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Abstract

In modern federated learning (FL) deployments, worker “quality”
is not a static reputation but an endogenous property of the learn-
ing dynamics under heterogeneous (non-IID) data. Existing budget-
feasible FL procurement mechanisms—e.g., compatibility-aware mech-
anisms that handle multiple budgeted requesters and incompatible
workers—optimize exogenous reputation proxies and therefore misprice
contribution when drift and representation collapse dominate perfor-
mance. We propose DriftPay, a compatibility-aware reverse-auction
mechanism that replaces reputation with an algorithm-aware, MOON-
style representation-drift score computed on a fixed probe set using the
announced training rule. This score is bid-independent, stable under
secure aggregation noise, and predictive of generalization in heteroge-
neous regimes. Building on CARE’s critical-price and max-flow alloca-
tion machinery, DriftPay selects workers to maximize total drift-score
subject to per-requester budgets and compatibility caps, pays thresh-
old prices, and guarantees ex post IR, DSIC, budget feasibility, and
constant-factor approximation to an oracle that knows workers’ true
costs and drift-scores. We further prove robustness: estimation noise
in drift-scores induces only bounded welfare loss. Empirically (to be
developed), DriftPay improves accuracy-per-dollar and reduces vulner-
ability to gaming relative to reputation-based baselines in multi-tenant
FL.
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1 1. Introduction: multi-tenant FL procurement in
2026; why exogenous reputation fails; preview of
DriftPay and guarantees.

By 2026, federated learning (FL) has largely moved from a single “model
owner + voluntary clients” paradigm to a multi-tenant procurement set-
ting. In a typical deployment, a platform intermediates between multiple
requesters (model owners) who want to train comparable models and a pop-
ulation of heterogeneous workers (clients) who can supply local compute and
data. The practical constraint is no longer merely participation, but *bud-
geted selection™®: requesters must decide whom to pay, under hard spend-
ing limits and operational constraints (compliance, fairness, or risk controls)
that cap how many participants can be drawn from particular regions, device
types, institutions, or other categories. This shift makes the economics of
FL look less like a cooperative protocol and more like a market for (privacy-
preserving) learning contributions.

A first instinct in such markets is to import familiar tools: reputation
systems, historical win-rates, or coarse quality tiers. Yet in FL these “ex-
ogenous reputation” proxies systematically misfire. The reason is not only
strategic (workers can game reputational signals) but also statistical and
algorithmic. When data are non-IID, the marginal value of a worker is
highly state-dependent: it varies with the current global parameters, with
the training algorithm’s inductive biases, and with the particular mixture
of other selected workers. A client that was “high quality” last month, or
under a different objective, may produce an update that is redundant, mis-
aligned, or even harmful under today’s representation-learning dynamics. In
other words, reputation is typically *time-invariant* and *task-agnostic™*,
while FL contributions are *round-dependent® and *algorithm-aware*. This
wedge becomes especially salient in modern contrastive and representation-
alignment methods (e.g., MOON-family objectives), where the relevant ques-
tion is not whether an update is large, but whether it *moves representations
in a direction that generalizes* for the requester.

We therefore start from an operational premise: the platform should
score potential workers using an announced, bid-independent rule that is
aligned with the learning objective, and then run a procurement mecha-
nism on top of those scores. Concretely, before bids are considered, the
platform computes for each worker a *representation drift-score* on a fixed
probe dataset. Intuitively, this score measures whether the worker’s stan-
dardized local update produces a representation consistent with the current
global representation on inputs that all parties agree are relevant for evalu-
ation. The probe set can be public, requester-provided, or constructed from
a permissible reference distribution; what matters for incentives is that it
is fixed ex ante and that the scoring rule is committed to in advance. This



design choice is more than an ML detail: it is the key that keeps private
information one-dimensional (the cost), thereby enabling dominant-strategy
incentive compatibility in a reverse auction environment.

The procurement problem we address is thus: given costs privately known
to workers, publicly known budgets on the requester side, and group-based
compatibility caps, how should the platform assign workers to requesters
and set payments so that (i) workers truthfully reveal costs, (ii) payments
respect budgets, and (iii) the resulting assignment achieves high total drift-
score? The presence of compatibility constraints is not cosmetic. In multi-
tenant FL, requesters often cannot absorb arbitrary concentrations of clients
from a single group (e.g., one hospital network, one jurisdiction, one device
manufacturer) because of governance rules, risk concerns, or simply to hedge
correlation in data sources. These caps create complementarities and “pack-
ing” effects: the best worker by score-per-dollar may be infeasible to use if
the relevant group quota is already saturated for a given requester. Any
practical mechanism must therefore optimize subject to these caps rather
than treat the selection as a simple knapsack.

Standard mechanism design benchmarks do not directly resolve this.
VCG-style mechanisms are neither budget-feasible nor computationally con-
venient in the large-scale, constrained setting that FL platforms face. Con-
versely, ad hoc heuristics that “pay top-k” workers or that greedily assign
by reputation typically lack incentive guarantees: small changes in bids can
create discontinuous jumps in allocation, and payments may exceed bud-
gets or fail individual rationality when constraints bind. Our approach is to
adapt the budget-feasible reverse auction template to an FL-native notion of
value—drift-score—while explicitly accommodating group/requester caps.

We call the resulting mechanism DriftPay (and, in its compatibility-
constrained pooled-budget instantiation, DriftPay-CO). At a high level, Drift-
Pay proceeds in three conceptual steps. First, it ranks workers by a cost-
effectiveness ratio, “bid per unit drift-score,” thereby formalizing the plat-
form’s preference for low-cost, high-alignment contributors. Second, it iden-
tifies a maximal affordable prefix of this ranking under the available budget.
Third, it computes a feasible assignment of that prefix to requesters sub-
ject to the compatibility caps and the rule that each worker can be assigned
at most once. The assignment step is not left as an oracle: with additive
drift-scores and cap constraints, it admits a polynomial-time reduction to a
max-flow problem. This is important for practice, because it yields an im-
plementable mechanism that scales with the market size rather than relying
on exponential search or brittle local heuristics.

Payments follow the familiar “threshold” logic that underpins truthful
procurement: each selected worker is paid a critical amount that depends
on the first excluded worker (or on the binding budget constraint), not on
the worker’s own bid. This structure is what makes bidding truthfully a
dominant strategy: if a worker raises her bid, she can only hurt her chances



of being selected; if she lowers it, she risks being selected at a payment
that no longer covers her true cost. At the same time, by calibrating the
threshold using the affordable prefix, DriftPay maintains budget feasibility
by construction: total payments cannot exceed the budget available to the
platform (either a pooled budget B or requester-level budgets B;, depending
on the variant). Ex post individual rationality follows because any selected
worker is paid at least her reported bid, and truthful bidding implies payment
covers true cost.

A central practical concern is measurement error in contribution signals.
Drift-scores are computed from finite probe data, possibly with noise from
stochastic evaluation, quantization, or secure aggregation constraints. We
therefore also analyze a robust variant in which the platform observes o;
satisfying a multiplicative error bound relative to the true drift-score. The
key observation is that incentive compatibility is preserved so long as the
score remains bid-independent: noisy scoring may degrade welfare, but it
does not reintroduce a direct channel by which workers manipulate alloca-
tion through bids. Our welfare guarantees degrade gracefully with the noise
level, providing a transparent tradeoff between scoring fidelity and economic
efficiency.

Our contributions are therefore conceptual, methodological, and practi-
cal. Conceptually, we argue that the right “currency” for FL procurement is
not generic reputation but an algorithm-aware, state-dependent contribution
proxy that can be computed prior to bidding. Methodologically, we combine
budget-feasible reverse auction design with a compatibility-constrained as-
signment subroutine that is polynomial-time via flow, thereby extending the
range of constrained FL markets that admit strong incentive guarantees.
Practically, the mechanism is implementable on modern FL platforms: it
requires only a committed scoring rule, a fixed probe set, and standard opti-
mization tooling for max-flow—mno bespoke cryptography or heavy iterative
equilibrium computation.

We also acknowledge limitations. Drift-score is not a universal mea-
sure of social value: it is tailored to a class of representation-alignment ob-
jectives and depends on the choice of probe set Dgy. If Dg poorly reflects
the requester’s evaluation distribution, the score can mis-rank workers, and
no mechanism can recover the correct ordering without better information.
Similarly, compatibility caps capture an important class of governance con-
straints, but not all externalities (e.g., privacy leakage risks or correlated fail-
ures) are reducible to group quotas. We view these as design inputs rather
than bugs: the mechanism clarifies what must be specified—and audited—so
that incentives and learning objectives align. In this sense, the model illu-
minates a tradeoff that practitioners already face: to run FL as a market,
one must jointly choose (i) a contribution signal that is hard to game and
(ii) an allocation/payment rule that respects budgets and constraints while
remaining computationally viable.



The remainder of the paper situates DriftPay relative to prior work in
budget-feasible mechanism design and FL incentives, formalizes the model
and mechanism, and establishes truthfulness, feasibility, and approximation
guarantees under both exact and noisy scoring.

2 2. Related Work: budget-feasible mechanism de-
sign; FL incentives (reverse auctions); incompati-
bility /compatibility constraints; MOON and rep-
resentation drift; contribution measurement.

