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Abstract

Strategic adaptation to algorithmic decisions can be either harmful
gaming (changing non-causal proxies) or beneficial investment (chang-
ing causal features). Building on the strategic classification framework
(Stackelberg principal-agent), the causal perspective that ‘strategic
classification is causal modeling in disguise,” and recent work distin-
guishing gaming from improvement, we propose a clean mechanism-
design formulation: the principal chooses both a decision rule and
a recourse policy (a verifiable counterfactual “contract”) that guides
agents toward actions that genuinely change the ground-truth outcome.
In a tractable causal model where qualification depends only on causal
features and agents can invest in those features at separable single-
crossing costs, we characterize an implementable mechanism that (i)
induces all improvable agents to become qualified, (ii) guarantees zero
false positives from proxy manipulation, and (iii) is optimal among
all safe mechanisms. We also outline extensions to limited recourse
menus (administrative simplicity) and to learning causal thresholds
from strategic responses, clarifying when closed-form solutions suffice
and when approximation or numerical methods are needed.
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1 Introduction: recourse as contract under strate-
gic responses

Automated decisions increasingly sit at the intersection of prediction, pol-
icy, and strategy. A lender, employer, or platform rarely wants to merely
predict an outcome; it wants to select agents so as to maximize some notion
of benefit (e.g., true repayment, job performance, safety) while respecting
constraints (e.g., legal limits on disparate impact, procedural rights, capac-
ity, and—crucially for operational risk—avoiding “bad accepts”). Meanwhile,
the people subject to these systems are not passive data points. They study
the rules, adapt their behavior, and invest in the attributes that appear to
matter. In 2026, this is no longer an edge case: the default environment
for deployed scoring systems is one in which agents respond strategically,
sometimes in ways that improve true outcomes and sometimes in ways that
merely improve appearances.

This strategic feedback loop is a modern restatement of Goodhart’s law:
when a measure becomes a target, it ceases to be a good measure. In our
setting the “measure” is a reported feature vector & and the “target” is ac-
ceptance. Goodhart’s law is often invoked as an informal warning about
over-optimization. Our starting point is that, once agents can act, Good-
hart’s law is not just a cautionary tale but a mechanism-design problem.
The principal commits to a rule; agents best respond; the resulting distribu-
tion of features and outcomes is endogenous. The central question becomes:
how should a principal design a decision rule and accompanying guidance so
that the induced strategic behavior improves true qualification rather than
merely gaming the interface?

A key distinction organizing the problem is between causal features and
proxy features. Many deployed models are trained on whatever correlates
with the desired outcome, but correlation does not tell us what can be safely
incentivized. Some attributes are outcome-relevant and actionable: paying
down revolving debt, completing a certification, adding safety equipment,
adopting better security hygiene. Others are proxies: behavioral traces,
platform engagement, stylistic markers, or network position—variables that
may predict well in historical data yet have limited causal relationship to
the outcome of interest, or whose manipulation does not improve the under-
lying target. The policy and governance conversation has converged on this
point from multiple directions. “Actionability” is now a common demand in
algorithmic accountability: an adverse action notice or an explanation is ex-
pected to tell an individual what they could do to obtain a different decision.
But actionability without causal discipline can be worse than useless: it can
redirect effort toward superficial signals, amplify arms races in manipulation,
and erode both welfare and trust.

This paper frames recourse—the practice of offering individuals a path to



change a decision—as a contractual object in a strategic environment. The
usual presentation of recourse is informational and ex post: once the model
rejects an applicant, the system provides a counterfactual explanation (“if
your income were higher by $X, you would be approved”) or a set of feature
changes. Such tools are valuable, but they often treat the decision rule as
fixed and treat the recommendation as a separate, downstream communica-
tion problem. Our lens is different. We treat the principal as committing not
only to an acceptance rule f(-) but also to a recourse policy r(-) that maps
a rejection into a recommended action or menu of actions. In other words,
recourse is not merely an explanation; it is part of the mechanism. Once
we take strategic response seriously, this commitment changes behavior ex
ante. The promise “if you do e, then you will be accepted” is economically
closer to a contract than to advice, and it must be designed with the same
attention to incentives and feasibility.

Thinking of recourse as contract clarifies two practical desiderata that
are often in tension. The first is safety: avoiding false positives in the oper-
ational sense of accepting someone who is not truly qualified. The second is
opportunity: ensuring that individuals who could become qualified through
reasonable effort are not locked out by opaque rules, spurious correlations,
or costly trial-and-error. Both desiderata are explicitly present in regula-
tion and institutional practice. Financial regulators emphasize sound un-
derwriting and model risk management alongside requirements for consumer
explanations. Employers face pressure to justify selection criteria and to pro-
vide pathways for advancement, while also being accountable for quality and
safety. Platforms want to deter fraud and low-quality participation without
discouraging productive investment. In all these domains, the principal is
effectively choosing which investments to reward.

The causal/proxy split provides a clean way to discipline this choice.
We imagine that baseline features decompose as x = (2%, 27), where z¢
are causal features that directly determine true qualification and can be im-
proved through real investment, while ¥ are proxies that may correlate
with outcomes but do not themselves affect qualification. Agents can take
actions that increase causal features (an investment vector e > 0) and, sep-
arately, can manipulate proxies (an action m producing #¥). This captures
a stylized but ubiquitous reality: improving real skills or financial health is
costly but beneficial, while “presentation” changes can be cheaper and some-
times purely cosmetic. Importantly, we assume causal changes are verifiable
once made—an assumption that matches many institutional settings (de-
grees can be checked, debt balances can be observed, safety equipment can
be inspected), and that makes recourse meaningful as a commitment device
rather than a cheap-talk suggestion.

Under this view, a decision rule that depends on proxies invites exactly
the kind of Goodhart behavior that practitioners fear. If acceptance increases
the agent’s payoff by v > 0, then any feature that influences f becomes a



target. When f loads on a proxy, an agent can invest in manipulating
#F without improving y (true qualification). Even if such manipulation is
individually costly, it can be socially wasteful and can degrade the principal’s
objective by producing “bad accepts.” This is not a subtle failure mode; it is
structural. The principal may start with a highly predictive model, but once
the proxy becomes a target, the mapping from proxy to outcome changes.
In equilibrium, the principal can end up selecting agents who are good at
gaming the proxy rather than good at the underlying task.

Recourse-as-contract provides a constructive alternative: design the mech-
anism so that the only profitable route to acceptance is to become qualified.
Intuitively, this means two things. First, the acceptance rule should be “safe”
in the sense that it accepts only when the underlying causal criterion is met.
Second, the principal should tell rejected agents how to meet the causal crite-
rion at minimum cost, so that those who can profitably invest will do so, and
those who cannot will rationally stop rather than chase proxy mirages. The
novelty is not the idea that “you should reward true qualification,” which is
obvious. The novelty is that, in a strategic setting with actionable recourse,
we can treat this as an implementability problem: can we write down a simple
mechanism that (i) eliminates proxy-only gaming, (ii) induces all privately
worthwhile causal investment, and (iii) does so with minimal informational
and computational burden?

To build that mechanism-design logic, we will later impose a specific
cost structure that is both analytically transparent and economically inter-
pretable: causal investment has separable marginal costs scaled by a private
type 6, so that higher-6 agents find investment uniformly more expensive.
This “single-crossing” structure captures heterogeneity in time constraints,
liquidity, opportunity cost, or access to resources, and it implies a natural
cutoff behavior: for a given baseline ¢, some agents will invest to qualify and
others will not. The principal need not observe 6 to design good recourse;
indeed, one motivation for recourse is to overcome precisely such private-
information frictions by making the path to qualification explicit. When the
cheapest way to increase true qualification is common across agents (up to
scale), the principal can offer a particularly simple recourse contract: a sin-
gle recommended action direction that raises the causal score at the lowest
marginal cost.

This lens also reframes what it means to provide an “actionable expla-
nation.” In many policy discussions, actionability is treated as a normative
add-on: after building the best predictor, we owe individuals a list of changes
they can make. Our claim is more structural: actionability is a design prim-
itive that can improve the objective the principal cares about. A recourse
policy is a way of shaping equilibrium behavior. If the principal can com-
mit to accept when a verifiable causal threshold is reached, and can cred-
ibly specify the minimal-cost steps to reach that threshold, then recourse
transforms strategic behavior from adversarial manipulation into productive



investment. In that sense, recourse is not merely a compliance artifact; it
is a tool for safely increasing true positives—accepting more truly qualified
agents—without relaxing safety.

At the same time, we emphasize limitations and scope. The causal/proxy
split is a modeling choice that abstracts away from ambiguous or partially
causal features, from measurement error, and from settings where “verifica-
tion” is imperfect. In practice, many attributes are neither purely causal nor
purely proxy; they may be partially manipulable, partially informative, and
entangled with fairness concerns. Our goal is not to claim that real systems
can always cleanly separate ¢ from z¥. Rather, the model illuminates the
tradeoff that emerges once we insist on two operational requirements that
organizations routinely face: do not accept unqualified agents (a robust “no
false positives” constraint), and provide recourse that is genuinely action-
able. Under these requirements, reliance on manipulable proxies is a recipe
for either gaming or excessive conservatism. The mechanism-design perspec-
tive identifies a path between these extremes: restrict eligibility to verifiable
causal features, and use recourse to guide investment toward the cheapest
causal improvements.

Finally, “recourse as contract” helps connect theory to practice in a way
that purely predictive framing often misses. Institutions already behave as
if they are writing contracts: lenders publish underwriting criteria; employ-
ers post job requirements and training ladders; platforms specify reputation
thresholds and remediation steps. What is new is the degree to which these
contracts are mediated by algorithms trained on proxy-rich data. Our frame-
work provides a disciplined way to decide which parts of an algorithmic score
should be treated as eligible for contractual commitment, and which should
be quarantined as potentially gameable signals. It also suggests a practical
principle: if a feature cannot be defended as outcome-relevant and verifiable
once changed, then building recourse around it is likely to induce wasteful
behavior, and building acceptance around it is likely to violate safety once
agents respond.

The remainder of the paper formalizes this logic. We define a principal-
agent game in which the principal commits to an acceptance rule and a
recourse policy, agents choose both causal investments and proxy manipula-
tions, and outcomes depend only on the causal state. We then show that,
under transparent causal qualification and single-crossing investment costs,
there exists a simple, computationally efficient mechanism that is simulta-
neously safe (no proxy false positives) and maximally opportunistic among
safe mechanisms (it induces all privately beneficial causal improvements).
The economic message is that explanations and incentives cannot be sepa-
rated: once agents act, the “right” explanation is the one that implements
the desired equilibrium.



2 Related work and positioning

Our framework sits at the intersection of strategic classification, causal per-
spectives on strategic behavior, and the rapidly growing literature on al-
gorithmic recourse. Each of these areas has developed powerful tools, but
they are often studied in isolation: strategic classification typically takes the
decision rule as the object to optimize given manipulation; recourse work
typically takes the rule as fixed and asks for post hoc recommended changes;
and causal strategic learning asks what can be learned or implemented when
agents can change features, but often without an explicit no-false-positives
safety constraint that is central in many operational settings. Our goal is
to unify these strands around a mechanism-design question: what decision
rules and recourse policies can a principal commit to so that strategic re-
sponses are redirected toward outcome-improving investments rather than
proxy gaming, while maintaining a robust “no bad accepts” guarantee.

Strategic classification and manipulation. A foundational thread be-
gins with the strategic classification model of Hardt et al. and related work
on agents who modify observable features to obtain a favorable classifica-
tion. In this line, the classifier chooses a rule, agents respond by changing
their features subject to costs, and the induced distribution of observed fea-
tures differs from the training or baseline distribution. Subsequent work has
explored equilibrium structure, the welfare and efficiency of strategic adapta-
tion, and the vulnerability of linear and threshold classifiers to manipulation,
as well as the difficulty of learning when the data-generating process is en-
dogenously shaped by the deployed model.

