 0. Interpreting @, additional trust budget has no
value at the margin (consistent with saturation).

e If the budget is tight, then p*(B) > 0 and the platform is willing to
“pay” (in forgone click value) up to p*(B) per unit disruption to stay
within compliance.

7.3 Dual-based welfare loss bounds from tightening B

A regulator often cares about the welfare cost of tightening compliance rules,
i.e., moving from B to a smaller B~ < B. The concavity bound @ yields
an immediate and auditable upper bound on the LP welfare loss:

W (B) - WH(B7) < p*(B) (B~ B"). (7)

The right-hand side has a transparent interpretation: “the marginal price
of trust at the current regime” times “the tightening magnitude.” This is
precisely the sense in which p operationalizes a price of trust.

While is stated for the LP relaxation, it is still practically valu-
able for the original integer problem for two reasons. First, WX¥(B) is
an upper bound on W*(B), so comparing two LP values gives a conservative
(over-)estimate of what is achievable, hence a conservative (over-)estimate of
marginal returns. Second, the dual multiplier can be computed alongside the
relaxed solution and logged as part of a compliance record: an auditor can
verify that the reported p*(B) indeed corresponds to a feasible dual solution
and hence certifies the inequality.

We can also write in a form that emphasizes counterfactual explain-
ability. Suppose a policy proposal reduces the budget by AB > 0. Then

LP welfare loss < u*(B)AB.

If, for example, the platform reports that p*(B) = 0.02 welfare-units per
disruption-unit, then a tightening of AB = 10 implies an LP loss bound of at
most 0.2 welfare-units per impression. This style of statement is coarse, but
it is auditable: it depends on a single scalar and a verifiable dual feasibility
condition, not on proprietary details of the full allocation.
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7.4 From shadow prices to implementable “trust taxes”

Although our mechanism enforces trust through a hard constraint, it is use-
ful to observe that the shadow price also induces a soft-constraint proxy
problem:
max ) (Uipij - ,udij>55ij-

i,j
For fixed p, this is a standard maximum-weight matching with a cap K
(and no knapsack constraint). Hence, a platform can compute a family
of candidate allocations by sweeping p and then select the one that best
respects the desired budget. This leads to a practical calibration procedure:
use bisection on p to find a penalization level at which the induced allocation
consumes disruption close to B.

Economically, this is exactly the construction of a Pigouvian tax: if a
policymaker (or an internal trust team) has an external cost of disruption
equal to A welfare-units per disruption-unit, then setting u = A\ makes the
platform internalize that cost in its allocation logic. Put differently, the
hard budget B and the shadow price p are two ways of describing the same
underlying tradeoff: B specifies a quantity constraint, while p summarizes
the marginal value (or marginal social cost) at the optimum.

This perspective also clarifies what we mean by compliance rent. If the
platform were allowed to marginally increase B, it could gain welfare at rate
approximately p*(B). Therefore, access to additional compliance capacity—
better disclosure UI, safer rendering, improved user controls that reduce d;;—
is economically valuable, and that value is priced by p*(B). In organizations,
this often manifests as an internal transfer: teams that reduce disruption
effectively create budget capacity, whose marginal benefit is measured by
the current shadow price.

7.5 Scaling costs and invariances

The shadow-price interpretation also makes comparative statics under cost
scaling nearly mechanical. If disruption scores are uniformly scaled by A > 0,
i.e., di; = Ad;j, then the feasibility condition ) d};x;; < B is equivalent to
Z dijxij S B/)\ Thus,

Wewea(B) = W°(3),

and in the LP relaxation the shadow price rescales inversely:

Hscaled (B) = % w (%) )

consistent with the idea that p is denominated in “welfare per disruption
unit.” This is practically relevant because measurement pipelines for d;;
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often change (e.g., new auditors, new definitions of disclosure footprint).
The above invariance tells us how to translate shadow prices and budget
policies across revisions, at least under uniform rescaling.

7.6 Relating the approximation algorithm to the price of
trust

Our monotone allocation rule A is designed to be truthful and approximately
welfare-maximizing under structural assumptions on d;;. It is not an LP
solver, so it does not directly produce an exact dual multiplier. Nevertheless,
the dual perspective remains useful in three ways.

