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Abstract

Industrial IoT federated learning requires incentives that jointly
value model quality and timeliness, but existing schemes—such as
satisfaction-aware Stackelberg designs built on Age of Information (AoI)
and service latency—typically assume rational and reliable partici-
pants. We study a 2026 threat model in which a fraction of participants
are adversarial (poisoning, collusion, Sybil identities) while the rest are
rational and privacy-sensitive. We propose a clean mechanism that
combines (i) timeliness-aware payments (AoI/latency) aligned with
satisfaction metrics, (ii) robust aggregation to bound the statistical
influence of corrupted updates, and (iii) stake-based delayed settle-
ment with slashing triggered by robust anomaly scores. In a tractable
repeated Bayesian Stackelberg model, we derive closed-form best re-
sponses for honest nodes’ update cycles, characterize deterrence condi-
tions under which poisoning is unprofitable, and prove an O(ε) welfare
degradation bound when at most an ε-fraction of updates are adversar-
ial. The results provide a principled bridge between economic mecha-
nism design and robust federated learning, addressing a key limitation
noted by satisfaction-aware IIoT-FL frameworks: fully adversarial sce-
narios beyond rational behavior.
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1 1. Introduction and motivation: timely FL in
IIoT, why AoI/latency incentives fail under ad-
versaries; contributions and roadmap.

Industrial Internet-of-Things (IIoT) deployments increasingly rely on learn-
ing systems that must adapt in real time to nonstationary environments:
sensors drift, actuators wear, and operating regimes shift with demand and
maintenance schedules. Federated learning (FL) is attractive in this setting
because it allows the server (e.g., a plant operator or platform provider) to
improve a shared model without continuously pulling raw data off devices
that face bandwidth limits, privacy constraints, or safety certification bar-
riers. Yet the economic constraint is as important as the statistical one:
devices are owned by heterogeneous parties, operate under energy and com-
pute budgets, and face opportunity costs when they allocate cycles to train-
ing and communication. If we want “timely FL” in IIoT—updates that are
fresh enough to matter operationally—we must pay for timeliness in a way
that is consistent with rational behavior.

A natural starting point, and one commonly adopted in practice, is to tie
rewards to measures of freshness and responsiveness. Two such measures are
Age of Information (AoI), which captures how stale a device’s last effective
update is at the server, and service latency, which captures the delay from a
local training trigger to server receipt and incorporation. These metrics are
operationally salient: predictive maintenance and anomaly detection can fail
silently when the model is trained on stale regimes, and control loops can
destabilize when the learning pipeline introduces delays. From an incentive-
design perspective, AoI and latency also have the crucial property that the
server can observe them from timestamps, even if it cannot observe a device’s
raw data or internal costs.

However, timeliness-aware payments alone are not robust to adversarial
behavior. The core difficulty is that the same mechanism that encourages
frequent updates can inadvertently subsidize harmful ones. If a contract
pays more for shorter update cycles (smaller buffering periods) or lower la-
tency, an attacker can cheaply generate many “timely” submissions that are
strategically manipulated to degrade the global model. In IIoT, this is not
merely a theoretical concern: compromised devices, malicious contractors,
or economically motivated sabotage can inject poisoned gradients that pass
superficial timeliness checks. Worse, identity is cheap in many digital set-
tings. Without accountability, an adversary can create Sybil identities to
amplify its influence on the aggregate update, harvesting payments while
simultaneously pushing the model in a damaging direction.

This observation motivates the central tradeoff our model is designed to
illuminate. On one hand, the server wants to procure updates that are fre-
quent and responsive, because the value of learning is time-sensitive. On the
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other hand, the server must be resilient to a fraction of participants who do
not share the objective of improving the model, and who may even value
degradation. A purely “carrot-based” timeliness incentive creates a vulnera-
bility: it expands the feasible set of profitable adversarial strategies by paying
for speed rather than correctness. Conversely, a purely “stick-based” security
posture—heavy-handed exclusion, strict thresholds, or onerous participation
requirements—can starve the system of honest participation, especially when
honest nodes have private and heterogeneous costs of maintaining short up-
date cycles.

We address this tension by framing timely FL procurement as a repeated
principal–agent problem with endogenous participation, and by combining
three ingredients that are individually familiar but, we argue, jointly neces-
sary in adversarial IIoT FL: (i) a timeliness-aware reward that makes honest
effort (more frequent updates) privately optimal; (ii) an accountability layer
in the form of posted stake with probabilistic audit and slashing, which puts
capital at risk for detected manipulation; and (iii) an ε-robust aggregation
rule that limits the statistical influence of a bounded fraction of corrupted
updates. The economic logic is simple: robust statistics bounds the damage
of what slips through, while staking and slashing reduces the set of attacks
that are privately profitable to attempt in the first place. Timeliness incen-
tives then operate “on the residual,” encouraging honest agents to supply
fresh information without opening an unpriced channel for sabotage.

Two modeling choices merit emphasis because they connect directly to
implementable system design. First, we use observables the server plausibly
has in IIoT pipelines: timestamps (for AoI and latency) and an anomaly score
computed from submitted updates relative to a robust aggregate. The server
need not inspect raw data; it uses robust distances and acceptance thresholds
to decide whether an update is provisionally rewarded and whether an audit
is triggered within a settlement window. Second, we treat the stake require-
ment as a per-identity escrowed deposit rather than an abstract punishment.
This is not merely a modeling convenience: in distributed environments, “fu-
ture exclusion” is often weak because identities can be rotated, but capital
constraints are harder to evade. A stake converts identity creation and mis-
behavior into an economic decision with a real budget.

Our approach also clarifies why timeliness incentives “fail” under adver-
saries in a precise sense. When rewards increase in update frequency, a ma-
licious participant’s marginal benefit from submitting *any* update rises,
including manipulated ones. If the expected penalty for manipulation is
small—because audits are rare, anomaly detection is noisy, or slashing is
mild—then the equilibrium can feature excessive adversarial participation,
including Sybils, and the server can end up paying for the acceleration of
its own model degradation. In other words, timeliness rewards can increase
both the volume and the impact of poisoned submissions unless they are
paired with an enforcement mechanism that scales expected costs with the
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magnitude and detectability of manipulation. This is the central incentive-
compatibility gap we aim to close.

Within this framework, we make four main contributions. First, we pro-
vide a tractable Stackelberg-style model of timely FL procurement in which
honest nodes choose an update cycle θi in response to a posted reward param-
eter, and adversaries choose whether and how much to poison. The model
is intentionally parsimonious—e.g., logarithmic rewards in 1/θi and linear
private costs—because the purpose is to isolate economic forces that persist
across more complex specifications. Second, we derive sharp, interpretable
conditions under which poisoning is strictly dominated: sufficient thresholds
in stake, audit probability, and slashing severity that make the expected
cost of detectable manipulation exceed its sabotage benefit. Third, we con-
nect these incentive constraints to robust aggregation guarantees, showing
that even when some adversarial behavior remains (e.g., small perturbations
designed to evade detection), the aggregate update error and the resulting
welfare loss are bounded linearly in the adversarial fraction ε. This delivers
an end-to-end statement that the server’s equilibrium welfare degradation
is O(ε), with constants depending on robustness and Lipschitz parameters
rather than the number of nodes. Fourth, we explicitly account for Sybil
behavior through a stake budget: per-identity escrow transforms “number of
identities” into a priced resource, bounding the adversary’s effective market
share in any round.

We do not claim that staking and anomaly detection are a silver bul-
let. Audits are costly and imperfect; anomaly thresholds trade false pos-
itives against false negatives; and robust aggregation can blunt, but not
eliminate, coordinated attacks—especially as ε approaches the breakdown
point of the estimator. Moreover, a stake requirement can exclude hon-
est but liquidity-constrained devices, a first-order concern in IIoT ecosys-
tems with many small operators. Our objective is therefore not to propose
a one-size-fits-all mechanism, but to provide a disciplined way to reason
about design levers—(r, s, q, ϕ, z̄) in our notation—and to quantify the secu-
rity–participation tradeoff that practitioners face.

The remainder of the paper proceeds as follows. Section 2 situates our
mechanism relative to existing work on satisfaction- and timeliness-aware
incentives in FL, robust learning under poisoning, and accountability mech-
anisms based on collateral and slashing. Section 3 formalizes the model: tim-
ing, observables, payoffs, and the aggregation-and-audit pipeline. Section 4
characterizes honest best responses and participation constraints, highlight-
ing how timeliness rewards map into endogenous update cycles. Section
5 studies adversarial deviations and derives deterrence conditions that pin
down explicit security thresholds. Section 6 integrates robust aggregation
bounds to obtain an O(ε) welfare-loss guarantee and discusses compara-
tive statics for practical tuning. Section 7 concludes with implementation
considerations for IIoT deployments, including calibration with empirical
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anomaly-score distributions and the operational costs of audits.

2 2. Related work: satisfaction-aware incentives/Stackelberg
FL (AoI/latency), FedAvg and communication–computation
tradeoffs, robust FL against poisoning, stake/slashing
mechanisms and accountability.

A first strand of related work studies incentives for federated learning (FL)
participation under heterogeneous device costs and values. Much of this lit-
erature adopts a principal–agent or Stackelberg perspective: a coordinator
(server) posts a payment rule or selects participants, and devices respond
by choosing whether to participate and how much effort to exert (e.g., local
computation, communication frequency, or data contribution). Mechanisms
range from simple per-round rewards to auctions, budget-feasible selection,
and contract-theoretic menus designed to screen private costs or private data
quality. The unifying insight is that FL is not “free privacy”: even if raw
data never leaves the device, training and communication consume scarce
resources, and rational participants require compensation that is aligned
with the system’s objective. Our setting is in this spirit, but we empha-
size *timeliness* as a first-class procurement target, rather than treating
communication frequency as a purely engineering knob.

A closely related sub-literature makes the coordinator’s objective explic-
itly *satisfaction-aware*—valuing updates not only for their contribution to
accuracy but also for their operational relevance. In IIoT and cyber-physical
applications, the value of an update can decay with staleness: an accu-
rate model trained on yesterday’s regime may be less useful than a slightly
noisier model trained on today’s regime. Age of Information (AoI) has be-
come a canonical way to formalize this freshness dimension in networks,
and recent FL work leverages AoI-like metrics to schedule devices, priori-
tize transmissions, or define rewards that favor fresh information. Similarly,
latency-sensitive objectives appear in FL for real-time control and streaming
inference, where end-to-end delay (from local trigger to server incorporation)
enters the loss function or service-level agreement. Our approach aligns with
these ideas by tying compensation to observables derived from timestamps
(AoI and service latency), which are attractive precisely because they do not
require the server to observe private costs or raw data. Where we depart is
that we treat timeliness payments as an *incentive instrument* with strate-
gic side effects: rewarding freshness can unintentionally subsidize harmful
submissions unless paired with accountability and robust aggregation.