A large literature in mechanism design studies procurement under hard bud-
get constraints, where a buyer seeks to purchase a subset of items (here,
worker participations) subject to a spending cap. Classical truthful mech-
anisms such as VCG are generally incompatible with exogenous budgets:
when payments are pinned to externalities, total transfers can exceed the
available budget even if the chosen allocation itself is “affordable” in terms
of reported costs. This tension motivated the budget-feasible mechanism
design agenda, initiated in the context of crowdsourcing and experimental
design and developed for a range of valuation classes, including additive, sub-
modular, and knapsack-like objectives. Our work builds on this line in the
specific regime where the platform’s value is additive in per-worker quality
signals (drift-scores), but feasibility is constrained by assignment structure
rather than a single knapsack.

Within budget-feasible procurement, a particularly influential template is
the family of ratio-based, threshold-payment mechanisms that (i) sort agents
by a cost-effectiveness ratio and (ii) select a maximal affordable prefix, with
payments determined by a critical ratio rather than by each agent’s own
report. Variants of this idea appear across problems with additive weights,
sometimes described as “proportional share” or “critical bid” mechanisms,
and have been sharpened into constant-factor approximation guarantees for
welfare subject to budget feasibility and dominant-strategy incentive com-
patibility (DSIC). In our setting, the ratio takes the form b;/v;, which is
economically natural: we are purchasing “units of algorithm-aligned con-
tribution” rather than raw participation. The technical novelty is not the
existence of a threshold rule per se, but that the allocation step must respect
additional compatibility constraints and multi-requester assignment, which
complicates the usual monotonicity and feasibility arguments.

A second relevant thread concerns budget-feasible mechanisms under
combinatorial feasibility constraints (e.g., matroids, matchings, and their
intersections). Compatibility constraints in procurement can be understood
as restricting feasible sets beyond a simple cardinality bound, thereby intro-
ducing packing structure that is closer to bipartite b-matching or matroid



intersection than to knapsack. Prior work has shown that if the feasibil-
ity system is downward-closed and admits polynomial-time optimization (or
approximation) under weights, then one can often wrap it with a truth-
ful, budget-feasible outer mechanism using critical thresholds. However, the
constants and computational primitives depend sensitively on the constraint
family. Our constraints are operationally motivated—caps by group and re-
quester—and they admit an exact polynomial-time optimization primitive
via a max-flow reduction. This places the problem in a tractable corner of
constrained procurement: we can separate (a) the economic wrapper that
enforces truthfulness and budgets from (b) the combinatorial subroutine that
enforces compatibility.

A related empirical and policy literature motivates why such compatibil-
ity constraints arise in practice. In real deployments, “group caps” reflect gov-
ernance (jurisdictions, business units), compliance (cross-border data han-
dling), risk management (correlated failures), and fairness or representative-
ness objectives (preventing over-concentration on a single subpopulation).
In online labor markets and ad auctions, similar constraints appear as quota
controls, diversity constraints, or category caps; in public procurement they
appear as vendor concentration limits. The common lesson is that ignoring
these constraints at the mechanism level typically yields infeasible recom-
mendations, and retrofitting feasibility via ad hoc post-processing tends to
destroy incentive guarantees. Hence, the mechanism should internalize these
caps in its allocation rule rather than treating them as an afterthought.

On the federated learning (FL) side, there is a fast-growing literature on
incentives and participant selection. Early systems work focused on device
availability and communication constraints (e.g., selecting clients to meet
latency targets), largely treating clients as non-strategic. More recent work
recognizes that participation is costly—compute, energy, opportunity cost,
privacy risk—and models clients as strategic agents who require compen-
sation. Proposed approaches include contracts, posted pricing, reputation
schemes, and auctions. Reverse auctions are particularly natural when the
platform is the buyer of compute/data contributions and clients are sell-
ers: clients submit bids b;, the platform selects a subset, and payments are
set to induce truthful reporting. Many FL auction designs, however, either
(i) use quality proxies tied to bids (undermining DSIC), (ii) neglect hard
budgets (leading to overspending), or (iii) treat selection as a simple top-k
rule (which fails under multi-tenant and constraint-rich environments). Our
contribution is to connect the reverse-auction viewpoint to budget-feasible
truthfulness guarantees, while using an FL-native quality signal.

A central obstacle is that “value” in FL is not directly observed at selec-
tion time. Unlike buying a commodity, the platform cannot a priori verify
how helpful a client’s update will be without running training, and even ex
post evaluation is confounded by interaction effects among clients. This has
led to an extensive literature on contribution measurement. Proposed met-



rics include loss decrease on a validation set, gradient norms, update similar-
ity to the global gradient, influence-function approximations, and Shapley-
value-inspired allocations. These methods highlight a key tradeoff: metrics
that are more faithful to downstream generalization tend to be more expen-
sive, noisier, and sometimes manipulable; metrics that are cheap and stable
tend to be weakly connected to true learning value, especially under non-I1ID
data. From a mechanism design perspective, the crucial property is not only
predictive validity but also incentive compatibility: if the “quality” signal is
itself a function of the bid or is easily manipulated after observing the mech-
anism, then cost truthfulness can fail even if payments are threshold-based.

Our approach is most closely related to “algorithm-aware” scoring rules
that evaluate a standardized update relative to the current model state. In
representation learning and contrastive objectives, the geometry of updates
matters: two clients may have similar loss reductions but move representa-
tions in different directions, with different implications for transfer and gener-
alization. This motivates scoring based on representation alignment, such as
cosine similarity between embeddings, distance in a projected representation
space, or regularizers that penalize divergence from a reference representa-
tion. The MOON family of methods formalizes this idea by encouraging
local representations to stay close to global representations (and/or past lo-
cal representations) through contrastive alignment losses. While MOON is
typically presented as an optimization device, it implicitly defines a mea-
surable notion of “representation drift” that can be estimated on a probe
distribution. Our drift-score can be viewed as extracting this notion as an
explicit currency for procurement: rather than paying for participation or for
raw loss decrease, we pay for alignment with the algorithm’s representational
objective.

There is also an adjacent literature on drift detection and client selection
in FL that uses public data, proxy tasks, or lightweight evaluation rounds
to decide which clients to include. These methods often aim to stabilize
training (e.g., exclude outlier updates) or to improve robustness (e.g., filter
potentially poisoned or low-quality clients). Conceptually, we share with
this literature the idea that a small reference dataset Dy can be used to
evaluate updates in a way that is comparable across clients. Economically,
we differ in that we treat client cost as private information and explicitly
design payments and allocations to satisfy DSIC, individual rationality, and
budget feasibility. In particular, “filtering” rules alone do not specify how
to pay selected clients, and naive payment rules can reintroduce incentives
to misreport costs or to strategically alter behavior around the evaluation
protocol.

Finally, privacy and observability constraints interact tightly with con-
tribution measurement. Secure aggregation, differential privacy, and system-
level constraints may limit what the platform can observe about local up-
dates, making rich ex post evaluation infeasible. Conversely, any scoring



protocol that requires extensive per-client inspection may be unacceptable
in regulated settings. This motivates a minimal, ex ante committed scoring
interface: clients submit a standardized object (e.g., an update under a fixed
local routine), the platform evaluates it on a fixed probe set (potentially
within a privacy-preserving pipeline), and the resulting scalar score is used
for procurement. This design keeps the strategic interface one-dimensional
in costs while allowing the scoring rule to remain aligned with the learning
objective.

These literatures jointly motivate our modeling choices in the next sec-
tion. We formalize the multi-requester procurement environment, the com-
patibility structure, and—critically—the MOON-style drift scoring protocol
on a probe set, clarifying what is observable to the platform under realistic
privacy and secure aggregation constraints.

3 System and Scoring Model

We study a procurement layer that sits “above” a standard federated learning
training loop. The platform’s role is to decide which clients participate and
how much they are paid, subject to hard spending limits and operational
compatibility restrictions. The key modeling move is to separate (i) a bid-
independent measurement of each worker’s algorithm-aligned contribution
from (ii) a strategic cost report that the mechanism must elicit truthfully.
This keeps the strategic type one-dimensional (cost) while allowing the plat-
form’s objective to reflect learning-relevant quality.

Agents, tasks, and budgets. There is a set of workers (clients) S with
|S| = n, indexed by i. Each worker incurs a true private participation cost
¢; > 0 that captures compute/energy, opportunity cost, and any disutility
from engaging in the protocol. Workers submit bids b; as cost reports. There
is a set of requesters (model owners) A, |A| = m, indexed by j. Requester
J brings a budget B;. Depending on the institutional setting, budgets can
be separate (each requester pays its own assigned workers) or pooled (a joint
budget B := } ;.4 B; funds the full allocation). The platform chooses
an assignment x = {x;;}, where x;; € {0,1} indicates whether worker 7 is
assigned to requester j. We impose one-assignment, » jeaTij < 1, reflecting
that a client’s local update is typically tied to a single training task per round.