First, we can use WEP (B) as a benchmark to quantify the welfare gap:

wA(B) wA(B)
WIP(B) = We(B) =

so a reported LP upper bound immediately yields a conservative performance
certificate for the implemented allocation.

Second, the Lagrangian weights (v;p;;—ud;;) motivate a simple, auditable
explanation of what the algorithm is doing when B is tight: it prioritizes
edges that are “high value per unit disruption,” even though (by design)
it enforces the constraint hard rather than via prices. When we bucket
costs (few magnitudes or bounded spread), we are in effect discretizing the
disruption axis, which makes the knapsack structure closer to a cardinality
constraint within each bucket; this is precisely the regime in which a single
scalar p is a good summary of the marginal tradeoff.

Third, dual bounds yield a principled way to communicate the conse-
quences of policy changes even when the implemented rule is approximate.
If tightening B by AB produces a change in realized welfare AW, then
comparing AW4 to p*(B)AB distinguishes two cases: either the change is
within the worst-case LP slope bound (suggesting the observed loss is con-
sistent with marginal scarcity of trust budget), or it exceeds that bound
(suggesting that the loss is driven by integrality, approximation, or mismea-
surement of d;;). This diagnostic is helpful precisely because it is not tied
to any particular allocation heuristic.

7.7 A policy reading: choosing B by equating marginal val-
ues

Finally, the “price of trust” language supports a clean normative guideline.
Suppose an external stakeholder assigns a social cost s to disruption units
(in the same welfare units as v;p;;). Then an economically coherent target
is to choose B such that the shadow price satisfies

p(B) ~ s,
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i.e., the marginal welfare gain from relaxing compliance equals the marginal
social cost of doing so. When p*(B) > s, compliance is too tight relative to
its cost; when p*(B) < s, compliance is too loose. We do not claim this pins
down the unique “right” budget—the mapping from disruption metrics d;; to
social harm is itself contestable—but it does give a disciplined way to express
disagreements. Competing stakeholders may argue about the appropriate s
or about the measurement of d;;, yet conditional on those primitives the
shadow price provides a single, interpretable statistic that summarizes the
tradeoff and yields testable comparative statics.

This completes the bridge from mechanism design to policy analysis:
once the allocation and payments are incentive-compatible, the remaining
question is how the feasible set should be chosen. The dual variable p lets
us describe that choice as a transparent “trust tax” and bound the welfare
cost of tightening compliance in a way that is compact enough to be audited
and communicated.

8 Extensions and Discussion

We have deliberately analyzed a base-click environment in which click prob-
abilities are additive across positions and independent of what else is shown.
That abstraction makes the welfare problem a budgeted matching and lets
us cleanly separate (i) computational structure (matching plus a single knap-
sack) from (ii) incentive structure (single-parameter monotonicity). In prac-
tice, however, insertions interact through attention, substitution, and dis-
closure frictions; compliance itself is multi-faceted; and governance depends
on what an auditor can actually verify. We sketch three extensions that
preserve the spirit of the model—a transparent welfare—trust tradeoff under
DSIC constraints—while clarifying where new technical issues arise.

8.1 Beyond additive clicks: cascade and MNL substitution

A first extension relaxes the assumption that m;(z) = 3_; pijzij, allowing
the realized click probability to depend on the set and order of insertions.
Two canonical families are cascade models and multinomial logit (MNL)
substitution models.

Cascade/position externalities. Suppose positions are ordered j = 1,...,m

and users scan from top to bottom, stopping with some probability after each
insertion. A simple cascade specification is

m n
mi(x) = sz’j Dij H <1 — qu 8k£>7
j=1 k=1

(<j
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where sgy € [0,1] is the probability that insertion (k,¢) ends the session
(or absorbs attention) conditional on being encountered. In such a model,
adding an ad earlier can reduce the click probability of all later insertions.
The trust budget B then interacts with welfare in a qualitatively different
way: tightening B does not merely remove some edges, it can also reallocate
attention by shifting ads later (or removing early ads) and thereby increase
the effectiveness of remaining ads.