Our paper shares this basic premise—classification rules induce behav-
ioral change—but departs from the canonical strategic classification framing
in two ways that matter for policy and for mechanism design. First, we
explicitly separate features into causal attributes that determine true quali-
fication and prozy attributes that may be predictive but outcome-irrelevant.
This moves the analysis from “manipulation is costly” to “some manipulations
are socially and operationally meaningless,” which is precisely the setting
where Goodhart effects are most damaging. Second, we treat the principal’s
operational concern as a safety constraint: the principal should avoid ac-
cepting agents who are not truly qualified, not merely in expectation but in
a pointwise (equilibrium) sense. Much of strategic classification optimizes
an accuracy or utility objective under strategic response, sometimes allowing
an equilibrium tradeoff between false positives and false negatives. In lend-
ing, hiring, safety-critical access control, and many regulated domains, the
principal often faces a hard constraint against false positives (“bad accepts”),
making the problem closer to robust mechanism design than to standard risk
minimization.



Endogenous data, repeated interaction, and partial information.
A separate but related literature studies learning and decision-making under
feedback loops: the deployed rule changes the population that is observed,
which in turn affects future learning and performance. This includes work on
selective labels, censorship, and dynamics of decision policies, and connects
to performative prediction and policy-induced distribution shift. There are
also online and bandit-style models where a principal updates decisions under
partial feedback and where agents may respond strategically over time.

Our contribution is not an online learning algorithm, but the “recourse
as contract” perspective is naturally compatible with these settings. The
key connection is that, when agents invest in verifiable causal features, the
principal observes action-induced variation that can be informative about the
causal boundary (a point we sketch in our learning extension). In contrast,
when decision rules load on manipulable proxies, the induced variation is
often adversarially selected and can degrade identifiability. Thus, while we
analyze a Stackelberg equilibrium in a one-shot environment for clarity, the
mechanism we construct is designed to be stable under repeated use: it
eliminates incentives for proxy manipulation, thereby reducing one major
source of endogenous nonstationarity.

Fairness, externalities, and the normative role of incentives. A
growing body of work emphasizes that algorithmic decisions have equilib-
rium and externality effects: selection policies can change incentives to in-
vest in education or skills, can shift resources across groups, and can generate
disparate impacts even if the deployed predictor is “accurate” on historical
data. Some papers formalize how fairness constraints interact with strate-
gic response, while others study long-run dynamics under different selection
rules, including the possibility of “self-fulfilling” disadvantage when groups
face different opportunity costs or different access to investments.

We view our model as complementary to this agenda. By making the
recourse policy an explicit part of the mechanism, we highlight a channel
through which a principal can affect not only who is accepted, but also how
agents invest. In particular, restricting eligibility to verifiable causal fea-
tures can be read as an institutional commitment to reward investments
that truly improve qualification, rather than investments in presentation or
identity-correlated proxies. At the same time, we do not claim this resolves
fairness concerns. Heterogeneous cost types 6 can encode real structural con-
straints, and “verifiable causal features” may themselves reflect unequal ac-
cess. Our results should therefore be interpreted as a positive implementabil-
ity statement—what can be guaranteed under a safety constraint—rather
than as a normative fairness guarantee. Indeed, one motivation for our menu-
complexity extension is that heterogeneous relative costs may require richer
recourse menus to avoid systematically advantaging those whose cheapest



improvement directions align with the principal’s single recommended path.

Causal strategic learning and causal incentives. Recent work has
begun to incorporate causal structure into strategic environments, asking
which aspects of a decision rule can be safely incentivized when agents can
manipulate inputs. Papers by Miller et al., Shavit et al., Bechavod et al.,
Ahmadi et al. (and others in this emerging area) explore settings where the
principal has a causal model of how actions or interventions affect outcomes,
and where strategic agents may manipulate observed variables that are not
causally relevant. This literature is motivated by the same core issue we
emphasize: correlation-based predictors can create incentives to manipulate
variables that do not improve the outcome of interest.

Our approach is aligned with the causal strategic learning perspective
but emphasizes a different design lever. Rather than optimizing over arbi-
trary predictors subject to strategic response, we build around a ground-truth
causal qualification rule and ask how to implement it safely and opportunis-
tically through a mechanism that includes recourse. The causal structure we
assume is deliberately stark—true qualification is a deterministic threshold
in ¢ because it lets us isolate the mechanism-design logic: if qualification
is verifiable in causal features, then dependence on proxies is not merely
unnecessary but potentially harmful under a no-false-positives requirement.
This yields a “safe sufficiency” principle: the causal score is the minimal
statistic that can be used for eligibility without inviting proxy-only gaming.
We see this as a useful benchmark even when the causal model is noisy or
partially observed: it clarifies what extra assumptions or auditing capacity
are required to safely use richer signals.

Algorithmic recourse, counterfactual explanations, and actionabil-
ity. A large literature on algorithmic recourse studies how to provide in-
dividuals with suggested changes that would flip a model’s decision. This
includes counterfactual explanations (e.g., Wachter et al.), actionable re-
course methods that incorporate feasibility and costs (e.g., Ustun et al.), and
surveys and extensions that address constraints, uncertainty, causal depen-
dencies among features, and robustness. A recurring distinction is between
recourse as explanation (what changes would alter the model output) and
recourse as intervention (what changes are feasible and meaningful in the
real world).

We build directly on the actionability emphasis but shift the object of
analysis: we treat recourse not as a post hoc explanation layered on top of a
fixed classifier, but as part of a commitment device chosen jointly with the
decision rule. This difference matters in strategic environments. If the prin-
cipal issues recourse recommendations that are inconsistent with the true
drivers of qualification, agents may rationally invest in changes that improve



the reported score but not the outcome, inducing waste and operational risk.
Conversely, if the principal can commit to accept upon verifiable causal im-
provement, recourse becomes a contract-like promise that coordinates agent
investment on socially productive actions. In this sense, recourse is not only
an individual right or transparency tool; it is an instrument for equilibrium
selection.

A second distinction concerns guarantees. Much of the recourse litera-
ture evaluates the existence or cost of a path from rejection to acceptance
under the deployed rule, often focusing on individual-level feasibility. In
high-stakes domains, however, principals often want a system-level safety
guarantee: no individual should be accepted unless truly qualified. Our
mechanism is designed to satisfy such a guarantee in equilibrium, even when
proxies are freely manipulable. This emphasis aligns more closely with model
risk management and operational governance than with purely explanatory
notions of recourse.

What is not yet unified—and our contribution. Across these liter-
atures, three components are rarely brought together in a single, tractable
model.

First, strategic classification highlights manipulation but often treats all
features symmetrically as “inputs to a classifier.” Recourse work highlights
actionability but often abstracts from the principal’s need to remain safe
under strategic adaptation. Causal strategic learning highlights causal irrel-
evance of proxies but often focuses on learning or prediction rather than on
a constructive recourse mechanism. We unify these by (i) separating causal
and proxy features, (ii) imposing an explicit no-false-positives constraint as
a mechanism-design requirement, and (iii) treating recourse as a contractual
commitment that shapes best responses.

Second, there is a gap between computing a counterfactual and imple-
menting it under private costs. Even if the principal knows the direction of
minimal cost improvement in feature space, an agent’s willingness to invest
depends on private type 6 and the value of acceptance . Our single-crossing
cost structure makes this implementability problem transparent: it yields a
cutoff rule for take-up and allows the principal to design a simple recourse
contract that induces all privately worthwhile causal investment without
needing to observe 6.

Third, the complexity of recourse menus is underexplored from a mechanism-
design viewpoint. When agents differ in relative costs across causal dimen-
sions (violating single-crossing), a one-size-fits-all recommendation can be
inefficient and inequitable. We therefore flag a computational boundary:
designing an optimal small menu becomes a coverage problem over types,
with NP-hardness and submodular approximation structure. This connects
recourse design to classical algorithmic mechanism design questions (menu
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complexity and approximate optimization), and helps explain why “simple
recourse” can fail precisely in heterogeneous populations.

The next section formalizes the model that supports these connections.
We specify the causal/proxy split, the action technologies for causal invest-
ment and proxy manipulation, the principal’s commitment to a decision rule
and recourse policy, and the equilibrium concept that ties them together.
This sets up our main implementability result: a mechanism that is simulta-
neously safe (no proxy false positives) and maximally opportunistic among
safe mechanisms (it induces all privately beneficial causal improvements).

3 Model

We study a principal who must make a binary acceptance decision (e.g.,
approve a loan, admit an applicant, grant access to a resource) for strate-
gic agents. The central modeling choice is to distinguish between causal
features—attributes that genuinely determine whether an agent is quali-
fied—and prory features—attributes that may be predictive in historical
data but are outcome-irrelevant and potentially manipulable. The principal
commits not only to an acceptance rule but also to a recourse policy that
specifies what improvements would guarantee acceptance. This commit-
ment turns “recourse” from an after-the-fact explanation into a contract-like
instrument that shapes incentives.

Agents, features, and true qualification. Each agent has a baseline
feature vector
z = (2% 2F) e Ré x RIP,

where 2 denotes causal (actionable and outcome-relevant) features and %
denotes proxy (outcome-irrelevant) features. We assume a deterministic,
verifiable causal notion of qualification:

y = h*(2%) = 1{7a" > 7}, (1)

with known 8 € R:l_c and threshold 7 € R. We write the causal score as
5(z¢) = BT2%. The maintained interpretation is that, conditional on the
underlying causal attributes €, proxies 2 do not affect whether the agent is
truly qualified. This is a stark assumption, but it is precisely the benchmark
in which proxy-based decision rules are most vulnerable to Goodhart-style
manipulation: any weight placed on 2 can only be justified by correlation,
not by causal relevance.

We also assume that causal features are wveriftable once changed. Con-
cretely, if an agent invests in a credential, skill, safety training, or measurable
performance, then the updated 2 can be audited or validated. This verifi-
ability is what allows the principal to safely condition acceptance on causal
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improvements; it is also what separates our mechanism-design problem from
settings where all features are cheap talk.

Actions: causal investment and proxy manipulation. After observ-
ing the mechanism, the agent chooses two kinds of actions.

Causal investment. The agent selects an investment vector e € Ric,
producing post-investment causal features

¢ = xc+e.

We treat causal investment as monotone and additive for tractability: effort
can improve causal features but cannot directly decrease them.

Prozy manipulation. The agent may also take a proxy manipulation ac-
tion m, which affects the reported proxy features #. We leave the mapping
from m to #¥ domain-specific: m could be continuous (e.g., spending on
marketing or presentation), discrete (e.g., selecting into a reporting cate-
gory), or even combinatorial (e.g., editing an online profile or network). The
key restriction is that proxy manipulation does not change true qualification
y, which depends only on ¢ via . Thus,

&= (29,27) = (2% + ¢, 2P (m)).

This explicit separation lets us represent “gaming” as costly changes in prox-
ies that may influence a proxy-sensitive rule but do not improve the outcome-
relevant state.

Costs and private types (single-crossing). Agents differ in their cost
of improving causal features. Each agent has a private type 8 > 0 that scales
the marginal cost of investment. We assume a separable linear cost:

do
co(e;0) = Gijej, (2)
j=1

where w € Ric are known per-feature marginal cost weights. This “single-
crossing” structure implies that agents agree on the relative attractiveness of
different causal improvements: types differ only in overall difficulty, not in
which direction is cheapest. The assumption is strong, but it yields a clean
implementability logic and a transparent cutoff characterization of who takes
up recourse; later, one can relax it to heterogeneous relative costs at the price
of richer menus and computational complexity.