We model the platform’s “value” from assigning worker ¢ as an observable
score v; > 0 (defined below). In the baseline additive case, requester j’s gross
benefit from its assigned set S; = {i : x;; = 1} is F((S;) = Ziesj v;, SO total
platform value is ZjeA > ics Tijvi. This additive structure is a tractable
proxy: it matches the operational reality that selection must be made before
rich interaction effects are observed, while still allowing the objective to
reflect algorithmic alignment rather than raw participation. A limitation is



that real learning dynamics can be non-additive (substitutes/complements
across clients); we return to this when discussing benchmarks and failure
modes.

Compatibility groups and caps. To represent governance and opera-
tional constraints, we partition workers into L groups G = {Gi,...,Gr}
(e.g., jurisdiction, device class, enterprise unit, risk domain). Compatibility
constraints limit how many workers from a given group can be assigned to
a given requester. Formally, for each requester j and group [, we have a cap
Ti; € Z>o and require

Zl‘ijSle \V/jGA, VZE[L}

1€G)
These caps generalize familiar “quota” controls: they can encode compliance
(e.g., cross-border processing limits), diversification (avoid over-reliance on
a single population), or correlated-failure management (limit exposure to a
shared vulnerability). Economically, these constraints are not mere post-
processing: because they restrict the feasible set of allocations, they shape
the marginal value of including a worker and therefore must be internalized
by the allocation rule if we want incentive and budget guarantees to survive.

Scoring interface: MOON-style drift on a probe set. Selection is
driven by an algorithm-aware score computed from a fixed probe/validation
dataset Do and an announced scoring rule. Let w! denote the global model
at round ¢, and let R,,(-) be the representation mapping induced by w (e.g.,
an encoder or a projection head). For scoring, each worker produces a stan-
dardized local update (or local model) using a protocol fixed by the plat-
form—e.g., a prescribed number of local steps, optimizer, and (optionally)
regularization strength. Denote the resulting local model by w!. The plat-
form then evaluates how much the worker’s update “drifts” in representation
space relative to the global model on the probe distribution. Concretely, we
can define a drift-score v; as either a similarity or a negative distance, for
instance

V; = ExNDO [Sim(wa (.73), R, (SU))] or v; = _EzwDo [Hwa (x)_th (l‘)H?]’

with the convention that higher v; is more desirable. This is “MOON-style”
in the sense that it operationalizes the representation alignment objective
that MOON-family methods impose during training, but uses it as an ex
ante scalar currency for procurement. We assume boundedness 0 < vy <
v; < Umax, Which can be enforced by score normalization or clipping. The
boundedness assumption is not purely technical: it reflects that extreme
scores are often artifacts of unstable evaluation, adversarial updates, or out-
of-distribution probe points, all of which a deployed system would want to
dampen.

10



Two aspects of this interface matter for incentives. First, the platform
commits to the scoring rule g and the probe set Dy (or at least to an auditable
hashing of Dy) before bids are submitted. Second, v; is computed from the
standardized update and (w!, Dy), and does not depend on b;. This bid-
independence is what allows us to treat ¢; as the sole strategic dimension in
the reverse auction: the mechanism can sort and threshold on b; /v; without
opening a direct channel for quality manipulation via bid shading. Of course,
workers may still try to manipulate the update itself; we interpret the scoring
protocol as part of the platform’s technical enforcement (and we discuss
manipulation channels explicitly in the next section).

Observability, privacy, and secure aggregation. The scoring design
is constrained by what the platform can observe in realistic FL deployments.
In many systems, raw local data are never revealed, and even local updates
may be hidden behind secure aggregation, trusted execution environments,
or differential privacy. Our model accommodates these constraints by treat-
ing v; as the only worker-specific statistic that must become visible to the
platform for selection and payment, while the underlying update can remain
encrypted or ephemeral. One implementation is: each worker computes the
standardized update locally; an enclave (or secure scoring service) evaluates
g on Dy and returns a signed scalar v;; the platform uses {v;} and bids {b;}
to run the mechanism. This is attractive from a policy standpoint because it
minimizes exposure: the platform need not inspect gradients, intermediate
activations, or client data, and requesters need not learn per-client model
deltas.

We nevertheless acknowledge two limitations. First, the existence of a
probe set Dy is a substantive assumption: it must be representative enough
that representation alignment on Dy correlates with downstream perfor-
mance, yet non-sensitive enough to be shared or securely handled. Second,
any scoring pipeline introduces measurement noise. We therefore allow the
platform to observe v; with multiplicative error |0; — v;| < nv;, capturing
stochastic evaluation, privacy noise, or approximate computation. Impor-
tantly, this noise is still assumed independent of bids.

Timing and strategic interface. A round proceeds as follows. The plat-
form first commits to Dy, the scoring rule g, and the procurement mecha-
nism M. Workers then (optionally) submit the standardized object needed
for scoring; the platform computes v; := g(i,w, Dy) (or ;). Next, workers
submit bids b;. Given (b,v) and public constraints (Bj,7;), the platform
chooses an allocation z(b,v) and payments p(b,v), with worker utility

u;(b; M) = pi(b,v) — (b, v) ¢4, x; = qu
jeEA
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Requesters are treated as non-strategic in the baseline: they post budgets
and accept the platform’s assignment so long as payments satisfy budget
feasibility. This abstraction isolates the core procurement problem—eliciting
private costs under budgets—while still capturing the multi-tenant structure
via (Bj, 7). Extensions with strategic requesters (e.g., budget misreporting
or competition across tasks) are conceptually important but orthogonal to
the DSIC-in-costs property we target here.

This system-and-scoring model sets up the central comparison we pursue
next: what fails if one uses cheap reputation proxies, accuracy-based scoring,
or post hoc feasibility fixes instead of an algorithm-aware, bid-independent
drift-score coupled with an allocation rule that internalizes compatibility and
budget constraints.

4 Baseline Benchmarks and Failure Modes

Before introducing our mechanism, we clarify what goes wrong with several
natural procurement baselines that appear in deployed federated learning
systems. The point is not that these heuristics are irrational—many are
attractive precisely because they are simple, auditable, and easy to commu-
nicate to stakeholders. Rather, the lesson is that once we simultaneously
require (i) hard budgets, (ii) compatibility caps, and (iii) strategic cost re-
porting, seemingly innocuous design choices can produce systematic ineffi-
ciency, instability, or incentive failures. These failure modes motivate why we
use an algorithm-aware drift-score as the mechanism’s currency and why we
insist that scoring be bid-independent and feasibility-aware during allocation
(not as an afterthought).

Benchmark 1: bid-only selection (“lowest cost wins”) and its blind
spots. A first baseline ignores learning relevance and simply selects the
cheapest feasible set of workers (e.g., lowest bids subject to compatibility
and a budget constraint). This is occasionally justified operationally when
the platform believes “any data help.” Under non-IID data, however, the
marginal contribution of a worker to global progress is highly heteroge-
neous. If we select on cost alone, we can exhaust the budget on workers
whose updates are redundant (e.g., many clients from the same distribution
mode) while excluding a small number of more expensive but crucially di-
verse clients. In practice, this often looks like over-sampling the majority
population because those clients are abundant and competitively priced.
Compatibility constraints exacerbate this. Suppose group caps 7;; are
binding for some groups (e.g., only a limited number of clients in a sensitive
jurisdiction can be used per requester). A bid-only policy will fill slack
groups with cheap clients even when the learning signal would be better
obtained by spending more to recruit scarce clients in a constrained group.

12



The mechanism designer’s problem is therefore not merely to minimize cost;
it is to buy value under compatibility and budget feasibility, which is exactly
what our drift-score formalizes.

Benchmark 2: reputation proxies and mismatch under non-IID.
A more sophisticated baseline weights selection by a reputation proxy r;:
historical participation count, past “accuracy contribution,” uptime, device
class, or a rolling average of prior validation performance. Operationally,
r; is appealing because it is easy to compute and seems to reward reliabil-
ity. A typical procurement rule then ranks workers by b;/r; (cost per unit
reputation) and selects greedily subject to feasibility.

The central problem is that under non-IID data, reputation is often a
poor predictor of current-round usefulness. Reputation is inherently backward-
looking: it aggregates performance under earlier global models w?', differ-
ent cohorts, and potentially different training hyperparameters. Yet the
marginal value of a worker’s update depends strongly on the current rep-
resentation space and which other workers are selected. Concretely, we can
have two workers with similar r; but very different alignment with the current
global model. In extreme cases, reputation is anti-correlated with contribu-
tion: a highly reliable client from an over-represented distribution mode can
look “good” historically while adding little incremental information in later
rounds, whereas a sporadic client from a minority mode can be pivotal pre-
cisely when it appears.

This mismatch worsens as heterogeneity increases. In the common Dirich-
let non-IID model, smaller concentration 5 induces higher dispersion in client
label distributions; empirically (and consistent with our comparative stat-
ics), dispersion in any algorithm-aligned utility signal increases as (8 de-
creases. A reputation proxy that does not track this dispersion effectively
collapses these differences, leading to systematic under-purchase of “rare but
valuable” clients. From a policy perspective, this is not just an efficiency
loss: it can embed a governance failure, because clients representing under-
served or regulated populations are precisely those that compatibility caps
and auditing regimes seek to manage explicitly. A reputation-only procure-
ment layer can therefore undermine compliance goals by pushing the system
toward whichever clients are easiest to recruit repeatedly.