A second strand of work, often framed as systems optimization rather
than mechanism design, studies the communication–computation tradeoff in
FL, particularly in FedAvg-style protocols. In the classical view, devices
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choose (or are assigned) how many local steps to run before communicating,
balancing the cost of communication against the benefit of more frequent syn-
chronization. Extensions incorporate stragglers, device heterogeneity, band-
width constraints, and asynchronous or partial participation. Although this
literature does not always use AoI language, it effectively studies *update cy-
cles* and staleness: infrequent communication increases drift between local
and global models, while overly frequent communication can be infeasible in
constrained networks. Our model borrows the core economic structure im-
plied by these tradeoffs—shorter update cycles are costly but valuable—and
makes it explicit by allowing nodes to choose an update-cycle parameter θ
in response to posted rewards. In doing so, we connect a familiar systems
tradeoff to an equilibrium object that can be tuned through contract param-
eters, rather than assuming that the server can simply set update frequencies
exogenously.

A third, and crucial, literature addresses robustness of FL to adver-
sarial or Byzantine behavior, including data poisoning and model poison-
ing. The dominant approach is statistical: design aggregation rules whose
influence function is bounded under an ε-fraction of corrupted updates.
Coordinate-wise median, trimmed mean, geometric median, and methods
such as Krum/Bulyan provide formal guarantees under various assumptions
(bounded honest updates, sub-Gaussian noise, or bounded adversarial frac-
tion below a breakdown point). Complementary work develops detection
and filtering heuristics—distance-based anomaly scores, norm clipping, co-
sine similarity checks, or validation-set tests—that attempt to flag suspicious
updates before aggregation. These contributions are indispensable for IIoT
FL because compromised devices and malicious insiders are realistic threats,
and because robust aggregation can provide “graceful degradation” when
perfect exclusion is impossible.

At the same time, the robust FL literature typically treats adversar-
ial behavior as exogenous: an attacker corrupts some fraction of devices,
and the designer chooses an estimator that tolerates that fraction. What
is often missing is the economic margin: *when* is it privately optimal for
an attacker to participate, to create additional identities, or to choose a
particular poisoning magnitude? In settings where participants are paid,
adversaries may be strategic and profit-seeking (or sabotage-seeking), and
the attack surface depends on the payment rule. In particular, timeliness-
aware rewards can change the attacker’s marginal benefit from submitting
more updates (including Sybil updates), and detection thresholds can induce
“stealth” equilibria in which adversaries optimally pick small perturbations
to evade flags. Our framework is designed to complement robust statistics by
endogenizing these choices: robust aggregation bounds the harm conditional
on a residual adversarial fraction, while incentives and penalties shape that
residual fraction and the equilibrium poisoning intensity.

A fourth strand of related work concerns accountability mechanisms
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based on collateral, escrow, and slashing—ideas that originate in distributed
systems and blockchains (e.g., proof-of-stake security, bonded validators) but
have increasingly influenced marketplace and ML settings. The core design
principle is to make misbehavior costly by putting capital at risk, especially
when identities are cheap to create and reputational penalties are weak. In
blockchain protocols, slashing conditions are triggered by cryptographic ev-
idence of equivocation or protocol violations; in data and compute markets,
escrow and deposits reduce fraud and non-performance; and in crowdsourcing
and peer-prediction mechanisms, deposits can discipline strategic misreport-
ing when ground truth is costly to verify. These mechanisms are conceptually
appealing for IIoT FL procurement because they directly address Sybil am-
plification: if each identity must post stake s, then creating many identities
becomes a budgeted decision rather than a purely technical one.

However, importing “slashing” into FL raises two practical issues that our
model highlights. First, unlike many blockchain slashing events, poisoning
is not always *verifiable* with deterministic evidence; detection is statistical
and imperfect. This makes probabilistic audit and thresholding central, and
it creates a tradeoff between false positives (punishing honest devices due to
noise or benign heterogeneity) and false negatives (failing to deter attacks).
Second, collateral requirements interact with participation incentives: a high
stake can deter adversaries but also exclude liquidity-constrained honest par-
ticipants—an especially salient concern in fragmented IIoT ecosystems where
many devices are owned by small operators. Thus, stake-based accountabil-
ity must be analyzed jointly with the reward rule and the acceptance criteria,
rather than treated as an add-on security layer.

Our contribution sits at the intersection of these strands. We take the
satisfaction/timeliness-aware objective seriously by making AoI and latency
observables that enter the payment rule; we take the FedAvg-style cycle
tradeoff seriously by letting nodes choose update frequency as a best re-
sponse to rewards; we take robust FL seriously by using an ε-robust ag-
gregator and anomaly scoring to bound statistical influence; and we take
stake/slashing seriously by modeling delayed settlement with probabilistic
auditing, which is closer to implementable escrow-based procurement than
instantaneous punishment. The novelty is less any single ingredient than the
way they discipline each other: robust aggregation limits worst-case damage,
while staking and auditing change the attacker’s incentives to participate, to
Sybil, and to poison.

This synthesis also clarifies limitations of existing approaches when de-
ployed in isolation. A purely timeliness-driven reward can unintentionally
purchase adversarial volume; purely robust aggregation can still leave room
for low-amplitude, high-frequency attacks and does not, by itself, price Sybil
creation; and purely stake-based deterrence can be too blunt if detection is
noisy or if honest liquidity constraints bind. By embedding all components
in a single equilibrium model, we can derive interpretable comparative stat-
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ics—how increasing q (audit rate) or ϕ (slashing severity) substitutes for
increasing s (stake), and how tightening anomaly thresholds interacts with
honest participation.

With this positioning in mind, we now formalize the environment: the
agents, timing with delayed settlement, the observables (AoI, latency, anomaly
scores), and the robust aggregation-and-audit pipeline that links submitted
updates to payments and penalties.

3 3. Model primitives: agents, timing with de-
layed settlement, information structure, observ-
ables (AoI, latency, anomaly score), and robust
aggregation operator.

We model the interaction as a repeated procurement game indexed by dis-
crete rounds t = 1, 2, . . .. In each round, a single server (the principal)
contracts with a set of participating identities, indexed by i ∈ {1, . . . , I}
after any selection or admission step. Each identity corresponds to an IIoT
node controlled either by a rational honest operator or by an adversary;
we write H and A for the sets of honest and adversarial identities, with
|A|/I ≤ ε < 1/2. Allowing multiple identities per physical operator captures
Sybils: what matters for the server is the effective fraction ε of corrupted
submissions among those that actually participate in the round.

Contracting instrument and node actions. At the start of round t,
the server posts a contract

C ≡ (r, s, q, ϕ, z̄),

together with a robust aggregation operator Agg(·). The scalar r > 0 is
a unit reward parameter, s ≥ 0 is the per-identity stake held in escrow,
q ∈ (0, 1] is the audit probability (or audit rate), ϕ ∈ (0, 1] is the slashing
fraction applied upon detection, and z̄ is an anomaly-score threshold used
both for acceptance/weighting and for triggering penalties. Given C, each
identity decides whether to participate (and, if so, escrows s) and chooses
an update-cycle parameter θi, which we interpret as the node’s buffering
period between successive “fresh” local updates delivered to the server. Op-
erationally, smaller θi corresponds to more frequent communication and/or
more aggressive local computation, which is valuable for freshness but pri-
vately costly.

Each participating identity submits a model update vector ui (e.g., a
gradient or a model delta). Honest nodes submit an unmanipulated update
ui = gi(θi) generated by their local data and their chosen update cycle.
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Adversarial identities can instead submit

ui = gi(θi) + δi,

where δi is a poisoning perturbation, potentially coordinated across identities
in A. We keep the mapping from θi to the distribution of gi deliberately
abstract, because our focus is not on a particular learning algorithm but on
the incentive link between timeliness, detectability, and robust aggregation.

Delayed settlement and per-round timing. The timing within a round
is designed to reflect implementable escrow and probabilistic verification
rather than instantaneous, perfectly verifiable punishment.

1. Posting. The server announces C and the aggregation rule Agg. 2.
Entry and escrow. Identities choose participation and deposit stake s into
escrow for the duration of an audit window of length Ta. 3. Submission with
timestamps. Participating identities choose θi and submit updates ui to-
gether with metadata (timestamps and protocol logs) that permit the server
to compute timeliness observables. 4. Provisional settlement. The server
computes the robust aggregate ū = Agg({ui}Ii=1), derives anomaly scores zi
for each submission, and issues a provisional payment Ri based on θi and ac-
ceptance indicators described below. Escrowed stake remains locked. 5. Au-
dit and finalization. With probability q, the server performs an audit/check
within the window Ta. If an identity is deemed anomalous (captured by
zi > z̄, or more generally by a stochastic detection event with probability
increasing in ∥δi∥), then a fraction ϕs of its stake is slashed and the remain-
der is returned according to the policy. If no slashing occurs, the stake is
returned at the end of the window and the provisional payment is finalized.

This delayed-settlement structure matters economically: it allows the
server to condition eventual transfers on information that arrives after sub-
mission (e.g., validation, redundancy checks, or cross-round consistency),
while still compensating nodes quickly enough to preserve participation in-
centives.

Observables: AoI and latency as contractible signals. The server
cannot observe a node’s private cost σi, raw data, or “true” update quality
directly. What it can observe reliably are timing-related metrics derivable
from protocol metadata. We use two such observables.

First, Ai(θi) denotes the node’s (average) Age of Information (AoI), in-
terpreted as the staleness of the information embodied in ui at the moment
the server incorporates it. In many queueing/AoI models, AoI increases in
the update cycle θi; our analysis only requires that Ai(·) be well-defined and
monotone in θi over the relevant range.

Second, Ei(θi) denotes end-to-end service latency (e.g., from local trigger
to server receipt and incorporation), which may also depend on θi through

10



batching and communication scheduling. Again, we keep the functional form
flexible: Ei may incorporate heterogeneous network conditions and device
compute limits, but it is observable to the server via timestamps.

These observables are attractive contract inputs in IIoT because they
are (i) hard to falsify without deeper protocol compromise and (ii) directly
aligned with the operational notion of “freshness” and “responsiveness” that
motivates procurement in cyber-physical settings.

Robust aggregation and anomaly scoring. Given submitted updates,
the server aggregates using an ε-robust estimator Agg(·), such as a coordinate-
wise trimmed mean or coordinate-wise median. We denote the resulting
aggregate by

ū ≡ Agg({ui}Ii=1).

Robustness enters through a bounded-influence property: when fewer than a
breakdown fraction of updates are corrupted, no single (or small coalition of)
adversarial submissions can arbitrarily move ū. This is the statistical layer of
defense that yields “graceful degradation” as ε grows, and it is complementary
to economic deterrence.

