Sybil- and Poisoning-Robust Budget-Feasible
Mechanisms for Federated Learning with
Auditable Compatibility

Liz Lemma Future Detective

January 14, 2026

Abstract

Federated learning (FL) procurement mechanisms increasingly op-
erate in open, multi-tenant environments where strategic workers can
create sybil identities or poison model updates. Existing budget-feasible
truthful mechanisms for FL (e.g., CARE) assume exogenous worker
quality and benign behavior, leaving them fragile under modern threats.
We propose a clean, tractable mechanism design framework that layers
auditability and refundable deposits onto compatibility-aware, budget-
feasible procurement. Starting from any DSIC, budget-feasible base
mechanism under compatibility constraints, we add randomized au-
dits with imperfect detection and a deposit-forfeiture rule. We charac-
terize closed-form deposit thresholds that simultaneously (i) preserve
dominant-strategy truthfulness for cost reporting (deposits enter util-
ities as bid-independent constants) and (ii) deter both poisoning and
sybil attacks by making the expected penalty exceed the attacker’s ben-
efit per identity. We provide welfare and accuracy guarantees that de-
grade smoothly with audit cost and false-negative risk, and we outline
an empirical validation plan under secure aggregation constraints using
standard poisoning benchmarks. The results modernize compatibility-
aware FL procurement toward deployable 2026-era marketplaces where
identities are cheap and adversaries are present.

Table of Contents

1. 1. Introduction: why DSIC+budget feasibility is insufficient in open
FL markets; threat model (sybil + poisoning) and compatibility con-
straints; overview of deposit-audit design.

2. 2. Related work: (i) budget-feasible procurement and CARE-style
compatibility-aware FL mechanisms, (ii) robust/adversarial FL (poi-
soning, sybils), (iii) audit and deposit mechanisms in digital markets.

10.

3. Model: agents, budgets, compatibility constraints, base mechanism
M 0; malicious benefit and detection; audit technology; limited liabil-
ity and deposit primitives.

4. Mechanism: Robust-CARE wrapper (deposit requirement, audit
lottery, forfeiture rule, audit financing); how it composes with any
CARE-like allocation/payment rule.

5. Theory I (incentives): DSIC preservation for cost reporting; deter-
rence conditions for poisoning; sybil-proofness conditions under per-
identity deposits.

6. Theory II (efficiency and budgets): welfare/quality approximation
relative to M 0; explicit additive degradation from audit cost and false
negatives; budget-feasibility conditions including audit spend.

7. Design choices and comparative statics: optimal audit probability vs
deposit size; effect of detection tech (attestations) on required deposits;
discussion of when numerical optimization is needed.

8. Empirical plan: poisoning and sybil simulations under compati-
bility constraints; metrics (accuracy, reputation/value, spend); secure
aggregation /noisy signals and audit proxies.

9. Discussion and extensions: heterogeneous deposits, endogenous au-
dit targeting, repeated interactions, partial verification; limitations.

10. Conclusion: deployable recipe for hardening budget-feasible FL
procurement against modern threats.

1 1. Introduction: why DSIC-+budget feasibility
is insufficient in open FL markets; threat model
(sybil 4 poisoning) and compatibility constraints;
overview of deposit-audit design.

Federated learning (FL) procurement markets are increasingly organized as
open, multi-requester environments: many requesters j € A simultaneously
seek updates from a pool of worker identities i € S, each identity submits
a bid b; for participation, and a platform allocates identities to requesters
subject to hard feasibility constraints and requester budgets B;. A natural
starting point is the budget-feasible procurement literature: we want a mech-
anism My = (X, P) that is dominant-strategy incentive compatible (DSIC)
for private costs ¢;, ex post individually rational (IR), and respects budgets
while producing a near-optimal assignment for a quality objective such as
Zi, ; Zijvi- Ina closed market with trustworthy participants, these desider-
ata largely capture what one needs: truthful bidding, feasible payments, and
good performance.

In open FL markets, however, DSIC and budget feasibility are not enough.
The reason is conceptual: DSIC speaks to truthful revelation of *costs* by
a fixed set of agents, but it does not discipline *post-selection behavior*
nor *identity formation*. FL admits an additional strategic margin that
is absent from standard procurement: after selection, a worker can choose
whether to behave honestly (contribute a benign update) or maliciously (poi-
son the training process), and an adversary can cheaply create multiple iden-
tities (sybils) to increase selection probability or to circumvent participation
limits. Thus, even if My elicits truthful costs and makes payments within
budgets, it can still select workers who have strong incentives to attack, and
the resulting allocation can be arbitrarily harmful to requester utility.

The threat model we have in mind is deliberately simple but economi-
cally pointed. Each selected identity ¢ may obtain a one-shot gross gain g;
from being malicious and *not* being detected—this g; can be interpreted
as extortion value, competitive sabotage benefit, or the value of degrading a
rival’s model. The requester suffers a corresponding loss in value (captured
abstractly by a damage parameter D;), but the key is that the adversary’s
private benefit g; need not be correlated with the reported participation cost
b; or the public proxy v;. This breaks the usual alignment between selection
rules (which reward low bids and/or high quality) and social welfare. With-
out additional instruments, a poisoning-capable identity can bid aggressively
to get selected, receive payment p;, and then impose harm while retaining
the upside g;. In short: DSIC can ensure “truthful costs,” yet the platform
still faces a moral hazard problem on “honest training.”

Sybil behavior amplifies this concern. Standard single-parameter mech-
anism design typically treats each bidder as a distinct agent. In practice,

one real-world actor can control many accounts, each behaving as a sepa-
rate ¢ € S. If selection is competitive and payments are positive, multi-
plying identities increases the attacker’s chances of receiving at least one
allocation—and, with it, an opportunity to poison. Moreover, sybils interact
sharply with feasibility constraints that were designed for benign hetero-
geneity. In many real deployments, requesters impose “compatibility” or
“incompatibility” constraints reflecting jurisdictional rules, provenance, de-
vice type, or communication channel diversity. We formalize this via groups
Gy and caps 7y;, requiring |S; N G| < 745 for each requester j. These con-
straints are motivated by practice (e.g., “no more than k devices from the
same manufacturer/channel /jurisdiction”), but they also create an adversar-
ial surface: if group membership can be manipulated (or if the attacker can
simply populate many groups), sybils can be used to saturate caps across
multiple Gy, reducing diversity, increasing correlated risk, and crowding out
honest participants.

These observations motivate our central design question: how do we
preserve the attractive economic properties of a CARE-style base mecha-
nism—DSIC for costs, budget feasibility, and approximation guarantees un-
der compatibility constraints—while adding credible deterrence against poi-
soning and sybil proliferation? Our answer is to augment My with two levers
that are natural in digital markets and increasingly feasible in FL platforms:
refundable deposits and probabilistic audits.

The economic logic is straightforward. Payments p;; reward participa-
tion, but they cannot be made contingent on “no poisoning” if poisoning
is hard to observe under secure aggregation or privacy constraints. Audits
introduce a probabilistic signal: with probability ¢, a selected identity is
audited, and conditional on audit a malicious action is detected with proba-
bility §. Deposits d; provide a transferable stake that can be forfeited upon
detection. Together, these instruments convert an otherwise non-contractible
behavior (honest training) into an incentive-compatible choice under risk of
forfeiture. In expectation, a selected identity that attacks obtains

pi—ci — k(1) + (1 —qd)g; — qd d;,

where (1) is any direct cost of mounting the attack. If the worker behaves
honestly, the deposit is refunded and expected utility is simply p; — ¢;. Thus,
we can deter malicious behavior by choosing deposits large enough that the
expected penalty ¢d d; dominates the undetected gain (1 — ¢d)g;, uniformly
over an adversary class with g; < g. This shifts the strategic problem away
from unverifiable “intent” and toward verifiable financial commitments.
Crucially, the deposit-audit layer can be designed so that it does *not*
unravel the DSIC and budget-feasible properties of the base mechanism for
honest workers. Intuitively, if honest identities expect their deposits to be
refunded, then deposits do not change their marginal incentives to misre-
port costs in the allocation stage—they only impose a liquidity requirement.

Audits similarly do not distort cost revelation if they are applied after selec-
tion and do not alter payments for honest behavior. This separation of roles
is important: we use My to solve the classical procurement problem (who
should be hired, given bids, budgets, and compatibility constraints), and we
use deposits/audits to solve the security problem (how to make “honest train-
ing” the best post-selection action). The two layers interact only through
feasibility: audits incur resource costs C,, and deposits impose participation
constraints that may shrink the effective supply of eligible workers.

The interaction with budgets is where the mechanism design becomes
nontrivial and policy-relevant. Audits are not free: whether the platform
pays C, directly or charges requesters an audit fee ¢;, audit intensity ¢
must be financed within the same economic ecosystem as payments. High
g improves deterrence but consumes resources that could otherwise fund
more workers; high deposits d improve deterrence but may exclude liquidity-
constrained honest workers, potentially reducing competition and lowering
welfare. Compatibility constraints further tighten the feasible set: when
each requester j can hire at most 74; from each group G/, losing even a small
fraction of eligible workers due to deposit requirements can have outsized
effects on allocation quality. Our goal is therefore not to claim “audits solve
poisoning,” but to formalize the tradeoff between (i) incentive alignment
against attacks, (i) budget feasibility inclusive of audit expenditures, and
(iii) the approximation performance inherited from M.

We emphasize two practical interpretations. First, deposits need not be
viewed as punitive; they are a collateral mechanism akin to security deposits
in rental markets or performance bonds in procurement. In digital labor
settings, similar instruments appear as escrow, staking, or bonded partici-
pation. Second, audits need not be invasive: in FL they may take the form
of anomaly checks, attestation of secure enclaves, spot-check tasks, or statis-
tical tests on updates. Our model compresses these operational details into
an effective detection probability J, explicitly acknowledging that privacy-
preserving aggregation and partial observability may limit ¢ below one.