Benchmark 3: accuracy-based scoring and why it is unstable as
a payment currency. Another tempting baseline is to score a worker by
some notion of accuracy improvement. For instance, one may define

s; := Acc(w!; Do) — Acc(w'; Dy),

or its loss analogue on a validation set, and then rank by b;/s;. This approach
sounds aligned with learning, but it is fragile for three reasons.
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First, accuracy (or loss) on a fixed probe set can be high-variance at the
per-client level, especially when local steps are few or when Dy is small due
to privacy and governance constraints. In that regime, s; can change sign
across rounds even for the same client, so selection becomes unstable and
hard to audit.

Second, accuracy is a blunt instrument for multi-objective training. Many
modern FL algorithms (including MOON-family approaches) explicitly care
about representation alignment, not just immediate loss reduction. A local
update can temporarily improve probe accuracy while pushing representa-
tions in a direction that reduces future transferability or increases client drift,
especially under label skew. Thus, accuracy-based scoring can systematically
overpay for short-run gains that are not robust.

Third, accuracy-based scores are particularly vulnerable to strategic ma-
nipulation when they become a payment currency. If the score is computed
on Dgy, a worker can overfit to the probe distribution—even without see-
ing Dy directly—by using adaptive updates that exploit known evaluation
pipelines or by engaging in model poisoning that inflates probe performance
while harming generalization. The more tightly payments are tied to accu-
racy deltas, the stronger the incentive to exploit these channels. In contrast,
a representation drift signal can be engineered to be less sensitive to such at-
tacks (e.g., by restricting the scoring protocol, clipping, and using similarity-
based metrics), though we do not claim it is fully manipulation-proof.

Post hoc feasibility fixes break monotonicity and can destroy truth-
fulness. A subtle but important failure arises when platforms implement
feasibility as a repair step. A common pattern is: (i) rank by some score (bid-
only, reputation, or accuracy), (ii) take a prefix until the budget is “about”
exhausted, and (iii) if compatibility caps are violated, drop or swap some
workers until the assignment becomes feasible. This is operationally con-
venient, but it generally makes allocation non-monotone in bids. A worker
who slightly lowers b; can change the repair path (which other workers are
swapped out to satisfy 7;), potentially causing that worker to be excluded.
Once monotonicity fails, threshold payments cease to be well-defined and
DSIC arguments collapse. Put differently, “greedy then fix” is not just sub-
optimal; it can be fundamentally incompatible with dominant-strategy pro-
curement when feasibility constraints are combinatorial.

This is why we insist on internalizing compatibility in the allocation
computation itself (via an optimization routine such as max-flow), rather
than treating it as an engineering constraint to be enforced after ranking.

Manipulation channels and the case for bid-independent scoring.
Beyond the above benchmark-specific issues, we highlight two generic ma-
nipulation channels that the scoring interface must close.
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(i) Bid-dependent scoring. If the score used for selection can be influenced
by b; (directly or indirectly), workers acquire a second strategic lever beyond
costs, and classic single-parameter reverse-auction guarantees no longer ap-
ply. Even seemingly harmless designs—e.g., allowing workers to “pay for
verification” or to choose the amount of computation used for scoring as a
function of their bid—can correlate score and bid in a way that invalidates
DSIC.

(ii) Update gaming. Even when scores are bid-independent, workers may
try to manipulate the standardized update to inflate their score. This is un-
avoidable in any performance-linked procurement scheme; the relevant ques-
tion is whether the platform can standardize and audit the scoring pipeline
enough that manipulation is costly, detectable, or bounded. Our drift-score
interface is designed to be compatible with such enforcement (fixed local
steps, fixed optimizer, bounded scoring, and secure evaluation), and to avoid
needing worker-reported statistics.

Why drift-score is the right “currency” for procurement. These
failures motivate our design choice: a scalar v; that is (a) computed by the
platform (or a trusted scoring service) under a committed rule, (b) aligned
with the training algorithm’s representation objectives rather than a noisy
endpoint metric, (¢) bounded and therefore well-behaved under budgets, and
(d) usable as a weight in a feasibility-aware allocation routine under group
caps. Economically, v; is a tradable unit of “learning-relevant quality” that
allows us to apply cost-effectiveness logic (rank by b;/v;) without expanding
the strategic type beyond cost.

With this motivation in place, we now turn to the mechanism itself. The
next section shows how to combine a critical-price allocation rule with a max-
flow feasibility oracle to obtain a polynomial-time, budget-feasible reverse
auction—DriftPay—that remains DSIC in costs while explicitly respecting
compatibility constraints.

5 The DriftPay Mechanism (Pooled Budgets)

We now describe our baseline mechanism in the pooled-budget setting, where
the platform controls a single procurement budget B := ) jeA Bj and is free
to assign selected workers across requesters subject to the compatibility caps
715. Conceptually, DriftPay buys “units of learning-relevant value” measured
by the drift-score v;, and pays for them using a single critical price (a cost-
per-score threshold) that is determined endogenously from the bids. The two
technical ingredients are: (i) a critical-ratio allocation rule based on sorting
by b;/v;, and (ii) a feasibility-aware optimization oracle that internalizes the
caps ZieGl x;; < 7 rather than repairing violations after the fact.
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Inputs and bid-independent scoring. At the start of the round, the
platform has already committed to a scoring protocol and computed drift-
scores v; € [Umin, Umax) for each worker ¢ € S using the fixed probe set Dy
and the announced MOON-style rule g(-). Workers then submit bids b;
(cost reports). From the mechanism’s perspective, each worker is a single-
parameter agent with private cost ¢; and a publicly known “size” v;. We
emphasize that v; > 0 ensures the cost-effectiveness ratio b; /v; is well-defined
and that boundedness of v; will later allow a clean approximation bound.

Cost-effectiveness ranking. Given bids b = (b;)ies and scores v =
(vi)ics, we define each worker’s bid-per-score ratio

b;
pi = —.
(%
We sort workers in nondecreasing order of p;, breaking ties deterministi-
cally (e.g., by a fixed worker index) to avoid ambiguity. Let this order be
1,2,...,n, and let Sy := {1,2,...,k} denote the prefix of the & most cost-
effective workers under p. Intuitively, if we were buying divisible value, we
would purchase as much drift-score as possible from the lowest p; workers
first. Our main complication is that workers are indivisible and must be
routed to requesters under the compatibility caps; DriftPay handles this by
solving, for each candidate prefix, the best feasible assignment under those
caps.

The feasibility-aware oracle (ORP). Fix a candidate set of workers Sk.
Define the Optimal Routing Problem on Sy (ORP) as

M(Sk) = Imax Z Z L5V s.t. Zl’ij < 1Vi, Z Tij < Ti4 V(l,j), Tij S {0, 1}.

jEAES jEA i€G)

Because v; does not depend on the requester j, ORP is “choose as many
high-v; workers as possible” subject to the existence of a feasible routing to
requesters given the group caps. We solve ORP in polynomial time via a
max-flow reduction (formalized later), and we use both outputs: the optimal
value M(S;,) and an optimal integral assignment 2(¥) that attains it.

One convenient flow construction is layered by (j,[)-buckets. Create
nodes: a source s; one node for each worker i € Sj; one node for each
requester-group pair (j,[); one node for each requester j; and a sink ¢. Add
edges s — i of capacity 1. For each worker ¢ € Gj, add edges i — (j,1) of
capacity 1 for all j € A. Add edges (j,1) — j of capacity 7;;, and edges
j — t of capacity +oo (or an optional per-requester staffing cap if one exists
operationally). Any integer s-t flow corresponds to a feasible assignment
satisfying one-assignment and compatibility; maximizing ), v; can be im-
plemented by a standard transformation (e.g., min-cost max-flow with costs
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—uv; on worker-admission, or by selecting a maximum-weight feasible set in a
bipartite b-matching formulation). The key point for the mechanism is that
feasibility is computed inside the optimization, so we never need an ex post
“drop-and-swap” repair that would destroy monotonicity.

Choosing the winning prefix via a critical affordability test. We
next determine how far down the p-ranking we can go while keeping the
procurement affordable under budget B. DriftPay uses the following afford-
ability condition: for a prefix S, consider paying every unit of drift-score at
the marginal ratio py, = by /vy. If we were to purchase M (Sy) units of score
at price pi per unit, the total payment would be py - M(Sy). We therefore
define k* as the largest index k such that

pr - M(Sk) < B.

Operationally, we can find k* by scanning £ = 1,2,... and solving ORP on
each prefix until the inequality fails (or by using a doubling/binary-search
strategy with cached flow solutions when n is large). Denote the resulting
selected prefix by Si«, its ORP-optimal value by M (Sk«), and an associated
assignment by z(**). The mechanism’s allocation rule is then:

z = z*) and z;:= inj €{0,1}.
JEA

That is, we allocate exactly the feasible set that maximizes total drift-score
among workers whose bid-per-score ratio is at most the critical index k*.