Proxy manipulation carries an arbitrary cost cp(m) > 0, which may be
heterogeneous across domains but is not scaled by 6 in our baseline. Allowing
arbitrary cp underscores that the principal should not rely on proxies being
“hard to manipulate™ even if proxy manipulation is cheap, the mechanism
we build will make it irrelevant for acceptance.
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Principal’s mechanism: decision rule and recourse policy. The
principal commits to a mechanism

M = (f,r).
The decision rule f maps reported features to an acceptance decision:
f:R¥ xR¥P - {0,1},  a= f(a)

The recourse policy r maps a rejected report & to a set (or menu) of recom-
mended causal actions:

dc
r:RIC x RP 5 9By

We interpret () as a guarantee menu: if the agent were to take any e € r(z),
then the principal commits that the resulting causal features would satisfy
the qualification threshold, and thus (under a suitable eligibility rule) the
agent would be accepted. Operationally, this resembles policy statements
like “if you complete credential Z, you will be eligible,” or “if you raise verified
income by X, you will meet the underwriting standard.”

In the one-shot environment, recourse is informational: the interaction
ends after the principal’s decision, but the agent’s knowledge of r can affect
the initial investment choice because it clarifies the path to acceptance. In
a two-stage variant (which we view as a natural interpretation in many in-
stitutions), rejected agents may implement a recommended e and reapply;
our equilibrium characterization is compatible with either interpretation be-
cause what matters is that the principal can credibly commit to accept after
verifiable causal improvement.

Timing and information. The interaction proceeds as follows:
1. The principal commits to M = (f,r).

2. The agent observes M and her baseline features x, and privately knows
0.

3. The agent chooses actions (e,m), generating the report & = (:UC +
e, 2 (m)).

4. The principal observes & and outputs a = f(Z).

5. If a = 0, the principal provides the recourse menu r(z). (In the one-
shot model this is advisory; in a two-stage implementation it can be
executed and verified.)

The principal observes reported features Z, including #¢. Crucially,

causal changes are assumed verifiable: the principal can condition accep-
tance on ¢ without being vulnerable to misreporting of 2¢. Proxies may
be manipulable in arbitrary ways; the principal does not observe the action
m directly, only the induced &% .
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Preferences. An accepted agent obtains private value v > 0 (e.g., the
benefit of receiving a loan, job, or access). Agent utility is

Uale,m; M, x,0) = v f(&) — cole;0) — cp(m). (3)
True qualification after investment is
y = 1B (@ +e) =7} = 1{pTa" = 7}

We focus on a principal who wishes to maximize true positives—accepting
qualified agents—subject to a stringent operational safety constraint against
false positives. Formally, the principal’s objective can be written as

e B[1{f(2) =1} -y], (4)
subject to a no-false-positives condition described below. We view as
a reduced form for settings where the principal derives value from serving
qualified agents but faces large penalties (regulatory, reputational, or safety-
related) for accepting unqualified ones. Extensions can add a capacity con-
straint E[f(Z)] < ¢ or place weight on agent welfare; our baseline isolates
the incentive and safety logic.

Equilibrium concept (Stackelberg with best responses). Given a
committed mechanism M and baseline x, an agent with type 6 chooses
(e,m) to maximize . We denote the best-response correspondence by
BR(M,z,60), with equilibrium actions (e*,m*) € BR(M,z,0). A Stackel-
berg equilibrium consists of a mechanism M and best responses (e*, m*) for
all agents such that: (i) agents best respond to M; and (ii) M satisfies the
principal’s constraints (notably, safety) given induced behavior.

Because the principal is committing ex ante, this is not a Bayesian per-
suasion problem: we are not designing information structures. Instead, we
are designing rules and credible promises about what changes will be re-
warded.

Safety and correctness requirements. The institutional commitment
we model is that acceptance should be safe: no agent should be accepted un-
less truly qualified. Since behavior is endogenous, we impose this constraint
at the level that matters operationally—on realized reports in equilibrium.
Specifically, the no-false-positives (No-FP) requirement is:

f@)=1= pli%=>r (5)

for all  that can arise as an equilibrium report under M. This is intentionally
stronger than an “in expectation” constraint: a principal in a safety-critical
domain often cannot justify knowingly allowing some fraction of unqualified
accepts, even if the average outcome is good.
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We also require that recourse recommendations be correct in the same
causal sense. For any rejected & and any recommended action e € r(Z), the
recommendation must indeed lead to qualification:

Vi with f(2) =0, Yeer(z): BT (@Y +e) > (6)

This captures a “no empty promises” principle: the menu cannot include
actions that would still leave the agent unqualified. In applications, this
corresponds to offering only those improvement plans that would satisfy
underwriting, licensing, or safety thresholds if completed.

Notice that @ speaks only to the causal features #¢. We do not require
recommendations about proxies, both because proxies do not affect qualifica-
tion and because, in our target use-cases, recommending proxy manipulation
would be normatively and operationally dubious.

Discussion of modeling choices. Three modeling choices are worth high-
lighting because they delimit what the mechanism can and cannot do.

First, qualification is a deterministic threshold in z¢. This is a bench-
mark for environments with hard eligibility criteria (e.g., meeting a verified
income requirement, holding a required credential, passing a safety test). It
is not meant to deny that many real outcomes are noisy; rather, it clarifies
what is implementable when the principal can anchor decisions to verifiable
causal criteria.

Second, we assume the principal knows § and 7. This isolates the
strategic-design problem from statistical estimation. In many institutions,
these parameters correspond to policy-set standards rather than learned co-
efficients. When they must be estimated, the recourse-induced investments
can themselves become a source of identifying variation; we return to this
possibility only as an extension.

Third, the single-crossing cost structure is deliberately chosen to
make “which improvement should be recommended” a well-defined object.
If agents have different relative costs across causal dimensions, then an op-
timal recourse policy generally requires a menu of options; our baseline can
be seen as the simplest environment in which a single recommended action
can coordinate investment efficiently.

What the model enables. Within this structure, the principal’s design
problem becomes sharply articulated. Because proxies can be manipulated
without improving y, any rule that rewards proxies risks shifting effort to-
ward wasteful m rather than productive e. Conversely, because causal fea-
tures are verifiable, the principal can—at least in principle—commit to re-
ward only causal improvements. The recourse policy r is the additional
lever that resolves an implementability friction: even if a causal threshold
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is safe, agents may not know the cheapest way to reach it, and the princi-
pal can use recourse to communicate (and credibly commit to) a minimal
path. The next section uses this model to articulate a baseline limitation:
why proxy-sensitive score rules naturally invite proxy gaming, and why the
no-false-positives requirement—while restrictive—is exactly what makes the
safe mechanism-design question policy-relevant.

4 Baseline limits: proxy gaming, and why we re-
strict to safe mechanisms

Our model is deliberately constructed to isolate a tension that is often blurred
in purely predictive treatments of classification: once a decision rule is de-
ployed, it becomes a target. Features that were merely correlated with out-
comes in historical data need not remain informative when agents can strate-
gically move them. In our setting, the sharpest version of this tension arises
because proxy features are, by assumption, outcome-irrelevant: manipulat-
ing ¥ does not change true qualification 3. Any acceptance rule that places
weight on x¥ therefore creates an immediate wedge between what the prin-
cipal rewards and what the principal ultimately cares about.

Why standard proxy-sensitive score rules invite proxy gaming. A
useful foil is the familiar score-threshold rule

f(@) =1{3(2%,2") > t},

where § could be a learned predictor (logit score, random forest margin,
etc.) that loads on both causal and proxy features. Historically, such a rule
may be accurate because z¥ is correlated with ¢ (or with y) in past data.
But under strategic response, the agent does not “follow the correlation”; she
follows the gradient of acceptance probability with respect to the manipulable
coordinates.

This has two immediate implications.

First, if 5 is responsive to proxies and there exists any feasible manipula-
tion m that changes #% in the direction that improves §, then proxy manip-
ulation is a privately rational substitute for causal improvement whenever
it is cheaper. Formally, holding fixed e, any action m that increases f(z)
weakly increases utility by v and costs only ¢p(m). Thus, unless proxy ma-
nipulation is prohibitively expensive for all agents, a proxy-sensitive rule
generically induces positive proxy spending in equilibrium. This is a pure
deadweight loss in our benchmark because it does not improve y.

Second, and more importantly for institutional safety, proxy sensitivity
threatens false positives. The core logic is simple: if the acceptance region
contains any reports with causal score below threshold, then an agent can be
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accepted without becoming qualified by steering the proxies into that region.
Concretely, suppose there exist two reports & = (J%C, jfp) and 7' = (J%C, j:Pl)
that share the same causal features ¢, but

B¢ < 1, f(z) =0, f(@) =1.

Then acceptance is achievable “purely through proxies” at that #¢. Any
unqualified agent with baseline z¢ ¢ (or with 2% that can be brought to
#¢ at negligible causal cost) can obtain v without changing y by selecting a
manipulation m that induces & If such an m exists with cp(m) <7, it is
a best response. In short: once ! helps, it can be engineered.

This observation is the mechanism-design version of Goodhart’s law. It is
also a Lucas-critique point: the conditional distribution of y given (z¢,z")
under the old regime does not equal the distribution induced after agents op-
timize against a proxy-sensitive policy. In applications, this is precisely what
we see when (i) “search engine optimization” replaces substantive quality, (ii)
“resume keyword stuffing” replaces skill, (iii) temporary balance transfers re-
place long-run creditworthiness, or (iv) superficial compliance replaces safety
culture. In each case, the proxy remains easy to move, and the outcome-
relevant state remains unchanged.

=2

Why relying on proxy manipulation costs is fragile. One might ob-
ject that in many domains proxy manipulation is not free: cp(m) may be
substantial, and perhaps large enough to deter gaming. Our baseline does
not deny this; rather, it treats it as an unreliable foundation for safety.

The reason is that the principal typically does not observe m or cp(-),
and cannot rule out low-cost manipulations for some agents or some new ma-
nipulation technology tomorrow. If acceptance depends on proxies, safety
hinges on an empirical claim of the form “no agent can cheaply move z* into
an accepted region while keeping f7#¢ < 7.” This is a worst-case statement
over a strategic population and an evolving manipulation set. In many regu-
lated settings, that is exactly the kind of claim an institution cannot credibly
make.

Moreover, even if manipulation is costly on average, it can still be selec-
tively cheap: specialized intermediaries, informational arbitrage, or outright
fraud can create a thin but consequential tail of low ¢p. Because our safety
constraint is pointwise (no false positives), such tails matter. A mechanism
that is “mostly safe” is often not operationally acceptable when the harm of
a single false positive is large.

Why the no-false-positives constraint is restrictive—but policy-
relevant. We now explain why we impose an explicit no-false-positives
requirement rather than the more common statistical objective that trades
off false positives and false negatives.
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The restriction is clear: with noisy outcomes or uncertain measurement,
a principal typically cannot guarantee zero false positives. Our benchmark
is instead aimed at environments where qualification can be anchored to ver-
ifiable causal criteria—exactly the situations in which institutions do write
hard eligibility rules. Examples include: meeting a certified training require-
ment, passing a safety inspection, holding a credential, satisfying a verified
income threshold, meeting a capital or reserve requirement, or complying
with a legal standard. In such cases, “accept only if the standard is met” is
not just a preference; it is a compliance obligation.

Formally, our no-false-positives condition can be read as a robust opera-
tional constraint:

(No-FP)  f(i)=1 = ' >

for reports 2 that occur in equilibrium (and, in the strongest version, for all
reports). This is restrictive in the same way that many real constraints are
restrictive: it forces the principal to separate the decision criterion (causal
qualification) from whatever proxies happen to be predictive in a historical
dataset.

Two additional remarks clarify the role of this restriction.

First, it is not a moralized ‘“never make mistakes” assumption; it is a
modeling device to capture domains where the principal faces effectively
infinite (or very large) penalties from false positives. A lender may face
binding regulatory constraints; a platform may face catastrophic safety risk;
an employer may face licensing rules; a public agency may face statutory eli-
gibility requirements. In these settings, the principal’s optimization problem
is naturally written as “maximize access subject to meeting the standard.”

Second, the restriction is precisely what makes recourse a meaningful
policy instrument. If false positives were allowed, the principal could al-
ways increase measured performance by relaxing thresholds or by admitting
borderline agents probabilistically. Under no-FP, the only way to expand
acceptance is to increase the mass of agents who actually become qualified.
That is, safety converts the problem from one of “better prediction” to one
of “better incentives and improvement.”

