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Abstract

Transparency is increasingly mandated for algorithmic decision sys-
tems, yet strategic adaptation (Goodhart’s law) can cause fully dis-
closed models to be gamed. Building on strategic classification (Hardt
et al.) and subsequent work on opacity/randomness/noise (e.g., Braver-
man–Garg; Ghalme et al.; Cohen et al., as summarized in Podimata’s
2025 survey), we formalize a 2026-relevant policy question: what is the
welfare/accuracy cost of requiring decision rules to be fully targetable
by agents? We introduce a clean Stackelberg model in which the princi-
pal chooses a linear classifier and a graded-disclosure/noise parameter
that is publicly auditable but reduces agents’ ability to precisely target
the boundary. We define the transparency tax as the gap between the
optimal equilibrium misclassification error under mandated full trans-
parency (deterministic, fully targetable boundary) and the optimal er-
ror when limited graded disclosure is allowed. In a tractable Gaussian
latent-skill model with proxy manipulation costs, we derive closed-form
best responses, prove a lower bound showing the tax scales with (i)
proxy-manipulation opportunity and (ii) low-cost heterogeneity, and
provide an explicit graded-disclosure policy achieving a matching up-
per bound up to constants. Extensions discuss discrete manipulation
graphs and alternative disclosure channels (coarse explanations, weight
suppression). The results deliver a quantitative object for regulators
and a constructive design principle for practitioners: not whether to
disclose, but how to disclose in an auditable way that preserves pre-
dictive validity in equilibrium.
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1 Introduction

Across domains as diverse as credit underwriting, hiring, university admis-
sions, welfare eligibility, and online content moderation, regulators and in-
stitutions are converging on a common governance intuition: if automated
decisions affect people’s lives, then the rules should be transparent. By 2026
this intuition is no longer aspirational. Major regimes now require some com-
bination of (i) meaningful explanations to affected individuals, (ii) auditable
documentation of model inputs and decision logic, and (iii) advance notice of
how scores are constructed and used. The motivating goal is straightforward:
transparency can discipline arbitrary discretion, enable legal contestation,
and facilitate external oversight.

At the same time, transparency changes the strategic environment. When
decision boundaries are legible and stable, agents adapt. They learn which
features “count,” invest in those features, and, when possible, manipulate the
measurement process itself. This is the basic mechanism behind Goodhart’s
law: when a proxy becomes a target, it ceases to be a good proxy. The
modern form of Goodhart’s law is not merely behavioral drift; it is strategic
optimization against a disclosed scoring rule. It shows up in test prep in-
dustries that teach to the exam, in search engine optimization that targets
ranking signals, in résumé keyword stuffing tailored to automated screeners,
in “credit repair” services that exploit the quirks of scoring formulas, and in
vendor ecosystems that sell compliance artifacts engineered to satisfy pro-
curement rubrics. In each case, more information about the rule can expand
the set of profitable manipulations, potentially degrading the very accuracy
and fairness properties that transparency aims to protect.

This paper studies that tension as an economic design problem: a prin-
cipal must commit to an auditable decision policy, knowing that agents will
respond strategically to whatever aspects of the policy are made targetable.
Our focal question is not whether transparency is normatively valuable in
general, but rather how to quantify one concrete cost of transparency man-
dates in settings with manipulable proxies. In many high-stakes uses of
machine learning, the principal does not directly observe the latent con-
struct that matters (true qualification, ability to repay, risk), but instead
relies on measured features that are only imperfectly related to that con-
struct. Some features are “hard-to-manipulate” (e.g., long-run performance
history, third-party verified records), while others are easier to manipulate
(self-reports, short-term behaviors, presentation, timing, or the feature ex-
traction pipeline itself). Governance debates often treat transparency as
orthogonal to statistical performance: reveal the model, and then separately
police discrimination or accuracy. Our claim is that, once strategic adap-
tation is incorporated, transparency can directly and mechanically shift the
feasible accuracy frontier.

To make this idea operational, we introduce a metric we call the trans-
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parency tax. Informally, it is the gap between the best misclassification
performance the principal can achieve under a fully transparent, fully tar-
getable policy and the best performance under an alternative regime that is
still auditable but less targetable. The economic logic is simple. Under full
transparency, the principal may be forced to “play it safe” by downweighting
manipulable but informative proxies, or by choosing conservative thresholds,
because any strong reliance on a manipulable feature invites cheap gaming
near the decision boundary. This self-censorship is a real performance cost:
the principal discards predictive information not because it is irrelevant, but
because it is strategically unsafe to use when the rule is perfectly legible.
Under an appropriately designed opacity mechanism, by contrast, the prin-
cipal can sometimes retain reliance on informative proxies while reducing the
marginal returns to manipulation. The difference in achievable loss is the
transparency tax.

Crucially, the opacity mechanism we study is not secrecy about the rule.
In governance practice, “black-boxing” is increasingly unacceptable, and of-
ten illegal. Instead, we analyze graded disclosure: the policy is publicly
committed and auditable, but includes a controlled amount of randomness
(or equivalently, coarsening/rounding/measurement noise) that is disclosed
as a distribution rather than as a realized draw. In our baseline model, the
principal uses a linear score built from two proxies and then adds mean-
zero noise before thresholding. Agents observe the policy parameters and
optimize manipulation of the manipulable proxy. This design captures an
increasingly realistic institutional posture: a regulator may demand that the
decision process be explainable and externally verifiable, while still allowing
documented tie-breaking, randomized audits, stochastic reviews, or privacy-
preserving perturbations that prevent perfect “boundary targeting.” The key
point is that audited randomness can be a commitment device: it changes
the slope of the acceptance probability with respect to manipulable inputs,
thereby reducing the marginal benefit of small manipulations.

Our analysis formalizes two features of the strategic environment that
matter for policy. First, manipulation incentives concentrate near the ac-
ceptance boundary. When acceptance is deterministic and the boundary is
known, an agent who is just below the cutoff has a sharply defined, min-
imal manipulation that flips the decision. This creates a “manipulability
region” whose mass can be large in continuous-feature environments, and
whose composition can be systematically adverse (e.g., disproportionately
unqualified agents may be clustered near the cutoff in score space). Second,
adding a small amount of disclosed noise smooths the acceptance probability.
Smoothing imposes an upper bound on the marginal gain from manipulat-
ing the proxy: beyond a point, moving the manipulable feature by an extra
unit yields only a limited improvement in acceptance probability. When ma-
nipulation costs are heterogeneous, this upper bound induces a cutoff: only
sufficiently low-cost agents manipulate, and above a threshold cost no one
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does. In this sense, graded disclosure can act like a “rate limiter” on gaming:
it reduces the extent to which a perfectly known rule can be exploited with
infinitesimal adjustments.

These ingredients allow us to articulate a governance-relevant tradeoff.
Transparency mandates are often motivated by procedural values (contesta-
bility, legitimacy, due process). Our model isolates an outcome cost that can
arise even when the principal’s objective is socially aligned with accurate
classification. Under full transparency, the principal may rationally choose
a rule that is less informative (e.g., it downweights a useful proxy) solely to
reduce gaming. This reduction in informativeness is not a failure of opti-
mization; it is the equilibrium response to a more manipulable information
environment. Conversely, permitting a limited, auditable form of graded dis-
closure can reduce gaming and allow the principal to use more information,
improving accuracy. The transparency tax measures precisely this wedge.

We emphasize that graded disclosure is not a free lunch. Randomness
also introduces intrinsic classification error: even a perfectly qualified indi-
vidual may be rejected due to the noise realization, and vice versa. Thus
the effect of noise on loss is generally non-monotone. Too little noise leaves
the boundary targetable; too much noise turns the decision into a lottery.
The policy design problem is therefore to choose a level of noise that bal-
ances (i) deterrence of strategic manipulation and (ii) the baseline cost of
randomization. This balancing is central for governance: regulators may cap
permissible randomness (e.g., forbidding “arbitrary” decisions), while princi-
pals may be constrained by legal standards that require consistency across
similar cases. Our framework accommodates these constraints by restricting
the noise parameter to an admissible range and evaluating the best achiev-
able performance within that cap.

Our main conceptual result is that the transparency tax is generically
positive whenever two conditions hold: there exists a proxy that is both in-
formative and manipulable, and there exists a nontrivial mass of agents with
sufficiently low manipulation costs. In such environments, a fully transpar-
ent rule creates a profitable manipulation region that the principal must
defensively manage, which in turn forces a sacrifice in predictive power. Al-
lowing graded disclosure—while still committing to an auditable policy—can
shrink the manipulation region enough that the principal can reintroduce re-
liance on the informative proxy. In benchmark Gaussian environments with
a simple two-point distribution of manipulation costs, we can make this logic
quantitative: the tax scales with the mass of low-cost agents and with an
explicit proxy-opportunity index capturing how much probability mass lies
within manipulable distance of the decision boundary under the best trans-
parent rule. This index can be interpreted as a measure of “how much gaming
surface area” transparency exposes.

Why does this matter for 2026 governance? Because the regulatory con-
versation is shifting from whether to regulate algorithms to how to opera-
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tionalize accountability without inadvertently encouraging strategic evasion.
In labor markets, disclosure of screening criteria may advantage sophisticated
applicants and intermediaries, potentially worsening inequality even as it im-
proves procedural fairness. In lending, revealing feature weights can seed an
ecosystem of targeted “score inflation” services that increase default risk and
undermine safety-and-soundness goals. In public benefits, deterministic and
legible eligibility rules can be exploited in ways that divert resources from
intended recipients, while also inviting political backlash when the system
appears “gameable.” More broadly, as AI systems become embedded in ad-
versarial environments (spam, fraud, cyber abuse), transparency can change
the effective threat model. A policy toolkit that treats auditable randomiza-
tion as legitimate—when properly bounded and disclosed—may therefore be
an essential complement to transparency mandates, not an exception that
undermines them.

We do not claim that adding noise is always desirable, nor that trans-
parency should be weakened categorically. Rather, the model clarifies a
specific mechanism by which “more transparency” can reduce accuracy in
equilibrium, and it characterizes when a limited, rule-bound form of opacity
can improve outcomes. The broader message is that transparency and per-
formance are linked through strategic response, so governance must reason
about them jointly. The transparency tax offers a compact way to measure
what is at stake: it converts an abstract concern (“Goodhart’s law”) into a
comparative-statics object that depends on manipulability, proxy informa-
tiveness, and the feasible scope of graded disclosure.

The remainder of the paper builds this argument in a sequence that mir-
rors the intuition above: we first formalize the model of manipulable and
hard-to-manipulate proxies under an auditable linear scoring rule with op-
tional graded disclosure; we then characterize agent best responses under
both deterministic and noisy acceptance; and finally we analyze the princi-
pal’s optimal policy and derive lower and upper bounds on the transparency
tax under benchmark distributions. We close by discussing how the same
logic extends beyond continuous proxies to richer “manipulation graphs,”
where gaming corresponds to moving along feasible edges in feature space,
and where the structure of reachability shapes the magnitude of the tax.

2 Related Work

Our analysis sits at the intersection of strategic classification, robust learning
in the presence of agents who respond to deployed models, and information
design under institutional constraints. The common thread is that predic-
tion rules are not evaluated on a fixed data-generating process: once a rule
is deployed and understood, the distribution of observed features becomes
an equilibrium object. In this section we situate our contribution relative to
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(i) the strategic classification and “gaming” literature, (ii) learning-theoretic
treatments such as strategic ERM/PAC, (iii) work on partial information
and opacity as a policy instrument, (iv) the role of randomness/noise as a
deterrence mechanism, and (v) the emerging literature on fairness externali-
ties and heterogeneous manipulation capacity. We close by clarifying how we
conceptualize graded disclosure as an auditable commitment problem, which
is the organizing perspective of the paper.

