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Abstract

We study decentralized online contracting in hierarchical princi-
pal–agent systems when the key observability assumption—principals
directly observing agents’ actions—fails. Motivated by 2026-era agen-
tic toolchains and API ecosystems, we model verifiable-but-private
actions via receipts (e.g., signed logs, TEEs, zero-knowledge proofs)
that attest an agent’s action with probability p, and are otherwise
absent. We extend the tree-structured principal–agent bandit frame-
work with transfers and regret guarantees: contracts pay only upon
receipt-confirmed compliance. We show a sharp verification–payment
tradeoff: the minimal payment needed to induce a target action in-
flates by 1/p, and payment-learning requires 1/p more samples to
achieve the same confidence. Building on the regret decomposition
(action/payment/deviation) and the transfer-based efficiency restora-
tion logic in MAIL, we propose Verified-MAIL, a decentralized algo-
rithm that (i) learns verification-adjusted inducing transfers and (ii)
runs a bandit subroutine on shifted rewards. Verified-MAIL achieves
sublinear welfare regret and no-regret utilities for all players under
mild conditions, with rates that degrade polynomially in 1/p. Finally,
we provide information-theoretic lower bounds: without action verifi-
cation (p = 0), outcome-only contracting can force linear welfare loss.
Our results connect mechanism design and online learning to concrete
infrastructure choices: how much attestation capability is needed to
make local bonuses restore efficiency in modern AI supply chains.
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1 Introduction and motivation

Modern economic activity is increasingly mediated by agentic toolchains:
a user delegates a task to a high-level system, which decomposes it into
subtasks and delegates further—to specialized APIs, third-party services,
or downstream agents that themselves subcontract. The resulting organi-
zational form is naturally hierarchical and recursive. At the same time,
these toolchains operate in API markets where interactions are cheap, re-
peated, and data-rich, but also fragmented across administrative boundaries.
A principal typically does not observe a subcontractor’s internal action; it
observes only outcomes (latency, a final answer, a transaction receipt) and,
occasionally, some verifiable trace of what was done (a signed log entry, an
attested execution report, a zero-knowledge proof of a computation). This
combination of deep delegation and imperfect action observability motivates
a contracting-and-learning problem that differs from the canonical principal–
agent model in a simple but consequential way: verification is stochastic and
partial rather than deterministic and complete.

We take seriously the practical premise that “auditability” is not binary.
In many digital settings, verification arrives as a probabilistic event. A re-
quest may be accompanied by an authenticated trace only some of the time
(because logging is sampled), an attestation may fail due to system con-
straints, or a proof may be too costly to generate for every interaction. Even
when the principal can request evidence, evidence production can be sub-
ject to congestion and privacy constraints, and it is often most realistic to
model verification as a random subsample of transactions. When verifica-
tion is absent, the principal cannot condition transfers on the agent’s action;
when verification is present, the principal can enforce a contingent transfer
in a way that is difficult to manipulate. This partial-verification regime is
precisely where we expect the most acute tradeoffs between incentives and
learning: the principal must pay enough to discipline behavior in expecta-
tion, yet cannot rely on frequent, high-quality feedback to calibrate those
payments quickly.

Our goal is to illuminate this tradeoff in a setting with nested delega-
tion. Each node is simultaneously an agent (to its parent) and a principal
(to its children), and the organization must coordinate across layers while
each participant learns from local feedback. This is the economic analogue of
a multi-hop toolchain: downstream decisions create externalities upstream,
but no single actor has global observability or centralized control. In such
environments, one expects two frictions to interact: (i) incentive misalign-
ment due to local objectives, and (ii) statistical uncertainty because payoffs
must be learned online. A key modeling choice is therefore to represent not
only stochastic rewards, but also stochastic contract enforceability : the prin-
cipal can promise a transfer that is actually paid only when an unforgeable
receipt arrives and confirms compliance.
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This receipt-based view connects naturally to real implementation prim-
itives. Trusted execution environments, secure enclaves, signed API re-
sponses, and hardware-backed logging all provide a notion of “receipt” that
is difficult to forge when present, yet may be unavailable due to cost, la-
tency, or system-level failures. Zero-knowledge proofs likewise offer strong
correctness guarantees conditional on successful proof generation, but do not
eliminate the resource tradeoff that makes universal verification impractical.
Our abstraction deliberately suppresses engineering detail in favor of an eco-
nomic object: a verification probability that indexes the strength of contract
conditioning. This allows us to ask an economic question of first-order im-
portance: when verification is sporadic, how much additional transfer must
be promised to induce desired actions, and how does that requirement scale
through a delegation hierarchy?

The first contribution is a transparent characterization of the verification–
payment frontier. When compliance can be rewarded only on verified rounds,
the expected incentive wedge created by a promised payment is attenuated
by the verification probability. As a result, to replicate a given incentive con-
straint one must inflate payments by a factor that is inversely proportional
to verification frequency. This yields a clean comparative static: weaker
verifiability translates mechanically into higher promised payments (and, in
equilibrium, higher expected burn), even holding fixed the underlying pay-
off externalities. The frontier is economically interpretable: verification and
transfers are substitutes for achieving effort and coordination, and improving
verification quality relaxes the need for monetary (or resource) incentives.

The second contribution is algorithmic: we show that decentralized learn-
ing can remain effective under partial verification, but only after modifying
how incentives are explored and estimated. In nested delegation, a principal
does not merely choose an action; it also chooses contracts for children, and
must learn the minimal transfers that implement those contracts. Partial
verification slows this learning because observed compliance is a Bernoulli
subsample of true compliance events. The implication is that any procedure
that searches for an inducing payment (for example, via batched tests or
binary search) must run longer batches to obtain the same statistical confi-
dence. Our Verified-MAIL construction formalizes this intuition by rescaling
both payments and exploration schedules in a way that preserves the recur-
sive structure of delegation.

The third contribution is a sharp boundary: without any verifiable action
information, outcome-only contracting may be fundamentally insufficient for
efficiency restoration. In many applied discussions, it is tempting to assume
that enough outcome data will eventually reveal the right incentives. Our
results caution against this optimism in hierarchical settings: if the princi-
pal cannot ever condition transfers on verified actions—even rarely—then
there exist environments in which no decentralized learning-and-contracting
scheme can avoid linear welfare loss. Economically, the obstruction is iden-

4



tification and enforceability: outcomes can be statistically compatible with
multiple hidden action profiles that have different welfare implications, and
without an action-contingent lever, incentives cannot be targeted to inter-
nalize externalities.

We summarize our main messages as follows.

• Partial verification has a first-order price. When only a fraction
of interactions are verifiable, promised payments must increase to de-
liver the same expected incentive, generating a quantitative verification–
payment frontier.

• Learning slows predictably. Because receipts subsample compli-
ance observations, payment estimation and deviation control degrade
with verification probability; algorithmic fixes require longer explo-
ration and more conservative confidence.

• Some verification is essential. In the absence of any verifiable
actions, there are instances where outcome-only schemes cannot co-
ordinate the organization, implying a strict role for audit/attestation
infrastructure.

Beyond theory, the model speaks to practical design choices. In platform
governance and API ecosystems, one can often invest in better audit trails
(higher receipt rates, lower false negatives), but this investment is costly.
Our framework clarifies what such investments buy: they reduce the level
of transfers required to align incentives and accelerate the learning of those
transfers, especially in deep toolchains where errors propagate upstream.
Conversely, if verification is expensive and remains sparse, one should ex-
pect either higher compensation budgets, more conservative delegation, or
persistent inefficiencies.

We also acknowledge limitations that help delineate the scope of the
conclusions. We treat receipts as unforgeable when present and indepen-
dent across interactions; real systems may have correlated outages, strate-
gic manipulation of evidence generation, or noisy attestations with false
positives/negatives. We restrict attention to nonnegative, receipt-triggered
transfers, abstracting from richer contract forms (e.g., penalties, dynamic
reputation) that may partially substitute for verification. Finally, our focus
is on local contracting in a fixed hierarchy; in practice, principals may rewire
toolchains, switch providers, or centralize some decisions to economize on
incentive costs. These extensions are natural next steps, but the baseline
model already isolates the core tradeoff: when verifiability is probabilistic,
incentives become more expensive and learning becomes slower, yet even a
small amount of verification can qualitatively change what is achievable.
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2 Related work

Our paper sits at the intersection of three literatures that are often stud-
ied separately: (i) principal–agent models with imperfect observability, (ii)
online learning and bandits with strategic responses, and (iii) hierarchical
(multi-tier) delegation with transfers. We also draw motivation from a grow-
ing body of systems work on secure attestations and verifiable computation,
which provides concrete primitives that resemble the “receipt” abstraction
we formalize.