To connect robustness to incentives, the server additionally computes an
anomaly score for each submission. A canonical choice is a robust distance
to the aggregate,

zi ≡ ∥ui − ū∥,
though in practice one might use coordinate-wise standardized residuals,
cosine distance, or a robust Mahalanobis metric. The contract specifies a
threshold z̄: submissions with zi > z̄ are treated as suspicious for both ac-
ceptance (payment eligibility) and potential slashing during audits. This
threshold is the main policy lever mediating false positives (honest but
noisy/heterogeneous updates) versus false negatives (stealthy attacks).

Payment and acceptance. The base reward is designed to make timeli-
ness a priced choice. We adopt a tractable form,

Rbase
i (θi; r) = r ln

(
1
θi

)
,

which is decreasing and concave in θi: reducing the update cycle (being
more timely) yields diminishing marginal payment, matching the idea that
extreme update frequency is valuable but not infinitely so. Payments are
then gated by acceptance indicators that depend only on observables:

wi ≡ 1{zi ≤ z̄}·1{Ai(θi) ≤ Amax}·1{Ei(θi) ≤ Emax}, Ri = wiR
base
i (θi; r).

Thus, timeliness is incentivized both “softly” through the reward slope and
“hardly” through eligibility constraints. This reflects a practical procurement
posture: the server can refuse to pay for submissions that are either too stale,
too slow, or too anomalous to be safely incorporated.
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Information and strategic uncertainty. The key private information
on the node side is the linear update-cycle cost parameter σi, which captures
heterogeneous compute/energy/communication costs and is known only to
the node. The server does not observe σi, nor can it directly distinguish
honest from adversarial identities ex ante. Adversaries observe the contract
C and can coordinate on both participation (including Sybil scale, subject to
capital at risk) and poisoning choices δi. Detection is inherently statistical:
conditional on a poisoning magnitude δ, we summarize audit effectiveness by
a detection probability pdet(δ) that increases in ∥δ∥. The realized slashing
event therefore occurs with probability q pdet(δ), which captures both limited
audit coverage and imperfect tests.

This reduced-form detection model is intentionally conservative. It ac-
knowledges that many plausible audits—held-out validation, redundancy
checks, cross-device consistency tests, or secure hardware attestations—are
noisy and costly. It also makes clear where mechanism design must “pick up
the slack”: when audits are weak (low q or low pdet), the contract must rely
more heavily on stake and robust aggregation to control expected damage.

Taken together, these primitives define a stationary stage game repeated
over rounds: the server trades off timeliness and learning value against pay-
ments and audit costs, while nodes trade off rewards against private costs
and (for adversaries) the expected penalty from detection and slashing. In
the next section, we shut down adversarial behavior (δi ≡ 0) to recover the
baseline Stackelberg logic—how r induces an interior best response θ∗i (r)
and how the server prices timeliness when only heterogeneous honest costs
matter.

4. Baseline benchmark (no adversaries). We first shut down strate-
gic manipulation by assuming δi ≡ 0 for all participating identities and that
anomaly-based gating does not bind on honest behavior (formally, zi ≤ z̄ and
the timeliness feasibility checks are satisfied at the optimum). This bench-
mark isolates the Stackelberg pricing logic: how the server’s unit reward
parameter r induces a choice of timeliness, and how the server optimally
trades off satisfaction gains from fresher updates against the transfer needed
to elicit them.

Honest node’s choice: timeliness as an intensity decision. Oper-
ationally, the node controls how “often” it refreshes and communicates. It
is convenient to work with an update intensity variable xi ≡ 1/θi (updates
per unit time), since many engineering costs scale approximately linearly
with activity rates. Under the posted rule Rbase

i (θi; r) = r ln(1/θi) = r lnxi,
a parsimonious reduced-form for an honest node’s private operating cost is
σixi, where σi > 0 is the node-specific marginal cost of sustaining update
activity (energy, compute, bandwidth, engineering overhead).
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In the baseline (no slashing risk, and with acceptance nonbinding so
wi = 1), an honest participating node solves

max
xi∈[xmin,xmax]

{
r lnxi − σixi

}
,

where xmin, xmax summarize feasibility or protocol bounds. The objective is
strictly concave in xi, yielding the interior first-order condition

r

xi
− σi = 0 ⇒ x∗i (r) =

r

σi
.

Translating back to the buffering period θi = 1/xi, we obtain

θ∗i (r) =
σi
r
,

clipped to the feasible interval [θmin, θmax] induced by xmin, xmax and any
hard AoI/latency eligibility constraints. This is the baseline best response
underlying Proposition 1: higher r steepens the reward for timeliness and
induces more frequent updates (smaller θi), with sensitivity governed by the
private cost σi.

Two comparative-statics points are immediate and economically useful.
First, the elasticity of the chosen intensity is constant: x∗i (r) scales linearly
in r. Second, heterogeneity maps cleanly into performance: low-cost nodes
(small σi) optimally deliver fresher information (smaller θi) under a uniform
posted price.

Participation (IR) in the baseline. Even without adversaries, partic-
ipation is not automatic because nodes incur operating costs and may face
a per-round opportunity cost of locking capital if the mechanism requires
escrowed stake. With no slashing in the baseline, the stake s is returned, so
its only economic bite is the opportunity cost κss. Using the interior choice,
the maximized operating surplus (before stake opportunity cost) is

max
x

{
r lnx− σx

}
= r ln

(
r
σ

)
− r.

Hence an honest identity’s baseline individual rationality condition can be
written as

r ln
(

r
σi

)
− r − κss ≥ 0,

again subject to the possibility that bounds/eligibility constraints force xi
away from the interior optimum. This expression makes transparent how
r plays a dual role: it both increases the slope of rewards and increases
rents net of operating cost, thereby expanding the set of σi types willing to
participate. In the strict baseline where we abstract from security needs,
the server would set s = 0 (and q = 0) because these instruments only
create deadweight costs when there is no adversarial behavior to deter. We
nonetheless keep κss visible because the same IR margin becomes pivotal
once stake is repurposed for deterrence in the next section.
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Server’s Stackelberg problem: pricing timeliness for satisfaction.
Given the honest best response θ∗i (r) = σi/r, the server anticipates a map-
ping from its posted r into the realized timeliness profile and thus into satis-
faction. In the benchmark, robust aggregation is innocuous (all updates are
honest), and the server’s per-round utility reduces to

V (r) =
∑
i∈H

β Gi

(
θ∗i (r)

)
−

∑
i∈H

Rbase
i

(
θ∗i (r); r

)
,

up to any fixed operating costs. Substituting the best response, payments
take the convenient closed form

Rbase
i

(
θ∗i (r); r

)
= r ln

( 1

σi/r

)
= r ln

( r

σi

)
,

while timeliness enters satisfaction through θ∗i (r) = σi/r. Thus, for a given
participating set, raising r has a benefit (it reduces θi, improving fresh-
ness/latency and hence Gi) and a cost (it increases transfers through r ln(r/σi)).

To see the structure most sharply, consider a representative participating
identity of type σ with satisfaction contribution G(θ) that is decreasing in θ
over the relevant range (fresher is better). The server’s per-identity objective
is

β G
(σ
r

)
− r ln

( r

σ

)
.

An interior optimal r (ignoring entry effects for the moment) satisfies the
first-order condition

β G′
(σ
r

)
·
(
− σ

r2

)
= ln

( r

σ

)
+ 1.

Because G′(·) < 0, the left-hand side is positive: it is the marginal satisfac-
tion gain from increasing r via improved timeliness. The right-hand side is
the marginal transfer cost of increasing r, which is strictly increasing in r.
This delivers a standard Stackelberg intuition: we push r upward until the
marginal value of inducing faster updates exactly equals the marginal cost
of paying for them.

Budget and timeliness constraints. In practice, the server often faces
explicit procurement constraints: a per-round payment budget B and/or op-
erational timeliness requirements implemented through eligibility thresholds
such as Ai(θ) ≤ Amax and Ei(θ) ≤ Emax. In the baseline, these constraints
map directly into bounds on θ∗i (r). For example, if Ai(θ) is increasing and
Ai(θ) ≤ Amax implies θ ≤ θ̄A, then a sufficient condition for feasibility for
type σi is

θ∗i (r) =
σi
r

≤ θ̄A ⇔ r ≥ σi
θ̄A

.

Hence hard timeliness requirements translate into a minimum price needed
to elicit admissible behavior from a given cost type. Conversely, a budget
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constraint
∑

iRi ≤ B limits how far r can be raised, especially when par-
ticipation expands with r. Economically, the baseline mechanism therefore
functions as a timeliness “market-clearing” device: r must be high enough to
induce admissible freshness from the marginal participating node, but not
so high that transfers exceed the server’s willingness (or ability) to pay.

Satisfaction-aware Stackelberg equilibrium (baseline). Putting these
pieces together, a baseline Stackelberg equilibrium is a pair

(
rbase, {θbasei }

)
such that (i) given rbase, each honest participating node chooses θbasei =
σi/r

base (clipped to feasibility/eligibility bounds), and (ii) rbase maximizes
the server’s expected welfare subject to the induced participation/feasibility
constraints (and any budget constraint). This benchmark clarifies what the
contract is buying even before introducing adversaries: a single scalar r im-
plements a disciplined timeliness response across heterogeneous nodes, and
the server’s optimal pricing rule is pinned down by a marginal tradeoff be-
tween satisfaction improvements from fresher information and the convex-
in-r transfer cost embedded in r ln(r/σ).

This is also where the security instruments will later “hook in.” Once ad-
versaries can mimic participation, the same levers that shape honest timeli-
ness (r) must be paired with levers that price malicious behavior (s, q, ϕ, z̄).
The baseline equilibrium thus provides the clean reference point against
which we evaluate deterrence and welfare degradation when poisoning and
Sybils are reintroduced.

5. Adversary model: poisoning, Sybils, and audit-based enforce-
ment. We now reintroduce strategic manipulation by allowing a subset of
participating identities to be adversarial. Our goal is not to model a particu-
lar attack in full engineering detail, but to capture the economically relevant
margins: (i) an adversary can distort the learning signal by submitting a poi-
soned update, (ii) it can scale its influence by spawning Sybil identities, and
(iii) it trades off an external benefit from degradation against an expected
monetary penalty induced by anomaly detection, auditing, and slashing.

Poisoning as an additive action. For each participating identity i, the
submitted update is a vector ui ∈ Rd. Honest identities submit an unmanip-
ulated update gi, which may depend on their chosen update cycle θi through
data volume and freshness. Adversarial identities instead choose an additive
perturbation

ui = gi + δi,

where δi is the poisoning action. This reduced form encompasses both untar-
geted poisoning (pushing the model away from the honest descent direction)
and targeted attacks (pushing toward a specific malicious objective), while
keeping the contract-design problem tractable.
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Two modelling choices matter. First, we allow adversaries to coordinate
their {δi}i∈A across identities; this is without loss for worst-case analysis, and
it is operationally plausible when a single actor controls multiple devices or
Sybils. Second, we do not assume the server observes gi or raw data—only ui,
along with timestamp-derived timeliness metrics and anomaly scores com-
puted after aggregation. This asymmetry is precisely why purely ex post
“correctness” verification is hard, motivating probabilistic audits and collat-
eral.