Strategic classification and gaming responses. A large body of work
formalizes Goodhart-style failures by explicitly modeling agents who alter
features in response to a classifier. Early and influential formulations treat
the interaction as a Stackelberg game: a decision-maker commits to a rule,
agents best respond by modifying observed covariates subject to a cost, and
the decision-maker’s performance is evaluated at the resulting equilibrium
distribution. This perspective appears in several strands under the umbrella
of strategic classification (e.g., ? and follow-ups), which study how a clas-
sifier’s choice changes when individuals can manipulate features. Closely
related is the literature on algorithmic recourse, which asks what actions in-
dividuals can take to change an adverse decision and how to design rules that
admit feasible and meaningful recourse (e.g., ?; see also survey work such
as ?). While recourse and strategic classification share an action-cost struc-
ture, their normative focus differs: recourse often treats actions as welfare-
improving pathways, whereas strategic classification emphasizes that actions
may be purely cosmetic (proxy manipulation) and can degrade predictive va-
lidity.

Within strategic classification, two modeling choices are particularly rele-
vant for our setup. First, many papers posit a deterministic decision bound-
ary and study how the principal should choose a classifier anticipating best
responses. In such models, manipulability is naturally concentrated near
the boundary: small changes in features can flip acceptance, producing dis-
continuous incentives. Second, several papers distinguish between features
that are costly to manipulate (or not manipulable) and those that are easy
to change, motivating designs that rely more heavily on “stable” attributes.
Our baseline model builds on these foundations but emphasizes a governance-
relevant constraint: policies must remain auditable, so secrecy about the rule
is not an available instrument. This constraint is central to why we focus
on a particular form of opacity that remains consistent with transparency
mandates.

Strategic ERM/PAC and learning in games. A complementary line
of work asks how to learn predictors when agents respond strategically, often
in worst-case or sample-complexity terms. This includes strategic extensions
of empirical risk minimization and PAC learning, where the training objec-
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tive accounts for a manipulation model or response function, and guarantees
are derived for generalization under strategic behavior (e.g., the “strategic
PAC” and “strategic ERM” literatures). These papers are valuable for un-
derstanding what can be learned reliably when manipulation is present, and
they often highlight identification challenges: the principal observes manip-
ulated covariates, not latent intent, and the mapping from unmanipulated
to manipulated distributions depends on equilibrium behavior.

Our approach is more mechanism-design oriented than learning-theoretic.
We take the statistical environment as given (a latent qualification and noisy
proxies) and focus on how a principal should commit to a policy under an ex-
plicit institutional design space. That said, the learning-theoretic viewpoint
motivates our emphasis on simple, interpretable scoring rules (linear in prox-
ies) and on policy parameters that can be documented and audited. It also
motivates the comparative-statics lens of a “tax”: we ask how a constraint
(full transparency) shifts the feasible frontier, rather than how quickly one
can learn the optimal unconstrained rule.

Partial information, opacity, and commitment. Several recent pa-
pers study how limiting agents’ information about the rule can reduce gam-
ing. This includes models where the principal discloses only coarse score
categories, provides noisy feedback, withholds feature weights, or otherwise
restricts what is revealed to agents about how actions translate into deci-
sions (e.g., work by ? and ?, among others). The key economic logic is
familiar: reducing information reduces the precision with which agents can
target the boundary, thereby reducing manipulation incentives. In many al-
gorithmic contexts, however, opacity as secrecy is either infeasible (rules are
reverse engineered), normatively contested (due process and contestability),
or legally restricted (documentation and explanation requirements). This
paper is motivated precisely by this tension: the interesting design space is
not “transparent vs. secret,” but “transparent and auditable vs. transparent
and auditable with graded disclosure.”

In this sense, our mechanism is closer in spirit to information design
(Bayesian persuasion and its descendants): the principal chooses an infor-
mation structure that shapes agents’ posterior beliefs and thus their actions.
The twist is that our information structure must itself be auditable and
policy-legible. We therefore model graded disclosure as a publicly commit-
ted distribution over decision-relevant noise, rather than as hidden random-
ness. This commitment interpretation aligns with governance practice (doc-
umented tie-breaking, random audits, stochastic review) and distinguishes
our contribution from work that relies on the principal’s ability to keep the
mapping from features to decisions secret.
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Randomness and noise as deterrence mechanisms. Randomization
has a long history as a tool in adversarial settings: it can reduce exploitability
by preventing exact targeting. In algorithmic decision-making, randomized
classifiers and noisy thresholds have been studied both as robustness devices
and as ways to trade off incentives against accuracy. Recent theoretical
work (e.g., ? and related papers) formalizes how adding noise to decision
rules can limit an adversary’s or agent’s ability to reliably achieve a desired
outcome with small perturbations, often producing bounds on the marginal
gain from manipulation. Our model leverages a similar idea but places it
in a policy-commitment frame: the principal chooses a noise level σ subject
to an admissible cap σ̄, and agents know the distribution of the noise but
cannot condition on its realization. This yields an explicit and governance-
interpretable “rate limit” on manipulation: the acceptance probability be-
comes smooth in the manipulable proxy, which can generate a cutoff in who
manipulates when costs are heterogeneous.

A key point of departure from some robustness-oriented work is that we
treat randomization as costly in baseline classification terms: it introduces
intrinsic error even absent manipulation. The principal’s problem is therefore
not to maximize deterrence, but to balance deterrence against the loss from
making decisions partly stochastic. This tradeoff is central to our notion of
a transparency tax, because it is precisely what makes graded disclosure a
meaningful alternative to full transparency rather than a trivial domination.

Fairness externalities and heterogeneous ability to manipulate. A
growing literature emphasizes that strategic responses can interact with fair-
ness in subtle ways. If manipulation costs differ systematically across groups
(due to access to coaching, resources, documentation, or intermediaries),
then a rule that is nominally group-blind can generate disparate impacts
through differential adaptation. Related work studies equilibrium effects of
deployed prediction systems on downstream outcomes, including feedback
loops and externalities (e.g., ?; ?; and subsequent work on equilibrium fair-
ness). Our benchmark cost heterogeneity (a distribution G with a low-cost
mass) is deliberately parsimonious, but it is intended to capture exactly the
channel highlighted in this literature: the presence of a population that can
manipulate cheaply can force the principal to change the rule in ways that
affect everyone, not only manipulators. In our model, this shows up as the
principal defensively downweighting a manipulable but informative proxy
under full transparency, which can increase errors on non-manipulators as
well.

We view this channel as a form of fairness externality : even if only a sub-
set of agents manipulates, the equilibrium response can alter acceptance for
others. While our main objective is accuracy (misclassification), the same ex-
ternality logic can be applied to group-conditional error rates and to welfare
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measures, and we discuss these extensions qualitatively when interpreting
comparative statics.

Our contribution and positioning. Relative to the strategic classifica-
tion literature, our main contribution is not a new manipulation technology
per se, but a new governance-relevant constraint and an associated welfare-
relevant metric. We formalize a setting in which transparency is mandated
in the sense that the policy must be publicly committed and auditable, and
we ask what is lost when the principal is further constrained to a fully de-
terministic, perfectly targetable boundary (σ = 0). The transparency tax
quantifies this loss as the gap between the best achievable equilibrium mis-
classification under full transparency and the best achievable equilibrium
misclassification when the principal is allowed a bounded amount of graded
disclosure (σ ∈ [0, σ̄]). This framing is meant to translate a qualitative con-
cern (“Goodhart’s law under transparency”) into a comparative-statics object
that can be tied to primitives: proxy informativeness, the mass of low-cost
manipulators, and the institutional admissibility of randomization.

Relative to work on opacity and partial information, our graded-disclosure
mechanism is intentionally designed to be compatible with accountability
regimes. The principal does not hide the scoring rule; instead, the principal
commits to a transparent distribution over randomization. This is why we
emphasize auditable noise: the policy can be inspected ex ante and validated
ex post statistically, even though individuals cannot precisely target the ac-
ceptance boundary in any one instance. In this respect, our model is closer
to an information-design-with-commitment problem than to a secrecy-based
security model.

Finally, relative to robustness work on randomized decision rules, we
provide an explicitly economic characterization of the equilibrium incentives
created by smoothing, and we connect those incentives to the principal’s
choice of reliance on manipulable proxies. The upshot is a clean mecha-
nism: deterministic transparency creates a sharp manipulability region near
the boundary, whereas graded disclosure bounds the marginal return to ma-
nipulation and can eliminate manipulation by all but the lowest-cost types.
This mechanism is what underlies the positive transparency tax result and
the scaling with an explicit proxy-opportunity index in our benchmark cal-
culations.

The next section introduces the model formally: we specify the latent
qualification and proxy structure, the manipulation technology and cost het-
erogeneity, the graded-disclosure channel, and the equilibrium notion we use
to evaluate the principal’s loss.
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3 Model

We study a single-shot classification problem in which a principal (the decision-
maker) deploys a rule that is understood by agents and can therefore change
their observed behavior. The key tension is that the principal would like to
use an informative proxy that agents can manipulate, but making the de-
cision boundary perfectly targetable can induce precisely the kind of proxy
gaming that undermines predictive validity.

Latent qualification and labels. Each agent is characterized by a latent
qualification t ∈ R. The principal’s normative/ground-truth label is

y = 1{t ≥ 0} ∈ {0, 1},

so that the principal would ideally accept exactly the qualified types. The
binary-threshold structure is not essential for our mechanism, but it yields
a transparent notion of misclassification and highlights the boundary incen-
tives created by a deployed decision rule.

Observable proxies: a stable feature and a manipulable feature.
The principal does not observe t directly. Instead she observes two proxies,

z = t+ ηz, p = t+ ηp,

where ηz and ηp are mean-zero noises that are independent of t and inde-
pendent of each other. Throughout we allow (t, ηz, ηp) to be sub-Gaussian
with variances (1, σ2

z , σ
2
p), which is sufficient for our comparative-statics ar-

guments. For closed-form benchmark calculations we will specialize to the
Gaussian case. Economically, z represents a hard-to-manipulate signal (e.g.,
a verified credential or a third-party record), while p represents a manipula-
ble signal (e.g., a test score that can be coached, a self-reported feature, or
a proxy that can be inflated through cosmetic actions).

Two modeling assumptions matter for interpretation. First, both proxies
are informative about t absent manipulation, so there is genuine predictive
value at stake. Second, only p is directly manipulable in our baseline; this
stark asymmetry is a stylized way to capture that some features are institu-
tionally or technologically “sticky,” while others are much easier to move.

Principal’s policy: a linear score and graded disclosure. The prin-
cipal commits to a publicly auditable policy consisting of a linear score

s = z + βp

and a graded-disclosure parameter σ ≥ 0. Operationally, β controls the prin-
cipal’s reliance on the manipulable proxy p. The parameter σ controls the
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amount of decision noise disclosed and committed to by the institution. After
observing reported features, the principal draws ε ∼ N (0, σ2) independent
of all other variables and accepts iff

a = 1{s+ ε ≥ 0}.

When σ = 0, the rule is deterministic and therefore perfectly targetable:
acceptance occurs exactly when s ≥ 0. When σ > 0, the acceptance proba-
bility is smooth in the score; crucially, agents know the distribution of ε but
do not observe its realization before acting. We interpret this as auditable
randomization: the institution can document and statistically validate the
randomization scheme (e.g., rounding rules, stochastic review, tie-breaking
lotteries), even though any given agent cannot condition her action on the
realized coin flip.

We impose a regulatory or institutional cap σ̄ > 0 and restrict attention
to σ ∈ [0, σ̄]. This cap encodes that excessive randomness may be legally
impermissible, normatively undesirable, or operationally infeasible.

Manipulation technology and heterogeneous costs. After observing
(z, p) and the policy (β, σ), the agent may manipulate only the proxy p by
choosing an action ∆ ∈ R, reporting

p̂ = p+∆.

Manipulation is costly: each agent draws a marginal cost parameter κ > 0
from a distribution G, independent of (t, ηz, ηp), and pays κ|∆|. The absolute
value captures that increasing or decreasing p is costly in magnitude, and
linearity delivers a sharp characterization of “move just enough” incentives
under deterministic thresholds. Cost heterogeneity is central: it captures
that some agents have access to coaching, documentation, intermediaries, or
slack resources that make proxy movements cheaper. Our benchmark will
often be the two-point specification κ ∈ {κL,∞} with P(κ = κL) = α, which
cleanly separates a low-cost strategic mass from a non-manipulating mass.