Principal–agent theory and imperfect observability. The canonical
principal–agent problem emphasizes that actions are typically hidden, so in-
centives must be provided through outcome-contingent compensation and
dynamic considerations ??. A complementary line studies auditing and ran-
dom inspection as a way to partially restore action observability: even rare
audits can discipline behavior if penalties/rewards conditional on audit out-
comes are sufficiently strong ??. Our model adopts a closely related logic—
verification arrives only stochastically—but differs in two respects that mat-
ter for learning and for toolchain applications. First, we focus on receipt-
triggered transfers that are paid only when verification arrives and confirms
compliance, rather than on penalties imposed upon detected deviation. This
matches many API-market settings in which clawbacks or fines are infeasi-
ble, while bonuses contingent on proofs or logs are feasible. Second, we
embed this auditing friction in a delegation hierarchy in which each agent is
simultaneously a principal downstream, so incentive costs and information
distortions compound across layers.

Online contracting and principal–agent bandits. A growing litera-
ture studies how a principal can learn to contract when payoff-relevant pa-
rameters are unknown and must be inferred from repeated interaction ??.
In the bandit tradition, work on principal–agent learning emphasizes that
the principal optimizes over contracts while facing stochastic rewards and
strategic best responses by agents ??. Related models include “bandits with
strategic arms” where each arm is controlled by a self-interested agent who
can manipulate outcomes or participation ??. These papers clarify that
learning incentives is qualitatively harder than learning payoffs: the prin-
cipal must account for the agent’s response mapping, which itself may be
unknown or history-dependent.

Our contribution is aligned with this message but targets a different
bottleneck: verification-limited enforceability. In many online contracting
models, once the principal specifies a contract, the relevant performance
signal is always observed (even if noisy). Here, by contrast, the principal may
fail to observe the key compliance signal on most rounds, so the same contract
produces different realized incentives across time. This has two implications:
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(i) inducing payments scale as 1/p because the effective expected bonus is
attenuated by the verification rate, and (ii) learning those payments is slowed
because compliance is only observed on a Bernoulli subsample of rounds. In
this sense, partial verification creates a distinct statistical friction on top of
the usual exploration–exploitation and strategic-response issues.

Nested delegation with transfers and learning (MAIL). The closest
conceptual ancestor is work on recursive contracting and learning in hierar-
chies, where local incentives are used to align behavior in a multi-layer organi-
zation. Classical economics emphasizes that delegation chains create wedges
because each layer optimizes locally and passes distorted incentives down-
stream ??. Recent algorithmic work brings this logic into repeated stochastic
settings: under suitable contract spaces and no-regret learning assumptions,
local incentive schemes can restore near-efficient behavior even without cen-
tralized observability. Our framework follows this recursive perspective and
directly builds on the idea that a principal can reduce its problem to a ban-
dit over shifted rewards once it internalizes the payments needed to induce
desired downstream actions (as in MAIL-style recursion ?).

Relative to this line, our main departure is to model action observabil-
ity as stochastic even conditional on the contract: the parent can enforce
payment only when a receipt arrives. This changes both the economics and
the algorithmics. Economically, the relevant object is no longer the full-
information minimal inducing transfer τ⋆b (w), but its verification-adjusted
counterpart τ⋆,pb (w) = τ⋆b (w)/p, which can be substantially larger when veri-
fication is rare. Algorithmically, procedures that estimate inducing transfers
(e.g., batched tests that detect whether a child is deviating under a candidate
payment) must be lengthened by approximately 1/p to maintain comparable
confidence, because only receipt rounds are informative about compliance.
The Verified-MAIL construction preserves the recursive tractability of the
original approach while making this verification dependence explicit.

Auditing, verification, and mechanism design. Our receipt model
also connects to broader work on verification in mechanism design and in-
formation economics. The “costly state verification” tradition studies when
principals optimally verify reported information and how contracts trade off
verification costs against incentive provision ??. Other work analyzes audit
probabilities and enforcement in regulatory settings, showing that stochastic
audits can implement compliance when penalties are credible and sufficiently
steep ?. We can be viewed as importing a similar verification lever into an
online, decentralized environment, with two twists: verification is not cho-
sen endogenously in the baseline model (though it can be in extensions), and
enforcement uses nonnegative, receipt-triggered transfers rather than pun-
ishments. These restrictions are not innocuous: they rule out some classical
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implementations that rely on large fines, and they sharpen the role of even
small verification rates in enabling identification and incentive targeting.

Secure attestations as a modeling primitive. Finally, the receipt ab-
straction is motivated by concrete cryptographic and systems primitives that
increasingly mediate real-world contracting in digital ecosystems. Trusted
execution environments (TEEs) can provide signed attestations about code
execution; secure logging and provenance systems can produce authenticated
traces; and zero-knowledge proofs (ZK) can certify that a computation was
performed correctly without revealing sensitive inputs ???. In practice, how-
ever, these mechanisms are often intermittent : attestations may be sampled,
proofs may be generated only for high-value requests, and system outages or
latency constraints may prevent universal verification. Our parameter p is
intended to capture this operational reality at a reduced-form level. The re-
sulting comparative statics—verification as a substitute for monetary burn,
and partial verification as a drag on learning speed—translate directly into
design guidance: increasing attestation coverage or reliability reduces the
transfers required to align incentives and improves the rate at which those
transfers can be calibrated.

Taken together, these literatures suggest a common lesson: incentives and
information are complements, and weakening one forces the other to work
harder. The novelty in our setting is that the information friction is not
merely noisy outcomes but missing enforceability events, and the organiza-
tional form is explicitly hierarchical. This combination produces a simple but
powerful frontier—payments inflate as 1/p, learning slows by 1/p, and when
p = 0 there are environments where efficiency restoration is impossible—that
we formalize in the model section that follows.

3 Model

We study repeated delegation on a rooted tree T = (V,E). Each node v ∈ V
is simultaneously an agent (relative to its parent P (v), when v ̸= root) and
a principal (relative to its children C(v)). Time is discrete t = 1, . . . , T . In
each round, every player chooses an action Av

t ∈ A, where |A| = K. We
index depth so that leaves are at depth 1 and the root is at depth D. For
simplicity, one may think of a regular branching factor B, although nothing
in the model definition requires regularity.

Local payoff externalities and stochastic rewards. The payoff of node
v depends on its own action and the actions of its direct children:

Xv
t

(
Av

t , A
C(v)
t

)
= θv

(
Av

t , A
C(v)
t

)
+ zvt , θv(·) ∈ [0, 1]. (1)
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The noise zvt is conditionally zero-mean sub-Gaussian, capturing the stan-
dard bandit-type uncertainty that persists even if the action profile were
observed. The restriction to dependence on C(v) encodes local externalities
along edges; it is precisely this locality that makes recursive contracting fea-
sible, but it does not eliminate strategic tension because each child action
can shift the parent’s reward.

Local contracts: recommendations and receipt-triggered transfers.
In each round t, each principal v issues a separate contract to each child
w ∈ C(v). The contract consists of a recommended action Bt(w) ∈ A and a
nonnegative transfer τt(w) ≥ 0. Transfers are receipt-triggered : v pays τt(w)
to w only when a verifiable receipt arrives and attests that w complied with
the recommendation.

Formally, on each edge (v, w) and round t, an attestation signal (receipt)
Sv→w
t ∈ A ∪ {⊥} is realized according to

Pr[Sv→w
t = Aw

t ] = p, Pr[Sv→w
t = ⊥] = 1− p, (2)

independently across edges and time. The symbol ⊥ denotes “no receipt”
(unverifiable). Unforgeability is built in: whenever Sv→w

t ̸= ⊥, it equals the
child’s true action. Payments are then settled by the rule

payment from v to w at time t = I{Sv→w
t = Bt(w)} τt(w). (3)

This contract space is intentionally one-sided (bonuses only) and local (edge-
by-edge). The nonnegativity restriction reflects limited liability or the prac-
tical difficulty of enforcing fines/clawbacks in many digital contracting envi-
ronments.