Finally, we are explicit about what this framework does *not* attempt
to do. We do not model the full dynamics of repeated interaction, repu-
tation, or adaptive adversaries; we focus on a one-shot procurement round
where deterrence must come from immediate incentives. We also do not
assume perfect attribution of harm: audits are probabilistic and may pro-
duce false negatives, summarized by 1 — ¢d. The point of the model is
to illuminate a design space in which a platform can make a transparent
commitment—choose (g,d) through auditing technology and set deposits d;
(possibly uniform)—that simultaneously respects requester budgets, retains
DSIC cost revelation for honest participants, and makes sybil-mediated poi-
soning economically unattractive for bounded adversaries. This provides
a clean bridge between classical budget-feasible mechanism design and the
operational security concerns that dominate real-world FL deployments.

2 Related work.

Our setting sits at the intersection of three literatures that are typically
studied in isolation: budget-feasible procurement mechanisms (and, more
recently, compatibility-aware FL procurement), adversarial /robust federated
learning (poisoning and sybils), and audit/collateral instruments used to
enforce behavior when outcomes are only imperfectly observable. We briefly
review each strand and clarify how our approach borrows from, and departs
from, existing solutions.

Budget-feasible procurement and compatibility-aware mechanisms.
A large mechanism-design literature studies procurement with privately known
seller costs under a hard buyer budget. The canonical model is a single
buyer with a monotone value function over subsets of sellers and a budget
constraint; the goal is a truthful (often DSIC) mechanism that is individu-
ally rational and approximately optimal while never exceeding the budget.
A central technical challenge is that the budget constraint breaks the VCG
template: paying marginal contributions can exceed the available funds, so
one typically relies on posted-price, threshold-payment, or greedy-selection
constructions coupled with careful payment rules to maintain truthfulness.
For additive values, knapsack-like constraints, and matroid feasibility con-
straints, there is a now-standard toolkit of constant-factor approximation
mechanisms under DSIC/IR /budget feasibility. Extensions consider multi-
unit procurement, submodular values, and combinatorial constraints, often
using reductions to “greedy + critical payment” or random sampling to esti-
mate prices.

Federated learning procurement inherits these constraints but adds struc-
ture. First, the “buyer” side can be multi-requester: many requesters si-
multaneously procure from a shared pool of workers, so the allocation is
closer to a bipartite assignment or matching problem than a single knap-
sack. Second, platforms often impose feasibility constraints that encode
operational or policy requirements—jurisdictional limits, channel diversity,
provenance constraints, device-type limits, or per-requester caps on corre-
lated risk. These constraints are naturally modeled as group caps (e.g.,
|S; NG| < 75), which resemble partition-matroid constraints layered on
top of assignment feasibility. Compatibility-aware FL. mechanisms in the
CARE family can be viewed as importing budget-feasible procurement prin-
ciples into this multi-requester, constrained-allocation environment: they ex-
plicitly track requester budgets, incorporate caps and diversity constraints
into the allocation rule, and preserve incentive properties (truthfulness for
costs) while delivering approximation guarantees for a quality proxy objec-
tive. Conceptually, this line of work answers the question: if the only strate-
gic issue is cost misreporting, how can we allocate FL participants across
heterogeneous requesters without violating budgets or policy constraints?

Our work takes this machinery as a starting point rather than an end-
point. The mechanisms above are designed for selection under private costs;
they are not designed to discipline post-selection behavior (e.g., whether an
assigned worker contributes an honest update), nor do they directly ad-
dress identity proliferation. In this sense, our contribution is orthogonal to
the approximation and incentive-compatibility advances in procurement: we
preserve the procurement layer and ask what additional market instruments
are needed when the selected action is not contractible.

Robust and adversarial federated learning: poisoning and sybils.
The second strand concerns adversarial participants in distributed and fed-
erated training. A substantial algorithmic literature studies robustness to
Byzantine or malicious updates, proposing aggregation rules (coordinate-
wise median, trimmed mean, geometric median, Krum-like selection, norm
clipping) and anomaly detection heuristics intended to limit the influence of
outliers. Parallel work studies targeted poisoning and backdoor attacks that
can evade simple anomaly filters, especially in heterogeneous data regimes
where benign updates are naturally diverse. There is also a growing body
of work on sybil attacks in FL, where one attacker controls many clients
to increase weight in the aggregation, to bypass participation rules, or to
mimic heterogeneity. Defenses span identity verification, device attestation,
reputation systems, and cross-round consistency checks.

From an economic perspective, these defenses are typically technology-
side mitigations: they aim to reduce the damage conditional on partici-
pation, but they do not directly realign the attacker’s incentives. More-
over, several widely deployed privacy and security primitives (notably secure
aggregation) make fine-grained monitoring difficult: the platform may not
observe individual updates or may observe them only through a privacy-
preserving interface. This creates a familiar enforcement problem: even if
the platform can sometimes detect poisoning (via statistical tests, holdout
validation, attestation, or challenge tasks), detection is imperfect and costly,
and therefore cannot be treated as a deterministic contractible outcome.

Our work is complementary to robust aggregation: rather than improv-
ing the aggregator, we model robustness as an effective detection probability
and ask how to use economic penalties to deter attacks that slip past al-
gorithmic defenses. This is important in practice because “robust FL” and
“secure FL” can be in tension: stronger privacy can reduce observability and
thereby weaken purely algorithmic enforcement. By abstracting these de-
tails into an audit technology with imperfect detection, we can analyze how
much deterrence can be obtained from financial instruments even when the
platform’s signal is noisy.

Audits, deposits, and collateral in digital markets. A third litera-
ture studies how markets enforce desirable behavior when actions are hidden
or quality is imperfectly observed. Classical procurement uses performance
bonds, retainage, and warranties: suppliers post collateral or accept pay-
ment holdbacks that are forfeited under verified nonperformance. Labor and
platform markets use escrow, staged payments, and dispute resolution. Fi-
nancially, these tools share a common logic: they create “skin in the game”
that can be seized conditional on an adverse signal, thereby converting a
moral hazard problem into one with enforceable incentives.

Random audits are a particularly common enforcement device. In reg-
ulatory economics (e.g., tax compliance, environmental enforcement), the
canonical inspection model trades off audit intensity against enforcement
costs and uses expected penalties to deter violations. In mechanism design,
random verification and “audit with probability ¢” appear in models of costly
state verification and fraud deterrence. In cryptographic and blockchain sys-
tems, staking and slashing implement a similar deterrence mechanism: par-
ticipants lock collateral that is automatically forfeited upon provable misbe-
havior; probabilistic monitoring and challenge games can reduce verification
costs while maintaining incentives.

Our setting adapts these ideas to FL procurement, but with two domain-
specific complications. First, enforcement must coexist with budget-feasible
payments: the ecosystem funding audits is the same ecosystem paying work-
ers, so audit expenditures are not an exogenous add-on. Second, the rele-
vant strategic actor may be a sybil controller: collateral must deter not just
a single identity’s deviation but also profitable identity splitting, where an
attacker creates many accounts to increase selection probability. Collateral
and audits can address this by making the expected gain from any single
selected identity negative, which in turn eliminates positive expected profit
from creating additional identities (absent cross-identity complementarities).
This “per-identity deterrence” viewpoint echoes how staking systems scale to
many pseudonymous participants.

Positioning and limitations. Relative to procurement mechanisms, we
keep the selection/payment layer intact and add an enforcement layer. Rel-
ative to robust FL, we do not propose a new aggregation defense; instead we
treat detection as imperfect and ask what economic commitments can com-
pensate for limited observability. Relative to audit/collateral models, we
highlight the multi-requester, compatibility-constrained nature of the mar-
ket and the fact that enforcement must be financed without breaking budget
feasibility.

At the same time, our approach inherits limitations common to collateral-
based enforcement. Deposits can exclude liquidity-constrained but honest
workers, which may reduce competition and degrade allocation quality; au-

diting can be expensive and may be politically or operationally constrained;
and imperfect detection implies residual risk when audits are rare or weak.
These limitations motivate the formal model that follows: we make the en-
forcement technology explicit, track how it interacts with budgets and fea-
sibility constraints, and state guarantees in terms of transparent parameters
(audit intensity, detection effectiveness, and collateral requirements) rather
than assuming away the underlying frictions.

3 Model and primitives.

We study a procurement layer for federated learning (FL) that is already
well understood—private worker costs, requester budgets, and compatibility
constraints—and then add a minimal enforcement layer that captures post-
selection poisoning incentives under imperfect observability. Our goal in
this section is to state the ingredients in a way that makes the subsequent
“wrapper” construction modular: any CARE-like budget-feasible assignment
mechanism can be treated as a black box M, and we will reason about what
must be added so that selection incentives and post-selection incentives are
jointly well behaved.

Agents, tasks, and feasibility. There is a finite set of requesters A,
indexed by j, with |A| = m, and a finite set of worker identities (accounts)
S, indexed by ¢, with |S| = n. We emphasize “identities” because multiple
identities may be controlled by a single real-world actor; the platform cannot
perfectly link them. Each requester j posts a monetary budget B; used to
pay selected workers (and, depending on the audit-financing rule, possibly
to fund audits). Each worker identity i can be assigned to at most one
requester. Let

Tij € {0, 1} and x; := ZCE,‘]‘ € {0, 1}
jeA

denote the allocation indicators.

Operational and policy constraints enter through incompatibility groups
Gy C Sfor¢e{1,...,L}. These groups can represent correlated-risk classes
(same ISP or device vendor), provenance classes, jurisdictions, or any at-
tribute for which a requester/platform wants a cap on concentration. Each
requester j is subject to caps

1S;NGe|l < 15V,

where S; = {i € S : x;; = 1} is the set assigned to j. We treat group
membership as observable and verifiable at the level needed to enforce the cap
(e.g., via compliance attestation or KYC-like checks), but we do not assume
the platform can link multiple identities belonging to the same underlying
actor.

Costs, bids, and the base procurement mechanism M. Worker
identity ¢ has a private participation cost ¢; > 0, capturing local compute,
communication, and any opportunity cost of contributing an update. The
worker reports a bid b; strategically. We also allow the platform to use an
exogenous, publicly observed quality or reputation proxy v; > 0 (e.g., histor-
ical reliability, device class, or dataset richness), which enters the platform’s
selection objective but is not itself a strategic report in the baseline model.