Timing and information. The interaction is a Stackelberg game:

1. Nature draws (t, ηz, ηp, κ). The agent observes (z, p, κ).

2. The principal commits to (β, σ) (policy is publicly known and au-
ditable).

3. The agent chooses ∆, generating p̂ = p+∆.

4. The principal observes (z, p̂), draws ε ∼ N (0, σ2), and sets a = 1{z +
βp̂+ ε ≥ 0}.
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Agents understand the mapping from (z, p̂) to acceptance probabilities, but
cannot condition on ε. This is the minimal commitment structure needed
for graded disclosure to matter: if ε were observable to the agent prior to
manipulation, the agent would again be able to target the realized boundary.

Agent utility and best response. Each agent values acceptance at 1.
Under σ > 0, her acceptance probability given (z, p, κ) and action ∆ is

P(a = 1 | z, p,∆;β, σ) = Φ

(
z + β(p+∆)

σ

)
,

so utility is

U(z, p, κ;β, σ,∆) = Φ

(
z + β(p+∆)

σ

)
− κ|∆|.

When σ = 0, acceptance is deterministic and utility becomes

U(z, p, κ;β, 0,∆) = 1{z + β(p+∆) ≥ 0} − κ|∆|.

We denote an optimal manipulation choice by ∆∗(z, p, κ;β, σ). Under σ > 0,
the smoothness of Φ(·) implies a standard marginal condition: the benefit of
increasing ∆ is proportional to the slope of the acceptance probability, while
the cost is κ. Under σ = 0, the benefit is discontinuous at the boundary,
yielding “jump” incentives: if manipulation is worthwhile, it is optimal (under
a natural tie-break) to move just enough to cross.

Principal loss and the transparency tax. The principal cares about
misclassification relative to y = 1{t ≥ 0}. Given the equilibrium manipula-
tion response ∆∗, define the principal’s loss as

L(β, σ) = P(a ̸= y),

where a = 1{z+β(p+∆∗)+ε ≥ 0}. The principal chooses (β, σ) to minimize
L, subject to σ ∈ [0, σ̄]. We interpret σ = 0 as mandated full transparency
in the strong sense of a fully deterministic and thus perfectly targetable
boundary. Graded disclosure corresponds to allowing σ > 0 while keeping
the policy auditable.

To quantify the value of graded disclosure, we define the transparency tax
as the equilibrium performance gap between the best deterministic transpar-
ent policy and the best auditable graded-disclosure policy:

Tax = inf
β∈R

L(β, 0) − inf
β∈R, σ∈[0,σ̄]

L(β, σ).

This object is not about secrecy: both sides of the comparison allow the
policy to be fully known. The only difference is whether the institution may
commit to a bounded amount of transparent randomization in the acceptance
step.
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A proxy-opportunity index. A recurring quantity in our analysis is the
mass of agents who lie within manipulable distance of the acceptance bound-
ary under a deterministic rule. Intuitively, these are precisely the agents for
whom perfect targetability creates a profitable “buy acceptance” opportunity,
and hence where Goodhart-type distortions concentrate.

Formally, fix a proxy weight β > 0 and consider the pre-manipulation
score s = z + βp. Under σ = 0, an agent with s < 0 can cross by choosing
the minimal action ∆min = −s/β, which costs κ(−s/β). Since acceptance is
worth 1, a low-cost agent manipulates whenever κ(−s/β) < 1, i.e., whenever

s ∈
[
− β

κ
, 0

)
.

This motivates the proxy-opportunity index for a given cost level κ:

∆proxy(β;κ) := P
(
−β

κ
≤ z + βp < 0

)
,

the probability mass in the manipulability window just below the cutoff.
In the two-point benchmark, the relevant index is ∆proxy(β;κL), and when
we evaluate equilibrium distortions under the best transparent rule we will
often write ∆proxy := ∆proxy(βT ;κL), where βT is the principal’s optimal
proxy weight under σ = 0. This index is “opportunity” rather than “action”:
it measures how many agents could profitably game if they are in the low-
cost group, which is why it naturally scales with the low-cost mass α in our
benchmark bounds.

Discussion and scope. Two features of the model are doing the concep-
tual work. First, reliance on a manipulable proxy (β) creates an incentive
gradient in ∆, but the nature of that gradient depends sharply on whether
acceptance is deterministic (σ = 0) or smoothed (σ > 0). Second, hetero-
geneity in κ ensures that policies cannot be evaluated only at a represen-
tative agent: a small mass of low-cost manipulators can force the principal
to defensively reduce β, affecting classification performance for the broader
population.

In the next section we take the deterministic transparency benchmark
seriously by setting σ = 0 and characterizing agents’ best responses, the
induced false-positive and false-negative rates, and the principal’s optimal
choice of βT , including closed forms under the Gaussian/two-point-cost bench-
mark.

4 Equilibrium under mandated full transparency
(σ = 0)

When σ = 0, acceptance is a deterministic threshold rule: the principal
accepts iff the (post-manipulation) score is nonnegative. This is the polar
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case of full targetability : conditional on (β, 0), an agent can compute exactly
how far she must move the manipulable proxy p to flip the decision. The
equilibrium therefore has a stark “move-just-enough” structure that will be
the source of both tractability and distortion.

4.1 Agent best responses: crossing the deterministic bound-
ary

Fix a proxy weight β. (In our baseline where p is positively informative about
t, it is without loss to focus on β ≥ 0; negative β both worsens prediction
and makes manipulation decrease the score.) Let the pre-manipulation score
be

s = z + βp.

Under σ = 0, an agent who chooses ∆ is accepted iff

z + β(p+∆) ≥ 0 ⇐⇒ ∆ ≥ − s

β
(β > 0).

If s ≥ 0, the agent is already accepted and any nonzero ∆ only adds cost, so
∆∗ = 0. If s < 0, the agent can secure acceptance by choosing the minimal
boundary-crossing action

∆min(s) = − s

β
> 0.

Because acceptance is worth exactly 1 and costs are linear, any ∆ > ∆min is
strictly dominated by ∆min. Thus the problem reduces to a discrete choice:
do nothing and be rejected, or pay κ∆min and be accepted. With the natural
tie-break toward minimal movement, a best response is

∆∗(z, p, κ;β, 0) =



0, s ≥ 0,

− s

β
, s < 0 and κ

(
− s

β

)
< 1,

0, s < 0 and κ

(
− s

β

)
≥ 1.

Equivalently, for β > 0 the set of types who manipulate is exactly those with
scores in the manipulability window

s ∈
[
− β

κ
, 0

)
.

This is the core mechanical implication of mandated transparency: the deci-
sion boundary becomes a purchasable good for agents sufficiently close to it,
and the width of the purchasable region scales linearly with β and inversely
with κ.

Two immediate equilibrium implications are worth highlighting.
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Bunching at the cutoff. All manipulators choose ∆ = −s/β, which
implies their post-manipulation score satisfies z + β(p + ∆) = 0 exactly.
Thus the reported proxy p̂ exhibits a point mass at the acceptance boundary:
the classic “bunching” pattern familiar from tax notch models and strategic
test-taking.

Manipulation is driven by geometry, not beliefs. Because the ac-
ceptance mapping is deterministic, best responses do not depend on any
subtle inference: the only objects that matter are the realized distance to
the boundary −s/β and the cost κ. This will change sharply once σ > 0,
where marginal incentives depend on the slope of an acceptance probability
rather than a jump.

4.2 Acceptance regions and induced error types

Under σ = 0, the principal’s realized decision depends on whether the agent
is able and willing to move into acceptance. Let a denote the acceptance
outcome in equilibrium.

For an agent with cost κ, the equilibrium acceptance rule can be written
directly as a threshold in the pre-manipulation score:

a = 1{s ≥ 0} ∨ 1

{
s ∈

[
− β

κ
, 0
)}

= 1

{
s ≥ −β

κ

}
,

where the last equality uses that if s ≥ 0 the condition s ≥ −β/κ already
holds. Intuitively, low-cost agents effectively face a shifted cutoff : they are
accepted whenever their unmanipulated score exceeds −β/κ, because they
can “buy” the remaining distance to zero.

This representation makes the error decomposition transparent. Misclas-
sification is

L(β, 0) = P(t ≥ 0, a = 0) + P(t < 0, a = 1).

Under heterogeneous κ, we can view L as a mixture over cost types: low-cost
agents contribute more false positives (because their cutoff is shifted left),
and also fewer false negatives (because some qualified agents with slightly
negative scores can manipulate into acceptance). The principal’s problem
is precisely to choose β to balance (i) the predictive value of loading on p
against (ii) the extra false positives induced by making p an effective lever.

4.3 Two-point costs: a clean equilibrium characterization

The benchmark G we will repeatedly use is

κ ∈ {κL,∞}, P(κ = κL) = α.
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Agents with κ = ∞ never manipulate, so they face cutoff s ≥ 0. Agents with
κ = κL manipulate whenever beneficial and thus face cutoff s ≥ −β/κL.
Therefore equilibrium acceptance is

a =

1{s ≥ 0}, κ = ∞,

1{s ≥ −β/κL}, κ = κL,
s = z + βp.

The equilibrium mass of manipulators is also immediate:

P(∆∗ ̸= 0) = α · P
(
s ∈

[
− β

κL
, 0
))

= α ·∆proxy(β;κL).

This expression emphasizes that manipulation is concentrated among agents
“just below” the transparent cutoff, and that increasing β enlarges this strate-
gic mass mechanically.

Correspondingly, false positive and false negative rates can be written as

FP(β) = (1− α)P(s ≥ 0 | t < 0) + αP
(
s ≥ − β

κL

∣∣∣∣ t < 0

)
,

FN(β) = (1− α)P(s < 0 | t ≥ 0) + αP
(
s < − β

κL

∣∣∣∣ t ≥ 0

)
,

and L(β, 0) = 1
2FP(β) +

1
2FN(β) when t is symmetric around 0. These

formulae make the qualitative trade-off stark: larger β tends to reduce P(s <
0 | t ≥ 0) by improving prediction, but it also increases the gap between
the non-manipulating cutoff 0 and the manipulating cutoff −β/κL, thereby
raising acceptance among unqualified low-cost agents.

4.4 Gaussian benchmark: explicit distributions and closed-
form components

To obtain closed forms, suppose t ∼ N (0, 1), ηz ∼ N (0, σ2
z), ηp ∼ N (0, σ2

p),
independent. Then

s = z + βp = (1 + β)t+ ηz + βηp︸ ︷︷ ︸
=:uβ

, uβ ∼ N (0, vβ), vβ = σ2
z + β2σ2

p,

with uβ ⊥ t. Hence (t, s) is jointly normal with correlation

ρ(β) =
Cov(t, s)√
Var(t)Var(s)

=
1 + β√

(1 + β)2 + vβ
.

For the non-manipulating mass (κ = ∞), misclassification under the rule
a = 1{s ≥ 0} is exactly the probability that t and s have opposite signs. A
standard bivariate-normal identity yields the closed form

P
(
1{s ≥ 0} ̸= 1{t ≥ 0}

)
=

1

2
− 1

π
arcsin(ρ(β)).
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This expression makes precise the usual “signal quality” logic: increasing β
can increase ρ(β) when p is informative, improving accuracy absent gaming.

For the manipulating mass (κ = κL), the cutoff is shifted to s ≥ −β/κL.
The relevant error terms are of the form

P(t < 0, s ≥ c), P(t ≥ 0, s < c), where c = −β/κL.