Defining the class of safe mechanisms. We therefore focus attention
on mechanisms M = (f,r) that are safe in the strategic sense: they remain
free of false positives once agents best respond.

There are (at least) two natural safety notions. The weaker, equilibrium-
based notion aligns with how policies are experienced: only realized reports
matter. The stronger notion is a robustness requirement: the acceptance
rule must never accept an unqualified report, regardless of how it is reached.
Because our agents can manipulate proxies in rich ways, the stronger notion
is often the relevant one in practice—yet it turns out not to be materially
more demanding in our deterministic qualification benchmark.
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We package the constraints we impose as follows.

Definition 4.1 (Safe mechanism). A mechanism M = (f,r) is safe if, for ev-
ery baseline z and type 6, and for every best response (e*, m*) € BR(M,x,0)
generating report @ = (¢ + e*, 27 (m*)), the following hold:

1. No proxy false positives (equilibrium safety): f(z) = 1 =
pTa¢ > .

2. Recourse correctness: for every rejected report & with f(z) = 0,
every recommended action e € r(2) satisfies 81 (2¢ 4 ¢) > 7.

We write Mg for the set of mechanisms satisfying these two properties.

This definition makes explicit what “safe recourse” must mean in a strate-
gic environment: acceptance cannot be earned by proxy-only changes, and
recommendations must truly bridge the causal gap to qualification.

A baseline limitation: proxies cannot safely expand acceptance.
Once safety is imposed, it is useful to see what is not available to the princi-
pal. In our benchmark where y = 1{872% > 7} is deterministic in verifiable
causal features, any mechanism that ever accepts an agent with 2% < 1
is unsafe by definition. Thus, proxies cannot be used to “screen in” addi-
tional agents who have not met the causal standard. At best, proxies could
be used as a tie-breaker among already-qualified agents, or as a prediction
device when the principal is willing to tolerate some false positives. But
under our maintained constraint, proxy-based expansions are precisely what
is ruled out.

This is the sense in which no-FP is not merely a technical convenience: it
sharply distinguishes two worlds. In the permissive world, the principal may
treat =¥ as helpful signals and accept probabilistically. In the safe world,
the principal must treat 2 as potential attack surfaces; any dependence on
2 must be justified by something other than correlation—namely, by causal
relevance or by verifiable constraints. Since proxies are outcome-irrelevant
by assumption, that justification is unavailable here.

Where recourse enters: incentives rather than signals. The preced-
ing discussion might sound pessimistic: if proxies are off-limits and quali-
fication is a hard threshold, is there anything left to design? The answer
is yes, and it is the central point of the paper: even when eligibility must
be anchored to causal score, the principal still controls the path by which
agents reach that score. By committing to a recourse policy that specifies
verifiable improvements that guarantee crossing the threshold, the principal
can redirect agent effort away from proxy manipulation and toward causal
investment. In other words, the lever is not “use more features” but “shape
strategic behavior.”
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The next section makes this precise. We show that, within Mg.s, the
acceptance rule can be reduced without loss to a threshold on the causal
sufficient statistic 57#¢, and that under single-crossing costs the principal
can provide a particularly simple (indeed, single-action) recourse guarantee
that implements maximal safe take-up among improvable agents.

5 Structure: safe sufficiency and the geometry of
minimal causal improvement

Having narrowed attention to Mg,g, We can now characterize what a safe
mechanism can look like in our deterministic causal benchmark. Two facts
do essentially all of the work going forward. First, if we insist on safety, then
the principal cannot gain anything from conditioning acceptance on proxies:
the only relevant statistic for eligibility is the causal score s(xc) = BT2C.
Second, under single-crossing linear costs, the agent’s cheapest way to raise
this score has an extremely simple structure: push along one “best bang-per-
buck” causal coordinate. These two observations jointly explain why a very
simple recourse policy will be implementable and (ex post) optimal in the
next section.

5.1 Safe sufficiency: eligibility can depend only on the causal
score

In our environment, the principal’s safety requirement is not merely a con-
straint on outcomes; it is a constraint on the shape of the acceptance region.
Intuitively, once an agent can freely choose proxies (or choose them at het-
erogeneous costs unknown to the principal), any acceptance set that is not
“cylindrical” in the proxy coordinates creates an attack surface. Safety forces
eligibility to be anchored to what ultimately determines qualification.

We formalize this as a reduction: among safe mechanisms, it is without
loss to restrict to rules that are thresholds on s(2¢) alone.

Proposition 5.1 (Safe sufficiency / reduction to a causal statistic). Main-
tain y = 1{BT2C > 7} with verifiable . Consider any mechanism M =
(f,r) € Mgage. Define the induced causal-only rule

@) = 1{3a" 5.t 7@°,3") =1},
Then:

1. (Safety implies causal feasibility) For all €, f(i¢) =1 = T3¢ >
T.

2. (W.l.o.g. causal-only eligibility) There exists a safe mechanism
M = (f,r) with the same recourse policy and with f(z) = f(2¢) =
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f(&9) such that, for every (x,0), the set of achievable acceptance de-
cistons under best responses weakly expands relative to M, while pre-
serving no-false-positives.

3. (Mazimal safe acceptance) Among all safe decision rules, the point-
wise maximal acceptance rule is

fsafe(j> _ 1{6T¢@C > 7_}’

i.e., accept all and only reports that are causally qualified.

Interpretation. Part (i) says: if a fixed causal report £¢ can ever be
¢ must already be on the qualified
side of the true threshold. Otherwise the mechanism has created a proxy-
contingent “backdoor” into acceptance.

Part (ii) is the key simplification: once we know which causal states are
ever admissible, conditioning acceptance on the proxy realization is pure
slack from the principal’s perspective under safety. Replacing f by f deletes
arbitrary proxy dependence while never creating an unsafe acceptance.

Part (iii) identifies the “frontier” decision rule within Mg,ge: if the prin-
cipal’s objective is to maximize true positives subject to no false positives,
it is optimal to accept whenever the agent is in fact qualified. Any stricter
rule (rejecting some qualified 2¢) can only reduce true positives and does
not improve safety.

accepted for some proxy realization, then

Proof sketch (economic logic). The proof uses the deterministic struc-
ture of qualification and the fact that proxies are outcome-irrelevant.

For (i), fix #¢ and suppose f(#¢) = 1 while 872¢ < 7. By definition of f,
there exists a proxy report 27 with f(2¢,2%) = 1. But then the mechanism
accepts an unqualified report (2¢,2"), contradicting safety (in the strong
form) and, under equilibrium safety, contradicting the existence of any agent
who can reach (£¢,2") at finite proxy cost while keeping causal investment
fixed. The point is that proxy dependence can only move acceptance across
proxies at fixed #¢; if any such movement crosses the true boundary, an
unqualified acceptance becomes feasible.

For (i), define f(&¢,2F) = f(z¢). By (i), f = 1 implies 8'2¢ > 7,
hence f is safe regardless of proxy reports. Moreover, if under M the agent
can induce acceptance at some report with causal part #, then f (@C) =1
and thus f also accepts at that causal report. This removes the need for the
agent to thread a particular proxy needle, weakly improving incentives for
causal investment (or at least never worsening them) while preserving the
same safety guarantee.

For (iii), observe that any safe rule must reject all 2¢ with 8729 < 7.
Hence the pointwise maximal safe acceptance set is exactly {#: 3T4¢ > 7}.
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Accepting all such reports is feasible and yields f(#) = 1 = y = 1 by
construction.

A practical reading. The proposition is a formal version of a compliance
intuition: if an institution is obligated to admit only those who meet a verifi-
able standard, then any reliance on non-standard, manipulable covariates is
not “extra information”—it is a vulnerability. In this benchmark, the causal
score s(2%) is a sufficient statistic for safe eligibility because it is exactly
what the institution ultimately must certify.

Limitations of the reduction. The reduction relies on two knife-edge
features that we explicitly adopt as a benchmark: (a) the qualification label
is deterministic in 2¢, and (b) 8 and 7 are known and the relevant causal
features are verifiable once changed. In settings with noise, imperfect verifi-
cation, or genuinely causal proxy components, proxy-blindness need not be
optimal. Our claim here is narrower: in the environment where prozies are
outcome-irrelevant and manipulable, safety alone forces eligibility to ignore
them.

5.2 Minimal-cost improvement under single-crossing linear
costs

Once eligibility is anchored to s(2¢) > 7, the remaining design problem is
not about using additional signals; it is about inducing agents to cross the
causal threshold by choosing e. This makes the agent’s private optimization
problem central. In particular, to understand take-up of any recourse policy,
we need the minimal causal cost of reaching qualification.

Fix baseline €. If BT2¢ > 7, the agent is already qualified and needs
no investment. Otherwise, she must increase the score by

A = 7-8"2% > 0.

Under our separable single-crossing cost specification cc(e;6) = 6> ; wj€s,
the agent’s cost-minimization problem conditional on deciding to qualify is
the linear program

de de
min ijej s.t. Zﬂjej > A(z9). (7)
j=1 j=1

e>0
This is the simplest possible “effort allocation” problem: the agent needs A

units of score and can purchase score through different causal coordinates,
each with a different price-per-score.
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Proposition 5.2 (Closed-form minimal improvement cost and the cheapest
causal direction). Assume (3 € Ric and w € le_c. Let
W
jT € arg min -2 (a cheapest cost-per-score coordinate).
78>0 3;

Then the minimal unscaled cost in 18

w

it
; o = _J
min g wje; = 3. A,
J it

e>0: BTe>A

and an optimal action is to invest only in coordinate j:
el. = A/B; el =0 Vk #
Scaling by type, the minimal causal investment cost to qualify is
0, plac >,

0 =1, (r—B87aC), BTaC <r.

ij

B;

Proof sketch (geometry of a one-constraint LP). Because there is
a single binding linear constraint S'e > A and nonnegativity, an extreme
point solution concentrates all mass on one coordinate. The cost of obtaining
one unit of score via coordinate j is exactly w;/f3;. Hence the cheapest way
to buy A units is to buy them all through a coordinate minimizing this ratio.

Economic meaning of single-crossing here. The crucial feature is that
the identity of jT does not depend on 6. All types agree on the ranking of
causal investment directions; # only scales the level of cost. This is the sense
in which the environment is single-crossing: cheaper types are willing to
invest more in exactly the same “best” direction.

This seemingly technical property is what makes simple, uniform recourse
possible. If different types preferred different directions, then recommending
a single action could be badly mismatched for a large share of the population;
we return to this menu-complexity issue later. In the present benchmark,
the principal can point everyone to the same cheapest causal lever.

A cutoff characterization of who will invest. Because acceptance
yields value v, an agent will choose to incur the minimal qualifying cost
if and only if it is privately worthwhile:

v > C*(2%,0).
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Equivalently, for 87 z% < 7,

B
T — BTxC wji

type cutoff given baseline ¢

This simple inequality already anticipates the comparative statics: higher
7y increases investment; higher 7 reduces it; and a higher “price” wj; / Bjt
reduces it. Importantly, under safe eligibility (a pure causal threshold),
proxy manipulation never relaxes the constraint ' (2¢+e¢) > 7, so it cannot
change whether the inequality holds.

5.3 What these two results buy us

Proposition [5.1] tells us that, under safety, we can treat the principal’s eli-
gibility decision as operating on a one-dimensional sufficient statistic s(:i‘c).
Proposition [5.2] then tells us that, under single-crossing costs, the agent’s
best way to increase that statistic is effectively one-dimensional as well: in-
vest along jT by an amount exactly equal to the score shortfall divided by
8.

These are the structural ingredients behind implementability. Once (i)
eligibility is a causal threshold and (ii) the cheapest improvement path has
a closed form shared across types, the principal can do something power-
ful: commit to a recourse policy that explicitly reveals the unique cheapest
qualifying move at any rejected . The next section uses this to construct
a mechanism M = (f,r) that eliminates proxy-driven acceptance, induces
all privately improvable agents to become qualified, and is ex post optimal
among safe mechanisms.