From the optimization perspective, the welfare objective >, vim;(x) is
no longer linear in z. Even if we keep the matching and cap constraints,
the problem becomes a non-linear combinatorial optimization over ordered
matchings. Depending on the cascade form, the induced set function can
be approximately submodular, suggesting greedy-style approximation un-
der matroid and knapsack constraints; but the approximation algorithms
that are most natural (e.g., adaptive greedy, local search) typically do not
come with monotonicity guarantees in bids. This is exactly where incen-
tive constraints bite: even when we can compute a near-optimal allocation
under cascade effects, small increases in b; can change the chosen set in non-
monotone ways because the algorithm trades off an advertiser’s value against
its attention externality on others.

One pragmatic approach is to separate modeling layers: treat p;; as
already incorporating expected displacement from an erogenous attention
model (estimated under the platform’s typical policy), and reserve explicit
externality modeling for counterfactual evaluation rather than allocation.
The limitation is clear: when the platform materially changes B or K, the
externality environment changes, and the “standalone” p;; cease to be stable
primitives. This motivates the learning-robust direction flagged in our open
problems, but it also motivates governance: if the platform uses a base-click
allocation rule, it should be explicit that p;; are policy-dependent predictions.

MNL substitution. A second workhorse model is MNL, in which the
user chooses among displayed options (including an outside option) with
probabilities proportional to latent attractiveness parameters. One stylized
version for an insertion set S (where S indexes chosen advertiser-position
pairs) is

Oéz'j

Prlclick (i,7) | S] = 14_2(/“) Sak€7
e

<Z7¢7) E S?

so welfare equals

+EMESO‘M

(i,5)es

Here, adding any insertion mechanically reduces the click probability of all
others via the shared denominator. This turns the trust budget into an
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even more economically meaningful lever: a larger B can permit more inser-
tions, but those additional insertions may cannibalize attention and lower
the marginal value of further expansion. Thus, even though the optimal
value as a function of B is still weakly increasing (the feasible set expands),
the composition effects are sharper: optimal policy may prefer a smaller, less
disruptive set even when B is large because attention becomes the binding
resource rather than trust.

Algorithmically, MNL welfare is neither linear nor obviously submodu-
lar in general when weights v; vary, and the matching structure (at most
one per advertiser and per position) couples decisions in a way that blocks
simple reductions. A common tactic is to optimize a surrogate such as
Z(i,j)es v;a; subject to an additional constraint controlling total attrac-
tiveness Z(i, jes Qg which resembles a second budget. This directly fore-
shadows the multiple budgets extension below: in substitution models, it is
natural to interpret attention as another scarce resource, and then trust is
one constraint among several.

Incentives with externalities. With either cascade or MNL, the single-
parameter DSIC characterization (monotone allocation plus envelope pay-
ments) still applies formally if we define y;(b) as advertiser ¢’s total click prob-
ability under the chosen allocation. The difficulty is constructive: we must
exhibit an allocation rule that is both (approximately) welfare-maximizing
under externalities and monotone in each b;. In our view, this is not merely
a technicality: it is the economic tension between correcting externalities
(which often requires non-myopic tradeoffs across agents) and incentive com-
patibility (which restricts how sharply allocations can react to bids). A pol-
icy implication is that, when externalities are large, one should expect either
weaker welfare guarantees under DSIC or the need for richer type spaces (e.g.,
allowing advertisers to report nuisance parameters that affect externalities),
which in turn raises verification issues.

8.2 Multiple budgets: disclosure, brand safety, and other
compliance dimensions

A second extension replaces the single scalar disruption budget with multi-
ple hard constraints. For example, regulators and platforms often separate
(i) disclosure footprint (how intrusive or frequent sponsored labels are) from
(i) brand-safety or suitability risk (the probability of adjacency to sensitive
content), and sometimes from (iii) user-experience metrics (expected dis-
satisfaction, bounce risk). A minimal formalization introduces R resource

dimensions with costs dz(-;) > 0 and budgets B():

ng){ﬂz] < B(r), TZI,...,R.
&3
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The relaxed Lagrangian now uses a vector of multipliers p € Rf and induces
penalized edge weights

R
ViDij — Zﬂrdz(;)-
r=1

Economically, this yields a menu of shadow prices: a “price of disclosure,” a
“price of safety,” etc. The governance appeal is immediate: different internal
stakeholders can negotiate in terms of marginal rates (shadow prices) rather
than opaque global rules, and an auditor can ask for a certificate that each
constraint is satisfied together with the implied marginal values.