These are bivariate normal probabilities and can be written compactly using
the bivariate normal CDF Φ2(·, ·; ρ) (or, equivalently, Owen’s T function).
Concretely, letting σs(β) =

√
(1 + β)2 + vβ so that s/σs is standard normal,

we can express

P(t < 0, s ≥ c) = Φ(0) − Φ2

(
0,

c

σs(β)
; ρ(β)

)
,

and similarly for P(t ≥ 0, s < c). While less elementary than the arcsin
formula at c = 0, these expressions remain one-line and numerically stable,
and they let us compute L(β, 0) and βT exactly in the Gaussian benchmark.

4.5 The principal’s optimal transparent weight βT

Under mandated transparency, the principal solves

βT ∈ argmin
β≥0

L(β, 0),

with L computed under the induced manipulation behavior above. We do not
generally obtain a simple closed form for βT because β affects loss through
two distinct channels: (i) statistical fit (via ρ(β) and the distribution of s),
and (ii) strategic distortion (via the window [−β/κL, 0) and the shifted cutoff
for low-cost agents).

What we can characterize sharply, however, is the direction of the dis-
tortion relative to the non-strategic benchmark. If agents could not ma-
nipulate, the Bayes-optimal classifier (under the Gaussian prior/noise struc-
ture) accepts iff the posterior mean E[t | z, p] ≥ 0. Because that posterior
mean is linear in (z, p), this decision rule is equivalent to a linear threshold
z + βBayesp ≥ 0 with

βBayes =
σ2
z

σ2
p

.

Under transparency with α > 0 and finite κL, the principal internalizes that
raising β increases the mass of unqualified agents who can cheaply cross the
cutoff. This induces a strategic shrinkage of the proxy weight:

βT < βBayes whenever manipulation is sufficiently prevalent (large α) or sufficiently cheap (small κL).

In the extreme, as α → 1 and κL → 0, any reliance on p renders acceptance
almost fully purchasable near the boundary, and the principal optimally re-
treats toward βT ≈ 0, effectively screening on the hard-to-manipulate proxy
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z alone. Conversely, as α → 0 or κL → ∞, the strategic constraint vanishes
and βT → βBayes.

This is the sense in which mandated full transparency imposes a real
opportunity cost: it does not merely add manipulators on top of an oth-
erwise optimal statistical rule; it pushes the principal away from the best
statistical use of an informative proxy. In the next section we show that
allowing auditable graded disclosure (σ > 0) changes the geometry of in-
centives—replacing a discrete jump with a bounded marginal gain—and
can therefore relax this strategic shrinkage while remaining fully policy-
transparent.

5 Graded disclosure via auditable noise (σ > 0)

When σ > 0, acceptance is no longer a knife-edge event that can be guaran-
teed by crossing a deterministic boundary. Instead, the principal commits to
a distribution over effective cutoffs through the additive noise ε ∼ N (0, σ2),
which is publicly known but not observed at the time of manipulation. This
graded-disclosure regime preserves auditability (the policy is still fully spec-
ified by (β, σ)) while making the decision less targetable: moving p upward
shifts acceptance probabilities smoothly rather than flipping acceptance with
certainty.

5.1 Smooth incentives: from “buying acceptance” to “buying
probability”

Fix (β, σ) with β > 0 and σ > 0. Given observed (z, p, κ), an agent who
chooses ∆ obtains acceptance probability

P(a = 1 | z, p,∆;β, σ) = Φ

(
z + β(p+∆)

σ

)
,

and therefore solves

max
∆∈R

Φ

(
z + β(p+∆)

σ

)
− κ|∆|.

Relative to σ = 0, the crucial change is that the marginal benefit of manip-
ulation is governed by the slope of the probit link. Differentiating on each
side of ∆ = 0 yields, for ∆ > 0,

∂

∂∆
Φ

(
z + β(p+∆)

σ

)
=

β

σ
ϕ

(
z + β(p+∆)

σ

)
,

so the agent trades off a smooth marginal gain against the constant marginal
cost κ. Since ϕ(·) ≤ 1/

√
2π, the marginal gain is uniformly bounded :

sup
∆

∂

∂∆
Φ

(
z + β(p+∆)

σ

)
=

β

σ
√
2π

.
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This bound is the mechanical force behind graded disclosure: unlike the
deterministic jump of size 1, the largest possible marginal return to moving
p is finite, and it falls as σ rises.

5.2 Best responses and the manipulation cutoff in κ

The bounded marginal return immediately implies a clean deterrence condi-
tion. If an agent’s marginal cost exceeds the maximum marginal gain, then
manipulation is never optimal:

κ >
β

σ
√
2π

=⇒ ∆∗(z, p, κ;β, σ) = 0 for all (z, p).

Intuitively, even if the agent could move the score to the steepest point of
the acceptance curve (where the slope is maximized), the probability increase
per unit ∆ would still not justify the cost.

When κ ≤ β/(σ
√
2π), some agents do manipulate, but the structure

differs sharply from “move just enough.” For ∆ > 0, any interior optimum
must satisfy the first-order condition

β

σ
ϕ

(
z + β(p+∆∗)

σ

)
= κ.

A useful way to read this condition is that the agent chooses a post-manipulation
standardized score

x∗(κ;β, σ) such that ϕ(x∗) =
κσ

β
,

and then moves just enough to reach that target, provided reaching it re-
quires ∆ > 0. Concretely, if x∗ is selected on the relevant (typically nonneg-
ative) branch,1 then

∆∗(z, p, κ;β, σ) = max

{
0,

σx∗(κ;β, σ)−
(
z + βp

)
β

}
.

This expression makes two points transparent. First, the identity of manip-
ulators depends jointly on costs and baseline score: low κ agents manipulate
more often, and among a given κ, manipulation is concentrated among those
whose initial score s = z+βp lies sufficiently below the cost-dependent target
σx∗. Second, conditional on manipulating, agents typically do not all land

1Because ϕ is symmetric and unimodal, ϕ(x) = c has two solutions ±x when c < 1/
√
2π.

The global optimum selects the branch consistent with the direction of manipulation and
the fact that additional movement into the far tails has sharply diminishing marginal
returns. For our baseline with β > 0, profitable manipulation is upward (∆ ≥ 0) and
the relevant solution corresponds to pushing the score toward (and possibly beyond) the
region where acceptance probability is already high.
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exactly at the same cutoff. In particular, there is no analogue of the deter-
ministic bunching at s = 0; instead, manipulation tends to push agents into
a neighborhood where marginal returns are commensurate with κ, producing
a smoother distortion of the score distribution.

5.3 Comparative statics: how σ disciplines strategic behav-
ior

The cutoff β/(σ
√
2π) delivers immediate comparative statics that match the

policy intuition.

Noise reduces manipulation. Holding β fixed, increasing σ lowers the
maximum slope of the acceptance curve and therefore weakly shrinks the set
of cost types who ever manipulate. In particular, for any cost distribution
G,

P(∆∗ ̸= 0) ≤ G

(
β

σ
√
2π

)
,

up to the additional requirement that the realized score is low enough to
make a positive ∆ valuable. In the two-point benchmark κ ∈ {κL,∞}, this
becomes stark: either σ is large enough to deter all low-cost manipulation
(if κL > β/(σ

√
2π)), or else the entire low-cost mass is potentially active.

Proxy weight increases both usefulness and manipulability. Hold-
ing σ fixed, increasing β increases the marginal gain from improving p and
therefore (i) expands the set of costs for which manipulation is privately
worthwhile and (ii) increases the optimal ∆∗ for those who manipulate. This
is the smooth analogue of the transparency case: loading more on a manipu-
lable proxy makes the proxy more “valuable to move.” The difference is that
graded disclosure turns this into a bounded incentive effect that can be offset
by increasing σ.

Cheaper manipulation increases distortion, but in a continuous
way. Lower κ raises the target acceptance slope the agent is willing to pay
for, which corresponds to pushing the post-manipulation score further into
regions where acceptance probability is high. Thus, conditional on being
below the relevant target, low-cost agents choose larger ∆∗. Unlike the
deterministic setting, however, these effects scale smoothly with κ; there is
no discrete “buy acceptance for sure” region.

5.4 How graded disclosure restores proxy usefulness

From the principal’s perspective, σ creates a new instrument that relaxes the
strategic shrinkage motive. Under full transparency, increasing β mechan-
ically widens a purchasable window near the cutoff. Under graded disclo-
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sure, increasing β does raise incentives, but the principal can simultaneously
choose σ to keep the marginal return to manipulation below the relevant
cost levels.

This logic is especially clean in the two-point cost benchmark. Suppose a
fraction α of agents have finite cost κL, and the remainder never manipulate.
If the principal selects (β, σ) satisfying

κL >
β

σ
√
2π

,

then even the lowest-cost strategic agents optimally choose ∆∗ = 0. In that
region of the policy space, equilibrium play coincides with the no-gaming en-
vironment: the only effect of σ is the principal’s own randomized tie-breaking
around the cutoff, not endogenous feature distortion. This is precisely the
channel through which graded disclosure can “restore” the value of p: once
manipulation is deterred, the principal can safely raise β toward the sta-
tistically optimal weight (the Bayes coefficient in the Gaussian benchmark)
without inducing a corresponding surge in strategic false positives.

Of course, σ is not a free lunch. Even if it deters manipulation, it intro-
duces intrinsic classification randomness by occasionally flipping decisions
near the boundary. Thus, for fixed β, the loss L(β, σ) typically reflects a
balance between two forces: larger σ reduces strategic distortion (a first-
order gain when manipulation is prevalent) but increases baseline noise in
the accept/reject rule (a second-order cost when the score is already well-
separated). The principal’s optimum σ∗ is therefore generally interior when
manipulation is possible, and it is pinned at σ∗ = 0 only when either ma-
nipulation is absent (e.g., α = 0 or κL very large) or the regulatory cap σ̄ is
too tight to meaningfully affect incentives.

The key takeaway for what follows is that σ changes the geometry of
best responses: it replaces a discontinuous, fully targetable threshold with a
smooth acceptance probability whose slope is bounded. This single techni-
cal fact yields a policy-relevant conclusion: even a small, auditable amount
of graded disclosure can eliminate manipulation by a nontrivial set of cost
types, allowing the principal to increase reliance on an informative but ma-
nipulable proxy. In the next section, we formalize this trade-off in the main
transparency-tax bounds: a lower bound showing that full transparency in-
duces an unavoidable accuracy loss when proxies are both useful and game-
able, and a matching upper bound showing that an explicit graded-disclosure
policy (β∗, σ∗) recovers (up to constants) the lost accuracy.
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6 Main results: an unavoidable transparency tax
and a matching graded-disclosure remedy

We now formalize the central claim of the paper: when a proxy is both (i)
predictively useful for y and (ii) cheaply manipulable for a nontrivial mass of
agents, then mandated full transparency (σ = 0) imposes an accuracy loss
that cannot be eliminated by tuning the proxy weight β. Moreover, the loss
is not merely existential: in a benchmark Gaussian environment we can lower
bound it by an explicit “proxy-opportunity” index, and we can match that
lower bound (up to constants) with a constructive graded-disclosure policy
(β∗, σ∗) that respects the regulatory cap σ ≤ σ̄.

Throughout this section we focus on the benchmark that makes the
trade-off sharp while remaining transparent to compute: t ∼ N (0, 1), ηz ∼
N (0, σ2

z), ηp ∼ N (0, σ2
p) independent, and a two-point manipulation-cost

distribution κ ∈ {κL,∞} with P(κ = κL) = α. This isolates the key force: a
fraction α of agents can manipulate at constant marginal cost κL, while the
rest are non-strategic.

6.1 A proxy-opportunity index

A recurring object in our bounds is the amount of probability mass that lies
within manipulable distance of the acceptance boundary under a transparent
rule. Under σ = 0 and β > 0, low-cost agents with baseline score s =
z + βp < 0 can guarantee acceptance by choosing the minimal crossing
action ∆min = −s/β, and they do so whenever κL∆min < 1, i.e.,

s ∈
[
− β

κL
, 0

)
.

This “purchasable strip” is the transparent analogue of a margin: the thicker
the strip, the more agents can flip the decision at bounded cost.