Timing and information. Within each round t: (i) each v observes the
contract offered by its parent (Bt(v), τt(v)) (for the root this term is absent);
(ii) each v chooses Av

t and simultaneously chooses {(Bt(w), τt(w))}w∈C(v)

for its children; (iii) rewards {Xv
t }v∈V realize; (iv) receipts {Sv→w

t }(v,w)∈E
realize; (v) transfers are paid according to receipts; (vi) players update their
learning states.

The information structure is decentralized. Player v observes its own
realized reward Xv

t , its incoming receipt S
P (v)→v
t (if applicable), and its

outgoing receipts {Sv→w
t }w∈C(v). When Sv→w

t = ⊥, the parent receives
no direct evidence of w’s action in that round. Thus, even holding fixed a
contract (Bt(w), τt(w)), the realized incentive provided to the child is random
over time because the transfer is only paid on a random subset of rounds.

Utility with transfers. Each node’s per-round utility equals its stochastic
reward plus any incoming transfer received upon verified compliance, minus
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any outgoing transfers paid to children upon verified compliance:

Uv
t = Xv

t

(
Av

t , A
C(v)
t

)
+I
{
S
P (v)→v
t = Bt(v)

}
τt(v)−

∑
w∈C(v)

I{Sv→w
t = Bt(w)} τt(w),

(4)
with the convention that the incoming term is 0 for the root. The transfer
terms encode the core enforcement friction: a child can deviate without
immediate financial consequence whenever no receipt arrives, and the parent
can economize on payments only to the extent that verification is frequent.

Continuation values and induced utilities. Because each node is both
agent and principal, a useful summary object is the induced expected utility
of a child under downstream optimal play. Fix a node w and imagine that
its parent recommends an action b ∈ A with transfer τ . Let µw(a) denote
w’s expected continuation value if it chooses action a and then optimally
contracts with its own descendants given the same receipt structure. This
recursion is what allows “local” contracts to be analyzed in terms of effec-
tive payoffs. Under a stationary contract recommending b, the incentive-
compatibility constraints for w compare the expected utility of choosing b to
any deviation a ̸= b:

µw(b) + p τ ≥ µw(a), ∀a ∈ A, (5)

since the receipt-triggered transfer is obtained only with probability p. We
emphasize that (5) is an ex post behavioral condition (given a continuation
value function), and it is the key place where verification enters multiplica-
tively.

Welfare. We evaluate system performance by welfare defined over real
rewards, not transfers. The realized welfare in round t is

Wt =
∑
v∈V

Xv
t

(
Av

t , A
C(v)
t

)
, (6)

with corresponding expected welfare
∑

v θv(·). This choice reflects the stan-
dard perspective that transfers are internal to the organization/marketplace:
they redistribute utility but do not create surplus. Indeed, summing (4)
across all v ∈ V cancels every transfer term edge-by-edge, leaving

∑
v U

v
t =∑

v X
v
t . This accounting identity underlies why we can simultaneously study

incentive costs (which matter for individual utilities and feasibility) and ef-
ficiency (which depends only on realized rewards).

Regret notions: individual utility regret and welfare regret. Two
regret metrics will be useful. First, for each node v, we define an individ-
ual (utility) regret relative to the best fixed action in hindsight against the
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realized environment it faced:

Rv(T ) = max
a∈A

E

[
T∑
t=1

Uv
t

(
a
)]
− E

[
T∑
t=1

Uv
t

]
, (7)

where Uv
t (a) denotes the (counterfactual) utility at time t if v had played

a while everything else (including contracts offered by others, receipt re-
alizations, and downstream learning dynamics) evolves as specified.1 This
definition captures the learning objective we impose on each agent: maxi-
mize its own realized utility stream given partial verification and stochastic
rewards.

Second, we define welfare regret against the best fixed joint action profile
in hindsight under the mean rewards:

Rwel(T ) = E

[
T∑
t=1

(
max
a∈A|V |

∑
v∈V

θv
(
av, aC(v)

)
−
∑
v∈V

θv
(
Av

t , A
C(v)
t

))]
. (8)

Welfare regret is the metric that speaks most directly to efficiency restora-
tion: it asks whether the decentralized contracts and learning dynamics drive
play toward the welfare-optimal profile, despite missing receipts and strate-
gic incentives. The main results in the sequel establish that p > 0 is enough
to make Rwel(T ) = o(T ) achievable (with explicit dependence on 1/p and
depth), while p = 0 admits environments where linear welfare regret is un-
avoidable.

4 Benchmark: full observability (p = 1)

To build intuition for the role of receipts, it is helpful to begin from the
limiting case of full observability, in which every recommended action can
be verified ex post. In our notation, setting p = 1 implies that on each
edge (v, w) and round t we have Sv→w

t = Aw
t almost surely, so a parent can

condition payments on the child’s realized action without statistical thin-
ning. This benchmark is not merely a technical convenience: it isolates the
strategic reason transfers are needed (local payoff externalities along edges)
from the informational reason they become expensive (missing receipts). In
this regime, our model reduces to the setting studied by MAIL, and the re-
cursive contract structure admits a particularly transparent “shadow price”
interpretation.

Fix an edge (v, w) and suppose v wants to induce w to take some target
action b ∈ A. Under full observability, the receipt-triggered bonus is paid

1This is the standard “policy regret” subtlety in strategic environments; our results
focus on settings where the recursive contract structure makes the induced environment
sufficiently stable to admit no-regret guarantees, as in MAIL-style analyses.
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whenever w complies, which now happens deterministically conditional on
w’s choice. Thus the incentive constraints (5) reduce to

µw(b) + τ ≥ µw(a), ∀a ∈ A, (9)

and the minimal bonus that makes b optimal (breaking ties in favor of compli-
ance) is the familiar “gap” between the best deviation and the recommended
action:

τ⋆b (w) = max
a∈A

µw(a)− µw(b). (10)

Equation (10) is the first place where the recursion across the tree becomes
operational: µw(·) already incorporates the fact that w will optimally con-
tract with its descendants, so τ⋆b (w) is the net inducement cost after down-
stream incentives are optimally set. In other words, even though v writes
a contract only with w, the object µw internalizes all lower-level strategic
interactions into a single continuation value function.

From the parent’s perspective, inducing w to play b yields a benefit
through v’s own payoff function θv(·), but it also requires paying the bonus
τ⋆b (w). Under compliance, we can therefore summarize v’s induced expected
utility (net of incentive costs to children) by the “shifted” payoff

µv

(
a, bC(v)

)
= θv

(
a, bC(v)

)
−

∑
w∈C(v)

τ⋆bw(w), (11)

which is exactly the MAIL recursion specialized to p = 1. This representation
is conceptually important: it converts a hierarchical contracting problem into
a local choice problem in which the principal selects recommended child ac-
tions bC(v) as if facing a standard bandit objective, but with payoffs reduced
by the endogenous prices τ⋆bw(w) required to sustain those recommendations.

These transfers admit a natural interpretation as shadow prices of in-
centive constraints. To see this, imagine a local planner (or equivalently
a principal writing a mechanism) who would like to impose the constraint
“child w plays b” but must respect w’s best response. The constraint (9)
says that the mechanism must compensate the child for the opportunity
cost of foregoing its best alternative action. The minimal transfer τ⋆b (w) is
precisely the smallest Lagrange multiplier that relaxes the binding deviation
constraint, and thus can be read as the (endogenous) unit price of imple-
menting action b at node w. This “price” is not exogenous: it depends on
downstream contractibility and learning through µw(·). When a descendant
is easy to incentivize (because its downstream continuation values align),
µw(b) is large relative to maxa µw(a), and the corresponding shadow price is
small; when incentives are misaligned, the price rises.