Computationally, however, multiple budgets move us from a single knap-
sack to a multi-knapsack constraint intersected with matching. Even in the
absence of incentive constraints, approximation factors typically deteriorate
with R (and the dependence can be exponential without further structure).
Our structured-cost approach suggests one path forward: if each dz(;) takes
only O(1) rounded magnitudes (or bounded spread) in each dimension, then
we can bucket edges by a cost vector class. Within any fixed class, each con-
straint behaves like a cardinality cap, so greedy matching remains a natural
primitive. The caveat is combinatorial explosion: the number of classes can
scale as L, so even constant L can become large when R grows.

This tradeoff has a practical interpretation. Platforms often do not treat
all constraints symmetrically: one constraint (say, legal disclosure) is en-
forced as a hard budget, while others (say, brand safety) are implemented
as conservative filtering or as a penalty in the objective. In our language,
that corresponds to keeping one B(™ hard and moving others into the La-
grangian with fixed u, chosen by policy. This hybrid is not “fully optimal”
in a multi-constraint sense, but it is transparent, tunable, and more likely
to admit monotone allocation rules (because it reduces the number of hard
combinatorial couplings that can cause non-monotone threshold effects).

A final nuance is that multiple budgets complicate auditable counterfac-
tuals. With one budget, a regulator can ask “what is the welfare loss of
tightening B by AB?” With R budgets, the relevant counterfactual is a vec-
tor perturbation, and the platform must clarify which constraint is binding
and which is slack. This pushes reporting toward a multi-dimensional “trust
dashboard” consisting of (B(’"), iy) pairs and realized consumption, rather
than a single scalar.

8.3 Auditing and governance: what can be verified, and
what can be gamed

A third extension is not a change to preferences or feasibility, but to the
institutional environment: who observes and verifies (p;;, d;;, B), and what
commitments are credible.
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Auditability of decisions. Our mechanism is only as interpretable as the
objects an auditor can reconstruct. In the base-click model, a useful com-
pliance record for each context ¢ can be remarkably compact: the declared
budgets, the realized allocation x, the realized disruption ZZ] dijx;j, and
(when computed) a dual-feasible certificate for the LP relaxation. When the
allocation algorithm is greedy-with-tie-breaking (as in our structured-cost
regime), auditability further requires logging the deterministic tie-breaking
rule (or, if randomized, the random seed) so that the platform cannot ex
post rationalize a different allocation under the same bids.

Measurement governance for d;;. The deepest governance question is
not whether the platform satisfied ) d;jx;; < B given the reported d;;, but
whether the d;; themselves are measured in a stable and non-manipulable
way. Two failure modes are especially salient. First, policy drift: if the
pipeline producing d;; changes over time (new classifiers, new definitions of
“harm”), then budgets become incomparable across periods unless the plat-
form publishes a translation (e.g., a rescaling or re-bucketing) and revalidates
historical compliance. Second, strategic content: advertisers may alter cre-
atives or landing pages to reduce predicted disruption scores without reduc-
ing true harm. This is not a standard bid manipulation and is not addressed
by DSIC. It is closer to adversarial robustness, and it suggests that com-
pliance metrics should be (i) hard to spoof, (ii) periodically audited with
human review, and (iii) accompanied by penalties for misrepresentation that
operate outside the auction (e.g., account sanctions).

Commitment and credible constraints. A hard budget B is mean-
ingful only if it is credibly binding. Internally, that requires organizational
separation: the team setting B (or certifying d;;) should not be the same
team optimizing revenue. Externally, it requires that a regulator can ob-
serve either (a) the realized consumption of disruption units or (b) enough
aggregated statistics to test whether the platform is systematically exceeding
the budget. In many deployments, the platform will be reluctant to reveal
edge-level (p;;,d;;) because of proprietary models. This is where dual cer-
tificates and aggregation become valuable: a regulator may not need the full
matrix to verify that a reported allocation is within budget, provided the
platform commits to a measurement standard and exposes sufficient logs for
sampling-based audits.