Motivated by this, we define a proxy-opportunity index that captures the
density of agents near the cutoff scaled by the manipulable strip width. One
convenient choice (sufficient for our results) is

∆proxy(β) := P
(
s ∈

[
− β

κL
, 0

))
, s = z + βp,

evaluated under the no-manipulation distribution of (z, p). Under the Gaus-
sian benchmark, s is itself Gaussian, so ∆proxy(β) is explicit:

s ∼ N (0, Var(s)) , Var(s) = Var(z) + β2Var(p) + 2β Cov(z, p),

and thus ∆proxy(β) = Φ
(
0/
√
Var(s)

)
−Φ

(
−β/(κL

√
Var(s))

)
= Φ

(
β/(κL

√
Var(s))

)
−

1
2 . For small widths this is approximately linear:

∆proxy(β) ≈ β

κL
· fs(0) =

β

κL
· 1√

2πVar(s)
.
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We emphasize two interpretation points. First, ∆proxy is larger when κL is
smaller (cheaper gaming) and when the score distribution has substantial
mass near the cutoff (a common feature of selective decisions). Second,
because Var(s) depends on β, the index automatically accounts for the fact
that re-weighting the proxy changes not only incentives but also the geometry
of the score distribution.

6.2 Lower bound: full transparency forces strategic shrink-
age

Under mandated transparency, the principal’s only lever is β, and β faces
a tension. If β is large, the score uses the informative proxy p aggressively,
which is statistically desirable in the no-gaming world. But the same large
β enlarges the purchasable strip [−β/κL, 0), and hence expands strategic
acceptance among low-cost agents who were initially just below the bound-
ary. If β is small, manipulation incentives weaken, but the principal leaves
predictive power on the table.

The next theorem makes this trade-off quantitative.

Theorem 1 (Transparency tax lower bound). In the Gaussian/two-
point-cost benchmark, suppose σ2

p > 0 (so p contains independent informa-
tion about t beyond z) and α > 0. Let βT ∈ argminβ L(β, 0) be an optimal
transparent weight. Then there exist universal constants c1, c0 > 0 such that

L(βT , 0) ≥ Lno-gaming(βBayes) + c1 α∆proxy,

where βBayes is the Bayes-optimal linear weight in the no-manipulation en-
vironment (equivalently, the coefficient implied by E[t | z, p]), and ∆proxy is
an explicit proxy-opportunity term (e.g., ∆proxy = ∆proxy(β̃) for some β̃ in a
neighborhood of βBayes). In particular, for any σ̄ > 0, the transparency tax
satisfies Tax > 0.

Proof sketch and economic content. The proof has a “minimax” structure:
we show that any transparent β must pay either a statistical price (from
under-using the proxy) or a strategic price (from induced manipulation).
Concretely, consider two regimes.

(i) Large β: If β is large enough to meaningfully approach βBayes, then
a nontrivial mass of low-cost agents satisfy s ∈ [−β/κL, 0). These agents
flip from rejection to acceptance under manipulation, generating strategic
acceptances that are not aligned with y. Because manipulation is concen-
trated just below the cutoff, it increases the acceptance rate precisely where
the classifier is most error-prone; in misclassification terms, it induces an
Ω(α∆proxy(β)) contribution to error (the exact decomposition depends on
whether we track the resulting false positives, false negatives, or both, but
the core is that a constant fraction of these flips are “wrong” under the
benchmark symmetry).
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(ii) Small β: If β is reduced to suppress manipulation, the classifier
becomes closer to one that uses only z. Under our proxy-usefulness condition
(formally, Var(E[t | z, p]) > Var(E[t | z])), this incurs a strictly positive
statistical regret relative to Lno-gaming(βBayes). In the Gaussian case, this
gap can be bounded below using standard comparison arguments for linear
separators: the Bayes weight delivers a strictly larger signal-to-noise ratio
than any β constrained to be too small.

The lower bound follows by combining these: any β that avoids the
strategic term must be small enough to suffer the statistical term, and any β
that avoids the statistical term must be large enough to trigger the strategic
term. The proxy-opportunity index enters through an anti-concentration
bound for s: under Gaussianity, the probability of lying in an interval of
width β/κL around the cutoff is proportional to that width times the density
at the cutoff, yielding a linear-in-β/κL component that cannot be “optimized
away”.

6.3 Upper bound: an explicit graded-disclosure policy that
recovers the loss

The second theorem shows that the lower bound is essentially tight: a sim-
ple graded-disclosure policy can remove (most of) the strategic term while
permitting the principal to use a more statistically efficient β.

Theorem 2 (Matching upper bound via graded disclosure). In the
same benchmark, assume σ̄ > 0. Then there exist (β∗, σ∗) with σ∗ ∈ (0, σ̄]
and β∗ > βT such that

L(β∗, σ∗) ≤ L(βT , 0) − c2 α∆proxy,

for a universal constant c2 > 0 (matching c1 up to constant factors). One
sufficient construction is to choose σ∗ and β∗ satisfying the deterrence in-
equality

κL >
β∗

σ∗
√
2π

,

so that ∆∗(z, p, κL;β
∗, σ∗) = 0 for all (z, p), and then set β∗ close to βBayes

subject to this constraint and σ∗ ≤ σ̄.
Proof sketch and economic content. The key step is to use the bounded-

slope property of the probit acceptance function under σ > 0. When κL >
β/(σ

√
2π), even the cheapest agents never find it profitable to move p, so the

equilibrium coincides with the no-manipulation world. In that case, the only
cost of σ is the principal’s own randomized tie-breaking near the bound-
ary. Because that intrinsic randomness affects only agents whose (post-
manipulation) scores lie within O(σ) of the cutoff, it can be made small
by choosing σ∗ small—yet still large enough (relative to β∗) to shut down
manipulation incentives.

25



Operationally, we pick σ∗ at (or near) the smallest value allowed by the
deterrence inequality given a target β∗, and then pick β∗ as large as possible
(ideally near βBayes) given the cap σ̄. The improvement over transparency
comes from two sources that move in opposite directions under σ: (i) strate-
gic error falls discontinuously to zero once manipulation is deterred, while
(ii) intrinsic noise error rises smoothly with σ. This creates room for a net
gain, and the gain scales with the mass of agents who would otherwise have
been in the purchasable strip—exactly α∆proxy.

6.4 Sharpness, tightness, and when the bounds bind

We view Theorems 1 and 2 as a matched characterization rather than an
artifact of the benchmark. The linear dependence on α is tight: if α → 0,
strategic behavior vanishes and so does the transparency tax. The depen-
dence on κL through the strip width β/κL is also tight in the transparent
regime: under σ = 0, the best response is literally characterized by whether
an agent can afford the minimal crossing action, so the set of strategic movers
expands linearly in 1/κL near the cutoff.

Where the constants (and the extent of tightness) matter is the role of the
cap σ̄. If σ̄ is large enough that the principal can satisfy κL > βBayes/(σ̄

√
2π),

then graded disclosure can both deter manipulation and set β∗ ≈ βBayes,
making the upper bound especially sharp: the remaining gap to the no-
gaming optimum is then driven primarily by the intrinsic randomization,
which can be made small. If instead σ̄ is very tight, the principal may be
unable to deter manipulation at Bayes-like β. In that case graded disclosure
still helps (by shrinking marginal incentives even when it does not eliminate
them), but the simple “full deterrence” construction becomes conservative;
the true optimum may involve partial deterrence and an interior trade-off.

Finally, we stress what our theorems do not claim. We are not argu-
ing that adding noise is always good: if manipulation costs are high or the
proxy is uninformative, the optimal σ∗ is indeed zero and the tax disappears.
Rather, the message is conditional and policy-relevant: when transparency
makes a manipulable proxy too targetable, auditable graded disclosure can
strictly improve accuracy while remaining compatible with oversight, be-
cause it changes the incentive geometry from “buying acceptance” to “buying
probability” with bounded marginal returns.

7 Extensions and robustness (flagged)

Our baseline analysis intentionally collapses the strategic channel into a sin-
gle manipulable scalar proxy p, additive actions ∆ ∈ R, and a particu-
larly tractable disclosure instrument (additive Gaussian noise ε). In prac-
tice, however, (i) models typically use many proxies, (ii) institutions of-
ten have a menu of disclosure/opacity levers besides explicit randomization,
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and (iii) manipulation is frequently combinatorial (rewriting a resume, re-
bundling transactions, creating a portfolio of signals) rather than additive.
In this section we sketch three extensions that preserve the same economic
logic—transparency makes a boundary targetable, graded disclosure reduces
marginal returns to targeting—while clarifying what does and does not con-
tinue to admit closed forms. We flag where numerical methods become
unavoidable.

7.1 (a) Multi-dimensional proxies with a low-cost manipula-
ble subspace

Let the proxy become p ∈ Rd with score

s = z + β⊤p, β ∈ Rd,

and allow the agent to choose a vector manipulation ∆ ∈ Rd so that p̂ =
p + ∆. A natural way to formalize “a low-cost subspace” is to partition
coordinates into hard and soft components, p = (pH , pM ), and to assume
manipulation is feasible only (or cheaply only) on pM . For instance, take a
separable linear cost

cost(∆) = κ∥∆M∥1 + ∞ · 1{∆H ̸= 0},

or more generally κ∥∆M∥ for a norm ∥ · ∥ capturing the “technology” of
manipulation. This formulation makes two points transparent.

First, only the projection of the classifier onto the manipulable subspace
matters for incentives. Writing β = (βH , βM ), an agent’s acceptance proba-
bility under σ > 0 is Φ((z+ β⊤

HpH + β⊤
M (pM +∆M ))/σ). The marginal gain

from moving along any direction u in the manipulable subspace is bounded
by the maximal slope of the probit link times |β⊤

Mu|. Consequently, deter-
rence conditions generalize from a scalar bound to a bound on βM . Under
an ℓ2 cost κ∥∆M∥2, a sufficient no-manipulation condition is

κ >
∥βM∥2
σ
√
2π

,

since the directional derivative of Φ(·) is at most 1/(σ
√
2π) and the best

direction aligns with βM . Under ℓ1 cost, the relevant quantity is ∥βM∥∞
instead.

Second, the transparent “purchasable strip” becomes a purchasable slab
whose thickness depends on distance to the hyperplane measured in the
manipulation norm. Under σ = 0, a low-cost agent who is rejected at baseline
(s < 0) can cross by solving

min
∆M

∥∆M∥ s.t. z + β⊤p+ β⊤
M∆M ≥ 0.
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The minimal manipulation cost is the dual norm distance:

∥∆M∥min =
(−s)+
∥βM∥∗

,

where ∥ · ∥∗ is the dual norm (e.g., ∥βM∥2 dual to ℓ2, ∥βM∥∞ dual to ℓ1).
The analogue of the strip condition κL∆min < 1 becomes

s ∈
[
− ∥βM∥∗

κL
, 0

)
,

so the same geometry reappears with β replaced by the “effective manipulable
weight” ∥βM∥∗. This yields a natural multi-dimensional proxy-opportunity
index

∆(d)
proxy := P

(
s ∈

[
− ∥βM∥∗

κL
, 0

))
(under no manipulation).

When (z, p) are jointly Gaussian, s is still Gaussian for any fixed β, so this
particular index remains explicit. What ceases to be explicit in general is
the principal’s optimal choice of β when β now trades off (i) statistical value
across all coordinates and (ii) strategic exposure through ∥βM∥∗. Even in
the Gaussian benchmark, optimizing β 7→ L(β, σ) is typically a nonconvex
problem because the equilibrium manipulation region depends on β through
both the score distribution and the manipulable thickness. For this reason,
multi-dimensional calibration is a natural point where numerical methods
(grid search over σ plus gradient-based methods over β, or bilevel optimiza-
tion with simulated equilibrium responses) become practically necessary.

7.2 (b) Alternative disclosure channels beyond additive noise

Our graded-disclosure instrument ε ∼ N (0, σ2) is a stylized stand-in for “au-
ditable randomness.” Institutions often implement similar incentive effects
using other disclosure channels that may be more legally or operationally
acceptable than “injecting noise.” Three examples are particularly close in
economic content.