6 Implementability: a constructive safe mechanism

The previous section reduced the principal’s design problem to an unusu-
ally clean object: a one-dimensional eligibility boundary in the causal score
s(2¢) = pT2%, together with a one-dimensional “cheapest direction” for im-
proving that score under single-crossing linear costs. We now turn these
structural facts into a fully specified mechanism M = (f,r) and show that
it simultaneously delivers (i) safety against proxy gaming, (ii) full take-up
among agents for whom causal improvement is privately worthwhile, and
(iii) ex post optimality among safe mechanisms.

The economic idea is simple. If the principal commits to (a) an ac-
ceptance rule that is ezactly the true causal standard and (b) a recourse
message that tells rejected agents the cheapest verifiable way to meet that
standard, then the only remaining friction is the agent’s own private cost
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scale 6. Agents with low enough 6 will rationally invest and become quali-
fied; agents with high 6 will rationally decline. Proxy manipulation becomes
irrelevant because it cannot move the causal score, and the mechanism never
conditions acceptance on proxies in the first place.

6.1 Mechanism definition
Fix g € Rdc, 7 € R, and cost weights w € ]Rff_c. Let

jT € arg min Y
j:ﬁj>0 ]
be a cheapest cost-per-score coordinate (ties can be broken arbitrarily and
fixed once-and-for-all).
We define the mechanism MT = (ff,71) by:

(@) =1{p 2% > 7}, (8)

{oy,  Bla“=r
AIC TR S 9)
{ef(#)}, BTz <,

where the singleton recommendation ef (%) € Ric is

T—,BT.%C i

T /a
e ()= —m, e
( ) /BjT k

! (&) =0 Vk # jt. (10)
Thus, when an agent is rejected at &, the mechanism tells her to raise the
single cheapest causal coordinate j! by exactly the amount required to clear
the causal threshold.

Operationally, M' is implementable in time polynomial in dc: com-
pute A'2%, compare to 7, and (if needed) compute a single scalar gap
(r—pT2%)/ B;+. Importantly, neither fT nor r! requires any optimization at
runtime.

6.2 Main theorem

Theorem 6.1 (Implementability and ex post optimality of MT). Maintain
the deterministic causal qualification rule y = 1{#72¢ > 7} with verifiable
causal features, arbitrary manipulable proxies, and single-crossing linear in-
vestment costs cc(e;0) = 6 ) wje;. Consider the mechanism Mt = (ff,rh)
defined in f. Then in Stackelberg equilibrium:

1. (Zero proxy false positives) No accepted agent is unqualified: for
all equilibrium reports &, f1(2) =1 = y = 1. Moreover, prozy manip-
ulation cannot increase acceptance probability under fT.
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2. (Full take-up among improvable types) For every (z€,0), if the
minimal causal cost to qualify satisfies

C*(z%,0) = min 0y wie; < 7,
( ) e>0: 8T (zC+e)>T1 ZJ: % =7

then the agent chooses a best response investment that makes her quali-
fied (and hence accepted), and may be taken to be ef () concentrating
on jt. If C*(2,0) > v, she does not invest to qualify.

3. (Ex post optimality among safe mechanisms) Fiz any alterna-
tive safe mechanism M = (f, 7) that bases eligibility only on verifiable
causal features and satisfies no-false-positives in equilibrium. For ev-
ery realization (x€,0), the acceptance/qualification outcome under MT
weakly dominates that under M in true positives. Equivalently, Mt
maximizes true positives pointwise subject to safety and incentive com-
patibility.

6.3 Why the theorem is true

We prove each part by following the agent’s best-response problem under
M and using the geometry of the minimal-cost improvement characterized
earlier.

(i) Safety and irrelevance of proxies. Under fT, acceptance is equiv-
alent to f'42¢ > 7. But in our environment y = 1 is defined by the same
inequality applied to the realized causal state. Therefore, on the equilibrium
path (indeed, for any report),

fl@)=1= pgTi%>7 = y=r*E% =1

This is the strongest possible version of “no false positives”: the acceptance
region is exactly the qualified region in the causal coordinates.

Proxy manipulation is similarly neutralized by construction. The agent’s
choice of m affects only z¥, while f1 depends only on #¢. Hence m cannot
change the acceptance decision, and any m with ¢p(m) > 0 is strictly domi-
nated by the cheapest proxy action (often “do nothing”). In equilibrium, we
can therefore take m* to minimize cp, and proxies drop out of the strategic
analysis entirely.

(ii) Full take-up among agents for whom improvement is privately
worthwhile. Fix baseline ¢ and type #. The agent chooses e > 0 to
maximize
YUB (@ +e) 2 7r =0 wjey,
J
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since proxy actions do not affect the indicator under fT. There are two cases.

If T2¢ > 7, then the agent is already qualified and accepted with e = 0;
because costs are nonnegative and separable, any e # 0 weakly reduces
utility. Thus e* = 0.

If 872 < 7, then the agent faces an all-or-nothing tradeoff: she can
remain below threshold and receive utility 0 (net of the proxy baseline), or
she can cross the threshold and obtain ~ minus the cost of doing so. By
Proposition , the minimal (type-scaled) cost of crossing is exactly

’LU .
C*(2€,0) = 0 -2 (r — 8T 20),
Bjt
achieved by investing only in coordinate jT with magnitude (r — 3" 2¢)/ Bjt.
Therefore:

o If v > C*(29,0), then choosing e = ef(z®) yields acceptance and
nonnegative net gain; any accepted action must satisfy 5T(xc +e)>T1
and hence has cost at least C*, so el is (weakly) optimal among all
acceptance-inducing deviations.

o If v < C*(z,0), then every acceptance-inducing investment yields
negative net utility, so the best response is to choose e = 0 (or any non-
qualifying e, which is weakly dominated by e = 0 given nonnegativity).

This establishes the cutoff form of equilibrium behavior and the “full take-
up” claim: every agent who can be profitably induced to become qualified
does become qualified under M.

Where does recourse enter? Formally, T is correct by construction: if an
agent is rejected at &, then 81 (2¢ 4 e (#)) = 7, so following the recommen-
dation would make her qualified. Economically, the recourse map makes the
cheapest qualifying move salient and verifiable: it is an explicit certificate of
what the principal will recognize as adequate improvement. In a two-stage
“reapply” variant, rT also directly implements the dynamics (reject — invest
— accept) with no strategic ambiguity about which improvements count.

(iii) Ex post optimality among safe mechanisms. We now argue that
MT is not merely safe and incentive compatible; it is pointwise optimal in
true positives given those constraints.

Take any alternative safe mechanism M that bases eligibility on verifiable
causal features. By the definition of safety (no accepted unqualified agents),
f cannot accept any report with 872#¢ < 7. Hence, for a given realized
causal state, M can generate acceptance only by (a) accepting agents who are
already qualified or (b) inducing agents to invest until they become qualified,
at which point acceptance is permitted.

But incentive compatibility imposes a hard upper bound on whom M
can induce to invest. If an agent’s minimal qualifying cost exceeds -, then
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even the cheapest path to becoming qualified yields negative net payoff, so no
mechanism that does not subsidize effort can rationally induce that agent to
cross the threshold. Thus, for each (2¢, 6), the set of agents who can possibly
become accepted-and-qualified under any safe mechanism is exactly:

{(:):C,G) BT > T} U {(wC,H) 872 <7 and C*(29,0) < fy}.

Part (ii) showed that M attains acceptance (and hence true positives) for all
agents in this feasible set, and none outside it. Therefore, for every realiza-
tion (xc, ), no safe mechanism can generate more true positives than M t
this is ex post optimality. Taking expectations over the population immedi-
ately yields optimality for the principal’s expected true-positive objective.

6.4 What the construction means (and what it does not)

The theorem formalizes a strong “policy design” lesson in this deterministic
benchmark: if the institution’s obligation is to avoid admitting unqualified
agents, then the optimal safe policy is to (i) base acceptance entirely on the
verifiable causal standard and (ii) communicate a concrete, minimal, veri-
fiable improvement plan to those who fall short. In applied settings, this
corresponds to recourse that is not merely explanatory (“you were rejected
because your score was low”), but actionable and minimal (“raise the verifi-
able causal attribute by exactly this amount”).

At the same time, the sharpness of the result is inseparable from the
sharpness of the assumptions. We rely on deterministic qualification in
verifiable causal features, and on single-crossing linear costs that make the
cheapest improvement direction common across types. Once relative costs
differ across individuals—so that different agents prefer different “improve-
ment levers”—a singleton recourse recommendation need no longer be close
to optimal. The next section takes up that issue directly by treating recourse
design as a menu-selection problem, clarifying when K = 1 suffices, when
K = d¢ guarantees coverage, and why intermediate K generally becomes a
submodular optimization problem rather than a closed-form construction.

7 Extensions: menu complexity when relative costs
vary across agents

The construction in the previous section leans heavily on a knife-edge but
economically transparent property: single-crossing makes the cheapest way
to increase the causal score agree across types. Once we relax that property,
recourse design stops being “one message fits all.” In many applied environ-
ments, different individuals can improve different verifiable causal attributes
at very different relative costs (time constraints, liquidity constraints, access
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to training, disability accommodations, local availability of courses, etc.).
In that case, a principal who insists on giving only a single recommended
action can easily leave many improvable agents behind, not because they
cannot meet the standard, but because the recommended path is not their
cheapest.

We formalize this by replacing the separable single-index cost scale with
heterogeneous relative costs. Let a type now be a vector of marginal costs
% € R and let

do
cole;k) = Z Kj€j.
j=1

The qualification constraint remains 87 (2% +¢) > 7, and acceptance remains
“safe” only if it never admits a report with 8'2#¢ < 7. The key difference
is that the optimal improvement direction now depends on «: the relevant
“price per unit causal score” for coordinate j is x;/f;, and the cheapest
coordinate can vary widely across agents.

7.1 Recourse as a finite menu

A useful way to think about recourse in this environment is as a menu of
verifiable causal action plans. Upon rejection at &, the principal reveals a
finite set 7(z) = {eM(2),...,eM)(£)}. The agent then chooses whether
to follow any element of the menu (in a two-stage variant, to reapply after
doing so), or to deviate to some other action. Correctness requires that every
recommended action clears the causal threshold:

Ve € r(z) : BT(EC +e)>T

Because eligibility is pinned to 872, the role of the menu is not to “jus-
tify” rejection but to reduce search and uncertainty about which verifiable
improvements will be recognized as sufficient, and (if we restrict attention to
menu-following behavior) to provide a small set of candidate paths among
which the agent can select her cheapest.

To make the menu problem crisp, fix a rejected & with score gap

A(#) = (r—B"2%, > 0.

Any recourse action must satisfy fTe > A(z). For a given menu 7(%), an
agent of type k will (weakly) prefer the cheapest menu element that achieves
acceptance, i.e.

min s

n e < v = take up recourse (and become qualified).
ecr(z

Thus, for each &, the menu induces a “covered set” of types: those for whom
at least one recommended plan costs at most . This immediately highlights
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why heterogeneity creates menu complexity: a single plan can be cheap for
some types and expensive for others, even when everyone shares the same

causal threshold A(Z).

7.2 Two polar cases: K =1 and K = dg

Case 1: K =1 (a single recommendation). Suppose we insist on a
singleton menu r(#) = {e(#)} with 8Te(£) > A(z). Under heterogeneous k,
there is no longer a universally optimal direction. Any fixed e(z) implicitly
privileges some cost profiles over others.

A natural (though not universally optimal) benchmark is to recommend
a population-optimal direction, e.g. choose

ePP(z) € arg min E[x"e| ],
e>0: BTe>A(%)

which, by linear programming, concentrates all effort on a coordinate

A(Z)  pop 4
= G Eir(2) =0

57 € argmin LI o )
j B J

This is the direct analogue of the single-crossing construction, except that
“cheapest” is now defined in expectation rather than uniformly across types.
The limitation is immediate: even if this minimizes average cost, it may
deliver poor take-up among types whose cheap coordinate is different. In
other words, K = 1 can remain safe and simple, but it is generally not fully
implementable in the sense of inducing all privately improvable agents to
become qualified.