This shadow-price view also clarifies why, in the welfare analysis, trans-
fers are simultaneously indispensable and irrelevant. They are indispensable
because without them the recommended actions need not be best responses,
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so local externalities would not be internalized. Yet transfers are irrelevant
for welfare because they are pure redistribution within the tree. Formally,
summing per-round utilities (4) over v ∈ V cancels every transfer on every
edge: each outgoing payment from a parent appears as an incoming payment
to the child with the opposite sign. Consequently,∑

v∈V
Uv
t =

∑
v∈V

Xv
t

(
Av

t , A
C(v)
t

)
= Wt, (12)

independently of the contract terms and independently of whether p = 1 or
p < 1. This identity is the accounting backbone of the MAIL-style welfare
guarantee: once we can ensure that each node experiences vanishing utility
regret relative to its induced environment, the sum of utilities tracks the sum
of realized rewards, and efficiency statements can be made without separately
tracking the flow of transfers.

At the same time, we emphasize a limitation that becomes central once
we depart from the benchmark: although transfers cancel in welfare, they
do not cancel in any agent’s individual utility, nor are they innocuous from
the perspective of feasibility. Large τ values can create significant “payment
burn” for principals and large variance in realized utilities for agents, even
when the system-wide surplus is unchanged. Under full observability, (10)
shows that the required payments are exactly the minimal wedges needed
for incentive compatibility, so payment burn is as low as it can be given the
continuation values. This is one reason full monitoring is often treated as
the idealized target in practice: strong auditing, reliable logging, or cryp-
tographic attestations effectively push systems toward the p = 1 regime,
reducing the incentive cost of enforcing compliance.

Finally, this benchmark clarifies what changes when we move to partial
verification. When p < 1, the same shadow-price logic still applies, but
the “unit price” of implementing an action is inflated because the bonus is
received only on the subset of rounds where a receipt arrives. Put differently,
full observability is the case in which the mechanism designer can pay exactly
when an action is taken; partial observability forces the designer to pay only
when an action is verified. The next section formalizes how this statistical
thinning transforms (10) into a 1/p scaling, and how the learning dynamics
must be modified accordingly.
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5 5. Verification-adjusted optimal incentives: char-
acterize minimal inducing payments under re-
ceipts; closed-form τ*/p scaling; discuss exten-
sions (false positives/negatives; endogenous ver-
ification).

When receipts arrive only intermittently, the parent can still use the same
local “pay-for-compliance” logic as in the benchmark, but the incentive con-
straint is diluted by statistical thinning. Fix an edge (v, w) and a target
recommendation b ∈ A. Consider a stationary contract of the form: the
parent recommends b and promises a nonnegative bonus τ ≥ 0 that is paid
if and only if a receipt arrives and attests that w played b, i.e., if Sv→w

t = b.
Under our receipt technology, if w actually plays action a, then Sv→w

t = a
with probability p and Sv→w

t = ⊥ otherwise; moreover, when Sv→w
t ̸= ⊥ it

is unforgeable. Hence the expected transfer received by w equals pτ if a = b,
and 0 if a ̸= b. In terms of continuation values, w’s expected utility from
choosing a is therefore

µw(a) + p τ I{a = b},

which yields the receipt-adjusted incentive constraints

µw(b) + p τ ≥ µw(a), ∀a ∈ A. (13)

Relative to the full-observability case, the only change is that the “effective”
bonus is pτ rather than τ : the payment is perfectly targeted when it occurs,
but it occurs only on a p-fraction of rounds.

Solving (13) immediately gives a closed form for the smallest payment
that induces b (again breaking ties in favor of compliance):

τ⋆,pb (w) =
maxa∈A µw(a)− µw(b)

p
≡

τ⋆b (w)

p
, p > 0. (14)

Two observations are worth isolating. First, if b is already optimal for w given
its downstream environment (i.e., µw(b) = maxa µw(a)), then τ⋆,pb (w) = 0 for
every p: receipts are irrelevant when incentives are already aligned. Second,
whenever there is a strictly positive temptation to deviate, partial verification
inflates the required promised transfer by a factor 1/p. This scaling is not an
artifact of our proof technique; it is the direct implication of paying only upon
verification. The expected reward wedge needed for incentive compatibility
is a property of preferences (the gap τ⋆b (w)), while the instrument delivers
only pτ units of expected wedge per unit of promised payment.

The same logic also clarifies why we insist on p > 0 for general imple-
mentability. If p = 0, then no contract of this form can ever condition on
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compliance, so (13) collapses to µw(b) ≥ µw(a) for all a, i.e., the principal
can induce b only if b is already a best response. In other words, when re-
ceipts never arrive, transfers cannot relax any deviation constraint at all;
incentives are purely “outcome-driven” through µw, which in general does
not align with the parent’s objective. This is precisely the channel behind
our later impossibility: without any verification, the contractible margin
disappears.

Equation (14) also sharpens a practical distinction between welfare and
feasibility. Even though transfers cancel in aggregate welfare, the gross
promised payments can become large when p is small: implementing the
same action profile requires higher posted bonuses, and realized transfers
become more sporadic but larger when they occur. Thus partial verification
can increase principals’ payment burn, tighten liquidity constraints, and in-
flate variance in realized utilities even if the induced action profile (and
therefore welfare) remains essentially the same. In applications, this trade-
off is often salient: weak auditability forces organizations either to tolerate
misaligned behavior or to post very high contingent bonuses that are rarely
triggered but expensive when triggered.

Our baseline receipt model assumes perfect correctness conditional on
being present (unforgeable, no misclassification). It is useful, however, to
understand how (14) changes with noisy attestations. One natural extension
introduces false negatives and false positives. Suppose that when w plays
b, the receipt correctly attests b with probability p(1 − εfn) (otherwise it is
missing or uninformative), and when w plays a ̸= b, the receipt incorrectly
attests b with probability p εfp. Under the same “pay iff the receipt says b”
rule, the expected transfer from playing b is p(1− εfn)τ , while the expected
transfer from deviating is pεfpτ . The net incentive wedge delivered by the
instrument is therefore p(1− εfn − εfp)τ , and the IC condition becomes

µw(b) + p(1− εfn)τ ≥ µw(a) + pεfpτ, ∀a ̸= b,

so that a sufficient (and essentially tight) minimal transfer is

τ⋆,p,εb (w) =
maxa∈A µw(a)− µw(b)

p (1− εfn − εfp)
, (15)

provided 1 − εfn − εfp > 0. This formula highlights a sharp qualitative
boundary: false negatives act like a reduction in effective verification fre-
quency, while false positives undermine the targeting of payments and can
make incentives non-implementable if misclassification is too severe (when
εfn+εfp ≥ 1, raising τ no longer increases the expected advantage of compli-
ance over deviation). Because our main focus is on learning under statistical
thinning rather than misclassification, we keep the unforgeable-receipt as-
sumption throughout, but (15) indicates how the guarantees would deform
under more realistic auditing errors.
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A second extension makes verification endogenous. In many systems,
a principal can invest in higher p via audits, monitoring infrastructure, or
cryptographic attestation, at some cost c(p) (e.g., increasing and convex).
Under (14), the expected promised inducement cost for action b is propor-
tional to τ⋆b (w)/p, suggesting a simple reduced-form tradeoff: verification
substitutes for transfers. If a parent chooses p and τ jointly to implement b,
a natural objective is to minimize total implementation cost c(p)+ τ subject
to pτ ≥ τ⋆b (w), which yields τ = τ⋆b (w)/p and hence the scalar problem

min
p∈(0,1]

c(p) +
τ⋆b (w)

p
.

When c is differentiable and strictly convex, an interior optimum satisfies
c′(p) = τ⋆b (w)/p

2: the marginal cost of improving verification is set equal to
the marginal savings in incentive payments. This perspective connects our
model to practice: better logging, stronger attestations, and more frequent
audits reduce the financial (or contractual) burden needed to align behavior,
but may themselves consume resources.

Finally, we emphasize the methodological implication for learning. The
object τ⋆,pb (w) depends on µw(·), which is endogenous and unknown ex ante
because it incorporates downstream learning and contracting. Under par-
tial verification, the parent additionally observes compliance only on receipt
rounds. Thus even estimating which payments induce which actions must
proceed from a subsampled signal. The next section operationalizes this
point: Verified-MAIL combines (i) an exploration procedure that length-
ens payment-search batches by a factor 1/p to compensate for missing re-
ceipts with (ii) the same shifted-reward bandit reduction as in MAIL, thereby
restoring no-regret guarantees despite verification frictions.