Threshold payments (critical price per unit score). Given the cho-
sen prefix and assignment, DriftPay pays each winning worker a score-
proportional threshold payment based on a single per-unit “price” mw. Let
pr++1 denote the next ratio in the sorted list (with the convention p,4+1 =
+oo if k¥ =n). Define

n{ors1s 357)
T = Mins Prrt1, — 5 (-
T M(Sk-)
For each selected worker i (i.e., x; = 1), we set
bi ‘= v,

and for each unselected worker we set p; := 0. This payment rule has two
complementary interpretations. The term pg«y1 is the familiar “next-best”
critical ratio: it is the smallest ratio that would displace a winner if they
raised their bid enough to move behind the (k* + 1)-st worker. The term
B/M (Sk+) is a budget-based cap: it is the maximum uniform price per unit
score that can be paid to exactly finance the purchased total score M (Skx).
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Taking the minimum ensures that the per-unit price is simultaneously a
competitive threshold (protecting incentives) and fiscally feasible (protecting
the hard budget).

In implementation terms, p; is simple to audit: the platform posts the
critical per-unit price w and pays each winner proportionally to their publicly
computed score v;. The assignment across requesters is already embedded
in x; under pooled budgets we can treat payments as drawn from the com-
mon pot, while still recording the realized routing x;; to certify that each
requester’s caps 7;; were respected.

Complexity and practical remarks. DriftPay’s runtime is polynomial.
Sorting by p; takes O(nlogn). Each ORP call is solvable in polynomial
time via max-flow /min-cost flow on a network with O(n + mL + m) nodes
and O(nm) edges (more precisely, O(nm) worker-to-(j,1) edges, since each
worker connects only to the (j,1) nodes consistent with its group Gj). A
straightforward implementation that scans prefixes performs at most n or-
acle calls, yielding total time O(n - Flow(n,m, L)). In many regimes this is
acceptable because m and L are modest compared to n, and because flow
computations are highly optimized; nonetheless, we view the oracle as an ex-
plicit design choice: we pay a computational cost to avoid the economic cost
of non-monotone, post hoc feasibility fixes. We also note a modeling limita-
tion: pooled budgets abstract away from internal cost accounting across re-
questers. In applications where per-requester budgets B; must be respected
individually, we adapt the same logic with a slightly richer feasibility oracle;
we treat that extension separately to keep the exposition clean.

6 Theoretical Guarantees (Pooled Budgets)

We now formalize what DriftPay delivers in the pooled-budget benchmark.
Economically, the platform is running a reverse auction with a hard budget
and nontrivial feasibility constraints (compatibility caps and one-assignment).
The core design goal is to retain the classic procurement virtues—truthful
cost revelation and fiscal discipline—while still approximating the best achiev-
able learning-relevant value, measured here by total drift-score.

Theorem 6.1 (DSIC, ex post IR, and budget feasibility). Fiz bid-independent
scores Vi € [Umin,Vmax] and pooled budget B. Under DriftPay-CO (i.e.,
sorting by p; = b;/v;, selecting the maximal affordable prefiz k*, allocat-
ing via the ORP optimum on Si~, and paying winners p; = v;m with m =
min{pgs41, B/M(Sk+)}), the mechanism is: (i) dominant-strategy incentive
compatible (DSIC) in costs, (ii) ex post individually rational (IR) for truthful
bidders, and (iii) budget-feasible: Y, p; < B for every bid profile. Moreover,

given an exact ORP oracle, the mechanism runs in polynomial time.

18



Intuition. Two ingredients jointly drive Theorem First, because v;
is fixed independently of b;, each worker is a single-parameter agent (only
cost is private), so the standard monotonicity+threshold-payment logic can
apply. Second, DriftPay prices score rather than headcount: a single per-
unit score price 7 is computed from the marginal competitor (pg~+1) and
the hard budget cap (B/M (Sg«)). This makes the payment simultaneously
“competitive” (no winner can demand more than what an excluded rival
would justify) and “affordable” (total payments never exceed B).

Proof sketch (economic logic). We outline the main steps; full details
follow the CARE-CO template adapted to our ORP feasibility structure.

Step 1: Monotonicity of the allocation in b;. Fix b_; and scores v. Con-
sider worker i and let p; = b;/v;. If i raises her bid, p; weakly increases, so i
moves (weakly) later in the global p-ordering. The maximal affordable prefix
index k* is defined by the inequality pi - M (Sk) < B, and this affordability
test becomes (weakly) harder to satisfy when one agent’s ratio increases and
all others are fixed. Thus, increasing b; cannot cause the mechanism to in-
clude any worker whose ratio is higher than before; in particular, ¢ cannot
become newly selected by bidding higher. Conversely, lowering b; only im-
proves ¢’s rank and can only expand the set of prefixes for which 7 is eligible;
with deterministic tie-breaking in both the p-ordering and the ORP solution
selection, the allocation rule is monotone in the standard single-parameter
sense: once 17 is selected at some bid, she remains selected at any lower bidE|

Step 2: Threshold payments. Given monotonicity, each worker has a
critical bid 6;(b—;) such that i is selected iff b; < 6;(b—_;). DriftPay’s pay-
ment is score-proportional at a single critical ratio 7, so the implied critical
bid is §; = v;m. The term pg+41 ensures competitiveness: if ¢ were to bid
above v;pg+ 41, she would be (weakly) less cost-effective than the marginal
excluded worker and would not survive the critical-prefix selection. The term
B/M (Sy+) ensures fiscal feasibility: even if competitors are sparse, the plat-
form cannot pay more than B in total, which pins down a maximal uniform
per-score price. Taking 7 as the minimum of these two bounds makes v;7 a
valid critical payment.

Step 8: DSIC and ex post IR. In single-parameter procurement, mono-
tone allocation plus threshold payments implies DSIC: truthful bidding max-
imizes u; = p; — x;¢; regardless of b_;. Ex post IR follows from the fact that
every winner is paid at least her reported cost: for any selected i,

T > ppe > pp = pp=um > vip; = by

Under truthful bidding (b; = ¢;), this gives u; = p; — ¢; > 0. (If a worker
strategically overbids above her true cost, she may forgo selection; if she

!This is exactly where we pay for an exact, feasibility-aware oracle: post hoc “repair”
procedures can create non-monotone discontinuities and break DSIC.
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underbids below cost, she risks negative utility, which DSIC rules out as an
equilibrium incentive.)

Step 4: Budget feasibility. Let W = {i : x; = 1} be the winning set
produced by the ORP assignment on Si«. By construction, the achieved
drift-score equals the ORP optimum on that prefix:

D v = M(Sp).

ieW

Therefore total payments are
B
Zpi = Zvﬂr =7-M(Sk) < ——— -M(Si) = B,

where the inequality uses m < B/M (Sk+).

Approximation guarantee and a closed-form bound. Truthfulness
and budgets matter only insofar as we still procure meaningful value. We
therefore compare DriftPay’s achieved total score

ALG := Zvi = M(Sk+)
€W

to the full-information optimum OPT under the same compatibility con-
straints and budget B.

Theorem 6.2 (Constant-factor approximation). Assume 0 < vpin < v; <
Umax- In the pooled-budget setting,
1

ALG > — OPT.
2 + Umax/vmin

Proof sketch (why bounded scores are enough). Let if := k* +1
denote the marginal excluded index (with p,+1 = +00 by convention). Con-
sider the optimal feasible solution under budget B and split its selected
workers into: (a) those lying in the prefix Si«, and (b) those outside it. Part
(a) contributes at most M (Sk+) = ALG by definition of the ORP optimum
on Sk*-

For part (b), every worker outside Sg+ has ratio at least p;;. With truthful
bidding (b; = ¢;), cost equals p;v;, so any such worker costs at least p;+ per
unit score. Hence, under budget B, the total score of the outside part is at
most B/p;i.

We now relate B/p;+ to ALG using the maximality of k*. Since k* is
maximal, the affordability test fails at k* + 1:

pit - M(Sg=11) > B.
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Moreover, adding one additional worker to the candidate set can increase
the optimal routable score by at most that worker’s score, so

M(Sk*+1) S M(Sk*)—i-’l)if = ALG""UZT

Combining yields

B
Pit

Therefore,

OPT < ALG + B < ALGH+(ALG+vy) = 2ALGHu; < (2+“‘ﬂ)ALG,

Pit Umin

where the last step uses v;i < vpax and ALG > vy (the mechanism se-
lects at least one worker whenever any feasible procurement is possible).
Rearranging gives Theorem [6.2]

Remark (measurement noise). If the platform sorts by p; = b;/0; where
|0;—v;| < nu;, DSIC in costs is preserved because 0; remains bid-independent;
what changes is welfare. A standard sandwich argument implies a multiplica-
tive degradation on the order of (1—n)/(1+n) relative to the noiseless ALG,
so the constant-factor approximation degrades smoothly with score noise.

Limitations. The guarantees above rest on two commitments that are op-
erationally meaningful: (i) bid-independent scoring (to keep the problem
single-parameter), and (ii) feasibility computed within the optimization (to
avoid non-monotone repairs). When either is relaxed—e.g., workers can
manipulate v; through the scoring update, or the platform uses ad hoc fea-
sibility fixes—DSIC can fail even if the allocation appears “reasonable” from
a machine-learning perspective.