A base mechanism My = (X, P) maps the bid profile b = (b, ..., b,) into
an allocation X (b) = {z;j(b)} and payments P(b) = {p;;(b)}. Let p;(b) :=
> y pij(b) denote the total payment to identity i. We take as given that My
(i) respects the feasibility constraints above (assignment plus group caps),
(ii) is dominant-strategy incentive compatible (DSIC) for cost reporting and
ex post individually rational (IR) for honest participants, (iii) is budget
feasible in the sense that requester payments do not exceed budgets, and
(iv) attains a S-approximation to a canonical additive objective Z” TijV;
subject to the feasibility constraints and budgets. Concretely, one can think
of CARE-like allocation rules that implement a greedy selection under per-
requester budget constraints with threshold (critical) payments, but we keep
My abstract to emphasize composability.

Two modeling remarks clarify what My does not do. First, My addresses
selection under private costs; it does not contract on the content of model
updates. Second, My treats identities as atomic: if an adversary creates
many identities, My may select multiple of them unless compatibility caps
happen to bind.

Post-selection behavior: honest contribution vs. poisoning. After
selection, each winning identity ¢ € WW (where W = {i : x; = 1}) chooses
an action m; € {0,1}, with m; = 0 interpreted as “honest contribution”
and m; = 1 as “malicious/poisoning behavior.” We deliberately model mali-
ciousness in reduced form, since the space of attacks is large (label-flipping,
backdoors, targeted poisoning, gradient manipulation, etc.) and observabil-
ity depends on the training pipeline.

If identity ¢ behaves maliciously and is not detected, it obtains a one-shot
gross benefit g; > 0. This benefit can represent extortion value, sabotage
value, or a competitor’s gain from degrading a model. If detected, the iden-
tity may be penalized via loss of a posted deposit (introduced below). We
allow an additional direct resource cost x(1) > 0 of mounting an attack,
with x(0) = 0; in the cleanest case k(1) = 0, so deterrence must come from
expected penalties.

On the requester side, an undetected malicious identity may impose a
loss D; > 0 in realized value. We do not require the platform to observe D;
or to price it directly; we introduce it mainly as an accounting device for
welfare and approximation-loss bounds later. When m; = 0, we assume no

10

negative externality beyond the worker’s cost ¢;, i.e., honest participation is
socially beneficial in the sense intended by the base objective.

Audit technology and imperfect detection. The platform can audit
selected identities using a randomized procedure: each winner ¢ is audited
with probability ¢ € (0, 1], committed ex ante. Conditional on auditing a
malicious identity, the audit detects misbehavior with probability ¢ € (0, 1].
Thus the overall detection probability against a malicious winner is

Pdet = q(;-

This reduced-form detection probability is meant to subsume both statistical
detection (e.g., anomaly checks, holdout validation) and systems signals (e.g.,
secure enclaves, attestation, challenge tasks). Importantly for FL practice,
privacy-preserving protocols such as secure aggregation can reduce per-client
observability; in our model this simply corresponds to a lower effective 6. We
treat audits across identities as independent conditional on selection, which
is the natural benchmark when the platform uses independent sampling;
correlated audit schemes could be incorporated but are not needed for the
core deterrence logic.

Auditing is costly: each audit incurs cost C, > 0 to the platform (or
equivalently to the ecosystem if charged back to requesters). We do not yet
specify how audit costs are allocated across requesters—that is part of the
mechanism wrapper—but we include an audit fee term ¢; in requester utility
to keep track of the fact that enforcement must ultimately be financed.

Deposits, limited liability, and penalties. Because malicious behavior
is not perfectly observable, we introduce a standard enforcement primitive:
refundable deposits (collateral). Each identity i can be required to post a
deposit d; > 0 upon participation/selection (depending on implementation).
If the identity is audited and detected malicious, it forfeits d;; otherwise the
deposit is refunded. This captures limited liability in a way that matches
many digital-market settings: the platform can credibly escrow and slash a
posted amount, but cannot impose unbounded ex post fines on pseudony-
mous accounts. In particular, the maximum penalty that can be enforced
per identity is d;, so deterrence must come from making the expected loss
qdd; outweigh the expected gain from undetected misbehavior.

Let p; denote the payment the identity receives from Mj if selected. The
worker’s ex post utility can be written as

w;i(bi,m;) = pi(X (b)) —cixi—k(m;)z;—1{x; = 1}1{audit}1{m; = 1}1{detect} d;+1{x; = 1}1{m; =1

Taking expectations conditional on selection (z; = 1), if the identity is ma-
licious (m; = 1),

Elu; | x;=1,m; =1] =p; — ¢; — k(1) + (1 — ¢d)g; — ¢dd;,

11

whereas if it is honest (m; = 0),
Elu; |z =1,m; =0] = p; — ¢,

since the deposit is refunded in expectation (and deterministically if audits
only trigger forfeiture upon detection).

Adversarial capability and bounds. A key design input is an upper
bound g on the one-shot malicious benefit among the adversarial identities
we seek to deter. We do not assume the platform observes g; or can dis-
tinguish adversarial from honest identities; rather, g is a policy/engineering
parameter reflecting the threat model (e.g., the maximum plausible external
gain from a single round of poisoning). This bound is what makes a uni-
form deposit requirement meaningful: if g; < g, then one can set deposits to
make deviation unprofitable. Of course, if some attackers have g; > g, then
purely financial deterrence may be insufficient without stronger detection
(6) or higher audit rates (q); we return to this limitation when interpreting
guarantees.
Finally, requester j’s realized utility is

U; = V;(S;) — Zpij — &5,

where Vj(-) is the requester’s value from its assigned set, and ¢; accounts for
audit financing. We do not assume V; is directly observed by the platform;
the mechanism’s approximation properties will be stated relative to the ad-
ditive proxy)¢ s, Vis while D; and ¢; allow us to track how enforcement
affects actual welfare.

This completes the model. The next section specifies a wrapper around
My that (i) preserves DSIC/IR for cost reporting by honest workers, (ii)
makes m; = 1 strictly dominated (in expectation) for all identities with
gi < g, including when an attacker can create many identities, and (iii)
accounts explicitly for audit expenditures within requester budgets.

4 Mechanism: Robust-CARE wrapper.

We now describe a simple enforcement “wrapper” that can be layered on top
of any CARE-like budget-feasible assignment rule My = (X, P). The wrap-
per has two design goals. First, it should be modular: we want to reuse the
allocation and threshold-payment logic of My without re-deriving incentives
from scratch. Second, it should be operational: the platform should be able
to implement it with standard marketplace primitives (escrow, randomized
inspections, and deterministic billing rules) while keeping requester budgets
and compatibility constraints explicit.

12

High-level structure. Fix public parameters (g,d) for auditing and de-
tection, an audit cost C,, and a deposit schedule {d;};cs (often uniform
d; = d). The Robust-CARE mechanism, denoted

MR = Wrap(Mo; q, 0, {d;}, Cq, financing),

takes as input requester budgets {B;}, worker bids b, and the feasibility sys-
tem (assignment and group caps), and outputs (i) an allocation X, (ii) base
payments P as in My, (iii) an audit plan, and (iv) deposit refunds/forfeitures
realized after auditing.

Conceptually, we keep My responsible for who is selected and how much
they are paid for participation, and we use deposits and audits to control what
a selected identity prefers to do after selection. The wrapper does not require
observing the full FL update; all post-selection enforcement is mediated by
the reduced-form audit technology summarized by 0.

Step 0: Commitment and eligibility. Before bids are submitted, the
platform commits publicly to: (i) the base mechanism My; (ii) the audit
sampling rule (encoded by ¢); (iii) the detection process conditional on audit
(captured by §); (iv) the deposit schedule d; and the forfeiture rule; and
(v) a deterministic audit-financing rule ensuring budgets cover both worker
payments and audit expenditures.

Workers participate by submitting bids b; and accepting the deposit
requirement. Operationally, this can be implemented either by (a) pre-
escrowing d; at bid time, or (b) pre-authorizing a payment instrument and
escrowing immediately upon provisional selection. We write the mechanism
as if escrow is effective whenever x; = 1; if an identity cannot post the
deposit, it is treated as ineligibleﬂ

A key modularity choice is that d; is set as a function of public features
(or uniformly), and not as a function of the worker’s bid. This separation is
what allows us to preserve the cost-reporting incentives inherited from Mj.

Step 1: Audit-budget reservation and effective budgets. Audits
must be financed. To keep budget feasibility transparent, we reserve audit
funds before invoking My by shrinking requester budgets. Let K; be a known
upper bound on the number of identities that requester j could ever be
assigned (e.g., a posted “client count” target, or a systems cap implied by
training). Define a deterministic audit reserve

In practice, to avoid rerunning allocation when a winner fails to post collateral, plat-
forms typically require pre-escrow or pre-authorization. Our theoretical arguments later
only use that posting is required whenever an identity becomes a winner.

13

The interpretation is: requester j sets aside enough funds to pay for up to
[¢K ;] audits at cost C, each; the remaining Ej is the budget available for
worker payments in the base mechanism. This rule is conservative (it guar-
antees that the audit reserve suffices ex post under the audit plan described
below), yet it is simple and does not depend on bids.

Other financing rules are possible (e.g., charging per realized audit ex
post, or pooling audit costs platform-wide), but the reserve-based rule is
convenient for composition: after the reserve is carved out, the remainder
is a standard multi-requester budget-feasible procurement instance to which
My applies directly.

Step 2: Run the base mechanism unchanged. We run M, on the
eligible worker set with budgets {B;} and the original feasibility constraints
(assignment plus group caps):

(X, P) = Mo(b; {Bj}, {m;},{Ge}, {vi}).

This step is intentionally “black-box™: the wrapper does not modify the allo-
cation rule or payment formula beyond swapping Bj; for B;. In particular, if
My is implemented via greedy selection with critical (threshold) payments,
we use exactly those critical payments here.

Let S; = {i : ;5 = 1} and W = U;S; denote the winners. For each
winner ¢ € W, the platform escrows d; (if not already escrowed). The base
payment p; = > jPij 1s determined at this point but may be disbursed later
(see below).