Verified-MAIL: overview. Verified-MAIL is the receipt-robust analogue
of MAIL: each node v simultaneously (a) learns which local action/recommendation
vector is optimal for its upstream objective and (b) implements that recom-
mendation vector downstream using receipt-triggered transfers. The receipt
friction affects both components. On the implementation side, the princi-
pal cannot directly observe compliance in most rounds, so it must (i) post
higher promised bonuses (as quantified above) and (ii) learn those bonuses
from a thinned stream of verifications. On the learning side, even when the
induced action profile is stable, realized utilities contain additional receipt-
driven randomness; we therefore separate (A) a payment-learning routine
that is explicitly designed for subsampled compliance feedback and (B) a
bandit routine that treats the induced payment burden as a known offset
(up to estimation error). We run these two routines on a carefully separated
time scale, with depth-dependent batch lengths to control the propagation
of estimation error up the tree.

16



(i) Receipt-subsampled payment exploration (ExpSub). Fix a node
v, a child w ∈ C(v), and a target recommendation b ∈ A. The object
we need for downstream implementation is the receipt-adjusted inducing
transfer τ⋆,pb (w). The difficulty is that v only observes w’s action when
Sv→w
t ̸= ⊥, which occurs on a p-fraction of rounds in expectation; moreover,

w is itself learning, so short-run play can deviate from its eventual best
response even under a correctly calibrated contract. ExpSub addresses both
issues via long batches and one-sided (upper) estimation.

Operationally, ExpSub maintains an interval [τ , τ ] ⊆ [0, τmax] that is
guaranteed (on a high-probability good event) to contain τ⋆,pb (w), and re-
peatedly queries the midpoint τ = (τ + τ)/2 for a batch of rounds. During
a query batch, v posts the stationary contract (Bt(w), τt(w)) = (b, τ) and
records only the receipt rounds. Let

N =
∑

t∈batch

I{Sv→w
t ̸= ⊥}, Y =

∑
t∈batch

I{Sv→w
t = b},

so that Y/N is an empirical compliance rate conditional on verification. Be-
cause missing receipts are neither evidence of compliance nor deviation, we
simply treat them as censored observations and exclude them from N . The
decision rule is intentionally conservative: if Y/N is sufficiently high (above
a tolerance level 1 − η), we declare τ feasible and set τ ← τ ; otherwise we
set τ ← τ . The tolerance η absorbs both statistical error from finite N and
the child’s transient deviations due to its own no-regret learning. In particu-
lar, because N itself concentrates around p · (batch length), we choose batch
lengths inflated by a factor 1/p so that, with high probability, N is large
enough for Hoeffding-style control of Y/N .

We run this binary search on a geometric accuracy schedule. Writing
εm = 2−m for the target precision in phase m, we use batch length of order

Lm = Θ

(
1

p
· 1

ε2m
log

1

δm

)
,

so that the number of receipt observations N is Θ̃(ε−2
m log(1/δm)) and the

acceptance/rejection decision is reliable. The output after m phases is an
upper estimate τ̂b(w) satisfying τ̂b(w) ≥ τ⋆,pb (w) with probability at least
1 −

∑
j≤m δj . This one-sidedness is deliberate: underestimating payments

risks sustained deviations that contaminate the principal’s reward samples,
whereas overestimating payments only incurs additional transfer burn and
slows regret rates polynomially.

(ii) Shifted-reward bandit subroutine at each node. Payment ex-
ploration produces, for each child w and each recommendation b, a current
inducing-payment proxy τ̂b(w). Conditional on these proxies, node v faces a
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standard bandit problem over meta-actions

α = (a, bC(v)) ∈ A1+|C(v)|,

where a is v’s own action and bC(v) is the vector of recommendations to
its children. The conceptual objective is to pick α that maximizes the
downstream-induced value θv(a, bC(v)) net of the payment burden needed
to make the recommendations self-enforcing. Accordingly, in exploitation
rounds we feed the bandit algorithm a shifted sample

X̃v
t (α) = Xv

t

(
a,A

C(v)
t

)
−

∑
w∈C(v)

τ̂bw(w),

where A
C(v)
t are the realized child actions (which, on the high-probability

event of successful inducement, coincide with bC(v) up to a vanishing fraction
of rounds). This shift removes from the learning objective the need to track
the stochastic realization of transfers (which are instrument noise from the
perspective of identifying θv) and instead internalizes the implementation
cost through the deterministic offsets τ̂bw(w).

Because τ̂ can be as large as O(1/p), X̃v
t need not lie in [0, 1]. We

therefore normalize the shifted reward by a known range bound Rv (e.g.,
Rv = 1+|C(v)|τmax) and run any adversarial-robust no-regret bandit method
(such as EXP3) on the rescaled samples; equivalently, we may run UCB-
style algorithms with appropriately scaled confidence radii. The key design
choice is that the bandit learner treats τ̂ as fixed within an epoch, so that
within-epoch rewards are conditionally i.i.d. up to sub-Gaussian noise and
rare deviation events.

(iii) What to do when receipts are missing. Two implementation de-
tails matter in practice and in the subsequent regret analysis. First, transfers
are never paid on Sv→w

t = ⊥. This is not merely a modeling constraint but
a robustness feature: when verification is absent, the principal cannot con-
dition payments on unverifiable claims, so any attempt to “fill in” missing
receipts would reopen moral-hazard channels. Second, missing receipts pro-
duce missing compliance observations, not negative evidence. Consequently,
ExpSub updates only on receipt rounds, and the principal’s bandit learner
does not interpret S = ⊥ as a deviation signal. Instead, deviations are
controlled indirectly by (a) maintaining upper estimates τ̂ and (b) choos-
ing batch lengths large enough that, even after thinning, the verified rounds
suffice to detect systematic noncompliance with high probability. In effect,
we treat receipts as a Bernoulli subsampling device: they slow learning, but
they do not bias it.

Depth-dependent parameter schedules. Finally, we set parameters by
depth to manage error propagation. Let d(v) denote the distance from v
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to the leaves. As in MAIL, nodes closer to the leaves stabilize faster be-
cause they face fewer layers of downstream strategic learning. Verified-MAIL
mirrors this by allocating shorter epochs and tighter confidence budgets to
shallow nodes, and longer, more conservative epochs to deeper nodes. Con-
cretely, we choose a decreasing accuracy schedule εm(d) and a summable
failure budget δm(d) (e.g., δm(d) ∝ (TK)−cd2−m) and set both (a) Exp-
Sub batch lengths and (b) bandit-epoch lengths to scale like p−1 times the
corresponding MAIL lengths. This ensures that every layer receives, in ex-
pectation, the same number of verified observations per phase as under full
verification, up to logarithmic factors, while keeping the overall horizon fea-
sible.

These choices yield an algorithm that is modular (payment estimation
plus bandit selection) and explicitly receipt-aware. The next section uses this
modularity to decompose regret into (i) bandit learning regret under shifted
rewards, (ii) payment-estimation error, and (iii) losses from the residual prob-
ability of undetected deviations, with each term exhibiting a transparent
dependence on p and depth.

Regret decomposition with receipt noise. We analyze nodewise regret
with respect to the implementation-adjusted objective, i.e., the value of an
action/recommendation vector net of the minimal receipt-adjusted induce-
ment costs. For a node v, let a meta-action be α = (a, bC(v)) ∈ A1+|C(v)|,
and define the corresponding benchmark mean

µv(α) ≜ θv
(
a, bC(v)

)
−

∑
w∈C(v)

τ⋆,pbw
(w),

where τ⋆,pb (w) is the minimal promised transfer that makes b optimal for w
under receipt probability p. We measure regret against maxα µv(α), which
is the natural analogue of MAIL’s recursion: it compares v’s realized perfor-
mance to the best locally implementable recommendation profile, accounting
for the enforcement burden created by receipts.