External sabotage benefits. Adversaries derive an exogenous benefit
from harming the global model, for example by degrading predictive perfor-
mance in a safety-critical IIoT pipeline, increasing downtime, or reducing the
principal’s profit. We represent this by a nonnegative degradation functional
D(ū), where ū = Agg({ui}Ii=1) is the robust aggregate update used by the
server. In utility terms, each adversarial identity obtains

B · D(ū),

where B ≥ 0 scales the adversary’s “value of sabotage.” This formulation is
deliberately agnostic about the exact learning dynamics: all that matters for
incentives is that the adversary can increase D by choosing δ, but that the
mapping from δ to ū is attenuated by the aggregation rule.

To connect sabotage to the statistical layer, we use a bounded-influence
property of robust aggregation: when at most an ε-fraction of updates are
adversarial, the shift in the aggregate is controlled,

∥Agg({gi + δi})−Agg({gi})∥ ≤ CAgg ε ·max
i∈A

∥δi∥,

(or an ε-linear bound under bounded updates). Economically, this means
the marginal return to poisoning is decreasing in the strength of robustness
and increasing in adversarial market share.

Sybil capability through a stake budget. A key difficulty in open
participation settings is that “one agent, one vote” is not enforceable: an
adversary may create many identities. We treat Sybils as controlled identities
that can each submit an update and claim payment, but must each satisfy
the protocol’s entry requirements. The central instrument is stake: each
participating identity must escrow s for the duration of an audit window.

We model the adversary as having a total stake budget W . Because
the mechanism requires posting s per identity per round, the number of
adversarial identities that can participate is bounded by

|A| ≤
⌊W
s

⌋
.

16



Thus, conditional on a total number of participants I after selection, the
effective adversarial fraction satisfies

ε ≡ |A|
I

≤ W

sI
.

This captures the practical role of stake as an identity-pricing device: it
converts Sybil creation from a near-free action into a resource-constrained
decision. Importantly, it also links security to market thickness: for fixed
W and s, adversarial share falls as honest participation expands (larger
I). Conversely, if the principal sets s too high, it may deter honest en-
try and inadvertently raise ε among those who remain. This is the basic
security–participation tension we will carry into the contract problem.

Adversaries mimic timeliness unless deterred. Because the payment
rule rewards timeliness, an adversary may also choose a buffering period θ (or
intensity) strategically. In many deployments, nothing prevents an attacker
from appearing “fresh”: it can submit frequent updates even if their content
is malicious. Accordingly, we allow adversarial identities to (i) choose θi to
satisfy eligibility thresholds on AoI/latency and to maximize base payments,
and then (ii) choose δi to trade off sabotage benefit against detection risk.
This is the substantive reason we cannot rely on timeliness incentives alone
for security: the mechanism must couple timeliness pricing to content-based
screening and penalties.

Detection technology: anomaly scores and probabilistic auditing.
We assume the server computes a robust aggregate ū and then assigns each
identity an anomaly score

zi = ∥ui − ū∥,

or more generally a robust distance. An identity is flagged if zi > z̄, where z̄
is a threshold chosen by the server. This is not yet a “conviction”; rather, it
is a trigger that determines whether (a) the identity is accepted for payment
and (b) whether it is exposed to slashing conditional on audit.

The critical behavioural link is that larger perturbations are easier to
detect. We encode this by a detection probability function pdet(δ) that is
increasing in ∥δ∥. Since the server may not deterministically audit every
round, we introduce an audit probability q ∈ (0, 1]. With probability q, an
audit/check occurs within a window of length Ta after provisional settlement.
We treat Ta as institutional latency: it can reflect, for example, time to run
heavier consistency checks, cross-validate against held-out data, or reconcile
multi-round behavioural signals.

Putting these pieces together, the probability that a deviating identity
is ultimately penalized is

P(slashed | δ) = q pdet(δ),
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where pdet is itself shaped by the threshold z̄, the aggregation rule, and
the ambient noise in honest updates. The main limitation is worth stating
explicitly: pdet is not “ground truth verification.” It is a statistical screen,
so it inevitably entails both false negatives (missed attacks) and false posi-
tives (honest-but-noisy updates flagged). This is precisely why we separate
(i) gating/weighting in payment and (ii) slashing under audit: the former
manages learning quality in real time, while the latter supplies deterrence
through expected penalties.

Slashing and the adversary’s monetary tradeoff. When an audit oc-
curs and an identity is flagged, the mechanism slashes a fraction ϕ ∈ (0, 1] of
the posted stake s. Conceptually, ϕs is the collateral “at risk” that backs the
integrity of submitted updates. In addition, a flagged identity may forfeit
its base payment (through acceptance/weighting rules applied to zi), which
further increases the expected marginal cost of large deviations.

Thus an adversarial identity’s expected payoff from a poisoning choice δ
can be written as the sum of (i) any base payment it can still collect if not
rejected, (ii) operating costs and the opportunity cost of locking stake, (iii)
expected slashing losses under audit, and (iv) the sabotage benefit BD(ū).
This makes clear what the server can and cannot do. The server cannot
directly reduce B, but it can (a) reduce the mapping from δ to ū via robust
aggregation, (b) increase the expected penalty via s, q, ϕ, and (c) tune z̄
to manage the acceptance/deterrence tradeoff. The next section formalizes
how these levers combine into an implementable mechanism that preserves
the baseline timeliness incentives while making poisoning and Sybil scaling
privately unattractive.

6. Mechanism: timeliness-aware payment, anomaly-weighted ac-
ceptance, and stake escrow. We now assemble the principal’s instru-
ments into a single implementable contract. The design objective is to pre-
serve the baseline economic logic—pay more for fresher, lower-latency con-
tributions—while adding a content-integrity layer that makes poisoning (and
Sybil scaling) privately unattractive. The resulting mechanism is intention-
ally modular: timeliness metrics are observed from metadata, robustness is
enforced statistically through aggregation and anomaly scoring, and deter-
rence is provided financially through escrow and slashing.

Contract form and observable signals. In each round t, the server
posts a contract

C = (r, s, q, ϕ, z̄;Amax, Emax),

together with a specified robust aggregation rule Agg(·) and a public descrip-
tion of how anomaly scores are computed. The contract uses three classes
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of observables: (i) timeliness metadata (timestamps, receipt times) that in-
duce an Age-of-Information statistic Ai(θi) and a service latency statistic
Ei(θi); (ii) the submitted update vector ui (or a commitment to it) used
only through the robust aggregate ū and anomaly score zi; and (iii) protocol
events within the audit window (whether an audit is triggered and whether
slashing is executed). Crucially, the contract does not require the server
to observe private costs σi or raw data, and it does not require determinis-
tic verification of “correctness.” Instead, it prices observables and penalizes
statistically suspicious behaviour.

Timeliness-aware base reward. We operationalize the timeliness incen-
tive by paying a concave reward in update frequency. Using the scalar reward
parameter r > 0, the base component is

Rbase
i (θi; r) = r ln

( 1

θi

)
,

which captures diminishing returns to ever-faster updates while maintain-
ing tractability for equilibrium analysis. This form is not essential—any
increasing concave function would play a similar role—but the log specifica-
tion makes transparent how the server trades off marginal freshness against
linear operating costs at the node. In practice, θi need not be explicitly
declared: the server can infer an “effective” update cycle from inter-arrival
times or rolling windows, and use that inferred statistic to compute Rbase

i .

Acceptance region as a three-way screen (AoI, latency, anomaly).
Timeliness rewards alone cannot prevent low-quality or malicious content
from being paid. We therefore couple the base reward to an acceptance rule
that is deliberately simple to implement and to audit. Define the acceptance
indicator

wi ≡ 1{zi ≤ z̄} · 1{Ai(θi) ≤ Amax} · 1{Ei(θi) ≤ Emax},

where z̄ is the anomaly threshold and Amax, Emax are hard timeliness caps.
The induced acceptance region in observable space is

R ≡ {(A,E, z) : A ≤ Amax, E ≤ Emax, z ≤ z̄}.

The economic role of R is twofold. First, it prevents the server from paying
for updates that are predictably useless for the learning task (too stale, too
delayed). Second, it makes large poisoning attempts expensive even before
any audit is realized: if poisoning pushes zi above z̄, the identity is rejected
for payment in that round (and, as we specify below, becomes eligible for
slashing conditional on audit). This separation between “real-time gating”
and “ex post penalties” is important in IIoT settings, where the principal
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may want to immediately exclude suspicious updates from training while
still allowing due process through an audit window.

Although we present wi as a binary gate, the same structure accom-
modates continuous weighting—e.g., replacing 1{zi ≤ z̄} with a decreasing
function of zi. We focus on the indicator because it yields clean incen-
tive bounds: the marginal benefit of pushing beyond z̄ collapses sharply,
strengthening deterrence when combined with stake at risk.

Robust aggregation and anomaly scoring. Given submitted updates
{ui}Ii=1, the server computes the robust aggregate

ū = Agg({ui}Ii=1),

and then assigns each identity an anomaly score, for example

zi = ∥ui − ū∥.

What matters for the mechanism is not the specific norm or distance, but
that zi is computed relative to a robust center rather than a vulnerable mean.
This ensures that anomalous scores are informative even when a minority of
identities are adversarial, and it aligns the statistical layer with the economic
layer: if a deviation δi can only weakly move ū under robust aggregation, then
(for fixed δi) the distance ∥ui − ū∥ tends to increase, raising the probability
of rejection and eventual slashing.

Payments: provisional settlement with escrow-backed finality. We
implement the transfer as a two-stage settlement that mirrors common prac-
tice in blockchain and in high-assurance procurement: pay provisionally for
responsiveness, but delay finality until the audit window closes. The round-t
payment rule is

Ri = wiR
base
i (θi; r),

where Ri is paid provisionally at the end of the round (or credited in an
internal ledger), while the stake s remains locked in escrow for Ta periods.
This escrow is not cosmetic: it is the capital-at-risk that makes probabilistic
auditing bite.

Within the window, an audit is triggered with probability q. If an audited
identity is flagged (i.e., its round-t realization had zi > z̄), then a fraction ϕ
of the escrowed stake is slashed, so the penalty is ϕs. If the identity is not
flagged (or if no audit occurs), the stake is returned after Ta, and provisional
payments become final. This sequencing does two practical things. First, it
separates the computation-heavy components (robust aggregation, anomaly
scoring, possible additional checks) from the fast path needed to keep training
moving. Second, it allows the principal to choose q as a costed enforcement
intensity rather than an all-or-nothing verification burden.
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Why escrow is essential (and how it interacts with acceptance).
From an incentive perspective, the escrowed stake provides a monetary down-
side that scales with identity creation. Without it, Sybils can collect pay-
ments whenever they evade detection, and the mechanism’s only defense is
statistical robustness—effective against small contamination, but not suffi-
cient when the adversary can cheaply increase ε. With escrow, each ad-
ditional identity requires capital, and each detected deviation generates an
expected loss proportional to qϕs. The acceptance rule complements escrow:
because payment is gated by wi, an identity that crosses the anomaly thresh-
old loses upside in the same round in which it creates statistical harm, even
before an audit outcome is realized. This “lose the prize, risk the bond”
structure is the core economic coupling between learning quality control and
enforceable deterrence.