Step 3: Audit lottery (randomized inspections with determinis-
tic cost). The wrapper specifies an audit lottery that approximates per-
identity audit probability ¢ while keeping realized audit expenditures within
the reserved amount R; for each requester. For each requester j, define the
number of audits to run as

aj = min{\sj\7 [qKﬂ}-

Then the platform draws a subset A; C S; uniformly at random of size a;
(sampling without replacement). Each i € A; is audited; each i € Sj \ A; is
not audited. This construction ensures that the total audit cost for requester
J is exactly Cqa; < Co[qK;] = Rj, ie., funded ex post by the reserved
amount.

When [S;| < K, each winner under j faces audit probability approxi-
mately ¢ (exactly a;/|S;|, with the usual floor/ceiling discretization). The
analysis in the next section uses only the fact that there is a known lower
bound on the audit probability for each selected identity; the without-replacement
lottery is simply a convenient way to make costs deterministic.

14

Step 4: Forfeiture/refund and payment execution. After training
contributions are delivered, the platform executes audits for i« € A;. If 4
is honest, nothing happens. If i is malicious, detection occurs with prob-
ability d; upon detection, the deposit d; is forfeited (slashed), and upon
non-detection it is refunded.

Operationally, to prevent “hit-and-run” identities from collecting p; and
disappearing before a slash can be applied, the wrapper can disburse pay-
ments only after the audit window closes. Concretely:

e deposits d; are escrowed at selection time;

e base payments p; are authorized at selection time but settled after
auditing;

e if ¢ is detected malicious, the platform withholds (some or all of) p; to
the extent permitted by the payment rail, and in any case forfeits d;.

Our theory does not rely on withholding p; (the deterrence comes from d;),
but delayed settlement is a standard practical complement.

Finally, the audit reserve is used to pay auditors: requester j is charged
¢j = Cqa;j (or equivalently, the platform debits R; and refunds any unused
portion R; —¢; if a; < [¢K]). This makes the requester’s total spend equal
to), pij+o; < Ej +R; < Bj, guaranteeing budget feasibility ex post under
the wrapper.

Why this composes cleanly with CARE-like rules. Three design
choices deliver modularity. First, the allocation and base payments are com-
puted entirely by My using shrunken budgets Bj; deposits and audits are
layered after selection. Second, the deposit schedule {d;} and audit sampling
are independent of bids, so they do not create additional bid-dependent
transfers that would typically interfere with DSIC arguments for cost re-
porting. Third, audit costs are handled via a deterministic reserve and a
deterministic (allocation-dependent) audit count aj, so the wrapper does
not create stochastic budget overruns that would otherwise force ad hoc
rationing.

Put differently, we can view Robust-CARE as turning each requester’s
budget B; into two earmarked accounts: a procurement account B; that
feeds into My, and an enforcement account R; that finances randomized au-
diting. The next section shows that, with an appropriate deposit level, this
separation ensures that (i) truthful bidding remains optimal for honest work-
ers as in My, and (ii) post-selection poisoning becomes strictly unprofitable in
expectation for identities whose one-shot attack gain is bounded—importantly,
on a per-identity basis, which is what enables sybil-style robustness.

15

5 Theory I: Incentives and deterrence.

We now formalize why the wrapper preserves the cost-reporting guarantees
of the base rule My, while adding a post-selection deterrent against poi-
soning. The key observation is that the wrapper intervenes only through
(i) bid-independent collateral and (ii) bid-independent random audits. This
separation lets us analyze the mechanism by backward induction: we first
study the optimal post-selection action m; for a selected identity, and then
we study bidding incentives given those continuation payoffs.

A useful lower bound on audit risk. Fix any realized winner set S; =
{i : x;; = 1} for requester j. Under the without-replacement lottery de-
scribed earlier, each ¢ € S; is audited with probability a;/|S;|, where a; =
min{|S;|, [¢K;]}. In particular, whenever |S;| < K; we have a; = [¢Kj]
and hence a;/|S;j| > ¢ (up to discretization). Our incentive conditions below
only require a known lower bound on the per-winner audit probability; we
therefore write the deterrence condition in terms of a design parameter ¢
that is interpreted as such a lower bound. The overall per-identity detection
probability when malicious is then

Pdet = qa-

5.1 DSIC preservation for cost reporting (honest identities).

We begin with the workers whose strategic choice is only their cost report b;,
i.e., they intend to act honestly after selection (m; = 0). For these identities
the wrapper adds escrow and (possibly) the inconvenience of delayed settle-
ment, but in our quasilinear model it does not add bid-dependent transfers.

Formally, fix a worker ¢ with true cost ¢; who plans m; = 0. Conditignal
on any bid profile b, the wrapper runs My on the shrunken budgets {B;},
producing an allocation/payment pair (X (b), P(b)). If z; = 0, the worker’s
utility is 0. If x; = 1, the worker posts d; and later receives it back with
certainty (because m; = 0), so the expected utility is simply

Efu; | m; =0] = pi(X(D)) — cis,

exactly as in the base mechanism. In particular, the deposit does not enter
the payoff for honest behavior except through a liquidity channel that we do
not model (we return to this limitation briefly below).

Proposition 5.1 (DSIC for honest cost reporting). Assume M is
DSIC and ex post IR for costs under budgets {EJ} and the given feasibility
constraints (assignment plus group caps). Then in the wrapped mechanism
MR truthful bidding b; = ¢; is a dominant strategy for any worker identity
that plays m; = 0, and ex post IR holds for such identities.

16

Proof sketch. Holding other bids fixed, the allocation rule X (-) and base
payments P(-) faced by worker i are exactly those of My on {EJ} The
wrapper adds only (i) escrow of d; when selected and (ii) a refund of the
same amount when m; = 0; both are independent of b;. Hence worker i’s
utility as a function of b; coincides with its base-mechanism utility. DSIC
and IR therefore carry over directly. [J

Interpretation. This proposition is the modularity payoff: we do not need
to re-prove incentive compatibility of the procurement rule; we only need to
ensure that the wrapper’s additional transfers do not depend on bids. Put
differently, the wrapper is designed to manipulate the continuation game
(what a winner does after being selected), not the selection game itself.

5.2 Post-selection deterrence: when does poisoning become
unprofitable?

We now analyze the winner’s post-selection choice m; € {0,1}. Conditional
on being selected (z; = 1), the expected utility from honest behavior is

E[ui’l'i:l,mi:()} = PpP; — C;.

If instead the identity behaves maliciously, it obtains the one-shot benefit g;
if undetected, and loses its deposit if audited and detected. Using pget = ¢9,
the expected utility is

Elu; | zi =1, m; =1] = p;j —¢; — k(1) + (1 — Pdet)gi — Pdetdi-

The difference between malicious and honest behavior (conditional on selec-
tion) is therefore

A; = Elu |z =1,m; =1]-Efu; | 2; = 1,m; = 0] = —k(1)+(1—pdet)gi—Pdetdi-

Proposition 5.2 (Deposit deterrence condition). Fix an identity 4
and suppose it is selected. If the deposit satisfies

Gi

d; > =,
(A q(s

then m; = 1 is strictly worse than m; = 0 whenever g; > 0 and ¢gd > 0; hence

honest behavior is a strict best response in the post-selection stage.

Proof. Under the stated condition,

9i

A; < —k(1)+(1—qd)gi —qd- s

where strictness follows from ¢ g; > 0 (and/or x(1) > 0). O

17

Uniform deposits and bounded adversaries. The platform typically
cannot tailor d; to a private g;. The natural design route is therefore to posit
an adversary class with known bound g; < g, and choose a uniform deposit
d that deters that class:

g

d > —=.

= 0

This is conservative but transparent: if audits are rare (¢ small) or weak (o
small), then deterrence requires more collateral.

Equilibrium implication. With such a deposit, the continuation game
has a unique dominant action for winners—honesty. As a result, the wrapped
mechanism effectively implements the base mechanism M, on {EJ} in equi-
librium, but with an added enforcement layer that removes profitable poi-
soning deviations for the bounded adversary class.

5.3 Sybil-proofness from per-identity collateral.

We finally address why per-identity deposits speak directly to sybil-style
attacks. The threat model is that a single real-world adversary may control
many marketplace accounts, each treated as a distinct ¢ € S. Such an
adversary can attempt to (i) increase the probability that some controlled
identity is selected, and then (ii) poison using the selected identities. The
wrapper does not prevent (i) at the identity layer; instead it makes (ii) yield
no positive expected profit for each selected identity, so scaling the number
of identities does not scale profitable attack surplus.

Proposition 5.3 (Sybil-style profit non-positivity). Assume a uni-
form deposit d > g/(qd). Consider any real-world actor controlling a set
T C S of identities, each with attack benefit g; < g. For any bids (possibly
coordinated across T') and any post-selection poisoning plan, the actor’s ex-
pected incremental payoff from choosing m; = 1 on any subset of selected
identities is weakly negative, and strictly negative whenever at least one
poisoned selected identity has g; > 0.

Proof sketch. Conditional on the realized allocation, the actor’s contin-
uation payoff is the sum of the continuation payoffs of its selected identities
(utilities are quasilinear and deposits are posted per identity). By Proposi-
tion 5.2, for each selected identity ¢ with g; < g, switching from m; = 0 to
m; = 1 reduces expected utility. Summing across any number of selected
identities preserves non-positivity, so creating more identities cannot create
positive expected poisoning profit. [J

What this does and does not guarantee. The conclusion is a profit-

based notion of sybil-robustness: an adversary cannot obtain positive ex-
pected private benefit from poisoning by scaling identities. This is precisely

18

the notion needed for marketplaces where attacks are economically moti-
vated (extortion, competitive sabotage, resale value of disruption). It does
not rule out ideologically motivated attackers willing to incur losses, nor
does it address collusion that directly manipulates the base mechanism’s
approximation properties; those concerns require complementary defenses
(e.g., reputation systems, stronger attestations that increase d, or eligibility
screening).

A practical limitation (liquidity and participation). Our model treats
deposits as refundable transfers with no deadweight cost when honest. In
practice, collateral can exclude cash-constrained honest workers or impose
opportunity costs. One can partially mitigate this by (i) allowing deposits via
credit lines, (ii) risk-tiering deposits using public signals, or (iii) increasing &
through better attestations so that the required d falls. These considerations
do not affect the DSIC logic above, but they matter for participation and
thus for the efficiency guarantees we quantify next.