Coarse thresholds and rounding. Suppose the principal computes a
real-valued score s but commits to accept based on a coarsened version s̃ =
roundh(s) (round to a grid of step h > 0), accepting iff s̃ ≥ 0. From the
agent’s perspective, this behaves like a threshold with an implicit tie region
of width h: if s ∈ [−h/2, h/2), small manipulations can flip acceptance only
by jumping a discretization bin. This sharply reduces the marginal value
of infinitesimal manipulation (indeed, it makes the acceptance probability
locally flat away from bin edges), at the cost of introducing deterministic
“quantization error” near the boundary. Unlike Gaussian noise, rounding
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generates non-smooth best responses and can create bunching at bin edges;
characterizing equilibrium manipulation in closed form is generally difficult
even with one-dimensional p, and simulations are typically needed once we
allow heterogeneous κ and correlated features.

Partial disclosure of weights (or feature subsets). Another common
channel is to disclose only a subset of coefficients or only a subset of fea-
tures. Formally, let the principal’s true score be s = z + β⊤p, but the
publicly disclosed object is s̃ = z + β̃⊤p where β̃ is a coarse summary (e.g.,
some coordinates omitted, or coefficients binned). Agents then best respond
to their perceived mapping from ∆ to acceptance probability, which is a
function of the disclosure policy. This can be modeled as a commitment
to a set of feasible weights B (disclose B but not β ∈ B), with the actual β
drawn from a distribution supported on B after the manipulation stage. The
acceptance probability becomes a mixture Eβ∼D[1{z + β⊤(p+∆) ≥ 0}] (or
the probit analogue), which again converts “buying acceptance” into “buying
probability” with bounded marginal returns. The mixture instrument can
be fully auditable (the distribution D is public; the draw can be verifiable
ex post), but closed-form equilibrium characterizations are rare because the
mixture generally destroys the single-index structure that makes the probit
case tractable.

Randomized cutoffs (threshold lotteries). Instead of adding noise to
scores, the principal can randomize the cutoff: accept iff s ≥ τ where τ
is drawn from a known distribution after the agent acts. This is equiva-
lent to additive noise with ε = −τ , but it can be easier to communicate
institutionally (“the acceptance bar is drawn from a narrow band”). The
economic object remains the slope of the acceptance probability as a func-
tion of ∆. In particular, for any absolutely continuous cutoff distribution
with density bounded by M , the marginal benefit of manipulation is uni-
formly bounded by M · ∥βM∥∗, yielding deterrence conditions analogous to
κ > M∥βM∥∗. This observation is useful because it decouples the incentive
effect from Gaussianity: what matters is not normality per se, but the exis-
tence of a bounded density (equivalently, bounded “responsiveness”) around
the decision boundary.

Across these channels, our main qualitative claim is robust: instruments
that bound the marginal responsiveness of acceptance to manipulable fea-
tures allow the principal to rely more heavily on those features without induc-
ing as much gaming. What changes is the analytic tractability of equilibrium;
outside the probit-with-linear-cost environment, numerical characterization
of best responses is often required.
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7.3 (c) Manipulation graphs and expansion-style opportu-
nity indices

Finally, many real manipulations are not well captured by additive shifts.
Consider a discrete (or discretized) proxy state space V , where each node v ∈
V represents an observable “profile” (a credit file, a transcript, a transaction
history), and where feasible manipulations correspond to edges in a directed
graph E ⊆ V × V . An action is then a path π from the initial state v to
some v′, with total cost equal to the sum of edge costs; acceptance depends
on the terminal node via a rule a = 1{v′ ∈ A} for an acceptance set A ⊆ V
induced by the principal’s scoring policy.

Under full transparency (a deterministic A), a low-cost agent chooses
the cheapest path into A, so the set of manipulators is characterized by a
reachability neighborhood:

Nr(A) := {v ∈ V : there exists a directed path from v to some a ∈ A of cost ≤ r}.

With value 1 for acceptance and linear marginal cost κ, the relevant radius
is r = 1/κ. The transparent analogue of the purchasable strip is therefore
N1/κL

(A) \ A: agents initially outside A but within cost-distance 1/κL can
“buy” acceptance. This suggests an opportunity index of the form

∆graph(A) := P
(
v ∈ N1/κL

(A) \A
)
,

with the probability taken under the no-manipulation distribution over ini-
tial nodes. Lower bounds on the transparency tax can then be expressed
in terms of α∆graph(AT ), where AT is the best transparent acceptance set
induced by the principal’s optimal transparent rule. The dependence on
graph structure enters through bounds on ∆graph(A) in terms of combina-
torial quantities—maximum out-degree ∆, growth rates of neighborhoods,
or expansion/conductance-like measures that control how quickly Nr(A) en-
larges as r increases.

Graded disclosure in graphs can be implemented by randomizing over
acceptance sets {A1, . . . , Am} after the agent acts (analogous to our post-
manipulation noise). The agent then chooses a path to maximize 1

m

∑m
j=1 1{v′ ∈

Aj}−κ·cost(π), so a move must be “robustly” good across many possible Aj ’s
to be worthwhile. This converts reachability of a single set into something
closer to reachability of an average or intersection structure, thereby shrink-
ing the effective neighborhood that is profitable to enter. In bounded-degree
graphs, one can often upper bound the agent’s best achievable acceptance
probability gain by a function scaling like log∆ or ∆ depending on whether
the randomization family has a “hashing” property (many boundaries with
limited overlap) or is more redundant.

Analytically, however, graphs are the point where closed forms largely
disappear. Even computing ∆graph(A) for a given A requires shortest-path
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computations and integration against the node distribution; optimizing over
policies is a bilevel problem over a combinatorial action space. For realistic
graphs (large V , heterogeneous edge costs, and acceptance sets induced by
a learned score), numerical methods—shortest-path or min-cost reachability
for agent responses, plus heuristic or approximate optimization for the prin-
cipal—are typically required. We view this not as a weakness of the economic
mechanism, but as an honest reflection of the complexity of manipulation
technologies in operational settings.

8 Policy and implementation: auditability, disclo-
sure, and the case for bounded responsiveness

Our model draws a sharp distinction that often gets blurred in policy de-
bates: auditability is not the same as full public targetability. In the formal-
ism, the principal’s policy is auditable because it is a committed mapping
from observed inputs to acceptance, parameterized by (β, σ) and a publicly
specified distribution for the noise ε. Mandated transparency corresponds
to setting σ = 0, which makes the acceptance boundary deterministic and
therefore perfectly targetable by agents who can manipulate p. The key im-
plementation lesson is that regulators can insist on strong ex post verifiability
(auditing) while still permitting institutions to avoid fully targetable decision
rules by allowing σ > 0 (graded disclosure), rounding, or randomized cutoffs.
Put differently: what generates the transparency tax is not oversight, but
determinism at the boundary when manipulable channels exist.

Auditability versus public disclosure. A common worry is that any
nondeterminism is “unaccountable” or “nontransparent.” Our framework sug-
gests a more precise compliance target: require that (i) the distribution of
randomness be disclosed and (ii) the realized randomness be verifiable ex
post to authorized auditors, even if it is not predictable ex ante to appli-
cants. This is exactly the informational structure in which graded disclo-
sure reduces the marginal value of manipulation without allowing the prin-
cipal to hide arbitrary discrimination behind noise. Concretely, an auditable
graded-disclosure policy can be implemented by logging, for each decision,
the realized draw ε (or equivalently the randomized cutoff), together with
an integrity proof that the draw came from the stated distribution and was
generated after the agent’s action.

This distinction matters for legal and governance purposes. Many legal
regimes are primarily concerned with whether similarly situated individuals
are treated differently for forbidden reasons, and whether the decision pro-
cess is reviewable. A properly designed randomized procedure can satisfy
those goals if it (a) is independent of protected attributes conditional on
the inputs, (b) is drawn from a pre-committed mechanism, and (c) can be
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reconstructed in an audit. In our notation, the compliance object is not the
realization of ε, but the public commitment to ε ∼ N (0, σ2) (or another
specified distribution) and the guarantee that it is independent of (t, z, p, κ).

Legally acceptable randomness: tie-breaking, threshold lotteries,
and rounding. Institutions already use randomness in settings where de-
terministic tie-breaking is viewed as unfair or gameable: lotteries for over-
subscribed schools, random audits in tax enforcement, and randomized in-
spection in safety regulation. The mechanism we analyze is closest to two
operational tools.

First, randomized cutoffs (threshold lotteries): accept iff s ≥ τ where τ
is drawn from a known distribution after the applicant’s submission. This is
often easier to explain than “we add noise,” and it is behaviorally equivalent
to additive noise with ε = −τ . Second, rounding/banding of scores: compute
a continuous score but map it into bins (e.g., deciles, letter grades, coarse
risk categories), then apply deterministic rules to bins. Both tools share
the same incentive property: they bound the responsiveness of acceptance
to small changes in manipulable proxies. In the Gaussian benchmark, the
bound appears transparently as the maximum slope of Φ(·), yielding the
deterrence condition

κ >
β

σ
√
2π

⇒ ∆∗ = 0.

More generally, what matters is not normality, but that the acceptance prob-
ability as a function of the score has a uniformly bounded derivative around
the boundary. Rounding achieves this by creating flat regions; threshold
lotteries achieve it by smoothing the step function.

From a legal-design perspective, these alternatives are valuable because
they can be characterized as (i) procedural tie-breaking rules applied near
indifference, or (ii) uncertainty bands that reflect measurement error, rather
than as “arbitrary randomness.” Importantly, our mechanism does not re-
quire large σ. The policy case is precisely that small, auditable uncertainty
can reduce strategic distortions enough to justify itself, even when it slightly
increases baseline classification noise.

Guidance for regulators: what to mandate (and what not to man-
date). If regulators mandate σ = 0 in the name of transparency, the model
predicts they can inadvertently force principals to downweight manipulable
but informative proxies, i.e.,

βT < βBayes when manipulation is present,

creating a predictable loss in accuracy and potentially shifting selection to-
ward less informative (or more historically biased) signals. A more robust
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regulatory stance is to mandate auditability and measurement discipline,
while allowing limited graded disclosure up to a cap σ̄. In practice, we can
translate this into implementable requirements:

• Mechanism commitment. The decision rule (including any ran-
domization) must be fixed ex ante and documented: functional form,
parameter values, and the randomness distribution.

• Verifiable randomness. The institution must generate randomness
using an auditable procedure (e.g., a publicly committed seed, a ver-
ifiable random function, or a trusted randomness beacon), with per-
decision logs enabling reconstruction.

• Independence and timing. The random draw must be generated
after applicant information is locked, and must be statistically inde-
pendent of protected attributes and operator discretion.

• Bounded randomization. Permit randomness only within a pre-
scribed band (a cap σ̄ or an equivalent bound on the density of the
cutoff distribution), ensuring predictability and limiting welfare loss
from excessive noise.

• Monitoring for gaming. Require periodic tests for strategic response
(e.g., excess mass of applicants just above decision thresholds, sudden
changes in proxy distributions, or evidence of coaching markets), with
the ability to adjust (β, σ) within the pre-approved policy space.

The model’s comparative statics give an interpretable justification for
such rules: the value of allowing σ > 0 is increasing in the mass of low-cost
manipulators α and in proxy informativeness. Hence, rigid “no randomness”
mandates are most costly precisely in domains where manipulation markets
are active and proxies are predictive (credit, hiring assessments, admissions
test prep).

Guidance for model builders: designing for strategic robustness.
For practitioners, the message is not simply “add noise.” It is “control tar-
getability while preserving auditability.” Three concrete design steps follow
naturally.

(i) Estimate strategic exposure. Before deployment, quantify how much
of the applicant mass lies within a manipulable distance of the boundary
under the candidate model—an empirical analogue of ∆proxy. This can be
approximated by measuring how acceptance changes under plausible per-
turbations to manipulable features and by auditing the availability/cost of
manipulation services.