7 Extensions

The pooled-budget benchmark isolates the worker-side incentive problem and
lets us emphasize the role of bid-independent drift scoring. In deployments,
however, two additional features are often salient: (i) budgets are held by
multiple requesters who may not wish to pool funds, (ii) the learning-relevant
value of a set of workers can be non-additive because workers’ updates over-
lap in the representation space, and (iii) platforms sometimes want to add ex
post performance bonuses. We briefly sketch how each can be incorporated,
and where the economic logic becomes more delicate.
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(a) Separate budgets and (mildly) non-cooperative requesters. Sup-
pose each requester j € A has a hard budget B; that cannot be reallocated
across requesters, while compatibility caps 7;; remain requester-specific. The
platform’s feasibility constraints then include

sz’j < Bj V7,
ics

rather than the pooled constraint ) . p; < B. From a mechanism-design
perspective, the worker side remains single-parameter as long as scores v;
(or v;) are bid-independent; the new difficulty is that affordability is now
vector-valued: an assignment can be feasible in aggregate but infeasible for
an individual requester.

A natural adaptation of the CARE-NO/PEA-style idea is to retain a sin-
gle global ordering by cost-effectiveness p; = b; /v;, but to couple prefix selec-
tion with a per-requester affordability test. Concretely, for a candidate prefix
Sk, we solve an ORP-like optimization that also respects budget-implied score
caps:

man Z injvi s.t. Z xij S Tij, in]‘ S 1, Z .Z‘Z'jvi S % Vj,

1€SK JEA 1€G J 1€SK

for a candidate per-score price 7. Intuitively, if all workers assigned to re-
quester j were paid p;; = wv;m, then requester j can afford at most B;/7
total score. This turns the separate budgets into linear constraints in the
flow formulation (one may interpret them as capacities on requester-to-sink
edges measured in score units rather than headcount).

The remaining design choice is how to pick 7 and k£ without destroying
monotonicity in each b;. One robust (if conservative) approach is a two-
sided “price escalation” heuristic: start from m = pr11 (competitive pressure
from the marginal excluded ratio), and if some requester’s implied spending
-y, x;jv; would exceed Bj, increase that requester’s shadow price until its
score demand shrinks to feasibility, recomputing the ORP under the adjusted
caps. This is reminiscent of PEA: we expand the feasible set by increasing
prices on the tight budgets rather than by reallocating funds. Worker-side
DSIC can still be preserved under deterministic tie-breaking provided (i) the
final allocation remains monotone in each p;, and (ii) each winning worker
is paid a threshold of the form p;; = v;m; where ; is the minimal per-score
price at which requester j would still demand (and be assigned) that worker
given others’ bidsﬂ What we gain is a mechanism compatible with institu-
tional realities (each requester pays its own bill). What we lose, relative to
pooling, is some efficiency: separate budgets can create unused slack (one

2We view this as an implementability constraint: if one instead computes an allocation
first and then “clips” it to satisfy some Bj, the repair step is typically non-monotone and
can reintroduce incentives to shade bids.
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requester runs out of budget while another has remaining funds but cannot
reallocate to the constrained side). In practice, this is precisely where policy
choices enter (e.g., whether limited budget transfers are permissible within
a consortium).

(b) Submodular drift value: diversity/coverage in representation
space. The additive objective Zi, ; %ijv; treats each worker’s drift contribu-
tion as independent. When drift is computed from representation alignment,
this can be too linear: two workers whose updates move representations in
the same direction may be partially redundant, while a set covering multiple
“modes” of drift can be more valuable than its parts.

A simple way to model this is to define a monotone submodular set
function over selected workers. For example, using the probe set Dy, cluster
representations into r € [R] “regions,” and let z;; > 0 measure worker i’s
drift-improvement on region r under the announced scoring protocol. Then
a coverage-style value

R
f(s) = Z max 2,
r=1

is monotone submodular (diminishing returns). One can analogously define
requester-specific f;(-) if tasks differ mildly but share the same embedding
space.

Mechanism-wise, truthful budget-feasible procurement for submodular
objectives is known to be harder than for additive value, but constant-factor
DSIC mechanisms exist in the single-parameter setting (notably Singer-style
mechanisms) by combining (i) a greedy rule based on marginal value per cost
and (ii) carefully defined threshold payments. In our setting, the additional
compatibility constraints mean that “adding a worker” is only meaningful if
the ORP can still route the set to requesters. Operationally, we can run a
feasibility-aware greedy that, at each step, selects the worker with highest
marginal gain per bid, subject to the existence of a compatible assignment
(checked via the same max-flow oracle). Payments then follow the critical-
bid construction induced by this monotone greedy (often requiring either
randomization or a restricted greedy order to ensure monotonicity under
general constraints).

The conceptual takeaway is that DriftPay’s scoring layer is flexible: as
long as we can compute a bid-independent marginal contribution A;(+) from
(w, Dg), we can move beyond “sum of scores” toward “coverage of represen-
tational gaps.” The limitation is that the clean single-price-per-score pay-
ment structure is generally lost; submodularity pushes us toward marginal-
pricing payments, which are less transparent and may be less attractive
operationally.
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(c) Performance-adjusted bonuses (and why IC can fail if we are
careless). Platforms often want to reward ex post training outcomes: e.g.,
pay a base procurement price and then add a bonus tied to validation im-
provement, gradient usefulness, or robustness metrics. Bonuses can be valu-
able in practice (they reduce the platform’s risk from noisy ex ante scores
and can motivate effort), but they interact subtly with DSIC.

The key economic point is that DSIC is a statement about incentives at
the bidding stage. If we append an ex post bonus 5; to the payment of selected
workers without adjusting the allocation/payment rule, then the effective
“critical bid” changes. In particular, a worker with cost slightly above the
original threshold may now find it profitable to underbid to get selected
because the bonus makes participation worthwhile; truthful reporting would
no longer be dominant. Thus, performance bonuses are DSIC-safe only when
they are incorporated into the mechanism ex ante in a way that preserves
the threshold structure.

Two conservative designs avoid this pitfall. First, a fized bonus schedule
that is publicly known and independent of bids and realized outcomes (e.g.,
a flat stipend for completing the standardized scoring update) can simply
be folded into the affordability test and threshold payments. Second, an
outcome-contingent bonus can be used only if it does not affect allocation
incentives—e.g., if it is paid to all participants regardless of selection (then
it is outside the mechanism), or if selection is determined using a bonus-
adjusted scoring/payment rule that explicitly treats the bonus as part of
the payment mapping and respects budget feasibility for worst-case bonus
payouts.

In contrast, if bonuses depend on worker actions after bidding (effort,
data curation, adaptive local training) or on strategic interaction (collusion,
poisoning, free-riding), then the model is no longer single-parameter: workers
have additional private or manipulable dimensions beyond cost. In that
regime, our DSIC claim should not be expected to survive without stronger
assumptions (verifiable effort, proper scoring rules, audits, or cryptographic
attestations). Our recommendation is therefore pragmatic: use bonuses as
an engineering tool, but treat them as a separate contracting layer whose
incentive properties must be audited independently, rather than as a “free”
add-on to a truthful reverse auction.

(d) Robustness to noisy drift estimates and score governance. A
practical platform rarely observes the “true” drift score v; without error.
Even if the scoring rule g(-) is fixed and bid-independent, the realized esti-
mate 0; can be noisy because (i) Dy is finite and induces sampling error, (ii)
local updates are stochastic (minibatching, dropout, data augmentation),
and (iii) the server model w! evolves, so the same worker may induce differ-
ent representation shifts across rounds. We therefore separate two questions:
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(1) when does dominant-strategy truthfulness in costs survive the use of v;7
and (2) how sensitive is welfare (total drift-score) to such score noise?

DSIC conditions under noisy scores. The worker side remains single-
parameter as long as the mapping from bids to allocation/payments depends
on b; only through a monotone statistic (e.g., p; = b;/0;) and the score signal
v; is bid-independent. Formally, if the platform commits to a protocol that
generates ©; as a function of (w® Do, A;,&)—where A; is a standardized
local update and £ is platform-controlled randomness—and this protocol is
executed before bids are submitted (or at least independently of them), then
for each fixed realization of ¥, the procurement mechanism is simply the
additive-value reverse auction run on weights ;. In that case, the usual
monotonicity-plus-threshold-payment logic applies: if lowering b; can only
weakly improve i’s rank by p; = b;/0; and cannot affect others’ ranks, then
the set of bids at which i is selected is an interval, and paying the critical
bid preserves DSIC in costs. In particular, the “noise” does not harm DSIC
per se; it only changes the realized ordering and thresholds.

This observation also clarifies the main failure mode. DSIC can break if
workers can strategically influence 0; after seeing (or anticipating) how it af-
fects allocation and payments. Examples include (i) choosing a non-standard
local training procedure that inflates measured drift on Dy without improv-
ing true contribution, (ii) adversarially overfitting to a public Dy, or (iii)
selectively withholding updates until the scoring window. These behaviors
introduce an additional private (and manipulable) dimension—*“score engi-
neering”—that is not captured by the cost-only model. Our baseline DSIC
claim should therefore be read as contingent on a score-governance assump-
tion: the platform can enforce or verify the standardized scoring update and
the evaluation pipeline well enough that o; is not a decision variable of the
worker at the bidding stage. When this is not realistic, one must explicitly
model multi-dimensional incentives (cost plus effort/quality manipulation),
and DSIC is no longer the right benchmark without stronger enforcement
tools.