Implementability: on-chain escrow and off-chain computation. The
mechanism is implementable as a hybrid system. The minimal on-chain (or
trusted execution) components are: (i) staking/escrow of s per identity, (ii)
an unambiguous record of submission timestamps and receipt times (to com-
pute Ai and Ei), (iii) a commitment to the posted contract C for the round,
and (iv) automated release/slashing logic after the audit window. Every-
thing else can be off-chain: robust aggregation Agg(·), anomaly scoring, and
any expensive audits (e.g., cross-validation, gradient consistency checks, or
multi-round behavioural analysis).

A practical pattern is: nodes submit either the update ui directly to the
server (with a hash committed on-chain) or submit an encrypted update to
a designated off-chain aggregator; the server (or an external auditor) then
posts a signed attestation of the vector of flags {1{zi > z̄}} along with
commitments to ū and relevant statistics. The on-chain contract can accept
the attestation as the trigger for slashing, possibly with a challenge period.
This division is important because ui ∈ Rd is typically large, and putting
raw updates on-chain is infeasible. Conversely, the economic instruments we
rely on—escrow, slashing, and time-locked finality—are exactly what smart
contracts are good at enforcing.

Limitations and tuning knobs. Two caveats matter for practice and
will matter for equilibrium. First, anomaly-based screening is imperfect: if z̄
is too strict, honest-but-noisy devices are rejected and may exit (tightening
participation constraints); if z̄ is too lax, more poisoning is accepted and
fewer identities are exposed to slashing. Second, audits are costly (caq in
server utility), so q must be chosen as an enforcement intensity that balances
deterrence against operational burden. These are not bugs—they are the
central tradeoffs the model is meant to illuminate. By parameterizing the
contract with (r, s, q, ϕ, z̄), we give the principal a small set of levers that
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map cleanly to institutional choices: reward generosity, collateralization,
enforcement intensity, penalty severity, and statistical strictness.

Having specified the mechanism, we next analyze behaviour under C:
honest nodes choose θi and participation given r and the acceptance con-
straints, while adversaries choose whether and how much to poison given the
expected penalty qϕs and the acceptance loss induced by z̄. This equilibrium
analysis yields explicit deterrence thresholds (s⋆, q⋆, ϕ⋆) and clarifies when
the mechanism achieves robustness with only O(ε) welfare loss.

7. Equilibrium analysis: honest effort/participation and adversary
best responses. We now characterize behaviour under a posted contract
C = (r, s, q, ϕ, z̄;Amax, Emax). The key equilibrium objects are (i) the honest
node’s update-cycle choice θi and participation decision, and (ii) the adver-
sary’s poisoning magnitude δ (and participation scale) given that deviation
raises anomaly risk and exposes escrowed stake to probabilistic slashing.
Throughout, we treat Agg(·) and the anomaly scoring rule as fixed and pub-
licly known, so agents best-respond to the induced mapping from deviations
to acceptance and detection probabilities.

Honest update-cycle choice. Fix a round and consider an honest node
i that expects to be accepted (i.e., wi = 1) for its feasible choice of θi.
Ignoring constant stake-return terms (the stake is returned absent slashing,
but posting it incurs an opportunity cost κss), the honest node’s problem is
to choose θi to maximize

r ln
(

1
θi

)
− σiθi subject to θi ∈ [θmin, θmax] ∩Θtime,

where Θtime ≡ {θ : Ai(θ) ≤ Amax, Ei(θ) ≤ Emax} is the “timeliness-feasible”
set. The objective is strictly concave in θi, so the first-order condition gives
the interior best response

θ∗i (r) =
σi
r
,

with the understood projection (“clipping”) to the feasible set whenever the
caps bind. Economically, r raises the marginal value of freshness while σi
captures the node’s marginal operating cost of maintaining a shorter cycle;
thus higher r induces smaller θi (more frequent updates), while higher σi
induces larger θi.

Two practical remarks are useful. First, the timeliness caps can be inter-
preted as enforcing a minimum service level: if Ai(θ) and Ei(θ) worsen with
θ, then Θtime typically imposes an upper bound θ ≤ θ̄time

i . In that common
case, the effective best response is θ∗i (r) = min{max{σi/r, θmin}, θ̄time

i }. Sec-
ond, because Rbase

i is concave in update frequency, the equilibrium response
is smooth: increasing r does not generate corner solutions at “infinitely fast”
updates unless θmin is extremely small.
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Honest participation (IR) with escrow frictions. Given the best-
response θ∗i (r), an honest node participates if its expected utility is nonneg-
ative. Under the maintained interpretation that the stake is returned unless
slashed, the stake affects honest utility primarily through (i) opportunity
cost κss and (ii) any probability of erroneous slashing. Let α ∈ [0, 1] denote
an (exogenous) false-positive rate—i.e., the probability an honest update is
flagged as anomalous due to noise or heterogeneity, conditional on an audit
being triggered. Then an honest node’s expected utility can be written as

E[UH
i ] ≈ Pr(wi = 1)

(
r ln

(
1

θ∗i (r)

)
− σiθ

∗
i (r)

)
− κss − q αϕs,

where Pr(wi = 1) captures the possibility that timeliness caps (or anomaly
screening) exclude the node even when behaving honestly. Under the interior
solution θ∗i (r) = σi/r and Pr(wi = 1) ≈ 1, the net operating surplus term
simplifies to

r ln
(

r
σi

)
− σ2

i

r
.

The individual-rationality condition E[UH
i ] ≥ 0 therefore produces a lower

bound on r for a given s, q, ϕ (and environment κs, α). In words: raising s
tightens participation through the opportunity-cost channel even if honest
nodes are almost never slashed; raising q and ϕ tightens participation only
to the extent that false positives α are non-negligible. This is the first place
where the statistical and economic layers meet: better anomaly calibration
(lower α for fixed deterrence) relaxes participation constraints without sac-
rificing security.

In heterogeneous populations, the IR condition induces a cutoff rule: for
a given contract, there is a maximum cost type σ̄(r, s, q, ϕ) that participates.
This selection effect matters for the principal’s design because increasing r
attracts more honest nodes (and encourages smaller θ), but may also increase
payments to inframarginal nodes.

Adversary objective and the poisoning-versus-stealth tradeoff. Con-
sider an adversarial identity that can choose a perturbation δ (possibly co-
ordinated across identities) so that u = g + δ. The adversary trades off (i)
sabotage benefit B · D(ū), which is increasing in the induced aggregate dis-
tortion, against (ii) the probability of being rejected for payment (via wi = 0
when zi > z̄) and (iii) the expected slashing loss q pdet(δ)ϕs, where pdet(δ)
is increasing in ∥δ∥. Holding fixed θ (e.g., chosen to satisfy timeliness caps),
the incremental expected payoff from poisoning relative to not poisoning can
be organized as

∆(δ) ≡ B∆D(δ)︸ ︷︷ ︸
sabotage gain

− q pdet(δ)ϕs︸ ︷︷ ︸
expected slashing

−
(
Pr(w = 1 | 0)− Pr(w = 1 | δ)

)
Rbase(θ; r)︸ ︷︷ ︸

lost payment from rejection

,
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where ∆D(δ) denotes the marginal degradation generated by δ. This decom-
position highlights two distinct deterrence channels: (i) ex post punishment
through escrow and slashing, and (ii) ex ante loss of contemporaneous reward
when anomalous behaviour crosses the acceptance boundary.

A subtle but important point is that the base reward r plays an am-
biguous security role. If an adversary can poison while keeping z ≤ z̄, then
higher r increases the per-identity rents from participating and can subsidize
adversarial presence. Conversely, when poisoning tends to increase anomaly
scores (so that Pr(w = 1 | δ) falls with ∥δ∥), a higher r raises the opportunity
cost of being rejected and therefore strengthens deterrence at the margin.
The contract thus couples r with (s, q, ϕ, z̄): rewarding timeliness cannot be
chosen independently of integrity enforcement.

Deterrence thresholds and a sufficient staking condition. A “no-
profitable-poisoning” condition is ∆(δ) ≤ 0 for all δ ̸= 0. Rearranging yields
the sufficient deterrence inequality

B∆D(δ) ≤ q pdet(δ) (ϕs) +
(
1− Pr(w = 1 | δ)

)
Rbase(θ; r), ∀ δ ̸= 0.

This makes transparent how deterrence can be achieved by (a) increasing
the “expected bond at risk” qϕs, (b) improving detection power pdet(·) via
stricter anomaly scoring or better robust baselines, and/or (c) increasing the
immediate forfeiture from rejection.

To obtain an explicit threshold, suppose there exist bounds ∆D(δ) ≤ D̄
for all relevant deviations and pdet(δ) ≥ p for all ∥δ∥ ≥ δ0, where δ0 is the
smallest “meaningful” poisoning magnitude. Ignoring (or lower bounding by
zero) the rejection-loss term yields a conservative sufficient condition:

s ≥ s⋆ ≡ B D̄

q p ϕ
.

Thus, for fixed (q, ϕ), stake must scale linearly with the adversary’s marginal
sabotage value B and inversely with enforcement intensity qp. This is the
economic analogue of a security budget: if audits are rare (low q) or detection
is weak (low p), the only way to preserve incentives is to increase collateral
at risk.

Equilibrium regimes and the role of participation scale. These con-
ditions naturally partition outcomes into regimes. If s (or qϕ) is sufficiently
large relative to B, then any nontrivial δ is strictly dominated and adver-
sarial identities either (i) do not participate, or (ii) participate but submit
δ = 0, effectively behaving like honest nodes from the mechanism’s perspec-
tive. If deterrence fails, adversaries optimally choose δ at an interior point
where marginal sabotage gain is balanced by marginal expected penalty and
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marginal rejection risk; in that regime, robust aggregation becomes the pri-
mary statistical backstop (and we will later bound the resulting welfare loss).

Finally, the escrow mechanism disciplines Sybil scaling because the ad-
versary’s participation decision must account for capital at risk per identity.
Even before invoking an explicit stake budget, the per-identity expected gain
from entering (including sabotage value) must exceed the combined oppor-
tunity cost κss and expected slashing loss. This pushes the equilibrium
away from “cheap identity inflation” and toward a setting where the server
can meaningfully choose (r, s, q, ϕ) to satisfy both honest IR and adversarial
deterrence.