Case 2: K = d¢ (coordinate menu, closed form). At the other ex-
treme, a simple menu can guarantee broad coverage even under arbitrary
heterogeneity by offering one option per causal coordinate. Define coordi-
nate actions

N N Az N
e0)(2) by () = 5“ ) (#) =0,

for every j with 8; > 0, and set

reoord(2) = {eV(&)}18,50.

This menu is correct by construction: each option clears the threshold with
equality. Moreover, for any type k, the cheapest coordinate plan in the menu

has cost .
min ' e (2) = A(2) - min —2.
§:8>0 3:85>0 fB;



But that expression is exactly the value of the underlying linear program

min kT e,

e>0: BT ex>A(%)

since the feasible region is a single covering constraint with nonnegativity, so
an extreme point solution is always a single coordinate. Hence the coordinate
menu does more than provide “some” good options: it includes an agent’s
globally minimal-cost way to qualify. As a result, in a two-stage variant
where agents reapply after following a recommended plan, r°°™ restores
the full-take-up property: every agent who can profitably become qualified
(i.e. whose minimal qualifying cost is at most ) can do so by selecting the
appropriate coordinate option.

The practical message is that a menu of size do can be enough to recover
the sharp implementability conclusion without any single-crossing restric-
tion. Importantly, the menu remains operationally simple: each option is
“increase feature j by A(z)/8;.” The tradeoff is communicational and admin-
istrative rather than computational: as d¢o grows, presenting and validating
many distinct improvement pathways may be burdensome.

7.3 Intermediate K: coverage and submodular structure

Most institutional settings live between these extremes. We might be willing
to offer K options, but not d¢, and we want to choose which options to
include to maximize the number of agents who will take up recourse (and
hence become qualified) subject to safety.

To see the combinatorial structure cleanly, it helps to discretize candidate
actions. Consider a finite library £(2) = {eM(z),...,e™N) (&)} of correct
actions (each clears 7). A menu is then a subset S C {1,...,N} with
|S| < K. For a given type k, define the minimal menu cost

cost(k; S, ) = min ' e® (%),
€S
with the convention that the minimum is 400 if S = @. Take-up occurs
when cost(k; S, 2) < 7. Let G(S) denote the expected take-up (or expected
true positives induced) from menu S, e.g.

G(S) = E[l{cost(/i; S,3) <~} ) x]

or its sample-average analogue over a dataset of observed k-draws or proxy
clusters.

Two general facts are worth emphasizing.

First, selecting the best size-K menu is in general computationally hard.
When the library consists of coordinate actions and types effectively have
“acceptable” subsets (those coordinates for which A(Z)x;/8; < ), the menu
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design problem becomes a form of mazimum coverage: choose K coordinates
to cover as many types as possible. This inherits NP-hardness in the worst
case, so we should not expect a closed-form analogue of j' for general K.
Second, despite hardness, the objective has a helpful diminishing-returns
property. When agents choose the cheapest available option, the incremen-
tal benefit of adding a new option to a larger menu is typically smaller
than adding it to a smaller menu. Under mild regularity (e.g. working
with a smoothed take-up probability Pr(cost < «) or a welfare proxy like
—E[min{cost,v}]), G(S) is monotone and (approximately) submodular in
S. This places menu design in the well-studied class of submodular max-
imization problems, for which a greedy algorithm yields a constant-factor
approximation: iteratively add the option with the largest marginal gain

ir € arg max (G(S;-1 U {i}) — G(Si-1)),

¢St

until |S;| = K. In the canonical monotone submodular case, this achieves a
(1 —1/e)-approximation to the optimal menu value. The economic interpre-
tation is appealing: each additional recourse option “covers” a set of types for
whom that option is (sufficiently) cheap, and overlap in coverage generates
diminishing returns.

7.4 What is gained and what is lost by limiting K

This extension clarifies a design frontier that is easy to miss in the single-
crossing benchmark. Safety continues to push us toward an acceptance rule
depending only on verifiable causal features, but implementability now comes
in degrees: the principal can trade off the simplicity of recourse communica-
tion against the breadth of types who can find a personally inexpensive path
to qualification.

When K is small, the principal effectively chooses which improvement
pathways to “institutionalize.” This can be normatively fraught: if different
demographic groups face systematically different cost vectors x (because of
access, geography, discrimination, or wealth constraints), then a small menu
can generate disparate take-up even though the acceptance rule is causally
correct. In that sense, menu complexity is not merely a technicality—it is a
channel through which seemingly neutral standards interact with heteroge-
neous constraints.

At the same time, offering a very large menu is not free. Beyond cognitive
load for agents, each option may require administrative verification, audit-
ing, and enforcement (to preserve verifiability and prevent proxy substitution
masquerading as causal improvement). Thus, even in a world where K = d¢
is theoretically attractive, real institutions may rationally choose interme-
diate K, at which point approximation methods and empirical calibration
become relevant.
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Finally, we stress a limitation of the coordinate-menu conclusion: it relies
on the structure of the qualification constraint as a single linear threshold
BT (2% 4 €) > 7 and on linear costs. If causal qualification depends on mul-
tiple constraints (e.g. minimum requirements in several dimensions) or costs
are nonlinear (fixed costs, complementarities, or capacity constraints), then
even K = dg may fail to contain each agent’s globally cheapest qualifying
action. In such richer models, menu design becomes genuinely multidimen-
sional, and the computational boundary becomes sharper.

In sum, once relative costs are heterogeneous, recourse design shifts from
a closed-form prescription to a menu-selection problem: K = 1 is simple but
generally leaves attainable true positives unrealized; K = d¢ restores full
coverage in our linear-threshold benchmark; and intermediate K naturally
leads to coverage-like, submodular optimization where greedy methods pro-
vide principled approximations. This sets the stage for the next extension,
where the principal may not even know (8,7) and must learn the causal
standard from the strategic improvements agents undertake in response to
recourse.

8 Extensions: learning the causal standard when
(8, 7) are unknown

Thus far we have treated the causal qualification rule
y=h*) =1{8"a" >}

as known to the principal. This is the right benchmark for isolating the
strategic role of proxies and the logic of “safe sufficiency.” But in many real
deployments the principal does not know the causal weights 8 nor the thresh-
old 7 ex ante. The institution may know which features are causally relevant
and verifiable (e.g., completed courses, certified skills, lab measurements),
yet be uncertain about (i) how these features trade off, and (ii) where the
true boundary between qualified and unqualified lies.

Once we admit this uncertainty, we face a familiar econometric tension
in an unfamiliar strategic wrapper: we want to learn the causal decision
boundary from observed data, but the data are endogenously shaped by the
very rule and recourse guidance we deploy. In other words, we are in a
setting of strategic regression: observed post-decision covariates € + e are
not passively drawn; they are equilibrium objects. The key question for this
extension is whether the principal can nevertheless identify and learn (8, 7)
from observed strategic improvements, and if so how this interacts with the
“no false positives” safety constraint.
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8.1 Why strategic improvements are informative (intuition)

Our baseline mechanism does more than classify agents; it also induces some
agents to move in ¢ by choosing costly investment e. These movements are
not arbitrary. They are disciplined by (a) the geometry of the qualification
set {372 > 7}, and (b) the agent’s optimization problem, which under
linear costs yields corner solutions and tight satisfaction of constraints.

This generates a useful “revealed boundary” idea: when an agent invests
just enough to become qualified, her post-investment causal features ¢ +e lie
on (or very near) the true boundary 37 2¢ = 7. If we can observe a collection
of such boundary points spanning the space, then learning (3, 7) becomes
conceptually similar to learning a separating hyperplane—except the points
were endogenously produced by incentives rather than exogenously sampled.

The role of recourse is pivotal here. A well-designed recourse policy does
not merely “tell agents what to do”; it creates structured variation in e and
reduces slackness (over-investment). In effect, recourse can turn strategic
behavior into an identification device.

8.2 A simple identification sketch under single-crossing and
a two-stage variant

To keep the sketch crisp, suppose we are in the single-crossing benchmark
cc(e;0) = 03, wje; (unknown 6, known w), and consider a two-stage im-
plementation where a rejected agent may follow a recommended action and
reapply. Suppose further that the principal can observe: baseline 2, chosen
investment e, and an eventual outcome label y (e.g., an externally realized
“success” indicator that corresponds to true qualiﬁcation)ﬂ

Under the ground truth, the set of causal feature vectors with y = 1 is
exactly the halfspace {8Tx¢ > 7}. If agents sometimes arrive with y = 1
already (i.e., BTz > 7 at baseline), these provide positive examples; if some
arrive with ¥ = 0 and do not invest, these provide negative examples. That
is standard classification data.

The distinctive feature here is that we also observe strategic transitions
2% 2¢ + e. Under the linear program

: T/,.C
min E wje; st B (7 +e) >,
j

optimality generically implies tightness at the constraint for invest-then-
qualify agents:
Bl +e) =,

"Without some source of labels, learning is ill-posed: if the principal never observes
whether an agent is truly qualified, (8,7) are not identified from actions alone because
many boundaries can rationalize the same accept /reject decisions. In practice, labels may
come from repayment, job retention, audits, exams, or delayed performance measures.
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because any slack would waste cost. Hence each such agent supplies a linear
equation in (f,7) evaluated at an observed point ¢ + e. With enough
distinct boundary points (and a normalization for scale, e.g. ||S|1 = 1 or
fixing one coordinate of ), (3, 7) are identified in principle.

The conceptual “mild richness” requirement is that the distribution of
these boundary points has support that is not confined to a lower-dimensional
set. Put informally: we need enough variation in z¢ among those who invest,
so that the induced boundary points are not all collinear in feature space.

8.3 Learning the direction of § via recourse-induced experi-
ments

In practice, the principal cannot rely on boundary points “appearing on
their own,” especially early on when the deployed rule may be misspecified
and agents’ incentives may generate selection. A natural remedy is to use
the recourse channel as a controlled source of variation—analogous to an
instrument in causal inference.

One particularly transparent approach is to occasionally deploy multiple
correct candidate improvement directions (or approximate directions) and
observe which one agents choose and how outcomes respond. Concretely,
suppose that on a small fraction of rounds the principal posts a recourse
menu of K alternative action plans {e™), ..., ef)} each of which is verifiable
and moves different coordinates of 2. Let Z € {1,..., K} denote the index
of the recommended plan emphasized (or randomly highlighted), and let e
be the realized investment. Variation in Z shifts e through the agent’s best
response but (by construction) does not directly affect the true outcome
except through z¢ + e.

This is the strategic analogue of a first stage:

e= BR(QZC, zZ,0) = 29 = 2% + e,
followed by a structural second stage

y=1{8"2Y > 1}.

With sufficient exploration over Z and support in baseline 2, one can
in principle recover the orientation of S (up to scale) from how outcome
probabilities change with induced movements in different directions. In the
deterministic-threshold model, the relevant variation is not in smooth prob-
abilities but in which induced moves cross the boundary.

A pragmatic way to implement this is to reduce the learning target to a
finite-dimensional parameter estimation problem and fit (5, 7) by enforcing
consistency with observed outcomes:

yi=1= B @l +e)>7, yi=0= B (af+e)<r
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and then use a large-margin or maximum score criterion (e.g., a hinge-loss
objective) to handle inevitable slack, noise, and discreteness:

min 3 Lu(8 (@ +e) =) st B=0 Bl =1

What makes this “strategic regression” rather than ordinary regression is
that the regressor sz + e; is endogenous to the deployed mechanism. The
justification for the above fitting step is therefore structural: we are explicitly
modeling (and exploiting) the equilibrium mapping from policy to e;, rather
than assuming i.i.d. covariates.

8.4 Safety during learning: conservative acceptance and ro-
bust recourse

Learning raises a constraint interaction that is easy to overlook. Our earlier
safety guarantee relied on the principal knowing the true score 5'z¢ and
threshold 7, so that the acceptance rule f(#) = 1{#72% > 7} was pointwise
safe. If (f,7) are uncertain, naively plugging in estimates (B ,7) can produce
false positives.