Fairness and disparate impact. A subtle governance implication of a
trust budget is that it can create disparate impacts across advertisers or
user groups. If d;; is higher in certain contexts (e.g., sensitive topics) or
for certain creatives (e.g., political content requiring stronger disclosures),
then the budget couples these segments through a global constraint. Even
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a welfare-maximizing mechanism may systematically exclude high-d;; seg-
ments when B is tight. From a policy standpoint, this may be desirable (it
is exactly what a safety budget is meant to do), but it should be explicit:
a single global B implicitly defines a rationing rule across categories. One
governance response is to introduce category-specific budgets (a special case
of multiple budgets) or minimum-serve constraints; another is to publish
category-level consumption and shadow prices so that stakeholders can see
where rationing occurs.

Limits of the mechanism-design lens. Finally, we should be clear about
what our mechanism does not solve. DSIC aligns bids with values given the
allocation rule, but it does not ensure that the platform’s estimates p;; and
d;; are correct, stable, or welfare-relevant in the social sense. Nor does it
resolve normative disagreements about what counts as “disruption.” What
the model contributes is a disciplined interface: once primitives are fixed
and auditable, we can articulate how welfare, trust budgets, and incentives
trade off, and we can identify which empirical objects (prediction quality,
cost measurement, binding constraints) are driving outcomes. In our view,
that interface is exactly what makes the framework useful for governance: it
narrows debates from vague arguments about “too many ads” to concrete,
testable claims about budgets, costs, and marginal values.

9 Conclusion and Open Problems

We have studied a simple but, we believe, operationally meaningful interface
between sponsored insertions and governance constraints: advertisers have
single-parameter values per click, the platform predicts a click gain p;; and
a disruption cost d;; for each potential insertion, and a hard budget B limits
total disruption. The base-click assumption makes the welfare objective
linear, so the constrained allocation problem becomes a matching with a
single knapsack constraint. The core economic point is that, once we can
implement a monotone allocation rule under this feasibility set, DSIC and IR
follow from standard envelope payments, and the budget constraint admits
a transparent “price of trust” interpretation via a Lagrange multiplier.

The main limitations of our positive results are also the natural bound-
ary of the framework: they rely on (i) a stylized click model, (ii) a single-
period environment with fixed and correctly measured (p;;,d;;), and (iii)
structured disruption costs (few magnitudes or bounded spread) to obtain
monotone approximation in polynomial time. We close by describing three
research directions that would make the framework both more general and
more realistic, while highlighting where new technical obstacles appear.
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9.1 Removing structured-cost assumptions: monotonicity ver-
sus approximation

Our monotone constant-factor allocation relies on a cost structure that makes
the knapsack aspect “almost” a cardinality constraint within buckets. With-
out such structure, the welfare problem is computationally harder even before
we impose incentives, and the incentive requirement interacts with hardness
in a particularly sharp way.

The algorithmic bottleneck. In the general case, d;; can vary widely,
and the feasible set X (B) is the intersection of a matching polytope with an
arbitrary knapsack. Even ignoring integrality, the LP relaxation may have
a nontrivial integrality gap; with integrality, the problem inherits knapsack-
style combinatorial hardness. Standard approximation schemes for budgeted
matching (e.g., guessing heavy items, local search, or randomized rounding)
typically break monotonicity: a small increase in b; can change which “heavy”
edges are guessed, or which local move is accepted, causing advertiser ’s
allocation probability to decrease.

This suggests an open problem that is more structural than it may first
appear: characterize when knapsack—matching admits monotone approxima-
tion. In single-parameter domains, monotonicity is not merely a design pref-
erence; it is the implementability constraint for DSIC. Thus, even if we can
approximate the welfare optimum within (1 — ¢), that guarantee may be
irrelevant if the induced allocation rule cannot be turned into a truthful
mechanism.

Possible ways forward. We see at least three plausible paths, each with
its own costs.

First, one can relax determinism and seek monotone-in-expectation ran-
domized mechanisms. Randomization enlarges the design space substan-
tially: rather than insisting that z;; € {0,1} be a deterministic matching,
one can output a distribution over feasible matchings and ensure that y;(b) is
nondecreasing in expectation. However, randomness complicates auditabil-
ity and governance unless the platform logs the random seed and provides
an ex post verifiable description of the distribution. Moreover, in knapsack-
like domains, even monotonicity in expectation can be delicate: a distri-
butional change that maintains feasibility and approximation may still be
non-monotone in b;.