8. Robustness and welfare bounds: from bounded influence to O(ε)
degradation. We now connect the statistical layer (robust aggregation
and anomaly scoring) to the economic layer (payments, participation, and
welfare). The organizing idea is simple: even if some fraction ε of submitted
updates are adversarial, an ε-robust aggregator limits how far the aggregate
ū can be pushed; if the server’s downstream satisfaction is Lipschitz in that
aggregate error, then the welfare loss is at most linear in ε, up to transfer and
audit-cost terms. This is the sense in which the mechanism is scalable: the
harm depends on the fraction corrupted rather than the absolute number of
identities.

Bounded influence of robust aggregation under contamination. Fix
a round with I participating identities, of which at most |A|/I ≤ ε < 1/2 are
adversarial. Let honest submissions be {gi}i∈H and adversarial submissions
be {gi + δi}i∈A. We compare the realized aggregate

ū = Agg({ui}Ii=1) to the honest-only benchmark ūH = Agg({gi}i∈H).

A wide class of robust estimators admits a contamination (or influence)
bound of the form

∥ū− ūH∥ ≤ CAgg ε max
i∈A

∥δi∥ (general bounded-influence form), (1)

where the constant CAgg depends on the chosen estimator (median, trimmed
mean), the trimming level, and the norm/dimension. When we additionally
assume a bounded-update environment—either because gradients are clipped
in implementation or because the model enforces ∥ui∥ ≤ G—we can remove
explicit dependence on max ∥δi∥ and obtain a purely ε-linear bound:

∥ū− ūH∥ ≤ C εG. (2)

The economic relevance of (1)–(2) is that they decouple the harm from the
absolute scale of participation: adding more honest nodes does not amplify
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vulnerability so long as the adversarial share remains below the breakdown
point.

To make the mechanism-level interpretation explicit, note that robust
aggregation and anomaly scoring are complements rather than substitutes.
Robust aggregation protects the model update even when some attacks slip
past acceptance; anomaly scoring and slashing change adversarial incentives,
reducing the equilibrium magnitude and frequency of δ. In equilibrium, we
typically expect both effects: the effective contamination is smaller than the
raw ε, and the damage conditional on contamination is bounded by (2).

From aggregate error to satisfaction loss. We next translate aggre-
gation error into loss in the server’s per-round satisfaction. Let the server’s
satisfaction contribution be summarized by Gi, and suppose the mapping
from the aggregate update to satisfaction is Lipschitz: there exists LG > 0
such that, holding fixed timeliness features,

∣∣∣ I∑
i=1

β Gi(ū) −
I∑

i=1

β Gi(ū
H)

∣∣∣ ≤ LG ∥ū− ūH∥. (3)

This assumption is not innocuous—we are effectively ruling out knife-edge
regions where arbitrarily small update differences generate discontinuous
changes in satisfaction—but it is aligned with practice in ML-driven control
systems where performance metrics vary smoothly with parameter updates
once gradients are bounded.

Combining (2) with (3) yields the headline statistical guarantee:

Satisfaction loss from poisoning ≤ LGC εG, (4)

up to the extent that the honest-only benchmark ūH is the relevant counter-
factual. Economically, (4) says that robustness turns adversarial influence
into a “tax” proportional to market share ε.

Welfare decomposition and an O(ε) bound. Server welfare per round
is

V =

I∑
i=1

β Gi(·) −
I∑

i=1

Ri − caq,

where payments Ri depend on acceptance wi and timeliness-reward param-
eters. To compare equilibrium welfare against the no-adversary benchmark,
we decompose the gap into three interpretable pieces:

V no-adv−V eq =
(∑

i

βGi(ū
H)−

∑
i

βGi(ū)
)

︸ ︷︷ ︸
(A) statistical satisfaction loss

+
(∑

i

Req
i −

∑
i

Rno-adv
i

)
︸ ︷︷ ︸
(B) transfer/selection effects

+ caq︸︷︷︸
(C) audit cost

.
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Term (A) is bounded by (4). Term (C) is explicit. The delicate term is (B):
payments can change because (i) some adversarial identities may still be paid
if they remain below the anomaly threshold, (ii) some identities (honest or
adversarial) may be rejected and thus unpaid, and (iii) participation may
shift due to the contract.

A conservative bound is obtained by upper-bounding payments per par-
ticipating identity by some R̄ (e.g., using feasible bounds on θ so that
r ln(1/θ) ≤ R̄). Then the total transfer distortion from a fraction ε of
adversarial identities, plus any rejections at rate proportional to ε (under
calibrated screening), is at most on the order of εIR̄. Normalizing per iden-
tity (or per round with fixed I) yields an O(ε) term. Putting the pieces
together, we obtain the welfare degradation form

V no-adv − V eq ≤ LGC εG + O(ε) · R̄ + caq, (5)

where the constant hidden in O(ε) depends on how acceptance probabilities
and participation respond to adversarial presence, but crucially not on I
itself. This formalizes the intuition that the mechanism’s “fragility” is not
the size of the federation but the effective adversarial share.

A useful refinement, consistent with the incentive analysis from the pre-
vious section, is that deterrence reduces the effective ε by making large δ
privately unattractive. When slashing and rejection are strong enough that
adversaries either abstain or mimic honest behaviour (δ = 0), the statisti-
cal term in (5) essentially vanishes and only the audit cost remains. When
deterrence is imperfect, robust aggregation ensures that whatever poisoning
survives cannot generate more than linear harm.

Sybil resistance via stake budgets and “priced identity.” Finally, we
incorporate Sybil capacity explicitly. Suppose an adversary has total stake
capital W that can be locked during the audit window, and each identity
must escrow s. Then in any round the adversary can field at most

NA ≤
⌊W
s

⌋
⇒ ε ≡ NA

I
≤ W

sI
.

Substituting into (5) gives a concrete end-to-end bound that links economic
design to statistical robustness:

V no-adv − V eq ≤ LGC G · W
sI

+ O
(W
sI

)
R̄ + caq. (6)

Two implications are worth emphasizing. First, increasing s improves ro-
bustness not only by raising the expected penalty when slashed, but also by
directly limiting the adversary’s market share through a capital constraint;
this is “Sybil resistance by collateral.” Second, this channel is stronger when
participation is large: for fixed W and s, increasing I dilutes adversarial
share and tightens (6), a point that supports open participation conditional
on robust aggregation and timeliness screening.
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Limitations and practical interpretation. The bounds above are in-
tentionally stylized. Constants C and LG can be loose in high dimension,
and heterogeneity in honest updates can widen the distribution that robust
estimators must tolerate, potentially forcing a higher anomaly threshold z̄
and weakening detection power. Moreover, bounding ∥ui∥ (via clipping) is
not merely technical: without it, a single extreme update can create large
losses unless the estimator has strong breakdown properties. From a design
perspective, these observations motivate implementing (i) gradient clipping
and normalization, (ii) robust aggregation with a trimming level matched
to the expected ε, and (iii) audit/sanction policies calibrated to keep honest
false positives low while maintaining deterrence.

With these welfare and Sybil-resistance relationships in place, we are
positioned to study how the contract instruments (s, q, ϕ, r, z̄) move equilib-
rium outcomes as primitives (latency preferences τ/λ, network conditions,
and adversarial value B) vary, which is the focus of the next section.

9. Comparative statics and design guidance: instruments, pref-
erences, and network conditions. Having established that robust ag-
gregation bounds statistical damage and that staking/audits can shift ad-
versarial incentives, we now ask how the contract instruments (s, q, ϕ, r, z̄)
should move as primitives vary. The comparative statics are useful not be-
cause the mechanism pins down a single “optimal” number, but because they
clarify which knob should be turned first under different operational con-
straints: capital-limited Sybils versus unconstrained attackers, scarce audit
capacity versus cheap verification, and latency-critical control versus quality-
dominant training.

Base reward r primarily controls honest timeliness, but it is a
blunt security tool. On the honest side, the interior best response is
θ∗i (r) = σi/r (clipped to feasibility). Thus

∂θ∗i
∂r

= −σi
r2

< 0,

so increasing r induces more frequent updates (smaller θ), improving timeli-
ness metrics that are decreasing in θ (e.g., periodic AoI scales like A(θ) ∝ θ).
The participation margin is more subtle: raising r increases gross reward but
also pushes agents toward tighter cycles that raise their private operating cost
σiθ. In our log-linear specification the net effect is positive for sufficiently
high-cost types only up to the point where acceptance constraints bind (e.g.,
Ei(θ) ≤ Emax). Practically, this means r is best interpreted as a “frequency
inducement” parameter, and it should be set jointly with feasible timeliness
thresholds; raising r without adjusting feasibility can lead to churn (agents
attempt smaller θ, violate latency limits, get wi = 0, and exit).
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For security, r has an ambiguous effect. On one hand, if attacks are
more likely to be rejected or flagged when δ ̸= 0, then a higher r raises the
opportunity cost of cheating because the adversary risks forfeiting a larger
Rbase = r ln(1/θ). On the other hand, if an attacker can remain under the
anomaly threshold (or exploit regions where pdet(δ) is low), then increasing
r simply subsidizes adversarial participation. This is why we treat r as
primarily a performance lever, and rely on (s, q, ϕ, z̄) for deterrence.

Stake s is the first-line defense against Sybils, but it loads the
honest IR constraint. The stake requirement affects outcomes through
two distinct channels. First, it scales expected slashing losses: the deterrence
inequality is controlled by q pdet(δ)ϕs. Second, it prices identity creation:
if the adversary has a stake budget W , then ε ≤ W/(sI). These channels
reinforce each other when Sybils are the main threat; in that case raising s
both reduces the attacker’s share and increases capital at risk per identity.

However, s is also the instrument most likely to violate honest individual
rationality because honest agents incur at least the opportunity cost κss, and
may face accidental slashing under false positives. If we denote an honest
false-flag probability by α(z̄) (decreasing in z̄), then a useful back-of-the-
envelope condition for “stake feasibility” is

κss + q α(z̄)ϕs ≪ E
[
r ln

( 1

θ∗i (r)

)
− σiθ

∗
i (r)

]
,

so that collateral costs do not dominate operating surplus. This highlights
a design rule: when we need more deterrence but honest participation is
fragile, it is often better to increase ϕ or q (expected penalty conditional on
detection) rather than s (capital locked regardless of behavior), unless Sybils
are binding.

Audit probability q trades off deterrence against a direct resource
cost, and is most valuable when detection is informative. Increas-
ing q linearly scales the expected penalty from any given detection rule, but
it also increases server cost caq (and, in practice, operational burden and de-
lay). The marginal value of q is highest precisely when the anomaly score is
informative, i.e., when pdet(δ) rises steeply with ∥δ∥ and when false positives
can be controlled via z̄. When anomaly signals are noisy—e.g., honest up-
dates are heterogeneous or non-IID so that {zi} has heavy tails even without
attacks—raising q can be wasteful: we audit more often, but learn little, and
we increase the expected accidental penalty faced by honest participants. In
such regimes, robustness investments (better Agg(·), clipping/normalization,
feature-conditional thresholds) can dominate higher q.