The key technical change relative to full verification is that v’s realized
utility contains two additional sources of randomness: (i) receipt-triggered
transfers paid/received with Bernoulli probability p, and (ii) strategic devia-
tions that are only partially observed. Our analysis therefore conditions on a
high-probability event E under which (a) all payment estimates remain one-
sided (τ̂b(w) ≥ τ⋆,pb (w) for all queried (w, b)), (b) receipt counts concentrate
in every exploration batch, and (c) every child’s no-regret guarantee holds
uniformly over epochs. Under E , we can write a clean regret decomposition:

Rv(T ) ≤ Rbandit
v (T )︸ ︷︷ ︸
learning α

+ Rpay
v (T )︸ ︷︷ ︸

overpay / estimation error

+ Rdev
v (T )︸ ︷︷ ︸

residual deviations

,

where each term admits a receipt-explicit bound.
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Payment estimation error and its 1/p cost. The ExpSub routine pro-
duces upper estimates τ̂b(w) from censored compliance data: only receipt
rounds contribute to the empirical compliance statistic. For a batch of
length L, the number of usable samples is N =

∑
t∈batch I{Sv→w

t ̸= ⊥},
with E[N ] = pL. Concentration of N implies that with probability at least
1− δ,

N ≥ p
2L whenever L ≳

1

p
log

1

δ
.

Thus, to achieve the same statistical precision as under p = 1, every binary-
search query must be lengthened by a factor Θ(1/p). This is the first, un-
avoidable appearance of 1/p in the regret rate.

On E , the one-sided property implies we never under -incentivize in ex-
ploitation epochs; the cost of estimation is therefore purely overpayment.
For a fixed epoch in which v recommends bw to child w, we incur an additive
mean offset

τ̂bw(w)− τ⋆,pbw
(w) ≥ 0

in the shifted objective. Summing across children and time,

Rpay
v (T ) ≤

T∑
t=1

∑
w∈C(v)

(
τ̂bw,t(w)− τ⋆,pbw,t

(w)
)
,

so any schedule that drives τ̂ − τ⋆,p to zero sufficiently fast yields sublinear
payment regret. With a geometric accuracy schedule εm and batch lengths
Lm = Θ̃((1/p)ε−2

m ), the cumulative overpayment is dominated by the final
precision achieved before time T , giving a typical bound of the form

Rpay
v (T ) = Õ

(
|C(v)|T εfinal

)
+ Õ

( |C(v)|
p

∑
m

ε−2
m

)
,

where the second term reflects the exploration time spent to learn payments
from a p-thinned stream.

Deviation control with partial observability. Even when τ̂ is an upper
bound, children may deviate transiently because they are learning. The
crucial point is that once τ̂b(w) exceeds τ⋆,pb (w) by a margin, the induced
utility gap in favor of b is uniformly positive. Indeed, for any deviation
a ̸= b,

E[Uw | Aw = b]− E[Uw | Aw = a] ≥ p
(
τ̂b(w)− τ⋆,pb (w)

)
≜ ∆w,b.

If w runs a no-regret algorithm with regret rw(T ) with respect to its realized
utility, then a standard gap-to-count argument implies that the number of
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rounds in which w plays an action with expected utility at least ∆w,b below
the best response is at most O(rw(T )/∆w,b). Consequently, on E ,

Rdev
v (T ) ≤

∑
w∈C(v)

Õ
(rw(T )
∆w,b

)
,

up to the per-round loss scale of θv ∈ [0, 1]. This highlights the second role
of p: smaller p weakens incentive gaps linearly, so even holding overpayment
fixed, deviation control slows by a factor 1/p. Verified-MAIL compensates
by maintaining ∆w,b bounded away from zero through conservative (upper)
payment updates, which is precisely why underestimation is far more dam-
aging than overestimation.

Bandit regret under shifted and enlarged ranges. Conditioning on
E , exploitation rounds present v with an adversarially-robust bandit prob-
lem over meta-actions α, with rewards equal to θv minus a known offset∑

w τ̂bw(w). Because τ̂ can be as large as Θ(1/p), the effective reward range
is

Rv = 1 +
∑

w∈C(v)

τmax(w) = 1 + Õ
( |C(v)|

p

)
,

and standard bandit guarantees scale linearly with Rv. For example, an
EXP3-style bound yields

Rbandit
v (T ) = Õ

(
Rv

√
T |A|1+|C(v)|

)
within each epoch, and the MAIL-style epoching/induction over depth con-
verts this into a sublinear rate even though the meta-action space is large:
the recursion ensures that only a controlled set of recommendation profiles
is explored at each depth, and deeper nodes are allocated longer epochs to
stabilize downstream learning.

Per-node and welfare guarantees (dependence on p and depth).
Putting the three terms together and inducting on d(v) (distance to leaves),
we obtain receipt-robust analogues of MAIL’s nodewise regret bounds.

Theorem 5.1 (Sketch of per-node regret with receipts). Fix p > 0. Un-
der the stated sub-Gaussian reward model, unforgeable receipts, and assum-
ing each node’s bandit learner is no-regret with respect to its realized utility,
Verified-MAIL achieves for every node v,

E[Rv(T )] = Õ
(
T

1− 1
2d(v)2 p−γd(v)

)
,

for an explicit exponent γd that grows at most polynomially in d (and depends
on the chosen confidence schedule). In particular, for fixed depth d, the regret
remains o(T ) and degrades monotonically as p ↓ 0.
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Finally, welfare regret follows by summing nodewise deviations from the
welfare-optimal profile and using the standard cancellation of transfers in
aggregate welfare. The only receipt-specific complication is that transfers
are paid intermittently; however, intermittency affects utilities but not wel-
fare, since welfare depends on

∑
v θv and transfers sum to zero along edges

ex post. Thus, the welfare analysis reduces to bounding (i) the time spent
exploring payments and meta-actions and (ii) the externality losses in the
(rare) deviation rounds; both are controlled by the same 1/p-inflated batch
lengths and the same incentive-gap arguments above. This yields sublinear
welfare regret o(T ) for any fixed p > 0, with an explicit polynomial deterio-
ration in 1/p that becomes sharper as depth increases.

Why some verification is indispensable. Our positive results hinge on
a very weak, but qualitatively important, signal: with probability p > 0 the
parent learns (and can condition transfers on) whether the child complied
with the recommendation. When p = 0, this channel disappears entirely. At
that point, a principal attempting to internalize downstream externalities
faces a familiar identification problem: if no observable variable is statisti-
cally linked to the child’s hidden action, then no outcome-contingent scheme
can create differential incentives across actions. In a hierarchy, this difficulty
is amplified because the agents who do observe the relevant consequences
(typically descendants) cannot directly contract with the agent who gener-
ates them, as transfers only move locally along edges.

Impossibility at p = 0: linear welfare regret under outcome-only
contracting. We formalize this intuition with a simple constructed in-
stance in which (i) welfare critically depends on an intermediate agent’s
action, (ii) that action has no effect on any payoff observed by its parent,
and (iii) the beneficiary is a descendant who cannot compensate the inter-
mediate agent (since payments cannot flow upward). Even if principals are
allowed to use arbitrarily rich history-dependent contracts based on their
own observed outcomes, the absence of any action verifiability renders the
welfare-optimal profile unenforceable and, crucially, unlearnable from the
principal’s perspective.

Theorem 5.2 (Outcome-only contracting can incur Ω(T ) welfare regret
when p = 0). Suppose p = 0 on every edge (so receipts never arrive). There
exists a depth-3 path v → w → u with binary actions A = {0, 1} and bounded
rewards θ ∈ [0, 1] such that for any decentralized contracting/learning scheme
in which transfers from v to w may depend on v’s observed history but not
on w’s unverifiable action, the induced welfare regret is at least cT for some
universal constant c > 0.
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Construction. Let v (the parent) be indifferent to w’s action and observe
no informative outcome about it:

θv(·) ≡ 0.

Let w (the intermediate agent) privately prefer action 0 regardless of any
downstream effects:

θw(0, ·) = 1, θw(1, ·) = 0.

Finally, let u (the descendant) be the welfare beneficiary of w’s costly action:

θu(·) = I{Aw = 1}.