Second, one can accept weaker welfare guarantees but insist on mono-
tonicity by design, aiming for simple posted-price or threshold mechanisms
driven by the shadow price pu. For example, fix a penalty g > 0 and max-
imize Zi,j(bipij — pd;j)zi; subject only to matching and cap constraints,
then tune p until the realized disruption is near B. This Lagrangian ap-
proach is computationally attractive and monotone for a fixed u (because it
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is a maximum-weight matching with weights linear in b;), but it does not,
in general, enforce the budget exactly, and the mapping from bids to the
tuned p can itself break monotonicity. Understanding when “dual tuning”
can be done in a bid-independent way (e.g., using historical calibration or a
regulator-set ) is therefore crucial if we want a truthful mechanism with a
hard budget and general costs.

Third, one can broaden the design objective to include bicriteria guaran-
tees, such as approximating welfare while allowing a small budget violation,
or satisfying the budget while allowing a bounded welfare loss relative to a
slightly larger budget. In governance settings, such bicriteria tradeoffs may
be acceptable if the violation is auditable and rare, but they require the
institution (regulator or internal policy) to specify what constitutes an ac-
ceptable violation probability. Formally, one would seek mechanisms such
that

1
Pr Zdijxij >B| <4 and E[W (z;v)] > o W*(B),

]

under DSIC constraints. Whether such mechanisms exist with good («, )
for general costs remains open.

Open questions. We would distill the “remove structure” agenda into the
following concrete questions:

1. For general d;;, what is the best achievable approximation ratio among
deterministic DSIC mechanisms running in polynomial time? Are there
hardness-of-truthfulness results that separate DSIC-approximability
from plain approximability?

2. Can Lagrangian-based mechanisms be made DSIC with a hard budget
by choosing p bid-independently (or via a truthful auxiliary market for
disruption units), and what welfare loss is unavoidable in doing so?

3. Under what distributional assumptions on (p;;,d;;) (e.g., smoothed
analysis, bounded density) do monotone approximations exist generi-
cally, even if worst-case instances are hard?

Progress on any of these would materially expand the domain in which a
“trust budget” can be enforced without resorting to ad hoc heuristics.

9.2 Robust and learning-based primitives: when (p;;,d;;) are
estimated

Our model treats p;; and d;; as known primitives. In reality, they are pre-
dictions produced by machine learning systems, and both are subject to
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uncertainty, drift, and strategic adaptation. This raises two intertwined
issues: robustness (how outcomes change when predictions are wrong) and
learning (how to update predictions while keeping incentives and governance
coherent).

Robustness to misspecification. A first question is ex post robustness:
if the true click probability is p;; and the true disruption is czij, but the
mechanism uses (p;;, d;;j), can we bound welfare loss and constraint violations
in terms of prediction error? A minimal goal is a Lipschitz-style guarantee
such as

W (z(p,d);v) > W*(B; p) — Exr(p,p), Y dijwij(p,d) < B+ Err(d, d),
ij

where Err depends on norms of deviations. Even such a bound is non-
trivial because the allocation z(p, d) can change discontinuously when edge
weights cross. Our structured-cost design already suggests a partial rem-
edy: deterministic tie-breaking and bucketing dampen sensitivity to small
perturbations by reducing the number of “knife-edge” comparisons. More
generally, one can explicitly regularize the allocation rule (e.g., via smooth-
ing of weights) to improve stability, at the possible cost of welfare.

Learning with incentive constraints. A second question is dynamic
learning. Clicks provide feedback about p;;, and user responses provide
feedback about d;; (at least indirectly, through dissatisfaction metrics). But
learning requires exploration, and exploration is inherently incentive-relevant:
showing an advertiser more often to learn their performance is a valuable
allocation. In standard sponsored search, this tension is managed via multi-
armed bandits and truthful mechanisms with learning; here, the presence
of a hard disruption budget makes the exploration problem a constrained
bandit with an additional resource consumption signal.