A related practical point is that q can be made state-dependent: auditing
more aggressively when maxi zi is large, when model loss spikes, or when
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participation is unusually concentrated. Such targeting preserves deterrence
while economizing on ca, and it is consistent with our framework as long as
participants understand the mapping from observables to audit intensity.

Slashing severity ϕ is a powerful deterrent but must be paired with
conservative flagging. Holding s fixed, increasing ϕ raises the expected
cheating cost without increasing locked capital. This makes ϕ attractive
when the main constraint is honest liquidity (a high s would deter entry)
rather than tolerance for penalty risk. The catch is that ϕ amplifies the
welfare consequences of classification error: if honest nodes are occasion-
ally flagged, then expected honest losses scale with q α(z̄)ϕs. Hence “harsh
slashing” and “aggressive flagging” are complements only for security and
substitutes for participation.

A useful design heuristic is to tie ϕ to the conservativeness of z̄: if we
raise ϕ, we should typically raise z̄ (or require multi-round evidence) to keep
α(z̄) small. Conversely, if operationally we must flag based on a noisy one-
shot score (high α), then ϕ should be kept moderate and deterrence should
lean more on s (pricing Sybils) and q (verification intensity), or on making
pdet(δ) steeper via improved anomaly features.

Preference parameters (τ, λ) shift the optimal mix toward timeli-
ness enforcement versus throughput tolerance. Recall Gi = τMi −
λEi, where Mi is a quality proxy increasing in contributed data volume
and freshness (e.g., via Di(θ) and Ai(θ)). When λ is large relative to τ
(latency-critical control), the server should (i) reward shorter cycles more
strongly (higher r) and (ii) tighten acceptance on latency (lower Emax) to
prevent the mechanism from buying “quality” at the cost of responsiveness.
In contrast, when τ dominates λ (training-quality dominated), the server can
relax Emax and focus on sustained participation and data volume, often with
a lower r but higher tolerance for moderate θ if it improves signal-to-noise or
reduces network congestion. Importantly, tightening timeliness acceptance
can unintentionally strengthen security by reducing the feasible set of at-
tacker strategies (fewer opportunities to hide large δ behind idiosyncratic
delays), but it can also increase honest false positives if network conditions
are volatile.

Network conditions map into effective costs and feasibility con-
straints; contract parameters should adapt to congestion. In IIoT
settings, latency Ei(θ) is not purely a choice variable: it depends on wireless
contention, queueing, and intermittent connectivity. Deteriorating network
conditions effectively increase the shadow cost of short cycles (a smaller θ
induces more transmissions, worsening congestion), and can make the accep-
tance indicators bind even for cooperative behavior. In our reduced form,
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this looks like an increase in σi (higher operating burden per unit update
intensity) and tighter feasible regions for (Ai, Ei). Comparative statics then
recommend: during congestion, raising r may backfire by inducing overly
frequent updates that violate Emax; instead, we may want to (i) temporar-
ily relax Emax or incorporate congestion-normalized latency measures, (ii)
cap update frequency directly (a lower bound on θ), or (iii) shift compensa-
tion from “frequency” to “quality conditional on feasibility,” paying more for
well-formed updates that arrive within realistic windows.

Security also interacts with network variability: heterogeneous delays
and losses broaden the distribution of anomaly scores (because gradients
may reflect stale states), raising α(z̄) unless z̄ is increased. Therefore, in poor
network regimes, we should avoid simultaneously increasing ϕ and tightening
z̄; doing so risks punishing honest nodes for conditions outside their control.
A more robust approach is to calibrate z̄ conditional on observed AoI/latency
strata, so that detection focuses on deviations that cannot be explained by
staleness alone.

When to prefer stricter slashing versus higher base payments.
Putting the pieces together, we can summarize a guiding tradeoff. If the
binding problem is insufficient honest participation or insufficient update fre-
quency under stable networks, then raising r is the cleanest lever: it moves θ∗

predictably and improves performance, while security should be maintained
via q, ϕ, s calibrated to keep deterrence intact. If the binding problem is
adversarial scale (Sybil capacity), raise s first because it directly reduces ε.
If the binding problem is adversarial intensity (large δ per identity) under
good detection, raise ϕ and/or q because they scale expected punishment
without necessarily excluding honest nodes—provided z̄ is set to keep α low.
Only in the intermediate regime—where attackers are somewhat detectable
and honest participation is marginal—does it make sense to increase r as an
auxiliary deterrent by raising the “forfeiture” cost of being flagged; even then,
we should be cautious that higher r does not simply subsidize sophisticated
low-δ attacks.

These comparative statics yield concrete, testable predictions about how
equilibrium participation, timeliness, detection rates, and welfare move with
each instrument and primitive. The next step is to operationalize them in a
simulation environment where we can vary ε, stake budgets W , congestion
patterns, and anomaly-score calibration, and then evaluate the sensitivity of
outcomes to (s, q, ϕ, r, z̄) under realistic IIoT latency and AoI dynamics.

10. Simulation plan: poisoning/collusion experiments with AoI/latency,
robust aggregation, and stake. The comparative statics above are in-
tentionally “mechanism-level”: they tell us which instruments should matter
and in what direction, but they do not by themselves quantify magnitudes
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under realistic IIoT dynamics (wireless contention, non-IID data, hetero-
geneous device capabilities) or realistic attack surfaces (low-amplitude poi-
soning that evades one-shot detection, coordinated Sybils, and delay-based
obfuscation). We therefore propose a simulation program whose goal is to
(i) instantiate the primitives

(
Ai(θ), Ei(θ), pdet(δ), CAgg, LG

)
with empiri-

cally plausible values, (ii) test whether the predicted qualitative relationships
show up under realistic noise, and (iii) produce operational “design maps”
that translate constraints (audit budget, tolerable false positives, expected
Sybil capital) into recommended (s, q, ϕ, z̄, r) regions.

(i) Simulation environment: joint learning and networking layers.
We simulate a repeated-round federated learning process over an IIoT-like
network. Each round t proceeds exactly as in the timing described earlier:
the server posts C = (r, s, q, ϕ, z̄), participants stake s, choose θi, submit up-
dates ui, the server aggregates ū = Agg({ui}), pays provisional rewards Ri,
and audits with probability q within window Ta. We record both “mechanism
outcomes” (participation, payouts, slashing events) and “learning outcomes”
(validation loss, convergence rate, robustness to poisoning). To connect to
IIoT timeliness, we embed a simple yet tunable latency/AoI model: transmis-
sions incur stochastic service times and queueing delays, so that the realized
latency Ei(θi) depends on both the node’s update intensity 1/θi and ambient
congestion. AoI is computed from timestamps; for periodic generation with
random service, a useful operational proxy is

Ai(θi) ≈
θi
2
+ Ei(θi),

with the understanding that the exact mapping can be replaced by a more
detailed AoI recursion without changing the contract logic (the server only
uses observables).

We will implement two networking regimes to stress-test robustness: (a)
a “stable” regime with light-tailed delay (e.g., lognormal with modest vari-
ance) where timeliness acceptance is rarely binding for honest nodes, and (b)
a “volatile” regime with bursty congestion (mixtures/heavy tails, or time-
varying contention) that increases both missed deadlines and apparent gra-
dient heterogeneity due to staleness.

(ii) Agent population and behavioral model (honest and adversar-
ial). Each potential participant draws a private cost σi from a calibrated
distribution (e.g., lognormal to capture a long tail of constrained devices).
Given r, honest nodes best-respond via θ∗i (r) = σi/r, clipped to [θmin, θmax],
and participate when expected utility satisfies the IR constraint. To preserve
the mechanism interpretation, we compute expected honest utility using real-
ized acceptance wi and realized audit/slashing events, allowing honest nodes
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to exit in future rounds if they experience repeated false flags (a simple “par-
ticipation persistence” rule captures reputational discouragement without
adding new strategic complexity).

Adversarial identities are generated either exogenously as a fraction ε of
participants, or endogenously through a stake budget W yielding at most
⌊W/s⌋ Sybils per round. Adversaries choose perturbations δi to maximize
E[UA], with two canonical attacker models: (1) myopic best response (choose
δ each round given (q, ϕ, s, z̄)), and (2) coordinated collusion (a coalition
chooses a vector {δi}i∈A and possibly heterogeneous θi to exploit robust
aggregation’s worst-case influence subject to detection). We will include
“stealth” attacks that explicitly optimize a surrogate anomaly score (e.g.,
constrain zi ≤ z̄) to mimic adaptive adversaries.

(iii) Learning task, robust aggregation, and anomaly scoring. To
measure welfare-relevant degradation D(ū) and connect to LG, we require a
learning task where poisoning can be quantified. We propose two tasks: (a)
a standard supervised benchmark (e.g., image or sensor classification) par-
titioned non-IID across nodes, and (b) an IIoT-flavored forecasting/control
proxy (e.g., anomaly detection on multivariate time series). The second
better reflects latency sensitivity because stale updates can directly harm
prediction.

We evaluate multiple Agg(·) rules: FedAvg (baseline, non-robust), coordinate-
wise median, trimmed mean at several trimming levels, and optionally Krum/Multi-
Krum. For each Agg, we empirically estimate an “influence slope” CAgg by
injecting controlled perturbations into an ε-fraction of updates and regress-
ing ∥ū − ūH∥ on εmax ∥δ∥ in a bounded-update regime (via gradient clip-
ping). Anomaly scores zi will be computed as robust distances to ū (e.g.,
coordinate-wise median absolute deviation scaling, or a robust Mahalanobis
distance on a low-dimensional projection). This lets us estimate two key
operating curves: the false-positive rate α(z̄) = P(zi > z̄ | i ∈ H) and the
detection function pdet(δ) = P(zi > z̄ | ∥δ∥), both potentially conditioned on
timeliness strata (Ai, Ei).

(iv) Contract calibration targets: mapping primitives to numbers.
We calibrate (r, s, q, ϕ) against operational constraints rather than arbitrary
scales. For r, we target a baseline update frequency distribution consistent
with device energy/compute limits: choose r so that the induced θ∗i (r) yields
(say) the 50th percentile cycle length in a feasible range and keeps accep-
tance constraints non-binding in the stable regime. For s, we consider two
anchors: an honest liquidity constraint (maximum stake that does not mate-
rially reduce participation) and an adversary capital constraint (plausible W
for an attacker in the deployment context). For q and ca, we set an “audit
budget” (expected audits per round) and an “audit latency” Ta consistent
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with the verification technology (e.g., secure enclaves, redundancy checks, or
re-computation on a trusted subset). For ϕ, we calibrate to an acceptable
expected loss under false positives q α(z̄)ϕs, effectively choosing ϕ as large
as possible subject to a tolerable honest risk threshold.