6 Theory II: efficiency and budgets.

We now quantify the efficiency consequences of the enforcement wrapper.
Because deposits are refunded on-path (when winners behave honestly), the
wrapper’s first-order welfare impact comes from two sources only: (i) the
resources spent on auditing, and (ii) any residual harm from undetected
malicious behavior when deterrence is imperfect (e.g., when the attacker’s
benefit exceeds the class bound used to set the deposit, or when one allows
loss-incurring attackers).

6.1 Financing audits while preserving budget feasibility

Let a; denote a hard cap on the number of audits associated with requester
7’s task in a round. The simplest way to make expenditures non-random
from the requester’s perspective is to reserve a worst-case audit budget up
front:

Ej = B — Cyaj,

and run the base mechanism M using {éj} in place of { B;}. (In the common
case where requester j aims to hire at most K; workers and we audit each
winner with probability at least ¢, a natural choice is a; = min{ K, [¢K;]},
which upper-bounds the without-replacement audit rule described earlier.)

Proposition 6.1 (Ex post budget feasibility with audit reserves).
Suppose the wrapper (i) charges requester j an audit reserve ¢; = Cya;

and (ii) runs Mo on budgets B; = Bj — ¢;. If the audit rule never audits
more than a; winners attached to requester j, then for every realized bid

19

profile and every realization of the audit lottery, requester j’s total outlay
(payments to workers plus realized audit spend) is at most B;.

Discussion. The point is modular: My already guarantees), p;; < Ej
ex post, and the wrapper ensures realized auditing costs are bounded by
Caaj = ¢;. Summing yields), p;; + C, - #audits; < Ej +¢; = Bj.

A practical corollary is that we do not need to rely on deposit forfeitures
to finance audits. In equilibrium under full deterrence (Section 5), forfeitures
are essentially off-path revenue; designing audit funding to be budget-feasible
without them avoids circularity.

6.2 Quality approximation: what is lost relative to the base
rule?

Recall that My is assumed B-approximate for the additive proxy objective
QX) = > mijui,
i?j

subject to assignment, compatibility caps {|S; N G| < 745}, and requester
budgets. Under the deterrence condition (e.g., uniform d > g/(gd)), winners
play m; = 0 in the continuation game, so the wrapper implements exactly
the allocation produced by My on the net budgets {Ej} Hence the approx-
imation guarantee transfers directly to the net-budget feasible set.

Proposition 6.2 (Quality guarantee under audit reserves). Let OPT(E)
denote the maximum achievable proxy quality Q(-) over all feasible alloca-
tions under budgets {EJ} and the same compatibility constraints. Then in
equilibrium (with honest post-selection behavior),

Q(X®) > B-OPT(B),

where X® is the wrapped mechanism’s allocation.

This statement is intentionally “clean™ audits affect efficiency only by
shrinking the budgets available for procurement. To relate performance back
to the original budgets {B;}, we need a way to convert dollars of reserved
audit spend into a bound on forgone quality. A standard and mild regularity
condition is a bounded quality-to-cost density: assume there exists p < oo
such that for all workers i, v; < p¢; (or, more conservatively for analysis,
v; < pb; on truthful bids). This rules out arbitrarily large quality available
at arbitrarily small cost, which otherwise makes any additive “loss per dollar”
bound impossible.

Lemma 6.3 (Budget shrinkage implies additive quality loss). Under
the density bound v; < pc¢;, for any two budget vectors B and B < B

20

(componentwise),

OPT(B) > OPT(B) — pY (B; — Bj).

With Ej = Bj — C,a;, this becomes

OPT(B) > OPT(B) — pCu Y _aj.
J

Combining Proposition 6.2 and Lemma 6.3 yields an explicit additive
degradation relative to the original-budget optimum:

Q(X®) > BOPT(B) — BpCa) aj.
J

Two interpretations are worth emphasizing. First, the § factor is inherited
from Mjy; the wrapper does not worsen the approximation ratio conditional
on the net budgets. Second, the additive term is exactly the “price of en-
forcement” under deterministic audit reserves: auditing consumes budget
that could otherwise purchase quality, at a rate governed by p.

6.3 Accounting for false negatives: residual damage when
deterrence is imperfect

The prior bounds treat quality as a function only of allocation and ignore that
malicious updates can reduce the real requester value. To capture this, let
D; > 0 denote the (requester-level) damage caused when identity ¢ poisons
and is not detected. Conditional on selection and choosing m; = 1, the
probability that the damage is realized is 1 — gd. Thus, for any realized
winner set W and any post-selection behavior profile m, the expected value
loss from false negatives is

E[Damage | X, m] = (1 — ¢d) Z 1{m; =1} D;.
ieW
This yields a generic value bound that cleanly separates allocation quality
from integrity loss:

EV | X,m] > Q(X) - (1-¢6) Y 1{m; =1} D;,
4%

where we are using Q(X) as the additive “gross value” proxy absent poison-
ing.

When the deposit is chosen so that the bounded adversary class is fully
deterred (Section 5), equilibrium has m; = 0 for all winners in that class,
and the entire false-negative term drops out. The reason to keep it explicit

21

is that platforms rarely want to assume all attackers satisfy g; < g, and in
practice § may be materially below one under secure aggregation or weak
attestations. In such environments, the wrapper still buys a quantitative
improvement: the expected realized damage scales linearly with the false-
negative rate 1 — ¢d. Put differently, holding the set of would-be attackers
fixed, improving detection technology (4 1) or increasing audit intensity (¢ 1)
tightens the additive harm term one-for-one.

6.4 Putting it together: a welfare-style bound

Finally, if we account directly for audit expenditures (as a real resource cost)
and for residual damage, a simple expected welfare proxy takes the form

EW] = QX®) — Co > E[#audits;] — (1—qd) Y _ P(m; =1)D;,
7 €W
where we have omitted transfers p;; (which cancel in total surplus account-
ing) and kept the terms that represent real losses. Under the capped audit
rule, E[#audits;] < a;, so the enforcement-related welfare loss is explicitly
bounded by an audit-cost term C, > ;@ and a false-negative term propor-
tional to (1 — gd).

The key message of this section is therefore structural: the wrapper pre-
serves the base mechanism’s approximation properties on net budgets, and
the efficiency gap to the unwrapped world is controlled by two transparent
“engineering knobs”—how much budget we reserve for audits, and how often
malicious behavior escapes detection. The next section uses this decompo-
sition to discuss design choices and comparative statics in (g, J, d).

7 Design choices and comparative statics in (g, d, d)

The prior section isolates the enforcement “price” into two levers: (i) how
much auditing we finance, and (ii) how often malicious behavior escapes
detection. We now use the same decomposition to guide design choices. The
central point is that (g, d,d) are not substitutes in a purely mechanical way:
deposits deter by shifting the attacker’s payoff, while audits and detection
technology determine how strongly that shift is applied. In practice, one
chooses (q, d, d) subject to budget feasibility, liquidity constraints on workers,
and engineering limits on §.

7.1 Audit probability versus deposit size: a simple deter-
rence frontier

Fix a worker identity ¢ who has been selected by My. Comparing expected
utility from being malicious versus honest yields the incentive gap

Ai(q,6,d;) := Elu; |z =1,m; =1]-E[u; | z; = 1,m; =0] = —~r(1)+(1—qd)g;—qdd;.

22

A sufficient condition for strict deterrence for all adversarial identities with
9; < gis

@d > (1—gd)g+r(1), ie d > (1—q53]§+/€(1)‘

(1)

This is the natural “frontier” that trades audits against deposits: higher audit
intensity ¢ (or better detection) reduces the deposit needed for deterrence,
and conversely a larger deposit allows a smaller audit rate. Our earlier choice
d > g/(qd) is a conservative simplification of (1) (it ignores the (1 —¢d) term
and any (1)), but the comparative statics are identical.

Two monotonicities are immediate from (taking k(1) as fixed). First,
d is decreasing and convex in ¢d: marginal improvements in audit effective-
ness (probability of detection) reduce the required deposit more when ¢é is
small. Second, the relevant object is the product gé. This is useful opera-
tionally: one can compensate for weaker attestations (lower ¢) by auditing
more aggressively (higher ¢), but only up to the point where audit capacity
and requester budgets allow.

7.2 Why “more deposit, less audit” is not always optimal

If deposits were frictionless—no liquidity limits, no participation distortion,
no regulatory cap—then one might push ¢ toward zero and rely on very
large d to enforce deterrence. Two practical considerations break this corner
solution.

Liquidity and participation constraints. Even though deposits are re-
funded on-path, workers must still post them. If some honest, low-cost work-
ers cannot lock up capital, a high uniform d shrinks the effective supply side
and can reduce quality by excluding high-v; participants. A simple way to
represent this is a participation feasibility constraint d < d;, where d; is a
(private) liquidity limit. Under such constraints, the platform may be forced
to choose a larger ¢ (or invest in §) to meet without exceeding feasible
deposits.

Risk, disputes, and false positives. Our clean model takes § as the
probability of detecting malicious behavior conditional on audit and ab-
stracts from false positives. In reality, audits may sometimes wrongly flag
honest updates (or be contested), creating expected loss or risk premia for
honest workers. A larger ¢ then imposes a direct welfare cost through ex-
pected disputes, delayed payments, or risk-bearing, even if deposits are re-
funded in expectation. This pushes against very large ¢ and motivates using
deposits (and better d) to keep audit intensity moderate.

These frictions suggest that the designer’s problem is not merely to satisfy
deterrence, but to do so cost-effectively subject to operational constraints.

23

7.3 A stylized optimization: picking ¢ given a deposit friction

To make the tradeoff explicit, consider a stylized round in which each re-
quester j hires up to K; workers and audits each winner independently with
probability gq. Suppose deposits impose a per-winner deadweight cost Ad
capturing liquidity /risk premia (with A = 0 returning us to the frictionless
benchmark). Under full deterrence for the bounded class, we can set d on
the frontier (1)) and minimize an enforcement proxy cost

(1 —qd)g + r(1)
q0 '

EnfCost(q) ~ Ca-q Y Kj + A-d(q)d_Kj, dlg) =
J J

This objective is convex in ¢ on (0, 1] for typical parameter values: the first
term increases linearly in ¢, while the second decreases roughly like 1/q for
moderate gd. The implication is a genuine interior optimum ¢* whenever
A > 0: we audit some, but not too much, and we require a deposit that is
high enough to make the marginal audit unnecessary.