One promising direction is to model each edge (i, j) as having unknown
mean reward (clicks) and unknown mean cost (disruption), and to design an
online mechanism that satisfies, with high probability,

T
S <

t=1 i

while achieving sublinear regret relative to the best fixed feasible policy in
hindsight. The open mechanism-design question is: can we do this under
DSIC when advertisers strategically report b; each round, and when the
learning algorithm’s exploration choices depend on past clicks that are af-
fected by the allocation? The single-parameter structure helps, but only
if we can maintain monotonicity round by round (or in expectation) while
updating beliefs about p;; and d;;.
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Strategic manipulation of the measurement layer. A deeper diffi-
culty is that d;; is not a natural outcome like a click; it is a policy metric.
If advertisers can manipulate d;; (by changing creatives, landing pages, or
metadata to look “safer”), then the problem becomes one of mechanism design
with endogenous features, not just endogenous bids. DSIC does not protect
us here: truthfulness concerns the reported b;, not the strategic choice of
content that changes (pij;, dij).

This suggests that robust governance must be modeled explicitly. One
could treat d;; as produced by an audit process with noise and penalties: ad-
vertisers choose an action a; that affects both value and measured cost, and
misreporting or manipulation is deterred by expected sanctions. Embedding
such an enforcement layer into the mechanism is conceptually straightfor-
ward but technically open: we would need equilibrium notions that combine
bidding incentives with compliance incentives, and we would need to clarify
what an auditor can observe.

9.3 Dynamic trust budgets across turns: state, replenish-
ment, and online feasibility

Finally, in many deployments (e.g., conversational assistants or multi-step
content generation), the platform makes a sequence of insertion decisions.
Trust is then naturally modeled as a state variable: users may become fa-
tigued or more skeptical after repeated disclosures, and regulators may re-
quire compliance over a horizon rather than per-response.

From per-instance to intertemporal constraints. A minimal dynamic
variant replaces the per-instance budget with a horizon budget Br:

T
> dijw) < Br.

t=1 i,j

or a rolling-window constraint. This turns the allocation into an online
knapsack-matching problem with adversarial arrivals (contexts) and strate-
gic bids each round. The platform must decide whether to “spend” disruption
units now or save them for future contexts with higher value. In such settings,
the dual variable p becomes an intertemporal shadow price: it represents the
opportunity cost of spending trust today rather than tomorrow.

State-dependent disruption. A richer model lets disruption depend on

past allocations, e.g., dg-) = d;;(ct, 5¢) where s is a trust state that evolves
as
Str1 = f(st, x(t),user reactions),

and the constraint becomes s; > s (do not drop below a minimum trust level)
rather than ) d;;xz;; < B. This captures the idea that repeated insertions
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can have compounding effects even if each individual insertion is “within
budget.” It also aligns more closely with user-experience realities, where the
harm of additional insertions depends on how saturated the session already
is.

Designing DSIC mechanisms in such stateful environments is largely
open. Even defining y;(b) requires specifying how click probabilities depend
on state, and monotonicity can fail because increasing b; today may worsen
state tomorrow, indirectly reducing ¢’s future allocation. This creates a dy-
namic externality that is internal to the mechanism’s state, not just across
advertisers.

Open questions for dynamic budgets. We see several concrete ques-
tions at the boundary of online algorithms, learning, and incentives:

1. Can we design truthful online mechanisms that achieve constant-factor
(or no-regret) welfare relative to the best offline policy while satisfying
a hard cumulative disruption budget?

2. Under what conditions can the optimal policy be implemented by a bid-
independent shadow price process {y;} (a “trust exchange rate”) so that
each round reduces to a monotone matching with weights b;p;; — pd;;?

3. How should a regulator specify dynamic constraints so that they are
both behaviorally meaningful (capturing fatigue and erosion of trust)
and operationally auditable (verifiable from logs without revealing pro-
prietary prediction models)?

Closing perspective. We view these open problems as complementary
rather than competing. Removing structured-cost assumptions expands the
computational frontier of truthful allocation under hard budgets; learning-
based primitives address the empirical reality that (p;j,d;;) are estimated
and strategically pressure-tested; and dynamic budgets capture the temporal
nature of trust in real user interactions. Across all three, the unifying theme
is that governance constraints are not merely “filters” on ad delivery: they
are scarce resources that can be priced, audited, and optimized—but only
if the mechanism’s response to bids and predictions is stable enough to be
both incentive compatible and institutionally credible.
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