All remaining dependencies can be taken trivial, and noise can be set to zero
(or added sub-Gaussianly without changing the argument). In this instance,
per-period welfare is

W (Aw) = θv + θw + θu =

{
1 if Aw = 0,

1 if Aw = 1,

so this raw specification by itself does not create a welfare gap. To produce
a strict welfare preference for Aw = 1, we can instead set θw(0, ·) = 0,
θw(1, ·) = 0 (so w is privately indifferent absent transfers) and keep θu(·) =
I{Aw = 1}, while introducing a tiny private bias for w toward 0 via a constant
additive term ε > 0 to action 0 in its realized utility (equivalently, a small
action-dependent cost for 1). Then welfare is strictly higher under Aw = 1
by 1− ε, while w strictly prefers 0 by ε.

Proof sketch (enforcement failure implies welfare loss). Fix any
scheme. Because p = 0, any contract from v to w cannot condition on verified
compliance (no receipts arrive), and by construction v’s own observed reward
process is independent of Aw. Hence, for any history hvt observed by v, any
transfer rule τt(w) = τt(h

v
t ) has the same conditional distribution regardless

of whether w plays 0 or 1. Therefore, the expected incremental transfer
received by w from switching actions is identically zero:

E[transfer | Aw = 1, hvt ]− E[transfer | Aw = 0, hvt ] = 0.

Consequently, w’s best response is determined solely by its private payoff
(and any downstream contracts it offers, which cannot create positive net
incentives here because u cannot pay w and u’s action does not affect w’s
observed outcomes). Thus w plays its privately preferred action in essentially
every round, independent of the principal’s algorithm. Since the welfare gap
between the welfare-optimal action and w’s privately preferred action is a
constant per round, the welfare regret is linear: Ω(T ).
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Interpretation and limitations. The force of Theorem 5.2 is not the
particular numbers but the informational structure: when upstream nodes
observe no statistic correlated with the hidden action, no amount of learning
can recover the missing incentive lever. In practice, this is exactly the situa-
tion in large marketplaces and supply chains when a platform (or regulator)
sees only coarse outcomes and cannot audit or attest effort/behavior at the
relevant margin. Of course, the lower bound is not universal: if outcomes
observed by the principal were sufficiently informative about the agent’s
action (or if agents could make credible reports, or if side-payments could
travel upward), then outcome-only mechanisms could succeed. Our point is
that hierarchical externalities naturally generate environments where such
informativeness fails, making even a tiny verification probability p > 0 qual-
itatively transformative.

A matching lower bound: inducement must inflate by at least 1/p
when p > 0. The second negative result is a tight necessity statement
behind the 1/p scaling we exploit algorithmically. Even allowing arbitrary
history dependence and randomization, if payments are nonnegative and can
be conditioned on compliance only when a receipt arrives, then the maximal
expected incremental bonus from complying in any single round is at most
pτ . Thus, whenever the child has a one-shot temptation gap g > 0 in favor
of some deviation, the promised transfer must satisfy τ ≥ g/p.

Lemma 5.3 (1/p inflation is information-theoretically necessary). Fix an
edge (v, w) and a target action b. Suppose that in the absence of transfers,
w’s continuation-value gap between its best alternative and b is

g ≜ max
a∈A

µw(a)− µw(b) > 0.

Consider any contract that (i) pays w only upon receipt-confirmed compli-
ance with b, (ii) uses a nonnegative payment τ ≥ 0, and (iii) faces receipt
probability p ∈ (0, 1]. Then any incentive-compatible contract must satisfy
τ ≥ g/p.

Proof sketch. If w plays b, it receives the transfer only when the receipt
arrives and confirms compliance, which happens with probability p; if it de-
viates, it receives no compliant payment. Hence the largest possible increase
in expected utility from choosing b rather than a deviation a coming from
transfers is pτ . Incentive compatibility requires this to offset the tempta-
tion gap g, i.e., pτ ≥ g, yielding τ ≥ g/p. This matches the closed-form
τ⋆,pb (w) = τ⋆b (w)/p and shows there is no mechanism-design “trick” that can
avoid the 1/p blow-up under our payment and verifiability restrictions.
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Takeaway. Together, these lower bounds delineate the frontier for decen-
tralized learning with local incentives: some verifiability is essential for effi-
ciency restoration, and when verification is rare, the required transfers (and
the time needed to learn them reliably) must deteriorate proportionally. This
sets the stage for design questions: when verification is costly, where should
we spend it, and how does the optimal choice of p vary with depth and
externalities?

Comparative statics and design implications. Our results can be read
as a design map: verification probability p is not merely a technical param-
eter, but the lever that trades off contracting power against measurement
effort. When p rises, two forces move in tandem. First, the nominal transfer
needed to create a given incentive wedge shrinks as τ⋆,pb (w) = τ⋆b (w)/p. Sec-
ond, the statistical speed at which a principal can learn the right transfers
(and detect misalignment) improves because the principal sees a less aggres-
sively subsampled stream of compliance evidence. These two channels are
complementary: higher p reduces both the size of the payments we must
promise and the time we spend in overpaying/underpaying regimes while
learning.

Choosing p when verification is costly. A natural extension—often
the practical starting point—is that principals can invest in verification. For-
mally, imagine that on each edge (v, w) the principal can choose a verification
probability pv→w ∈ [0, 1] at a per-round resource cost cv→w(pv→w), with c(·)
increasing and typically convex (reflecting that pushing audit rates toward
1 is disproportionately expensive). Even without solving the full dynamic
program, our comparative statics identify the marginal benefit of increasing
p: it reduces the “friction” terms that scale polynomially in 1/p (payment
estimation error and undetected deviations), while leaving the underlying
payoff externalities unchanged.

A useful back-of-the-envelope objective is to pick p to balance verification
cost against the p-dependent learning loss. If, for a node at effective depth
d, the algorithmic loss behaves like

Loss(p) ≈ Õ
(
T 1−αd p−γd

)
,

and verification cost accumulates linearly as T c(p), then the optimal p is
pinned down by equating marginal cost and marginal benefit:

T c′(p) ≈ γd Õ
(
T 1−αd p−(γd+1)

)
.

This highlights two qualitative predictions. (i) Longer horizons favor higher
p only weakly: as T grows, the learning term shrinks relative to T c(p) if c
is not too steep, so even modest verification can be enough asymptotically.
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(ii) Depth matters sharply: larger d (more layers of incentive propagation)
increases γd, raising the marginal value of verification, so hierarchies with
long chains should either verify more or accept substantial efficiency losses.

Transfers, burn, and liquidity: why small p can still be painful. A
subtle point is that the 1/p inflation concerns the promised payment con-
ditional on a receipt, not necessarily the expected payment under perfect
compliance. Indeed, if a child faces a one-shot temptation gap g and we
set τ = g/p, then the expected transfer paid upon compliance is pτ = g,
apparently independent of p. This observation is correct but incomplete
for design. Small p increases the variance and peakiness of payouts: the
principal pays rarely, but in large lumps. This creates engineering and in-
stitutional constraints that do not appear in the expectation. For example,
limited liability, escrow requirements, capital costs, or risk-sensitive agents
can make high conditional payments infeasible even if expected payments
are modest. Moreover, in learning mode, principals typically maintain upper
confidence payments τ̂ ≥ τ⋆,p to guarantee compliance with high probability;
since the time to tighten these upper bounds expands as 1/p, low p can in-
duce substantial cumulative overpayment before convergence. In short, even
when expected burn under full information is stable, low verifiability raises
real-world frictions through variance, constraints, and slower calibration.

Where to deploy verification in a hierarchy. If verification resources
are limited, the central allocation question is: which edges should be attested
more heavily? Our model suggests three prioritization principles.

First, verify bottleneck edges: those whose child subtrees generate large
welfare externalities upstream. A convenient statistic is the marginal welfare
value of aligning w’s action with v’s recommendation, aggregated over the
descendants whose payoffs depend on w. Edges that sit above large or high-
stakes subtrees amplify any deviation and therefore have higher returns to
verification.

Second, verify where the temptation gaps are large. If gv→w = maxa µw(a)−
µw(b) is large, then both the required conditional transfer and the risk of
miscalibration are more severe. Verification is especially valuable in such
edges because it directly reduces the necessary τ and accelerates accurate
estimation of τ .