Welfare sensitivity bounds. Holding the governance assumption fixed,
we can ask how far the mechanism’s achieved welfare can fall when using
¥; instead of v;. A convenient and interpretable condition is multiplicative
error:

|0; — v < oy for all 4, with n € [0, 1).

This bound implies that score estimates preserve relative magnitudes up to
a factor of (1+mn) and, crucially, that “cost-effectiveness” ratios are distorted
but not arbitrarily:

0

1+n v’ 1—n vyl
Since DriftPay-CO (and its compatibility-aware ORP step) effectively chooses
a prefix in the ordering by b; /v; and then realizes the best compatible assign-
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ment within that prefix, the preceding inclusion yields a sandwich compari-
son: the prefix selected under v is “close” to a slightly smaller or larger prefix
under v, up to the (1 £ n) multiplicative distortion. Translating this into
welfare, one obtains a clean multiplicative degradation bound of the form

) L—n

ALG(v) > —— - ALG(v),
147

and hence, combining with the constant-factor approximation guarantee un-
der true scores,

N 1-7n
> . .
ALG(0) T+ 0 a-OPT(v),

where a = in the pooled-budget benchmark (and analogous con-

2+vmax/Vmin
stants apply undeé the same bounded-score regime). Economically, this says
that if score noise is controlled in relative terms, then the mechanism re-
mains robust: it may mis-rank some workers on the margin, but it does not
systematically allocate budget to dramatically less cost-effective workers.

There is, however, an unavoidable caveat: multiplicative bounds are
meaningful only when v; is bounded away from zero. This is precisely why we
maintain v; > vy > 0in the theory. In deployments, workers with near-zero
measured drift are effectively indistinguishable under the ratio rule because
small absolute score errors induce large ratio swings. Practically, one should
treat “low-score” workers as a separate regime: either exclude them by de-
sign (a minimum quality screen), or use a different scoring rule with better
signal-to-noise properties near zero.

Conservative variants under uncertainty. If the platform is risk-averse
to overestimating scores, a simple modification is to run the mechanism on
lower confidence bounds ¢; rather than point estimates. For example, if 9;
is computed as an empirical average over |Dy| probe points, concentration
inequalities can produce v; = ¥; — ¢; such that v; < v; with high probabil-
ity. Mechanism-wise, this is still DSIC (the scores remain bid-independent),
but it is intentionally conservative: it reduces the chance that the platform
“overpays per unit true drift” due to optimistic measurement. The cost is
reduced utilization of the budget and potentially lower realized welfare in
benign environments. This trade-off is often acceptable when budgets are
hard and overruns are institutionally costly.

Audit and refresh of scores. Finally, robustness is as much a governance
problem as an estimation problem. Even when 9; is computed honestly,
two forces motivate periodic refresh: (i) model drift—the mapping R, ()
evolves, so yesterday’s representation shift is not today’s; and (ii) gaming
pressure—if Do and g are fixed and predictable, some workers may learn to
optimize the score rather than genuine contribution.

A simple, DSIC-compatible approach is to commit to an audit/refresh
schedule that is exogenous to bids: every T rounds (or with fixed probability
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each round), the platform re-scores a random subset of workers on a freshly
sampled probe set D[()t) drawn from a committed distribution, and updates v;
for subsequent auctions. Crucially, to preserve bid-independence and avoid
endogenous manipulation, the platform should (i) commit publicly to the
scoring rule and the sampling procedure (e.g., via a verifiable random seed),
(ii) keep the realized probe instances secret until evaluation (to reduce over-
fitting incentives), and (iii) separate the scoring update from the training
update used for the actual FL task, so that the “measurement channel” is
standardized and auditable.

Audits also enable deterrence. If a worker’s re-scored o; is systemati-
cally inconsistent with prior submissions (beyond what sampling variation
predicts), the platform can down-weight future scores, impose temporary
exclusion, or require stronger attestations (secure execution, reproducibility
logs). These interventions do not require changing the reverse-auction logic;
they change the measurement layer that supplies bid-independent scores. In
our view, this modularity is a feature: the mechanism’s incentive guaran-
tees are cleanest when the economic contract (bids — allocation/payment)
is separated from the ML measurement pipeline (updates — scores), with
the latter governed by standard tools from auditing and statistical quality
control.

Taken together, the message is that noisy drift estimates are not fatal to
truthful procurement. When score errors are bounded and bid-independent,
we retain DSIC and only lose welfare proportionally to the noise level. The
more delicate issues arise when scores become strategically manipulable; then
robustness requires explicit score governance—refresh, audits, and enforce-
ment—rather than purely mechanism-theoretic adjustments.

(e) Empirical plan: multi-tenant FL simulations to stress-test mech-
anism—score coupling. Our theory isolates the economic layer (bids, allo-
cation, payments) from the measurement layer (updates — scores). An em-
pirical evaluation should therefore do two things in parallel: (i) test whether
using algorithm-aware drift scores v; actually improves the downstream ML
objective relative to plausible alternatives, and (ii) test whether the mecha-
nism’s predicted comparative statics (budgets, compatibility tightness, score
noise, and congestion) appear in realistic multi-tenant federated learning
regimes. We outline a simulation-based plan that is intentionally modu-
lar so that one can swap in different FL algorithms, scoring rules g(-), and
market parameters without changing the experimental logic.

Environment and multi-tenant structure. We simulate a platform with
a fixed worker population S and m requesters A. Each requester j runs
a training job over a shared pool of workers, but with a requester-specific
objective (e.g., different label sets, domains, or loss weights) so that com-
petition for workers is meaningful. The platform executes a procurement
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round at each FL communication round ¢: workers submit bids b} (gener-
ated from a cost model plus noise, with the option to introduce strategic
deviations for robustness checks), the platform computes drift-based scores
v} from a standardized scoring update, and then runs DriftPay-CO (pooled
budget) or its per-requester extension under {B;}, respecting compatibility
constraints ZieGl x;j < 7; and one-assignment Z]- x5 < 1. After alloca-
tion, each requester performs one FL round with its assigned workers and
logs test performance.

Non-1ID control via Dirichlet heterogeneity. To systematically vary the
severity of worker heterogeneity, we partition data across workers using a
Dirichlet model with concentration parameter 3, as is standard in FL bench-
marking. Concretely, for a K-class task, worker i’s class proportions are
drawn as m; ~ Dirichlet(51), and we sample local datasets accordingly.
Smaller £ induces stronger non-IIDness and, in our interpretation, larger and
more variable representation drift. We treat § as a primary axis because it
directly operationalizes the intuition behind using drift-aware scores: when
client data are more heterogeneous, the informational content of “reputa-
tion” or naive accuracy proxies becomes less reliable, and algorithm-aware
measures of contribution should matter more.

Scoring rules and probe design. We compare multiple scoring rules g(+)
that fit within our bid-independent framework. The main specification uses
a MOON-style representation alignment score computed on a fixed probe set
Doi

'Uf = EﬂcNDO [Slm(wa (.%'), Ryt (l‘))] )

or an equivalent negative drift norm. We then vary the probe set size | Dy|
to control measurement variance, and we generate noisy estimates 9! by
either subsampling Dy or injecting multiplicative perturbations consistent
with |0; — v;| < nv;. This lets us connect observed welfare degradation to the
theory’s (1 —n)/(1 +n) benchmark, while also highlighting when violations
arise (e.g., scores near zero, distribution shift in Dy, or heavy-tailed noise).
Baselines: what we must beat empirically. The relevant benchmarks are
not only “optimal” but also what a platform might plausibly deploy today.

e CARE with reputation weights. Replace drift scores v; by a bid-
independent reputation proxy r; (e.g., exponentially weighted moving
average of past participation, or historical test improvement when se-
lected). Allocation and payments follow CARE-CO logic but with ;
in place of v;. This isolates the value of algorithm-aware scoring from
the value of the mechanism itself.

e Accuracy-based scoring. Replace v; by an accuracy (or loss) proxy
on Dy, such as a! = —L(w}; Dg) or Aal = a(w!; Dy) — a(w'; Dy). This
is a natural baseline because it is easy to explain to stakeholders, but
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it may be misaligned with representation learning dynamics, especially
under non-IID data and multi-round training.

e Bid-only / random selection under budgets. Use a lowest-bid

heuristic subject to compatibility, or random feasible assignment with
budget feasibility. These baselines quantify how much of the gain is
driven by any quality signal at all.

Where feasible, we also compute an offiine upper bound: given realized
(¢, v;) for a round, solve the full-information assignment under budgets and
compatibility to approximate OPT for comparison.

Outcomes and evaluation metrics. We measure outcomes at both the

mechanism level and the ML level.

1.

Economic welfare proxy: realized total drift score ), ; z;v; (or
> xj0; when only noisy scores are observed). This directly targets
the mechanism objective.

. Downstream learning: requester-specific test loss improvement AL;

(or accuracy gain) over rounds, and the aggregate > ; AL;. This tests
whether the drift proxy is predictive in practice, complementing the
assumption in Proposition 6.

Budget utilization and prices: total payments ), p; (pooled) or
>;Dij (per requester), critical ratios, and the fraction of budget left
unused due to compatibility or conservative scoring.

Constraint stress: frequency with which caps 7;; bind, and concen-
tration of assignments across groups G (useful for interpreting “con-
gestion” effects and diversification pressure).