(ii) Separate measurement from incentives. If possible, invest in features
that are genuinely hard to manipulate (our z-like channels) and treat highly
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manipulable features (our p-like channels) as useful but incentive-sensitive.
In terms of our score, this often means resisting the temptation to “explain”
the model by publishing a fully precise linear threshold that can be reverse-
engineered into a step-by-step manipulation guide.

(iii) Operationalize graded disclosure carefully. If adopting a σ > 0 policy
(or rounding), ensure the randomness is centralized, logged, and insulated
from human discretion. Discretionary noise—where operators can selectively
“wiggle” decisions—is precisely what creates accountability problems. Mech-
anistic noise with audit trails is different: it is a policy instrument akin to
randomized audits.

Fairness implications (qualitative): who bears the cost of manipu-
lability and of noise? Fairness interacts with graded disclosure through
two opposing channels. On one hand, manipulation opportunities are rarely
equally distributed. If low-cost manipulation κ is systematically lower for
advantaged groups (because they have better coaching, more time, better
documentation, or easier access to credentialing), then deterministic trans-
parency can amplify inequity: advantaged agents are more able to “buy”
acceptance by moving p. In our language, group differences in the distribu-
tion G(κ) imply different manipulation rates, and therefore different false-
positive/false-negative distortions across groups under σ = 0. Introducing
graded disclosure that deters manipulation can therefore improve fairness by
reducing the returns to unequal access to gaming.

On the other hand, adding noise (or coarse banding) can create differ-
ential harm if groups are differently concentrated near the boundary. Even
if the mechanism is group-blind, randomness is most consequential for those
near the cutoff; if one group is disproportionately represented in the marginal
region (for structural reasons), they will experience more stochastic out-
comes. This is not a decisive argument against graded disclosure, but it does
imply a governance obligation: when adopting σ > 0, institutions should re-
port how outcome variance and marginal acceptance probabilities vary by
group, and should consider complementary policies (appeals, second-stage
reviews, or alternative pathways) that reduce the burden of randomness on
those persistently near the threshold.

A practical synthesis is to view graded disclosure as a first-stage anti-
gaming device, not as the final word on fairness. If randomness is used, it
should be paired with (i) clear, non-gameable guidance on how to become
genuinely qualified (raising t, not merely p), and (ii) procedures that preserve
substantive due process (e.g., an appeal that verifies hard-to-manipulate ev-
idence). In this way, graded disclosure reduces Goodhart pressure while
keeping the system contestable and accountable.
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Limitations and compliance risks. Two caveats are worth stating ex-
plicitly. First, our mechanism assumes the principal can commit and that
the randomness is trusted. If stakeholders suspect manipulation of the ran-
domization (selective reruns, biased seeds), the legitimacy benefits of au-
ditability are lost. This pushes strongly toward verifiable randomness and
third-party audits. Second, graded disclosure can be misunderstood as a li-
cense to be opaque about inputs or objectives. Our analysis does not justify
hiding which features are used, nor does it justify withholding protected-
class audits; it only cautions against making the exact decision boundary
perfectly targetable when some inputs are manipulable.

Taken together, the policy implication is narrow but consequential: reg-
ulators should aim to cap and audit responsiveness to manipulable prox-
ies, rather than mandating deterministic transparency. Doing so preserves
the accountability benefits of oversight while mitigating the strategic dis-
tortions that otherwise force principals into inferior, less informative mod-
els—precisely the transparency tax our framework highlights.

9 Simulations (optional): scaling laws, heterogene-
ity, and a benchmark illustration

While our main results are analytic, it is useful to verify that the comparative
statics and “scaling” implications are visible in finite samples and under mod-
est deviations from the benchmark assumptions. In this section we outline
a simulation protocol that (i) recovers the qualitative shape of the trans-
parency tax, (ii) illustrates how heterogeneity in manipulation costs shapes
equilibrium distortions, and (iii) (optionally) demonstrates the mechanism
on a standard classification dataset by designating a subset of features as
manipulable. The goal is not to “estimate” the model, but to sanity-check
the economic logic in a controlled environment.

Synthetic data-generating process. We begin from the Gaussian bench-
mark used in the propositions: draw latent qualification t ∼ N (0, 1) and
noises (ηz, ηp) jointly Gaussian with mean zero and covariance

Var(ηz) = σ2
z , Var(ηp) = σ2

p, Corr(ηz, ηp) = ρ.

Set z = t+ηz, p = t+ηp, and y = 1{t ≥ 0}. We treat ρ as a convenient knob
for “proxy redundancy”: when ρ is high and σ2

z is small, z already captures
most information in p, so the opportunity cost of downweighting p under
transparency is smaller.

For manipulation costs, we consider three families:

1. Two-point costs (the benchmark): κ ∈ {κL,∞} with P(κ = κL) = α.
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2. Mixtures: κ equals κL with probability α and otherwise is drawn from
a continuous distribution (e.g., lognormal), capturing a thin “profes-
sional coaching” market plus a broader population with heterogeneous
frictions.

3. Continuous heterogeneity : κ ∼ Lognormal(µκ, σ
2
κ) or κ ∼ Gamma(k, θ),

which allows us to vary the thickness of the lower tail (the mass of low-
cost manipulators) independently from the mean.

Computing best responses and equilibrium outcomes. Fix a policy
(β, σ). Each agent observes (z, p, κ) and chooses ∆ to maximize

U(∆) = Φ

(
z + β(p+∆)

σ

)
− κ|∆|, (σ > 0),

with the deterministic specialization when σ = 0. In the transparent case
σ = 0 and β > 0, the best response is explicit and fast: if s = z + βp ≥ 0,
then ∆∗ = 0; if s < 0, then the minimal crossing action is ∆min = −s/β,
and the agent manipulates iff κ∆min < 1 (using the convention that ties are
broken toward minimal movement).

For σ > 0, we compute ∆∗ numerically using the fact that, for ∆ > 0,
the first-order condition is

β

σ
ϕ

(
z + β(p+∆)

σ

)
= κ,

and similarly on ∆ < 0 with the appropriate sign. Practically, we solve
for ∆ by one-dimensional root finding on the active side and compare the
resulting candidate utility to U(0); this is robust because U(∆) is smooth
and the marginal gain is bounded above by β/(σ

√
2π). In Monte Carlo, this

procedure yields an estimated manipulation rate P̂(∆∗ ̸= 0), an estimated
misclassification loss L̂(β, σ), and decomposition into false positives/false
negatives. We then (approximately) solve the principal’s problem by grid
search over (β, σ) ∈ [βmin, βmax]× [0, σ̄] or by a coarse-to-fine pattern search;
the objective is nonconvex in general because equilibrium behavior changes
discretely with (β, σ).

Scaling patterns: where the transparency tax comes from in fi-
nite samples. Across a wide range of parameterizations, three patterns
are stable.

(1) Tax increases with low-cost mass. Holding (σ2
z , σ

2
p, ρ) fixed, the dif-

ference
T̂ax = min

β
L̂(β, 0) − min

β,σ∈[0,σ̄]
L̂(β, σ)

is increasing in α in the two-point benchmark and increasing in the lower-tail
thickness of G under continuous heterogeneity. Mechanically, under σ = 0
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the set of agents with s ∈ [−β/κ, 0) finds it profitable to “just cross,” and
this region expands as more mass shifts to low κ.

(2) Tax increases with proxy informativeness. Decreasing σ2
p (keeping σ2

z

fixed) increases the benefit of using p absent manipulation. Under trans-
parency, the principal responds by shrinking β to limit gaming, which shows
up directly in simulations as β̂T < β̂∗ whenever manipulation is present.
The corresponding tax is largest in the regime where p is informative and
manipulable at low cost.

(3) Optimal noise is “just enough” to flatten the marginal incentive.
When we plot L̂(β, σ) along the locus of β values that perform well absent
gaming, the loss as a function of σ is typically U-shaped: small σ sharply
reduces manipulation (large gain), but large σ eventually adds too much in-
trinsic randomness (large cost). The σ that minimizes loss often aligns with
the deterrence heuristic from the smooth-regime cutoff,

σ ≳
β

κL
√
2π

,

in the sense that the chosen σ is near the smallest value that makes manip-
ulation unattractive for the low-cost tail.

Role of proxy correlation and redundancy. Allowing ρ ̸= 0 is a useful
stress test because it changes the marginal value of p relative to z with-
out changing the manipulability technology. Two qualitative findings are
consistent with the model’s logic.

First, as ρ increases (proxies become more redundant), the principal re-
lies less on p even absent manipulation; accordingly, the incremental value
of graded disclosure tends to fall. Second, when ρ is near zero (signals
are complementary) and σ2

p is small, p is precisely the kind of feature that
a transparent rule struggles to use: it is predictive and it creates a wide
manipulability region. In this regime the simulations show the sharpest di-
vergence between the transparent optimum (β̂T , 0) and the graded-disclosure
optimum (β̂∗, σ̂∗).

Cost heterogeneity: manipulation is driven by the lower tail, not
the mean. Moving beyond two-point costs clarifies a practical point: what
matters for strategic distortion is not average cost, but the amount of prob-
ability mass with κ below the marginal-incentive bound. For σ > 0, Propo-
sition 1 implies manipulation is essentially confined to {κ ≤ β/(σ

√
2π)}.

In simulations with lognormal κ, changing (µκ, σκ) to keep E[κ] fixed while
thickening the lower tail can increase manipulation rates substantially and
raises the value of graded disclosure. This is the computational analogue of
the analytic comparative static in α for the two-point model: the “market
for gaming” is carried by a relatively small set of low-cost actors.
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What to plot (recommended diagnostics). To make the strategic
mechanism transparent in a figure rather than in equations, we find three
diagnostics particularly informative:

• Manipulation mass near the boundary. Plot a histogram of the
pre-manipulation score s = z + βp for those who manipulate under
σ = 0; the mass concentrates in a band just below 0, consistent with
∆min = −s/β.

• Equilibrium policy comparison. Plot (β̂T , L̂(β̂T , 0)) versus (β̂∗, σ̂∗, L̂(β̂∗, σ̂∗))
as α or σ2

p varies; the gap visualizes the transparency tax.

• U-shape in σ. Fix a proxy weight β (e.g., the non-strategic best) and
plot L̂(β, σ) and P̂(∆∗ ̸= 0) versus σ to show the deterrence-versus-
randomness tradeoff directly.

Optional benchmark dataset illustration (proof of concept). If we
want an empirical demonstration, we can implement the equilibrium re-
sponse on a standard binary classification dataset (e.g., UCI Adult income,
COMPAS-like recidivism proxies, or a credit default dataset), with two ex-
plicit caveats: (i) the dataset’s label is not literally y = 1{t ≥ 0}, and (ii) we
must choose (by assumption) which features are manipulable and at what
cost.

A simple procedure is:

1. Fit a baseline linear score s(x) = w⊤x (logistic regression or linear
SVM) on the training data.

2. Designate a single component xj as manipulable (our p) and one as
hard-to-manipulate (our z), or construct p as a linear combination of
“documentable” variables (e.g., reported income, number of tradelines)
while treating z as a less manipulable signal.

3. Postulate a cost model κ|∆| and a cost distribution G across applicants
(either calibrated from plausible perturbation magnitudes or explored
as sensitivity analysis).

4. Evaluate, on a test set, the strategic equilibrium outcomes under (a)
transparency σ = 0 and (b) graded disclosure σ > 0 by applying the
best-response manipulation to p and then applying the acceptance rule
with the corresponding noise.

Even with this stylized mapping, the qualitative patterns typically mirror
the synthetic case: under σ = 0 we see a shift in the manipulable feature’s
distribution among accepted individuals and a drop in out-of-sample label
accuracy relative to the non-strategic classifier; introducing a small σ damp-
ens the return to marginal feature shifts and can recover accuracy by allowing
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a higher effective weight on the predictive proxy without inducing as much
gaming.