A standard remedy in “safe learning” is to maintain a confidence set C;
of plausible parameters given data up to time ¢, and to accept only when
qualification is guaranteed for all parameters in the set:

A . TAC
ft(2) 1{ (Br,?)lng (B'2°—71) > O}.
If C; is a valid (high-probability) confidence region, this ensures a high-
probability analogue of no false positives. The cost is conservatism: early
on, C; is large, and acceptance may be rare.

Recourse must also be adapted. “Correctness” of recourse actions now
means: recommended actions should (with high probability) lead to true
qualification, not merely estimated qualification. A robust counterpart is

" _ . T/ aC
r4(2) C {e >0: (181;1)12& (B (% +e) 7') > 0}.
This robustification again trades off sharpness for safety: to guarantee qual-
ification uniformly over C;, the recommended e may be larger than what is
truly necessary for the realized (3, 7).

The economic point is that we should expect a safety—learning tradeoft:
insisting on strict no-false-positives while parameters are unknown forces
either (i) conservative acceptance (fewer opportunities to observe y), or (ii)
conservative recourse (higher induced investment costs), or both. In many
applications, institutions manage this tradeoff implicitly via pilot programs,
staged rollouts, audits, or temporary human review; our framework makes
the channel explicit.
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8.5 Connecting to instrumental variables and “strategic IV”

It is useful to relate the above to instrumental variables, because the core
empirical difficulty is endogeneity of ¢ + e. In observational data, peo-
ple invest in skills, health, or creditworthiness based on unobserved traits
that also affect outcomes; naive regression confounds these channels. In our
mechanism design setting, we can sometimes create exogenous shifts in in-
vestment incentives through recourse, and thereby generate a policy-driven
instrument.

Formally, let Z be a randomized recourse recommendation (or subsidy, or
deadline) that affects the agent’s chosen e but is independent of the agent’s
latent determinants of y except through z¢ + e. When such exclusion is
plausible, Z provides leverage to identify the causal effect of moving different
coordinates of ¢ on the outcome boundary. While the ground-truth model
here is a linear threshold rather than a linear outcome equation, the logic is
parallel: recourse-induced variation can play the role of a first stage that is
both policy-relevant and verifiable.

This “strategic IV” interpretation also clarifies why proxies are a distrac-
tion in the learning problem. Because proxies do not affect y, any proxy
shifts induced by manipulation are invalid instruments. By designing the
mechanism to focus on verifiable causal features, we align the variation we
create (and the variation agents choose) with the outcome-relevant state,
which is precisely what identification requires.

8.6 Limitations and what we would need for a full theorem

The discussion above is intentionally a sketch, because turning it into a the-
orem requires committing to additional structure that is context dependent:

(i) Outcome observability and delay. If y is only observed for ac-
cepted agents (selective labels), learning must address selection. Recourse
can help by moving some rejected agents into acceptance and thereby re-
vealing their g, but the induced sample is still policy-dependent.

(ii) Noise and model misspecification. Real outcomes are noisy and
rarely exact thresholds. With stochastic y (e.g., ¥ ~ Bernoulli(o(872¢ —
7))), learning becomes smoother but safety becomes inherently probabilis-
tic; exact no-false-positives is then unattainable without rejecting almost
everyone.

(iii) Nonlinear qualification and multi-constraint standards. If
qualification is not a single halfspace—e.g., it involves complementarities,
minimum requirements in multiple dimensions, or nonconvexities—then boundary-
point logic and linear identification can fail, and recourse-induced experi-
ments must be redesigned.

(iv) Equilibrium shifts during learning. Because agents respond to
the mechanism, the data-generating process shifts as estimates change. A
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full analysis would treat this as an adaptive control problem: policy affects
behavior, behavior affects data, data affect policy.

Despite these caveats, the central message of this extension is robust:
strategic improvements are not merely an obstacle to learning; when invest-
ments are verifiable and structured by recourse, they can be an informative
signal about the causal standard itself. Recourse is therefore dual-purpose:
it is a tool for enabling qualified behavior and a tool for uncovering the
qualification boundary that the institution ultimately cares about.

9 Welfare and policy interpretation: what ‘“no false
positives” buys, when to relax it to «-FP, and
recourse as regulated improvement pathways

Our baseline results were stated in the language of implementability and
safe maximization of true positives. In practice, however, the constraint we
impose—no false positives in equilibrium—is not merely a technical conve-
nience. It is a normative and institutional choice about which mistakes are
admissible, how much strategic behavior we are willing to tolerate, and what
kind of accountability an automated (or semi-automated) decision system
should provide.

What the no-false-positives constraint buys. The most direct inter-
pretation is risk containment: acceptance is a form of permission (to borrow,
to enroll, to be hired, to access a scarce medical intervention), and a false
positive is an instance of permission granted to someone who is not, in the
relevant causal sense, qualified. When the downstream harm of such permis-
sion is large or external—default risk in credit, safety risk in critical jobs,
clinical risk in medicine, congestion in scarce programs—institutions rou-
tinely adopt a hard safety constraint that prioritizes avoiding false positives
over minimizing false negatives. Our equilibrium no-FP constraint is exactly
this logic: it insists that, taking strategic responses seriously, the mechanism
should never induce an unqualified agent to be accepted.

A second benefit is strategic robustness. Once proxies are manipulable,
any eligibility rule that (even accidentally) rewards proxies creates a wedge
between the agent’s private optimization problem and the principal’s causal
objective. That wedge produces two social costs. First, it creates direct
deadweight loss through wasteful proxy manipulation: agents pay cp(m) for
actions that do not change y. Second, it creates an indirect adverse-selection
channel: the mechanism ends up selecting agents who are best at manipu-
lating proxies (low cp) rather than those who can cheaply become causally
qualified (low c¢¢). The safe-sufficiency logic can therefore be read as a wel-
fare statement: by designing acceptance to depend only on verifiable causal
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score, we shut down a rent-seeking technology and align private incentives
with socially relevant improvement.

Third, the constraint buys a form of procedural legitimacy. If accep-
tance is guaranteed to imply true qualification (relative to the institution’s
articulated causal standard), then an acceptance decision is defensible as
rule-following rather than discretionary or opaque. This matters in regulated
domains where decision-makers must justify approvals to auditors, courts, or
the public. In such settings, the relevant question is often not “did we maxi-
mize accuracy?” but “can we certify that approvals satisfy a stated standard?”
Our model formalizes one route to certification: if f(#) =1 = g12¢ > 7
holds pointwise in equilibrium, then the institution can credibly claim that
approvals meet the causal threshold, regardless of the strategic ingenuity of
applicants.

The welfare cost of strict safety: false negatives and costly com-
pliance. The flip side is that strict no-FP necessarily tolerates false neg-
atives. Even in the deterministic benchmark where y = 1{87z¢ > 7},
false negatives arise because (i) some agents are qualified but may be re-
jected if the mechanism is conservative for other reasons (e.g., capacity con-
straints), and (ii) some agents could become qualified but do not invest
because cco(e; 0) > . The latter is particularly salient: our equilibrium cut-
off v > C*(x¢, ) is privately rational, but it need not be socially efficient. If
qualifying generates positive externalities (more productive workers, health-
ier patients, lower default risk that benefits the pool), society may want more
investment than individual agents are willing to undertake.

This observation reframes recourse. In our mechanism, recourse is infor-
mational: it reveals a cheapest verifiable improvement path. From a welfare
perspective, it is also a compliance technology that can reduce waste (by
preventing over-investment and proxy manipulation) while potentially in-
creasing productive investment. Yet it can shift burdens onto agents: when
the “safe path” requires costly investments, recourse resembles a regulated
hurdle. Whether that is acceptable depends on a policy judgment about
who should bear qualification costs. A planner who internalizes social sur-
plus might instead consider subsidies, financing, or institutional provision of
the required investments. In our notation, one can imagine augmenting agent
utility with transfers T'(e) (e.g., training vouchers, matched savings, health
subsidies), effectively lowering the private marginal cost w and expanding
the set {(z¢,0) : C*(z°,0) < 4} who take up recourse. The key point
is that no-FP does not by itself resolve distributive concerns; it primarily
disciplines which behaviors are rewarded.

When to relax no-FP to -FP. There are at least three reasons an
institution may rationally relax strict no-FP.
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(1) Inherently noisy qualification. In many environments, there is no de-
terministic A*: even with perfect causal features, outcomes are stochastic.
Then “no false positives” is either infeasible or vacuous. A natural replace-
ment is a probabilistic safety constraint, such as

Pr(y =0[ f(2) =1) <e or Pr(f(2)=1,y=0)<e,

for a tolerance level € > 0. This is not merely a technical change; it shifts the
institution from certifying qualification to managing risk. In such settings,
the design problem resembles constrained classification (or risk-limiting de-
cision rules), and recourse becomes a means of increasing the conditional
success probability among the accepted by inducing movement in causal fea-
tures.

(2) Unverifiable or partially verifiable causal features. Our baseline safety
argument leans heavily on verifiability of ¢ 4+ e. When causal features are
measured with error, can be strategically misreported, or are only observed
through noisy tests, insisting on pointwise no-FP may force extreme conser-
vatism. Allowing e-FP can be understood as acknowledging measurement
limits: the institution commits to keeping error within a regulated tolerance
rather than pretending it can certify a sharp boundary.

(8) High social cost of false negatives. Some domains place asymmetric
weight on missed opportunities. For example, denying access to an education
program or preventive health service may have large long-run costs. If these
costs exceed the expected harms from occasional false positives, the welfare
optimum may involve an interior tradeoff. A convenient way to express this
is to replace the hard constraint by a penalty (a Lagrangian relaxation):

max E[1{f(#) =1} 9] — A-E[1{f(@) =1} - (1 - )],

where A encodes the marginal social cost of a false positive. As A — oo we
recover the hard no-FP regime; for finite A the mechanism may rationally
accept some borderline cases.

Importantly, relaxing to e-FP reopens the door to proxy dependence. If
a proxy is predictive of y (even if not causally relevant), a purely statistical
designer might want to use it. Our framework suggests a cautionary corol-
lary: when proxies are manipulable, the predictive value of a proxy does not
imply mechanism value. A proxy that is informative under passive observa-
tion can become actively misleading once it is rewarded. Thus, even under
e-FP, a robust policy stance is to use proxies only in ways that do not cre-
ate strong manipulation incentives—for example, as inputs to auditing, to
random checks, or to post-acceptance monitoring rather than to eligibility
itself.

Recourse menus as regulated improvement pathways. A central
practical contribution of recourse is that it turns an abstract eligibility
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threshold into a pathway—a concrete, verifiable set of actions that, if taken,
will lead to acceptance. This is closely aligned with how institutions already
operate in regulated settings.

In consumer credit, for example, “credit-building” programs implicitly
define acceptable pathways: make on-time payments for 7" months, reduce
utilization below a threshold, establish a secured card, or complete a counsel-
ing program. These are not merely tips; they are quasi-regulatory standards
that shape what behaviors are legible and rewarded. In workforce policy,
training and credentialing programs play the same role: complete a certified
course, pass an exam, log supervised hours. In health, compliance pathways
are ubiquitous: adhere to a medication regimen, achieve lab targets, attend
follow-up visits. In each case, the institution is not just predicting outcomes;
it is governing the space of improvements.

Seen this way, a recourse menu r(Z) is a form of regulated action set.
It specifies which changes count, how they will be verified, and how much
improvement is needed. This perspective clarifies both the promise and the
risk.

The promise is reduction in arbitrary barriers. If the mechanism is safe-
sufficient, then the pathway focuses attention on causally relevant, verifiable
improvements and makes explicit that proxy cosmetics (presentation, gam-
ing, performative signals) are irrelevant. This can equalize access to the
“rules of the game,” especially for agents who lack informal knowledge. It
also mitigates the “moving target” problem: if agents fear that standards will
change after they invest, they may underinvest; a credible recourse pathway
is a commitment device.