Even when we do not literally solve this optimization, it provides a clear
design heuristic:

Audit more (increase ¢) when audits are cheap (C, low), deposit
frictions are high (A high or liquidity is scarce), or detection is
weak (0 low). Use higher deposits (increase d) when audits are
expensive, deposit frictions are low, and ¢ is strong.

7.4 Detection technology ¢: attestations as “deposit multi-
pliers”

Equation makes a policy-relevant point: improving 0 has a leveraged
effect because it scales the effectiveness of both audits and deposits. Con-
cretely, holding ¢ fixed and ignoring (1) for clarity,
() = (1_(](;]5)9 = %<0, and d(0) — oo as ¢ | 0.

Thus, if secure aggregation or limited telemetry drives ¢ materially below
one, the deposit required for deterrence can become implausibly large. This
is precisely where engineering investments—hardware-backed attestations,
provenance checks, robust statistics that increase detectability, or better
logging that raises d—substitute for financial instruments. Put differently, §
turns out to be a “budget amplifier”: by lowering required deposits and/or
audits for a fixed security target, it relaxes both liquidity constraints on
workers and audit financing pressure on requesters.

Of course, § is not free. If raising 0 requires per-round infrastructure cost
C5(9), then the design problem becomes tri-variate: pick (g, d,) to balance
(i) audit cost, (ii) deposit frictions, and (iii) detection-tech investment. The

24

comparative statics remain intuitive: improvements in § are most valuable
when C, is high, when deposit frictions bind, or when the threat class g is
large.

7.5 When do we need numerical optimization?

Closed-form comparisons become unreliable once we move beyond the single-
parameter bounded-adversary abstraction. Three features in particular push
the design problem into “simulate and optimize” territory.

Heterogeneous and state-dependent risk. If workers differ in g;, D;,
or in detectability (effectively d;), then the optimal policy is rarely uniform.
One may prefer risk-based audits g; or tiered deposits d; (e.g., higher d; for
accounts with weak provenance). But risk-based rules interact with DSIC
and feasibility: changing eligibility via deposit requirements can alter bids,
participation, and the allocation X in ways that are difficult to bound ana-
lytically.

Compatibility constraints and multi-requester coupling. The caps
|S;NGe| < 745 create nontrivial substitutability patterns across worker types.
Excluding some identities via large deposits can force the mechanism to back-
fill with lower-v; workers from other groups, and the welfare impact depends
on the entire feasible matching polytope. These effects are typically instance-
specific, suggesting numerical evaluation under realistic group structures.

Partial deterrence and endogenous attacking. If the threat model
admits attackers with g; > g, or if some attackers are willing to incur losses
(e.g., ideological sabotage), then the equilibrium may feature a nonzero at-
tack rate that depends on (g, d, d). Bounding expected damage then requires
modeling (or estimating) the distribution of ¢g; and D;, and integrating over
the induced “attack region” {A;(g,d,d) > 0}. This is exactly the situation
in which empirical calibration and numerical search are warranted.

These considerations motivate an empirical plan that treats (q,d,d) as
tunable knobs and evaluates the resulting accuracy, spend, and integrity
outcomes under realistic poisoning and sybil behaviors, including settings
where § < 1 due to secure aggregation and where audits rely on noisy proxies.

8 Empirical plan: poisoning and sybil simulations
under compatibility constraints

Our theoretical results isolate a small set of design knobs—(g, d, d) layered
on top of a DSIC, budget-feasible base mechanism My = (X, P)—and char-
acterize how they deter bounded attackers in expectation. The natural next

25

step is to test how these knobs perform in regimes that matter operationally:
(1) poisoning attacks that manifest as downstream model degradation rather
than direct payment fraud, (ii) sybil behavior in which one actor controls
many identities and strategically bids to increase selection probability, (iii)
compatibility constraints [S; N G| < 745 that couple requesters and shape
who can be hired, and (iv) secure aggregation or limited telemetry that re-
duces what the auditor can observe, effectively lowering §. In this section
we lay out a simulation-based empirical plan that maps these primitives into
measurable outcomes and produces actionable design charts.

8.1 Simulation environment: multi-requester procurement
with group caps

We propose a Monte Carlo harness that generates instances Z consisting
of: (i) a set of requesters A with budgets B; and desired cohort sizes Kj;
(ii) a pool of worker identities S, each with a group label in one or more
incompatibility partitions Gy (e.g., jurisdiction, channel, provenance class);
(ili) compatibility caps 74; per requester; and (iv) worker primitives (c;,v;)
plus a strategic bid b;. For each draw, we run M) to obtain (X, P) subject to
budgets and caps, then overlay deposits, audits, and forfeitures. The key is
to generate instances where caps sometimes bind: we will vary the tightness
of 7; (from slack to binding) and the concentration of high-v; workers within
particular groups, because these are the cases in which excluding identities
via deposit requirements can have the largest allocative effect.

To connect to federated learning, we additionally attach to each selected
worker an update-generation process. For a given requester j, selected iden-
tities S; = {i : ;5 = 1} produce local updates under a chosen FL algorithm
(e.g., FedAvg with fixed client epochs), and the requester’s realized value
V;(S;) is proxied by final validation accuracy (and, when relevant, robust-
ness metrics). This lets us evaluate not only the proxy objective Z” Tij0;
but also task-level performance under adversarial behavior.

8.2 Threat models: poisoning, sybils, and collusion

We simulate three increasingly adversarial regimes.

Independent bounded attackers. A subset of identities are adversarial
with one-shot benefit g; from being malicious and undetected, with g; drawn
from a distribution supported on [0, g] in the baseline. Given selection, each
adversarial identity chooses m; € {0, 1} to maximize expected utility under
the implemented (g, d,d). This regime directly tests whether the deterrence
logic observed in the model appears in end-to-end training outcomes.

26

Sybil actors with many identities. We introduce real-world actors r €
R, each controlling a set of identities S(r) € S. A sybil actor chooses
bids {b; : ¢ € S(r)} (and, if modeled, participation decisions under de-
posit requirements) to maximize total expected utility across its identities.
We stress-test both “horizontal” sybils (many low-bid identities to increase
selection probability) and “targeted” sybils (tuning bids to exploit cap struc-
ture so that their identities become pivotal substitutes within a constrained
group). We treat group labels as potentially correlated within an actor (e.g.,
all sybils share the same provenance class) to capture the operational idea
that provenance-based caps can limit sybil amplification.

Poisoning implementations and damage measurement. Conditional
on m; = 1, we implement concrete update manipulations: label-flip, sign-
flip, norm inflation, model replacement, and backdoor insertion with a chosen
trigger. For each requester, we measure damage D; in terms of (a) drop in
clean validation accuracy, (b) increase in loss on a protected holdout, and
(c) backdoor success rate. These metrics provide an empirical counterpart
to the welfare loss from undetected malicious participation.

8.3 Auditing under limited observability: proxies for § with
secure aggregation

In practice, the auditor rarely observes raw per-client updates; under secure
aggregation, it may only see the aggregate update, possibly with privacy
noise. We therefore treat § as an effective detection probability induced
by an auditing protocol and the system’s observability constraints, and we
measure it empirically rather than assuming it.

We consider several audit proxies, each with a tunable threshold that
traces out an ROC curve (true-positive rate versus false-positive rate): (i)
challenge rounds in which a small audited subset is required to train on a hid-
den canary dataset or produce a verifiable statistic; (ii) influence-based tests
that estimate whether removing a client’s contribution materially improves
holdout loss (possible when per-client contributions are partially recoverable
via secure enclaves or cryptographic commitments); (iii) consistency checks
such as update norm bounds, cosine similarity to the aggregate direction,
or agreement with a robust estimator (median, trimmed mean) computed
within an audit enclave; and (iv) attestation-based audits (hardware-backed
measurements, provenance proofs) that detect specific classes of policy vio-
lations. R

For each proxy, we estimate § by injecting known malicious behavior
into audited identities and recording detection frequency, while separately
measuring the false-positive rate o on honest identities. Although our clean
model abstracts from «, the simulations will report how « interacts with
participation (through perceived risk) and with realized audit expenditures

27

(through disputes and re-training). Operationally, this produces a mapping
from “engineering choices” to the economic parameter §, allowing us to plot
feasible (g, d,d) triples given observability constraints.

8.4 Metrics: accuracy, value/reputation, spend, and integrity

We propose four metric families, reported both per requester and aggregated
across requesters.

Learning outcomes (accuracy and robustness). For each requester
Jj, we report final validation accuracy, worst-group accuracy (if the task is
group-fairness sensitive), and robustness measures such as backdoor success
rate and accuracy under distribution shift. These are the primary “customer-
facing” outcomes and provide an empirical analogue of V;(.S;).

Procurement quality and reputational value. We report the proxy
objective ZZ ; TijVi, the realized allocation composition across groups |S; N
G|, and concentration indices (e.g., Herfindahl) to capture how caps and
deposits shape diversity. When v; is interpreted as a reputation score, we
also track how often high-v; identities are excluded by deposit frictions, which
is an empirically important channel through which overly aggressive d can
harm outcomes even when it improves integrity.

Spend and budget feasibility. We track requester payments), p;;, au-
dit fees ¢; (or total audit cost C, - #audits), total deposits posted, and
forfeitures collected. The headline statistic is the fraction of instances in
which each requester remains within budget after accounting for audit fi-
nancing rules. We also report a decomposition of enforcement cost into (i)
audit spend, (ii) liquidity deadweight (modeled or measured as dropout),
and (iii) residual expected damage from undetected attacks.

Integrity: attack prevalence and undetected harm. We report the
equilibrium attack rate among selected adversarial identities (empirically
induced by the utility comparison), the fraction of malicious identities de-
tected, and the expected number of malicious-but-undetected winners. We
additionally report the distribution of realized damage conditional on un-
detected attacks, since heavy-tailed damage is precisely where average-case
deterrence can be insufficient for practice.