Stability: overlap of selected sets across adjacent rounds, and sensi-
tivity of allocations to small perturbations in ¢ or bids.

Comparative statics and congestion experiments. We explicitly vary the

parameters highlighted by the theory.

e Budgets. Sweep pooled B (or {B;}) and verify that selected welfare

and critical prices weakly increase. We also compare pooled versus sep-
arated budgets to quantify the value of cross-requester budget sharing
in congested markets.

Compatibility tightness. Sweep 7;; from restrictive (forcing heavy
diversification) to permissive (near unconstrained) to test whether drift-
aware scoring provides larger gains when the feasible set is tight (where
good ranking is most valuable) or when it is slack (where quantity dom-
inates).
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e Market congestion. Vary the ratio m/n and introduce requester
heterogeneity in budgets (few large buyers vs many small buyers).
Congestion should amplify the importance of both accurate scores
and compatibility-aware assignment (the ORP/max-flow step), be-
cause mistakes in ranking propagate through scarce capacity.

e Score dispersion. Induce dispersion by changing model architecture,
local epoch counts, or heterogeneity 3, and relate realized performance
t0 Umax/Umin as a diagnostic for when constant-factor bounds become
loose.

Truthfulness stress tests (behavioral, not equilibrium). While we do not
claim workers play equilibrium strategies in simulations, we can still perform
falsification-style checks consistent with DSIC: fix others’ bids and scores,
then vary a single worker’s bid b; and empirically verify monotonicity of se-
lection and threshold-like payment behavior. These tests help catch imple-
mentation bugs (e.g., non-monotone tie-breaking) and clarify how numerical
issues in the ORP solver might translate into incentive violations in practice.

Limitations and what the empirical plan cannot certify. Two limitations
are intrinsic. First, the strongest strategic failure mode is score manipula-
tion (changing 0;), which is governance-dependent; simulations can illustrate
vulnerability but cannot replace enforcement. Second, mapping drift scores
to downstream accuracy is algorithm- and task-dependent; empirical success
will be strongest evidence in favor of the drift-to-generalization link, but
not a proof. For that reason, we treat the empirical plan as a disciplined
exploration of when the mechanism—algorithm co-design is most valuable
(high heterogeneity, tight compatibility, moderate noise) and when simpler
procurement heuristics suffice (low heterogeneity, slack constraints, or very
noisy scoring).

Conclusion: mechanism—algorithm co-design as a 2026 agenda.
We have argued for a simple organizing principle: in multi-tenant federated
learning markets, the procurement layer and the learning layer should be
designed together rather than bolted onto one another. The economic prob-
lem is not merely to buy “participation,” but to buy useful updates under
tight budgets, congestion, and compatibility constraints that reflect opera-
tional realities (conflicts of interest, regulatory separation, geography, device
classes, or redundancy limits). The algorithmic problem is not merely to
optimize a loss, but to produce an auditable, bid-independent contribution
signal that can enter a reverse auction without breaking incentive guaran-
tees. Our structured context makes this complementarity concrete: we treat
representation drift (or alignment) as a score v; that is computed from a fixed
probe set and an announced scoring rule, and we then use a budget-feasible,
compatibility-aware procurement mechanism that is truthful in the one-
dimensional private type (cost). The model illuminates the tradeoff: we gain
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tractable incentives and approximation guarantees by insisting that quality
signals be exogenous to bids, but we also inherit a governance burden—the
integrity of the scoring pipeline becomes a first-order design object.

From a practice perspective, this co-design view reframes what a “mar-
ketplace for FL” should standardize. A 2026-ready platform cannot only
specify an API for training; it must specify (i) a scoring protocol (what up-
date is submitted for scoring, under what constraints), (ii) a probe-and-audit
regime for Dy (who curates it, how it evolves, how leakage is prevented), and
(iii) a mechanism contract (allocation and payments) that is robust to the
platform’s measurement error and to the operational constraints imposed by
requesters. Once these are explicit, familiar questions become measurable:
how much budget is wasted because 7; bind; whether pooling B = Zj B;
creates allocative gains or simply raises threshold prices; and how sensitive
outcomes are to the score noise level 1. In other words, the platform can
move from ad hoc heuristics (lowest bid, static reputation, or opaque “quality
scores”) to a disciplined procurement policy whose failure modes are legible.

At the same time, we should be candid about what our guarantees do
not cover. The mechanism is DSIC with respect to costs because the al-
location rule is monotone in bids given fixed scores, but the most strategi-
cally important dimension in FL settings is often not cost—it is the ability
to influence measured contribution. Our baseline model treats v; (or o;)
as bid-independent and produced under a standardized protocol, which is
a meaningful design constraint but not a theorem of nature. If workers
can manipulate the scored update, overfit to Dy, or induce representation
changes that look beneficial on the probe while harming downstream objec-
tives, then the marketplace risks devolving into a Goodhart’s-law regime.
In that world, mechanism design alone is insufficient: we need enforcement
(attestation, rate limits, anomaly detection), robustness (multiple probes,
randomized scoring, or holdout rotation), and possibly explicit penalties for
detected manipulation. Fconomically, the right interpretation is that our
DSIC result is a guarantee about one channel of misreporting (costs), con-
ditional on institutional choices that close off other channels.

A second limitation is objective misspecification. We maximize addi-
tive total score Zi,j x;jv; subject to budgets and caps, which is the cor-
rect objective only insofar as (i) the scoring rule is aligned with the algo-
rithm’s true marginal value of participation and (ii) additivity is an ad-
equate approximation. In real multi-round FL, interactions are ubiqui-
tous: a worker’s value may depend on who else is selected, on the re-
quester’s current model state, and on diversity considerations that are not
well captured by group caps alone. These complementarities do not invali-
date the approach, but they point to the next modeling step: richer valua-
tion classes where F'(Sj) may be submodular, state-dependent, or explicitly
diversity-regularized. Mechanism-theoretically, that pushes us toward differ-
ent approximation techniques, and algorithmically it pushes scoring toward
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marginal contribution estimates rather than stand-alone scores. The open
question for the agenda is where the tractability frontier lies: how much
complementarity can we admit while preserving polynomial-time allocation,
budget feasibility, and interpretable threshold payments?

Third, our treatment of compatibility is intentionally stylized. Group
caps 7; provide a clean bridge to max-flow allocation, but in practice com-
patibility constraints can be endogenous and contested. Requesters may
demand exclusivity; regulators may require separation across sensitive at-
tributes; platforms may wish to impose anti-collusion or anti-sybil limits.
These constraints are not merely feasibility constraints; they have distribu-
tional consequences. A policy-relevant next step is to treat 7;; (and even
the partition G) as governance choices, and to evaluate them with explicit
fairness or market-power objectives. For example, one may wish to bound
concentration (no requester receives too many high-score workers), to guar-
antee minimum access for small-budget requesters, or to prevent systematic
under-selection of certain worker groups. Incorporating such constraints will
generally reduce measured welfare, and the appropriate question becomes:
what is the welfare cost of a given governance rule, and can we quantify it
ex ante?

The dynamic nature of FL procurement is a further frontier. In de-
ployments, auctions repeat over rounds ¢, budgets replenish, and both costs
and scores evolve with participation and learning. This creates two feed-
back loops: selection affects future scores (through model state and worker
incentives), and payments affect future bidding (through participation and
outside options). Our static mechanism can be run round-by-round, but
doing so ignores intertemporal incentive issues, such as bid shading to influ-
ence future thresholds or strategic waiting to be selected later when prices
rise. A natural next step is a repeated-game or dynamic mechanism layer
that commits to a policy over time (e.g., budget pacing, reserve prices, or
participation guarantees) while preserving the core monotonicity property
needed for cost truthfulness. A complementary empirical step is to measure
how rapidly v! drifts with ¢ and whether the ranking stability is high enough
that simple round-wise procurement is already near-optimal.

Finally, we see a concrete engineering agenda that connects theory to
implementation. The most immediate deliverables are: (i) open benchmark
suites for multi-tenant FL procurement that report not just accuracy, but
also budget utilization, threshold prices, and constraint binding; (ii) stan-
dardized scoring interfaces that make bid-independence auditable; (iii) secure
execution or attestation pathways for the scored update to reduce manip-
ulation; and (iv) diagnostic tooling that reports vUmin, Umax, and effective n
so that approximation guarantees are not purely symbolic. More ambitious
deliverables include privacy-preserving scoring (so that Dy can be sensitive),
collusion-resistant procurement (when workers coordinate bids), and mecha-
nisms that incorporate requester heterogeneity beyond budgets (risk, latency,
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or compliance). We view these as design choices that can be evaluated with
the same discipline as learning algorithms: specify assumptions, measure
violations, and quantify welfare loss.

The broad lesson is pragmatic. A marketplace for federated learning will
be judged not only by test accuracy, but by whether it can reliably translate
money into learning progress under real constraints and strategic behavior.
Mechanism—algorithm co-design offers a path to that reliability: it forces the
platform to declare what it measures, why it is aligned with learning, and how
it will pay for it. Our model does not claim to settle the problem; it clarifies
where guarantees are available today, where they hinge on governance, and
where the next round of work should focus if we want FL procurement to be
more than a heuristic—namely, an institution that is both computationally
implementable and economically credible.
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