Limitations of the simulation exercise. Simulations do not resolve the
normative questions around randomness, nor do they pin down domain-
specific costs of manipulation. Their role is narrower: to confirm that the
model’s equilibrium logic is not an artifact of knife-edge assumptions, and to
illustrate how the key objects (manipulation mass near the boundary, opti-
mal β shrinkage under transparency, and the U-shaped role of σ) behave in
finite samples. In particular, when we depart from Gaussian noise or intro-
duce mild nonlinearities in t 7→ (z, p), the same basic force persists as long as
(i) acceptance is highly responsive to small changes in a manipulable proxy
under determinism, and (ii) graded disclosure bounds that responsiveness in
an auditable way.

These computational checks set the stage for the final section, where we
discuss what changes—and what becomes harder—once the interaction is
repeated, the principal learns over time, and agents can experiment strate-
gically.

10 Conclusion and open problems: dynamics, se-
lection, and design

Our central message is that “transparency” is not a free good in strategic
environments. When a decision rule is fully targetable, a manipulable proxy
becomes an object of investment rather than measurement, and the principal
may rationally retreat from using it—even when it is genuinely informative
about latent qualification. Graded disclosure, modeled here as an auditable
randomization parameter σ in the acceptance rule, provides a simple coun-
tervailing instrument: it bounds the marginal return to micro-manipulations
while preserving the option to lean on informative proxies. This produces
a wedge—the transparency tax—between the best achievable performance
under mandated determinism and the best achievable performance when a
limited degree of randomized discretion is permitted.

The natural next step is to ask what happens when the interaction is
repeated, the principal learns, and agents can experiment. In practice, few
institutions set (β, σ) once and for all. Hiring screens are updated, fraud
models are retrained, admissions rubrics drift, and applicants respond strate-
gically to what appears to work. The static equilibrium logic survives in such
settings, but the long-run outcomes depend on an additional set of forces:
data feedback, commitment problems, and equilibrium selection via experi-
mentation.
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Dynamic learning with repeated interactions. Consider a repeated
version of the game indexed by periods τ = 1, 2, . . . , where each period
draws new agents with types (tτ , ηz,τ , ηp,τ , κτ ) and the principal updates a
policy (βτ , στ ) based on past observations. The key complication is that
the principal rarely observes t directly; instead she observes outcomes that
are themselves affected by acceptance decisions and by manipulation. This
creates a selective-labels problem layered on top of strategic response: the
distribution of observed (z, p̂) among accepted agents is endogenously dis-
torted, and any supervised update that treats p̂ as “ground truth features”
may gradually encode gaming into the model.

Even if the principal does observe some ex post signal of performance
(e.g., job performance, loan repayment), it is typically delayed and itself
a function of the decision. This leads to a dynamic analog of Goodhart’s
law: the principal’s predictor improves on the manipulated data distribution,
which can raise apparent in-sample performance while degrading true out-
of-sample classification with respect to y = 1{t ≥ 0}. From the perspective
of our framework, the parameter σ plays a dual role in such dynamics. It
deters manipulation contemporaneously, but it also stabilizes the learning
environment by reducing the incentive for agents to chase small decision-
boundary movements. A concrete open question is whether there exists
a “stability region” in (β, σ) such that best-response manipulation is not
only small (low P(∆∗ ̸= 0)) but also insensitive to small changes in the
learned policy, thereby preventing oscillatory arms races between retraining
and gaming.

A second dynamic issue is commitment. In our one-shot model the prin-
cipal commits to an auditable (β, σ). In repeated settings, agents may doubt
that the principal will maintain a noisy policy once public scrutiny intensifies
or once short-run error is observed. If agents anticipate that the principal
will revert to σ = 0 after a few periods, the deterrence effect of graded disclo-
sure can unravel. Formally, one can model the principal as choosing a policy
each period without commitment, and study Markov perfect equilibria where
current στ trades off current accuracy against future gaming. Whether the
equilibrium features persistent randomization depends on how manipulation
today affects the state variable (e.g., the principal’s dataset, agents’ beliefs
about rules, or the distribution of “coaching” services). Understanding when
graded disclosure is dynamically time-consistent is an open problem with
direct policy relevance: it speaks to whether regulators should permit (and
perhaps require) explicit commitment devices for randomization, rather than
treating randomness as ad hoc “discretion.”

Equilibrium selection and strategic experimentation. Even in the
static model, best responses can exhibit corner behavior: with σ = 0 agents
“just cross,” while with σ > 0 manipulation may be interior and governed by
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a first-order condition when it occurs. In richer environments—multiple ma-
nipulable proxies, non-linear scores, or non-convex costs—agent optimization
can admit multiple local optima. Our analysis implicitly selects equilibria by
tie-breaking toward minimal movement and by focusing on the economically
relevant branch where manipulation is used to increase acceptance. In a re-
peated environment, such selection cannot be taken for granted: agents can
experiment with ∆, observe acceptance outcomes, and update beliefs about
the policy and about the efficacy of manipulation.

This raises a distinct equilibrium-selection question: can “gaming cul-
tures” emerge as self-confirming outcomes? Suppose a small measure of
agents experiments with manipulation; if this shifts observed accepted pop-
ulations and prompts the principal to adjust β downward (to counteract
gaming), the return to manipulation may increase for those near the bound-
ary, pulling more agents into manipulation. Conversely, if graded disclosure
is used to flatten marginal incentives, experimentation may be unprofitable
and die out. Modeling this requires combining (i) learning-by-agents about
the acceptance technology (including the distribution of ε), with (ii) learning-
by-principal about predictive relationships, in a feedback loop.

A promising approach is to study stochastic-approximation dynamics for
agent behavior and for the principal’s training rule. For example, if agents
follow a perturbed best response

∆τ+1 ≈ ∆τ + γτ∇∆Uτ (∆τ ),

and the principal updates (βτ , στ ) via gradient steps on an empirical loss
computed from strategically generated data, one can ask whether the coupled
system converges, cycles, or diverges. The static transparency tax suggests
that purely deterministic policies may induce dynamics that settle into low-β
equilibria (the principal gives up on the manipulable proxy), whereas permit-
ting σ > 0 could enlarge the basin of attraction of high-β / low-gaming out-
comes. Characterizing these basins—and the conditions under which “small
auditable noise” is enough to prevent undesirable equilibria—remains open.

Connections to persuasion and information design. Graded disclo-
sure can be interpreted as an information-structure choice: the principal
commits not only to a scoring rule but also to how sharply the score maps
into decisions. In this sense our model is adjacent to Bayesian persuasion
and information design, with a crucial twist: the receiver (the agent) can
change the signal by manipulating p. The principal’s randomization ε is
then a way to commit to a less informative mapping from reported features
to acceptance, reducing the private value of precise targeting.

This perspective suggests two generalizations. First, rather than re-
stricting to additive Gaussian ε, one can allow the principal to choose an
arbitrary (auditable) acceptance probability function q(s) ∈ [0, 1] with a ∼
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Bernoulli(q(s)). Our smooth-regime cutoff is a special case where q(s) =
Φ(s/σ). The optimal q(·) under manipulation costs resembles a “bounded
slope” design: since agents respond to q′(s)β at the margin, the principal
would like to cap q′ near the decision boundary while keeping q responsive
where strategic pressure is low. Designing the welfare- and accuracy-optimal
q(·) under auditability constraints (e.g., monotonicity, Lipschitz bounds, or
implementability with simple randomization devices) is an open information-
design problem with strategic signal control.

Second, persuasion models emphasize commitment to a signal for the
purpose of influencing behavior. Here, influencing behavior (deterring ma-
nipulation) is not incidental but central. This highlights a policy tension:
some transparency mandates implicitly push institutions toward fully reveal-
ing s and using deterministic thresholds, which is equivalent to choosing an
extremely steep q(·). Our results suggest that, in strategic settings, such
mandates may be counterproductive even when they improve “explainabil-
ity” in a narrow sense.

Connections to mechanism design (beyond linear scores). From a
mechanism-design viewpoint, our environment is a screening problem with
costly misreporting: agents can shift a report p̂ at linear cost, and the prin-
cipal chooses an allocation rule (accept/reject) based on observable signals.
The linear score restriction is deliberately stark; relaxing it raises both op-
portunity and complexity. For example, if the principal could condition on
(z, p̂) nonlinearly, she might carve out regions where p is trusted only when
consistent with z, or implement “audit-triggering” rules that make manip-
ulation risky. Introducing audits explicitly (probabilistic verification of p
at a penalty) would change the incentive constraint from a pure marginal
tradeoff to a jump risk, potentially complementing or substituting for graded
disclosure.

A core open problem is to characterize the optimal mechanism under
realistic constraints: no transfers (or limited transfers), limited auditing
capacity, and legal restrictions on randomization or disparate treatment.
In many regulated domains the principal cannot freely choose σ or cannot
randomize by individual; instead she may be allowed only coarse random-
ization (e.g., random audits, randomized additional review). Understand-
ing when such constrained mechanisms can replicate the deterrence effect
we study—perhaps via randomized audits rather than randomized accep-
tance—is both technically and practically important.

Normative and policy questions. Randomization in high-stakes deci-
sions raises legitimate concerns: perceived arbitrariness, procedural fairness,
and accountability. Our model does not claim that noise is always desir-
able; rather, it clarifies when some controlled, auditable non-determinism
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can reduce strategic distortion enough to improve accuracy with respect to
a socially relevant label. This invites normative extensions: if the social ob-
jective weights false positives and false negatives differently across groups,
how should σ be chosen? Does graded disclosure amplify or reduce inequities
when manipulation costs κ differ systematically across populations? A par-
ticularly important open question is whether a uniform σ is optimal under
fairness constraints, or whether the constrained optimum involves targeted
robustness—effectively choosing policies that equalize marginal manipulabil-
ity across groups rather than equalizing raw acceptance rates.

Finally, there is a measurement question embedded in policy: regulators
and auditors often observe only the implemented rule, not the strategic effort
it induces. Developing empirical diagnostics for “proxy gaming” that do not
rely on observing ∆ directly—e.g., distributional shifts in p conditional on
z, bunching near implied decision boundaries, or changes in the correlation
between p and downstream outcomes—would make the transparency tax
concept operational.

Summary of open problems. To sharpen the agenda, we see five con-
crete directions: (i) dynamic equilibrium with learning and selective labels;
(ii) equilibrium selection under agent experimentation and principal retrain-
ing; (iii) optimal information design over acceptance probabilities q(s) under
auditability; (iv) mechanism design with audits, limited commitment, and
legal constraints; and (v) welfare and fairness analysis when manipulation
costs and proxy access are heterogeneous. Each direction preserves the core
economic logic illuminated here—targetability creates incentives, and policy
can shape those incentives—while moving closer to the institutional realities
that motivate transparency debates.

43


	Introduction
	Related Work
	Model
	Equilibrium under mandated full transparency (sigma=0)
	Agent best responses: crossing the deterministic boundary
	Acceptance regions and induced error types
	Two-point costs: a clean equilibrium characterization
	Gaussian benchmark: explicit distributions and closed-form components
	The principal’s optimal transparent weight betaT

	Graded disclosure via auditable noise (sigma>0)
	Smooth incentives: from “buying acceptance” to “buying probability”
	Best responses and the manipulation cutoff in 
	Comparative statics: how  disciplines strategic behavior
	How graded disclosure restores proxy usefulness

	Main results: an unavoidable transparency tax and a matching graded-disclosure remedy
	A proxy-opportunity index
	Lower bound: full transparency forces strategic shrinkage
	Upper bound: an explicit graded-disclosure policy that recovers the loss
	Sharpness, tightness, and when the bounds bind

	Extensions and robustness (flagged)
	(a) Multi-dimensional proxies with a low-cost manipulable subspace
	(b) Alternative disclosure channels beyond additive noise
	(c) Manipulation graphs and expansion-style opportunity indices

	Policy and implementation: auditability, disclosure, and the case for bounded responsiveness
	Simulations (optional): scaling laws, heterogeneity, and a benchmark illustration
	Conclusion and open problems: dynamics, selection, and design