8.5 Experimental design: parameter sweeps and stress tests

We will run factorial sweeps over (¢, d) and audit-proxy settings (which de-
termine § and «) across multiple instance classes: (i) slack versus binding
7¢;; (ii) low versus high audit cost Cy; (iil) weak versus strong observability

28

(secure aggregation noise levels, enclave availability); (iv) deposit frictions
(dropout probability as a function of d, or hard liquidity caps d < d;); and
(v) threat severity (support of g;, including misspecification where some at-
tackers have g; > g).

For each cell, we compute confidence intervals over many draws and
produce design charts that answer two practical questions: (a) what (g, d)
achieves a target integrity level (e.g., expected undetected malicious winners
< ¢) given a measured d0; and (b) among the policies that meet the target,
which minimizes enforcement-adjusted spend while maintaining learning per-
formance.

Finally, we benchmark allocations against two comparators: the base
mechanism without enforcement, and an “oracle” that excludes all malicious
identities (or uses perfect detection). This quantifies the performance gap
attributable to partial verification and provides a disciplined way to interpret
residual losses due to (1 — ¢d) events in realistic training pipelines.

This empirical plan is intended to be modular: it treats My as a black
box satisfying the usual feasibility and incentive properties, while making the
integrity layer testable under realistic FL observability constraints. The next
section discusses extensions that naturally arise once the empirical evidence
reveals where uniform deposits and uniform auditing are too coarse.

9 Discussion and extensions: heterogeneity, target-
ing, dynamics, and partial verification

Our baseline integrity layer is deliberately blunt: we pick an audit prob-
ability ¢, an effective detection probability é, and a refundable deposit d
(possibly uniform), and we show how this suffices to deter any identity with
gi; < g in one-shot expected utility. The appeal of this starting point is imple-
mentability and clean incentive separation: the base mechanism My handles
cost revelation and feasibility, while (g, d,d) acts as an ex post enforcement
overlay. In practice, however, platforms will want to tailor enforcement to
heterogeneous risks, learn over time, and operate under partial observabil-
ity. We discuss several extensions that preserve the spirit of the model while
clarifying where additional design work is needed.

9.1 Heterogeneous deposits and liquidity constraints

Uniform deposits are attractive operationally, but they are rarely efficient.
In most FL marketplaces, the attack benefit g; varies widely with (i) the
strategic value of the task (e.g., competitive intelligence), (ii) the attacker’s
outside options, and (iii) the ease with which poisoning yields downstream
harm. If we can bound g; more tightly for some identities (via provenance,

29

reputation, or task class), then the canonical deterrence condition

g
d > s
is overly conservative. A natural extension is a per-identity (or per-class)
deposit schedule d;, with deterrence requiring d; > g;/(qd) for the rele-
vant bound on g;. Economically, this is a standard screening-versus-friction
tradeoff: higher d; reduces expected attack rents but can exclude honest,
liquidity-constrained workers, thereby harming the proxy objective Zz ; Tijvi
and (more importantly) realized learning value V;(S;).

Two implementation constraints matter. First, we typically cannot con-
dition d; on private g;, but we can condition on public or auditable corre-
lates: account age, stake history, verified hardware attestation, jurisdictional
licensing, or coarse risk tiers. Second, heterogeneous deposits interact with
compatibility caps |S; N G| < 745. When caps bind, excluding even a small
set of identities within a scarce group (e.g., a regulated jurisdiction) can
force the mechanism to substitute into low-v; or high-cost workers outside
that group, magnifying the allocative cost of enforcement. This suggests a
practically useful design rule: if caps are tight in some Gy for key requesters,
deposit schedules should be group-aware, but in the opposite direction one
might first guess—i.e., avoid imposing the highest liquidity burdens on the
scarcest groups unless their risk is truly dominant.

A simple way to formalize this is to augment the platform’s objective with
an explicit participation (or dropout) function m;(d;) € [0, 1], decreasing in
d;, and treat the induced expected feasibility set as stochastic. Even without
fully solving the resulting optimization, the comparative statics are clear:
when 7; is steep (high liquidity sensitivity), audit improvements that raise
0 are first-best relative to raising d;, because they reduce required deposits
without reducing participation.

9.2 Endogenous audit targeting without breaking incentives

Uniform auditing is similarly coarse. Audits are costly (C,) and attention-
limited, so it is tempting to target audits toward “riskier” winners. The chal-
lenge is incentive compatibility: if audit probability depends on a worker’s
bid b; or on allocation-relevant reports in a way that changes expected utility
from misreporting costs, we may inadvertently undermine DSIC properties
of M().

One robust guideline is to restrict targeting to signals that are (i) ex-
ogenous to the bid and (ii) not manipulable by the worker at the time of
bidding. Examples include provenance class, device attestation status, his-
torical dispute rate, or a coarse risk score computed from past audits (with
appropriate safeguards against strategic manipulation). Let ¢; denote an
identity-specific audit probability chosen after allocation. Then deterrence

30

becomes

Gi

i’

where §; may also vary with observability (e.g., some devices support richer
attestations). This formulation highlights a useful substitution: targeting
can raise ¢; for high-risk identities while keeping average audit load) ;. ¢
(and thus expected cost) fixed.

Targeting also interacts with sybil incentives. If the platform’s target-
ing rule is monotone in features that sybils can cheaply imitate, then the
main effect may be to increase the attacker’s audit exposure without reduc-
ing their selection probability, which is desirable. But if the targeting rule
inadvertently lowers audits on “fresh” accounts (e.g., to encourage onboard-
ing), it can create an obvious sybil channel. Our model therefore suggests a
policy-level constraint: onboarding subsidies, if any, should be implemented
via payments or reduced deposits for verified low-risk classes, not via reduced
audit probability.

d; >

9.3 Repeated interaction, reputation, and dynamic deter-
rence

The one-shot model treats malicious benefit g; as immediate and ignores
future consequences beyond deposit forfeiture. Many FL procurement set-
tings are repeated: workers participate in multiple rounds, and requesters
(or platforms) maintain reputational histories. Repetition can strengthen
deterrence substantially, potentially allowing smaller deposits.

A parsimonious extension is an infinite-horizon model where an identity
that is detected malicious is banned (or suffers a reputation drop that reduces
future selection probability or payments). Let R; denote the present value of
expected future surplus from continued participation when honest. Then the
expected loss from being caught includes not only d; but also the continuation
loss R;. The deterrence constraint becomes

(1-9d)gi < ¢6(di +R;) +K(1),

which immediately implies that even modest deposits can deter sizable g;
when R; is large (i.e., when the identity has valuable future rents). This
dynamic perspective also clarifies why sybils are challenging: newly created
identities have low R;, so deposits and audits must shoulder more of the
burden early in the lifecycle. Operationally, this motivates “stake-building”
regimes in which d; (or ¢;) is higher for low-history accounts and decreases
as verifiable honest participation accumulates.

Repeated interaction also raises an important limitation: collusive at-
tackers may coordinate across rounds, sacrificing some identities (burner
sybils) to learn audit thresholds and preserve others. This pushes the design
toward randomized audits and rotating challenge tasks, consistent with our

31

interpretation of § as an effective detection probability induced by a family
of audit protocols rather than a fixed test.

9.4 Partial verification, false positives, and multi-dimensional
misbehavior

We have treated ¢ as a reduced-form probability of detecting malicious be-
havior conditional on audit, and we have abstracted from false positives. This
is analytically convenient but operationally incomplete. In FL, many “au-
dits” are statistical and noisy: they can have nontrivial false-negative rates
for sophisticated poisoning and nontrivial false-positive rates for benign but
heterogeneous data (which can look anomalous).

A more realistic variant distinguishes attack types t € T, each with
benefit ¢;(t) and detection 6(¢). The relevant constraint for a worst-case
bounded adversary becomes

d; > gi (t)

= er qo(t)

This immediately highlights why “robust aggregation alone” is not a sub-
stitute for enforcement: if some attacks have very low 40(¢) under secure
aggregation, deposits must rise sharply unless we can change the audit tech-
nology (increase d(t)) or the audit frequency g. Conversely, if §(¢) is high
for the attacks that matter most for damage D;(t), then enforcement can be
targeted to those classes without over-penalizing benign outliers.

Introducing false positives a changes incentives for honest workers: ex-
pected utility from participation is reduced by the chance of erroneous forfei-
ture or costly disputes. In a refined model, one would either (i) make forfei-
ture contingent on a higher standard of proof (reducing § but also reducing
«), (ii) allow an appeals process (adding cost and delay), or (iii) replace strict
forfeiture with a graduated penalty. The main design takeaway is that ¢ and
« should be treated jointly: raising d by lowering thresholds can backfire if
« induces honest dropout, especially in capped groups where participation
is scarce.

9.5 Budget feasibility with audit financing and forfeiture re-
cycling

Our baseline accounting treats audit expenditures as an add-on cost that
must fit within requester budgets net of some financing rule. In practice,
platforms will also observe deposit inflows and forfeitures. A tempting pol-
icy is to “recycle” expected forfeitures to finance audits, reducing requester
fees ¢;. However, because deterrence aims to make attacks unprofitable,
equilibrium forfeitures may be rare; relying on them for financing can there-
fore be fragile.

32

A conservative approach is to require ex ante budget feasibility without
counting on forfeitures, treating forfeitures as windfall that can fund public
goods (e.g., improved auditing) or be rebated in a way that does not distort
incentives. If rebates depend on bids or allocations, they can again inter-
fere with DSIC; if they are lump-sum (e.g., periodic fee reductions for all
requesters), they are safer.

9.6 Limitations and scope conditions

Several assumptions delimit what our mechanism guarantees. First, the
sybil-proofness statement is bounded: we require g; < g for the relevant
adversary class. If an attacker’s benefit is unbounded (e.g., catastrophic
sabotage value), no finite deposit is sufficient, and the design must shift
toward strong identity, strict access control, or high-assurance verification
that raises § near one. Second, we treat deposits as frictionless aside from
liquidity; in reality, deposits may be legally constrained, operationally costly
to escrow, or infeasible for some worker populations, raising equity and access
concerns. Third, we have not modeled strategic requesters or cross-requester
externalities in detail; a requester may benefit from sabotaging another’s
model, which would shift incentives and potentially justify different audit
financing rules.