The risk is paternalism and mismatch. A menu is inevitably incom-
plete, particularly when relative costs are heterogeneous (as in our menu-
complexity extension). A narrow menu may force some agents into ineffi-
cient improvement directions, raising their compliance costs and potentially
exacerbating inequality. More subtly, regulated pathways can crowd out in-
novation: if only certain credentials or programs are recognized, alternative
ways of becoming qualified may be ignored even if causally effective. This
is a familiar tension in licensing and accreditation. Our model isolates the
mechanism-design analogue: a smaller menu is simpler and easier to verify,
but it may leave welfare on the table for types whose cheapest causal route
is not offered.

Policy levers: shifting the burden and shaping incentives. Inter-
preting recourse as regulated pathways highlights a menu of policy levers be-
yond the acceptance rule itself. Institutions can (i) subsidize specific pathway
actions (lowering effective w), (ii) expand the menu (increasing matching to
heterogeneous types), (iii) finance investments (turning up-front costs into
contingent repayments), and (iv) provide complementary supports (informa-
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tion, coaching) that reduce non-monetary frictions not captured by 6. Each
lever changes equilibrium take-up without relying on proxies.

Finally, strict no-FP should be understood as a commitment about what
will not be rewarded. In a world where applicants can and will respond, that
commitment has independent value: it channels effort away from manipula-
tion and toward improvements that society can defend as genuinely relevant.
Whether one ultimately adopts strict no-FP or an e-FP relaxation depends
on domain-specific harms, noise, and institutional capacity for verification
and support. But in either regime, recourse is not an afterthought; it is the
interface through which an eligibility standard becomes an implementable,
governable, and contestable policy.

10 Discussion and open problems: verifiability, mea-
surement error, dynamics, group constraints, and
deployment

Our main theorem is intentionally clean: deterministic qualification, verifi-
able causal features, and a separable single-crossing cost technology yield a
mechanism that is simultaneously safe (no proxy false positives), simple (a
score threshold), and constructive (a concrete recourse action). The clarity
is useful precisely because it highlights where the engineering and policy dif-
ficulty actually lies. In this section we discuss the most consequential gaps
between the benchmark and real deployments, and we flag open problems
that, in our view, determine whether “safe recourse” is a theoretical curiosity
or a practical governance tool.

1. Verifiability is the hinge: what does it mean, and who bears the
burden? The benchmark assumes that once an agent changes a causal
feature, the principal observes it without strategic distortion. In practice,
verifiability is neither binary nor free. It is an institutional arrangement
involving (i) a measurement technology (tests, transcripts, payroll records,
lab results), (ii) an auditing or attestation process (third parties, document
checks, tamper resistance), and (iii) a dispute-resolution protocol when evi-
dence is contested.

A first open problem is to model partial verifiability. Suppose a causal
feature is only verifiable with probability p € (0,1), or only within an in-
terval. Then “no false positives” cannot be interpreted pointwise in the fea-
ture space; it must be interpreted as a joint property of the decision rule
and the verification process. Mechanism design with endogenous verification
suggests that optimal policy may trade off a stricter acceptance threshold
against more aggressive auditing, e.g.,

accept if B72¢ > 7 and pass audit,
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where the audit has power that depends on resources and on the reported
feature. The recourse problem becomes richer: providing a pathway may si-
multaneously increase true qualification and increase verifiability by steering
agents toward actions that are easiest to attest (completing a certified pro-
gram rather than claiming experience). This points to a normative tension:
“verifiable” often means “institutionally legible,” which can exclude informal
but genuine routes to qualification.

A second open problem is to incorporate third-party and platform in-
termediaries. Many agents interact with decision systems through brokers
(test-prep companies, credential vendors, credit-repair firms). These inter-
mediaries can reduce real costs of causal investment (good) but can also
supply proxy manipulation technologies (bad). A realistic equilibrium anal-
ysis should treat the manipulation cost cp as endogenous to the surrounding
market, potentially responding to the mechanism. The safe-sufficiency result
then looks like a commitment device not just against agents, but against an
entire manipulation industry: by making proxies payoff-irrelevant, the mech-
anism shrinks the demand for proxy gaming tools.

2. Measurement error in causal features: robust safety versus
access. Kven when we restrict to causal features, the principal typically
observes them with noise. Let Z¢ denote the measurement used for decision-
making, with

i%=2"4e+ 7, 1 ~ D (possibly heteroskedastic).

If we maintain the causal notion of true qualification,
Yy = 1{6T(xc + e) > T}’

then an acceptance rule of the form 1{372% > 7} generally violates no-FP
because positive noise 7 can push an unqualified agent across the observed
threshold. Enforcing safety now requires accepting only when qualification is
implied for all plausible realizations of n (worst-case) or with high probability
(risk-limiting). A canonical robust rule is a “margin” requirement:

f(@) =1{8"3% > 7+ K},

where & is chosen so that Pr(8Tn > k) < e; then Pr(y =0 | f(#) =1) < ¢
under distributional assumptions. This immediately raises a design question:
who pays for robustness? Increasing k preserves safety but expands false
negatives and increases required investment. Recourse can partially mitigate
this by explicitly telling agents the measured target they must exceed, but
that can be perverse if agents then invest to “beat the test” rather than to
become truly qualified. In domains like education and healthcare, this is not
hypothetical: systems that couple eligibility to noisy measurements induce
Goodhart effects even when the measured quantity is causally relevant.
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An open problem we find especially important is joint design of measure-
ment and recourse. If the institution can choose a more precise test (reducing
the variance of 7) at some cost, then the optimal policy may be to invest
in measurement rather than to tighten thresholds. This is a concrete way
to connect our framework to practice: many fairness and accountability de-
bates revolve around whether to improve measurement (better data, better
audits) or to adjust decision rules. In our language, improving measurement
can expand the set of agents for whom a safe acceptance rule is not overly
conservative, increasing true positives without relaxing safety.

3. Dynamic and multi-stage investment: recourse as a contract,
not a message. Our equilibrium analysis is essentially static: agents
choose e once, acceptance is decided once, and recourse is informational. Yet
in most applications, investment is dynamic. Training takes months, credit-
building takes repeated payments, health improvement takes sustained ad-
herence. A natural extension is a two-stage (or infinite-horizon) model where
agents can invest over time and reapply, with discounting and possible de-
preciation:

xgi—l =2l + e — oaf, Ua :Zpt(’yat—cc(et;e)).

t>0

In such environments, a recourse policy is closer to a relational contract: it
is a commitment about future acceptance conditional on future verifiable
states. This raises time-consistency issues. If the principal can change T
or (§ after agents invest, the promise embedded in recourse is not credible,
and rational agents underinvest. Thus, the central implementation problem
may be less about computing e and more about institutional commitment
(regulation, published standards, appeal rights).

Dynamics also introduce the possibility of staged recourse menus. Instead
of recommending the full action to cross the threshold, an institution may
recommend incremental steps (e.g., “raise s(z¢) by A each quarter”), partly
to reduce abandonment and partly to allow learning about agent costs and
constraints. Designing such staged pathways resembles optimal stopping and
screening: we would like menus that are simple, verifiable, and incentive-
compatible over time, while avoiding lock-in to inefficient routes.

A further open problem is financing. When investment costs are upfront
but benefits are delayed, many socially desirable improvements fail privately
because 7 is effectively discounted or liquidity-constrained. Mechanisms that
incorporate loans, income-share agreements, or conditional subsidies can be
viewed as altering the agent’s effective v and w, but they also create new
moral hazard and default considerations. Integrating recourse with financing
is, in our view, essential for policy relevance in education and workforce
settings.
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4. Group constraints and distributive objectives: safety is not
fairness. Our baseline objective maximizes true positives subject to safety.
This is a plausible institutional stance in high-stakes approval contexts, but
it is not a complete welfare criterion. In particular, the distribution of z¢
and 6 may differ across protected groups, so that the set of agents satisfying
v > C*(x, ) varies sharply by group. Even if the mechanism is “neutral” in
the sense of using only causal score, it can still generate disparate acceptance
and disparate investment burdens.

There are (at least) two ways group constraints enter. First, the princi-
pal may face acceptance-rate constraints (e.g., demographic parity) or error
constraints (equalized odds) across groups. Under our safety regime, false
positives are (approximately) eliminated, so the binding fairness concern is
typically about false negatives and access. Imposing group parity in ac-
ceptance while maintaining safety may force group-specific thresholds 7, or
group-specific recourse support (subsidies, expanded menus) that equalize
the cost of reaching the standard rather than equalizing outcomes mechani-
cally. This connects to a policy distinction: equality of opportunity through
support versus equality of outcomes through rule changes. Our framework
naturally emphasizes the former because it preserves the meaning of qualifi-
cation while addressing heterogeneous costs.

Second, group membership may be correlated with proxy manipulability
(different access to coaching, documentation services, or social capital). One
practical benefit of safe-sufficient mechanisms is that they reduce returns to
such proxy advantages. But if causal investments themselves are unequally
accessible, then strict safety can inadvertently entrench inequality. A prin-
cipled extension would treat the principal’s objective as including welfare or
burden terms, e.g.,

max E[1{f(2) = 1}y] — AE[cc(e*;0)] and/or group constraints.

The open question is how to design recourse that is both incentive-compatible
and burden-aware. For example, if we allow transfers T'(e) targeted to actions
in the recourse menu, can we guarantee safety while achieving approximate
group parity at minimal subsidy cost? This starts to resemble optimal pol-
icy design with endogenous effort, and it invites empirical work on which
investments are most elastic to support.

5. Practical deployment: from a theorem to an accountable sys-
tem. Finally, even if one accepts the model’s normative stance, implemen-
tation requires decisions that are often omitted from formal analyses.
Communication and contestability. Recourse is only valuable if agents
understand it and trust it. Communicating a linear score threshold is easier
than communicating a complex classifier, but institutions still face choices
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about how much to reveal: revealing 5 can enable gaming of borderline veri-
fications, while hiding it can undermine legitimacy. A promising direction is
to publish actionable pathways (the recommended e!) without fully revealing
the scoring weights, paired with auditable guarantees that completing the
pathway implies acceptance.

Heterogeneity beyond single-crossing. Our constructive recourse uses a
single cheapest coordinate direction j. In practice, the cheapest improve-
ment differs across agents (time constraints, geography, disability, labor
market conditions). The menu-complexity extension hints at this, but a
deployment-oriented theory should address how menus are chosen under lim-
ited administrative capacity and how to prevent menus from becoming de
facto exclusionary (e.g., only one credential vendor is recognized). This is
both a computational and a governance question.

Behavioral frictions. Real agents are not perfect optimizers. Take-up
may be low even when C* < « because of present bias, misinformation, or
distrust. In our notation, this is a wedge between modeled 6 and realized
behavior. Incorporating bounded rationality suggests that recourse should
include not only a target action but also supports (reminders, coaching) that
effectively reduce non-monetary components of 6. The theoretical challenge
is to do so without reintroducing manipulable proxies or discretionary fa-
voritism.

Monitoring and post-acceptance incentives. Many domains care about
sustained performance, not one-time qualification. If acceptance changes in-
centives (e.g., once hired, effort declines), then the principal may want post-
acceptance monitoring that depends on outcomes rather than features. De-
signing such monitoring while preserving the spirit of safe recourse—rewarding
real performance rather than cosmetic proxies—is an open avenue.

Summary. We view the benchmark mechanism as a disciplined starting
point: it clarifies that, under verifiability and deterministic causal standards,
proxy dependence is a design error when proxies are manipulable, and that
recourse can be made both safe and actionable. The most urgent open
problems are therefore not about deriving yet another optimal classifier, but
about institutional complements: verifiable measurement, robust decision
rules under noise, credible dynamic commitments, distributive supports un-
der heterogeneous costs, and deployment practices that make pathways leg-
ible and contestable. Progress on these fronts would move recourse from an
explanatory artifact to a regulated interface between individuals and high-
stakes institutions.
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