We also estimate LG empirically: perturb the aggregate update by a
controlled vector η (or equivalently perturb ū through synthetic poisoning)
and measure the change in a satisfaction proxy (validation performance com-
bined with a timeliness score), fitting a local Lipschitz bound ∆G ≤ LG∥η∥
over the relevant range.

(v) Experiment matrix: what we vary and what we measure. Our
core experiment families are:

Poisoning amplitude sweeps. Fix ε and vary ∥δ∥ to trace out (a) model
degradation D(ū), (b) empirical pdet(δ), and (c) realized adversary prof-
itability under (s, q, ϕ, z̄). This directly tests the deterrence inequality in
Proposition 2 by comparing ∆UA(δ) to zero.

Sybil budget sweeps. Fix an attacker budget W and vary s, inducing
different effective ε. We measure the resulting welfare loss V no-adv−V eq and
check whether it scales approximately linearly in ε under robust aggregation
(Proposition 4) once we account for honest participation effects.

Congestion/timeliness shocks. Introduce time-varying delay distributions
that tighten Ei(θ) feasibility. We record (i) the rate at which acceptance in-
dicators wi bind for honest nodes, (ii) the change in α(z̄) as gradient hetero-
geneity increases with staleness, and (iii) the interaction with ϕ (do harsher
penalties produce disproportionate honest exit in volatile regimes?).

Collusion and adaptive stealth. Allow adversaries to coordinate {δi} and
choose attacks that maximize degradation subject to zi ≤ z̄ constraints (or
low expected detection). This is the most demanding test of the mechanism:
we evaluate whether tuning z̄ conditional on (Ai, Ei), or using multi-round
anomaly evidence, restores deterrence without collapsing participation.

(vi) Sensitivity analysis and reporting outputs. We will not rely on
single-point estimates. Instead, we run global sensitivity (Sobol/variance-
based) on the mapping (r, s, q, ϕ, z̄, ε,W, network regime) 7→ (V, participation, false slashing,D).
This produces actionable rankings: e.g., in which regimes does s dominate
q, or when does z̄ calibration matter more than ϕ? We will also report “iso-
welfare” and “iso-participation” contours over (s, ϕ) and (q, z̄) to make the
security–participation tradeoff operational. Finally, we will document fail-
ure modes—parameter regions where robust aggregation alone is insufficient
(e.g., near breakdown points or under extreme non-IID heterogeneity), or
where stake/audits backfire due to false positives—so that the subsequent
deployment-facing discussion can be explicit about limitations rather than
implicitly assuming away the hard cases.
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11. Conclusion: implications for 2026 deployments; limitations
and extensions (richer audits, privacy-preserving anomaly scor-
ing). Our motivating premise is practical: by 2026, federated learning in
IIoT settings will increasingly be procured as a service from heterogeneous
devices owned by different parties, operating over congested wireless links,
and facing adversaries that can scale through Sybils. In that environment,
“robust learning” is not only a statistical problem; it is an incentive problem.
The model we developed is deliberately spare, but it illuminates an opera-
tional logic: if we can make timely contribution profitable for honest devices
while making undetected manipulation privately costly, then the system’s
degradation can be bounded even when a nontrivial minority of participants
are adversarial.

The key mechanism-level implication is that three instruments—stake
s, audit rate q, and slashing severity ϕ—jointly implement a capital-at-risk
deterrent, while robust aggregation limits the marginal harm of residual at-
tacks. In deployments, these are not abstract knobs: they correspond to
concrete policy choices about escrow requirements, verification budget, and
penalty rules, all of which must be justified to participants and to governance
stakeholders. The economic point is that no single layer is sufficient. Robust
aggregation alone limits influence but does not remove the adversary’s incen-
tive to “spend” its bounded influence every round; staking/auditing alone de-
ters only to the extent that detection is credible; timeliness rewards alone can
inadvertently encourage gaming (e.g., ultra-frequent low-quality updates) if
not paired with acceptance constraints and anomaly checks. Layering is not
just belt-and-suspenders engineering—it is the equilibrium logic that keeps
the attack set small.

For 2026 procurement, we view the contract C = (r, s, q, ϕ, z̄) as a de-
sign map rather than a single optimum. In practice, the server (principal)
will face constraints that vary across deployments: limited audit through-
put (upper-bounding feasible q), participant liquidity constraints (upper-
bounding feasible s), and legal/organizational constraints on punitive penal-
ties (upper-bounding feasible ϕ). Our contribution is to make explicit how
these constraints substitute for one another: when ϕ is capped (e.g., due
to due-process requirements), one needs either higher s or higher q; when
q is expensive, larger s can economize on audits; when honest participation
is fragile, increasing ϕ may be less distortionary than increasing s (holding
expected false-positive harm fixed). This substitution logic is valuable even
if the primitives are estimated only approximately.

A second deployment implication concerns timeliness as an incentive-
compatible observable. IIoT systems already generate timestamps and service
times; AoI and latency are therefore attractive as contractible metrics com-
pared to unverifiable notions of “effort.” Yet timeliness metrics are also noisy
and environment-dependent. Our framework suggests a conservative opera-
tional posture: treat timeliness constraints primarily as acceptance gates (to
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prevent stale updates from being paid as if they were fresh), and treat mon-
etary rewards r primarily as a way to shift the distribution of update cycles
θi among those who can meet feasibility. Put differently, timeliness should
not be used to “prove honesty,” but rather to price a resource the server val-
ues (freshness) while acknowledging that networking conditions can mimic
anomalous behavior.

Third, the analysis clarifies what “Sybil resistance” means in a procure-
ment setting. In many FL discussions, Sybils are framed as an identity
problem; here they become a budget problem. Requiring stake s per iden-
tity converts identity creation into a priced input and caps the adversary’s
market share given capital W . This is a practically legible governance
story for 2026: rather than claiming to “solve” Sybils cryptographically,
the mechanism bounds their scale economically and then relies on robust
aggregation to tolerate the remaining contamination. In systems where par-
ticipants are organizations rather than consumer devices, s can be imple-
mented as billing holdbacks, performance bonds, or insurance-backed guar-
antees—formats that procurement teams already understand.

That said, we should be explicit about limitations. First, our reward rule
Rbase

i (θ) = r ln(1/θ) and linear private cost σiθi were chosen for tractability
and to yield a clean best response θ∗i (r). Real devices have nonconvex en-
ergy/compute costs, hard duty-cycle constraints, and sometimes fixed costs
of participation. These features can generate corner solutions (e.g., “all-in or
all-out” update behavior) and thus change how r affects participation and
congestion. Second, our deterrence condition relies on a detection function
pdet(δ) that increases with poisoning magnitude; adaptive attackers can in-
stead pursue low-amplitude, persistent manipulation designed to sit below
any one-shot threshold z̄. Third, robust aggregation guarantees are sharp
only under conditions that are often strained in practice: bounded gradi-
ents (requiring clipping), limited adversarial fraction ε < 1/2, and not-too-
extreme non-IID heterogeneity. When honest updates are themselves highly
dispersed—due to data heterogeneity or staleness—“robust distance to the
aggregate” can become a weak anomaly signal and can elevate false positives
precisely when the network is most volatile.

These limitations point to immediate extensions that matter for 2026
deployments. On the audit side, we expect “richer audits” to be the main
driver of improved security-cost frontiers. The binary audit model (audit
with probability q, slash if flagged) can be generalized along at least three
dimensions. (i) Targeted audits: make q a function of observable risk, e.g.,
qi = q(zi, Ai, Ei), so that scarce verification resources focus on suspicious and
high-impact updates. (ii) Tiered penalties: replace a single ϕ with penalty
schedules that escalate with repeated anomalies or with the severity of de-
viation, which can reduce chilling effects on honest nodes under transient
noise. (iii) Redundancy audits: verify an update by recomputation on a
trusted subset, by cross-checking consistency against neighboring devices,
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or by challenge tasks that are hard to fake without actually computing the
claimed gradient. Each of these preserves the core logic—expected penalty
equals detection probability times stake-at-risk—but improves either pdet at
fixed cost or reduces the false-positive externality.

On the privacy side, anomaly scoring is increasingly constrained by secure
aggregation and privacy regulations. In many federated systems, the server
may not be allowed to inspect raw updates ui, or doing so may undermine
participant trust. This makes “privacy-preserving anomaly scoring” central
rather than optional. A promising direction is to compute robust statistics
under secure aggregation or MPC: for example, coordinate-wise trimmed
means can be approximated via secure protocols; alternatively, nodes can
submit cryptographic commitments to compressed representations of gradi-
ents, enabling the server to compute anomaly scores on random projections
without learning the full update. Another approach is to separate payment
from model update: nodes can be paid based on privacy-preserving consis-
tency checks (e.g., norm bounds, agreement on low-dimensional sketches)
while the model update itself is formed through secure aggregation. The de-
sign challenge is to ensure that whatever privacy-preserving statistic is used
still yields a detection function pdet(δ) strong enough that the deterrence
inequality remains plausible at acceptable s, q, ϕ.

We also see room for dynamic mechanism improvements that directly
address stealthy, low-amplitude manipulation. In repeated interactions, the
server can replace one-shot thresholds with multi-round evidence: sequential
tests on the time series of anomaly scores, stake that vests over time, or
“reputation-weighted” aggregation where influence grows only after a history
of non-anomalous behavior. These instruments can raise the effective cost
of persistent attacks without increasing false slashing in any single round.
Importantly, they shift deterrence from a single detection event to an ac-
cumulated likelihood of detection, which is precisely what stealth attackers
attempt to avoid.

Finally, we emphasize a governance implication. Staking and slashing are
powerful precisely because they are punitive; they therefore require trans-
parent procedures for dispute resolution, handling false positives, and defin-
ing what constitutes a provable violation. In regulated IIoT environments
(manufacturing, energy, transport), this procedural layer is not ancillary—it
is part of the mechanism’s feasibility. Our model helps separate what must
be true economically (expected penalties must dominate expected sabotage
gains) from what must be implemented institutionally (credible audits, ap-
peal processes, and acceptable collateral formats). If those institutional
pieces are weak, then the system should lean more heavily on robust ag-
gregation and conservative acceptance rules; if they are strong, then stak-
ing/auditing can carry more of the security burden and allow looser thresh-
olds z̄ that preserve participation.

In sum, the tradeoff the model illuminates is not “security versus learn-
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ing,” but “security versus participation under timeliness constraints.” By
2026, successful deployments will likely be those that treat federated learn-
ing procurement as a contract design problem: specify what is observable
(AoI/latency), what is verifiable (audits), what is punishable (slashing), and
what is statistically tolerable (robust aggregation). Our analysis offers a co-
herent starting point—explicit enough to calibrate and stress-test, modest
enough to extend—toward mechanisms that remain useful when adversaries,
networks, and privacy constraints are all present at once.
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