Finally, our analysis takes My’s DSIC and feasibility properties as prim-
itives. While the integrity overlay is designed to be separable, some ex-
tensions—especially audit targeting based on endogenous signals—can in-
advertently reintroduce incentive concerns. For deployment, the practical
discipline is to keep enforcement rules as bid-independent as possible and to
document any remaining dependencies explicitly.

These extensions clarify the broader message: deposits and audits are
not a substitute for careful mechanism design, but they are a tractable and
modular way to harden an otherwise standard budget-feasible procurement
pipeline. In the conclusion, we distill this into a deployable recipe—what to
measure, what to set, and how to iterate when observability, liquidity, and
threat severity change.

10 Conclusion: a deployable recipe for hardening
budget-feasible FL procurement

We can now state the main practical implication of the model in opera-
tional terms. A budget-feasible FL procurement mechanism can be hardened
against a broad class of modern threats by treating integrity as a modular
enforcement layer—implemented with deposits and audits—that sits on top
of a standard DSIC, feasibility-respecting procurement rule. The base mech-
anism My = (X, P) continues to do what it is designed to do: elicit costs,

33

satisfy budgets and compatibility caps, and approximately maximize a trans-
parent proxy objective (e.g., Z” xi;v;). The integrity layer (q,d,d) does
something conceptually orthogonal: it prices the post-selection deviation
(poisoning, noncompliance, data exfiltration) by ensuring that the expected
marginal gain from misbehavior is negative for any bounded adversary.

A key virtue of this separation is governance: it lets platforms improve
security posture without repeatedly rewriting the economic mechanism. In
particular, provided auditing and deposit rules are kept bid-independent
(or depend only on non-manipulable signals), the DSIC logic of Mj is pre-
served for honest participants. The hard part becomes calibration: choosing
enforcement parameters that deter attacks while preserving participation,
respecting requester budgets, and operating under partial observability.

We therefore close with a deployable recipe—a sequence of design steps
that map naturally to quantities the platform can estimate, commit to, and
iteratively refine.

Step 1: Define the adversary class and a defensible bound g. The
deterrence logic is only as meaningful as the bound on malicious upside.
In many FL deployments, the relevant one-shot benefit g; is not literally
“profit from poisoning” but the value of (i) degrading a competitor’s model,
(i) extracting sensitive information, or (iii) causing reputational harm. A
platform does not need to identify each g;, but it must commit to a threat
model that implies a policy-level bound g for the class of identities to be
deterred by economic enforcement. This is where organizational practice
enters: g can be task-class specific (e.g., higher for high-stakes domains),
jurisdiction-specific, or aligned with a compliance standard. The model’s
warning is crisp: if catastrophic sabotage yields effectively unbounded g;,
then deposits cannot be the primary defense; one must instead raise § via
stronger verification and access control.

Step 2: Choose an audit protocol and treat § as an engineering
KPI. In the mechanism, § is a reduced-form detection probability condi-
tional on audit. Operationally, J is shaped by tooling: update validation,
challenge tasks, secure enclaves/attestation, statistical backdoor tests, ca-
nary data, and forensics. The most important design discipline is to convert
security investments into an explicit “effective detectability” target. In our
framework, raising ¢ is economically powerful because it reduces the deposit
needed for deterrence without excluding liquidity-constrained honest work-
ers. This suggests an implementable prioritization rule: if participation is
scarce or compatibility caps are tight in critical groups Gy, investments that
increase § are typically less distortive than increases in d.

34

Step 3: Set the deterrence parameters via a transparent inequality.
Given an audit probability g € (0,1] and effective detection 6 € (0,1], a
uniform deposit d that ensures strict unprofitability for any identity with
gi<gis ~
9
d > =.
= 0
This is the simplest “knob-turning” rule that can be communicated to stake-
holders and audited externally. If the platform uses heterogeneous enforce-
ment (by task class or identity tier), the same logic applies with class-specific
bounds and audit rates:
Ik

dip >
g a0k

for each risk tier k.

We emphasize what the inequality means for deployment: lowering deposits
without compensating increases in ¢d is not merely “taking some risk”; it
reintroduces positive expected attack rents, which in turn invites sybils and
repeated attempts. Conversely, if a platform is willing to impose large de-
posits, it can economize on audits; but this shifts cost from requester budgets
to worker liquidity and may violate inclusion objectives.

Step 4: Make audit financing budget-feasible ex ante. Audits cost
real resources C,. The implementable constraint is that requester budgets
Bj; must cover expected procurement payments plus expected audit costs
under the chosen policy, without relying on forfeitures. A simple conservative
accounting is: when requester j receives k; winners, expected audits are gk,
so expected audit cost is Cypqk;. The platform can then (i) charge requesters
an explicit fee ¢; = Coqk;, or (ii) deduct an expected audit reserve from the
budget used by My. The important governance point is to avoid equilibria
that depend on “attack revenue” to fund enforcement. If deterrence works,
forfeitures are rare; robust systems treat forfeitures as windfalls that can
be used for security upgrades or neutral rebates that do not feed back into
allocation incentives.

Step 5: Keep the integrity layer strategically “orthogonal” to bid-
ding. The easiest way to preserve DSIC properties of My is to commit that
q, 9, and d depend only on bid-independent information: task class, verified
device capabilities, provenance tiers, or history-based reputation that cannot
be cheaply manipulated at bid time. If audit probability is made a function
of b; (or other allocation-relevant reports), then a worker’s expected util-
ity changes with misreports in a way that can break the base mechanism’s
incentive properties. When targeting is essential, the safe compromise is:
compute a risk tier before bids are submitted or using strictly exogenous
signals, then run My within the induced eligible set.

35

Step 6: Integrate sybil resistance through per-identity economics
and lifecycle policy. Because deposits are posted per identity, the de-
terrence condition scales to an arbitrary number of accounts: if each iden-
tity faces negative expected profit from attacking, creating more identities
does not help. However, platforms must enforce that deposits are genuinely
identity-binding (e.g., cannot be trivially laundered or insured) and must
decide how quickly new identities can “graduate”’ to lower-friction tiers. A
practical lifecycle regime is: higher ¢ and/or d for low-history accounts, with
reductions contingent on verifiable honest participation. This is not merely
punitive; it is the economic substitute for the continuation value R; that
established identities naturally have in repeated settings.

Step 7: Monitor the welfare gap and iterate on the right margin.
Relative to the base [-approximation, the integrity layer introduces two
mechanical wedges: audit cost (scaling with C, and audit frequency) and
residual undetected risk (scaling with 1 — ¢d). These wedges are policy
levers. If operational metrics show high honest dropout, the correct response
is usually to improve ¢ (better audits) or adjust tiering, not simply to reduce
d while keeping ¢¢ fixed. If audits are too expensive, one can lower ¢ only if
deposits rise accordingly or if the bound g can be justified as lower for the
relevant class. The model thus yields a disciplined “change management”
rule: any reduction in one enforcement dimension must be compensated by
an improvement in another, or by a credible tightening of the threat bound.

Step 8: Document scope conditions and failure modes. Finally, de-
ployment requires explicit statements of what the mechanism does not guar-
antee. Deposits and random audits deter bounded, myopic deviations; they
are not a substitute for secure engineering against unbounded adversaries,
nor do they by themselves resolve false-positive disputes, collusion, or so-
phisticated attacks that drive § close to zero. Likewise, deposit requirements
raise equity and access concerns; if liquidity constraints bind, the platform
may need subsidized credit, insurance products, or alternative enforcement
(higher 0 via verification) to avoid excluding valuable participants, especially
within constrained compatibility groups.

Putting these steps together, the implementation philosophy is straight-
forward: commit to a base procurement mechanism with clear incentive and
feasibility guarantees, then choose an integrity overlay that (i) makes post-
selection misbehavior strictly unprofitable up to a stated bound, (ii) fits
within budgets without relying on misbehavior for funding, and (iii) remains
as bid-independent as possible. In this sense, the model illuminates a trade-
off that practitioners already manage informally: when observability is weak
(6 low) and audits are expensive (C, high), integrity must be purchased with
either higher deposits (liquidity burden) or stricter access controls (reduced

36

participation). Making that tradeoff explicit is the core contribution of the
framework, and the reason a ‘“recipe” can be credibly deployed rather than
merely discussed.

37

	1. Introduction: why DSIC+budget feasibility is insufficient in open FL markets; threat model (sybil + poisoning) and compatibility constraints; overview of deposit-audit design.
	Related work.
	Model and primitives.
	Mechanism: Robust-CARE wrapper.
	Theory I: Incentives and deterrence.
	DSIC preservation for cost reporting (honest identities).
	Post-selection deterrence: when does poisoning become unprofitable?
	Sybil-proofness from per-identity collateral.

	Theory II: efficiency and budgets.
	Financing audits while preserving budget feasibility
	Quality approximation: what is lost relative to the base rule?
	Accounting for false negatives: residual damage when deterrence is imperfect
	Putting it together: a welfare-style bound

	Design choices and comparative statics in (q,,d)
	Audit probability versus deposit size: a simple deterrence frontier
	Why ``more deposit, less audit'' is not always optimal
	A stylized optimization: picking q given a deposit friction
	Detection technology : attestations as ``deposit multipliers''
	When do we need numerical optimization?

	Empirical plan: poisoning and sybil simulations under compatibility constraints
	Simulation environment: multi-requester procurement with group caps
	Threat models: poisoning, sybils, and collusion
	Auditing under limited observability: proxies for with secure aggregation
	Metrics: accuracy, value/reputation, spend, and integrity
	Experimental design: parameter sweeps and stress tests

	Discussion and extensions: heterogeneity, targeting, dynamics, and partial verification
	Heterogeneous deposits and liquidity constraints
	Endogenous audit targeting without breaking incentives
	Repeated interaction, reputation, and dynamic deterrence
	Partial verification, false positives, and multi-dimensional misbehavior
	Budget feasibility with audit financing and forfeiture recycling
	Limitations and scope conditions

	Conclusion: a deployable recipe for hardening budget-feasible FL procurement