Third, verify closer to the top when errors propagate. In a deep tree, a
small compliance failure rate at low levels can percolate into large effective
noise in the rewards perceived at higher levels. Increasing p on upper edges
can stabilize the contracting interface that “summarizes” an entire subtree
for its parent, thereby reducing the compounding of uncertainty. Conversely,
when externalities are largely local within subtrees, investing in verification
deeper down may be more efficient. Which effect dominates is an empiri-
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cal question, but the framework clarifies what must be measured: subtree
externality strength versus propagation sensitivity.

Dynamic and heterogeneous verification. Verification need not be
uniform over time. Because the learning burden is front-loaded, it can be
optimal to use a high verification rate early to estimate inducing payments
quickly and then taper p downward once contracts have stabilized. This mir-
rors classical “explore-then-exploit” logic, but applied to monitoring rather
than actions. Heterogeneity across edges is equally natural: some relation-
ships admit cheap, reliable receipts (e.g., digitally logged tasks), while others
require expensive audits (e.g., quality inspections). In such environments,
the model predicts that the organization should reshape incentive schemes
to route effort toward verifiable margins, reserving scarce audits for the most
distortionary hidden actions.

Marketplace and platform takeaways. Many online marketplaces al-
ready approximate our receipt process: a platform can sometimes attest to
behavior (GPS pings, time stamps, completion logs, cryptographic proofs
of delivery), but not always, and not for every dimension of quality. The
p-logic suggests two operational implications. First, “random audits” are not
merely deterrence devices; they are also learning accelerators. Even a small
audit probability can make incentive schemes identifiable and thus optimiz-
able, but the calibration time and the required conditional bonuses scale
roughly with 1/p. Second, engineering choices that slightly increase effec-
tive verifiability—better instrumentation, tamper-resistant logs, third-party
attestations, standardized reporting APIs—can have outsized welfare effects
in deep contracting chains because they reduce both incentive inflation and
compounding statistical error.

Policy implications. From a regulatory perspective, the results frame
minimum audit requirements as an efficiency instrument rather than a purely
compliance-oriented constraint. If a market is organized as a hierarchy of
subcontracting with limited upward transfers, then even small mandated
verification (or standardized attestations) can unlock mechanisms that oth-
erwise fail. At the same time, mandating very high p may be wasteful when
verification costs are convex; our comparative statics point toward targeted
verification: require strong attestations on bottleneck relationships (e.g.,
where hidden actions create large externalities), while allowing lighter-touch
monitoring elsewhere.

Design summary. Verification probability p affects decentralized learn-
ing through (i) the size and feasibility of receipt-contingent incentives and
(ii) the statistical rate at which principals can safely reduce overpayments
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and control deviations. Optimal system design therefore treats verification
as a scarce, allocable resource: invest in it where it stabilizes the most con-
sequential incentive interfaces, use it aggressively early when learning, and
complement it with contract structures and platform instrumentation that
raise effective p on the margins that matter.

Extensions: from trees to small DAGs. Our baseline analysis exploits
the rooted-tree structure to define a clean upstream/downstream recursion:
each node summarizes its entire subtree to its parent through an induced
continuation value µv(·). Many real contracting networks are not trees but
small DAGs, where a unit may report to (or affect) multiple principals,
or where downstream actions generate spillovers to multiple upstream par-
ties. A direct extension is feasible when the in-degree is bounded and cycles
are absent: we can interpret each node as signing multiple local contracts
{(B(i)

t (v), τ
(i)
t (v))}i with different parents Pi(v), and its bandit objective be-

comes the sum of its own reward plus the receipt-triggered transfers from
each parent. The key technical change is that the child’s incentive constraint
now depends on a vector of promised payments, but under additive trans-
fers the wedge remains linear, and the minimal inducing aggregate payment
still scales as 1/p. What becomes nontrivial is cost sharing : which parent
should finance which part of the inducing payment, especially when each
parent’s benefit from compliance differs. One pragmatic resolution is to des-
ignate a “lead principal” on each shared child and allow side transfers among
principals (or an internal accounting rule) so that the effective contract still
resembles the tree case. Alternatively, one can work with a spanning ar-
borescence for contracting and treat remaining DAG edges as externalities
in rewards; this preserves tractability but may increase the temptation gaps
τ⋆b (·) that must be covered. By contrast, true cycles raise a distinct difficulty:
contracts can become self-referential because a node’s continuation value de-
pends on incentives that depend on that continuation value. Handling cycles
likely requires either equilibrium selection assumptions (e.g., a fixed point
in stationary contracts) or centralized clearing/escrow that breaks circular
dependence. We view bounded-width DAGs as the most relevant near-term
extension, and the tree model as the appropriate first-order approximation
when organizations enforce a primary reporting line even if “dotted-line”
influence exists.

Budgets, limited liability, and liquidity constraints. Receipt-contingent
payments that inflate as 1/p immediately bring feasibility constraints to the
foreground. Two common constraints are (i) limited liability on the agent
side (already respected in our baseline by restricting to τ ≥ 0), and (ii)
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limited liquidity or budgets on the principal side, e.g.,∑
w∈C(v)

τt(w) ≤ B̄v or τt(w) ≤ τ̄v→w.

Under such constraints, low p can create hard incentive failures: even when
the expected burn pτ is moderate, the conditional transfer τ required for
compliance may exceed τ̄ or violate the per-round budget. This is not merely
a technicality; it predicts sharp regime changes in practice. When the con-
straint binds, principals must either (a) increase verification p, (b) recom-
mend a second-best action b with a smaller temptation gap, or (c) redesign
the contracting interface (e.g., reduce the action space to verifiable prox-
ies, simplify tasks, or shift to repeated-relationship discipline where future
access substitutes for payments). These constraints also interact with learn-
ing: algorithms like Verified-MAIL naturally maintain conservative (upper-
confidence) payments to protect compliance, but with caps τ̄ the algorithm
may be forced into under-incentivizing during exploration. A simple adap-
tation is feasibility-aware exploration: when the current upper estimate τ̂b
exceeds the cap, the principal treats action b as infeasible under current p
and reallocates exploration either toward increasing p (if choice is available)
or toward alternative recommended actions. In short, budgets and liquidity
turn the smooth 1/p comparative statics into a constrained design problem
in which verification can be the only lever that preserves implementability.

Noisy verification: false negatives and false positives. The receipt
model can also be relaxed to allow noisy attestations, a natural concern
when monitoring is automated or partially manipulable. Suppose that with
probability p a signal arrives, but conditional on arrival it may be wrong: if
the agent plays the recommended action b, the receipt matches b only with
probability 1− εfn (false negatives), and if it plays a ̸= b, the receipt falsely
reports b with probability εfp (false positives). Under the same “pay only
when the receipt says b” rule, the incentive difference between choosing b
and deviating to a ̸= b becomes(

µw(b)− µw(a)
)
+ p

(
(1− εfn)− εfp

)
τ.

Thus the minimal inducing payment inflates to

τ⋆,p,εb (w) =
maxa∈A µw(a)− µw(b)

p
(
1− εfn − εfp

) ,

provided 1 − εfn − εfp > 0. This formula clarifies an operational threshold:
if false positives plus false negatives approach one, then receipts cease to
create a reliable incentive wedge regardless of nominal audit rate p. Learning
is also affected asymmetrically. False negatives slow detection and inflate
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payments much like a reduction in effective p. False positives are more
pernicious because they subsidize deviation, increasing the payment needed
and inducing payment burn on off-path behavior. Algorithmically, the same
batched estimation logic can be applied by replacing observed compliance
counts with de-biased estimators or by explicitly modeling the confusion
matrix (εfn, εfp) when it is known or can be calibrated. The broader message
is that “verification quality” is a first-class design primitive: investments that
reduce false positives can be more valuable than equivalent increases in audit
frequency.

Empirical evaluation: what we would measure and how. Our frame-
work yields sharp, testable predictions about how monitoring interacts with
incentives and learning dynamics. An empirical evaluation can be conducted
either in a platform environment (marketplaces with random audits and dig-
ital traces) or within a firm (multi-layer task assignment with spot checks).
The core design is an experiment that varies verification probability p on a
subset of edges (teams, vendors, or task categories) while holding task pools
and recommended policies fixed. We would track: (i) promised conditional
bonuses τ and their dispersion across time; (ii) realized payments (which
should scale much less strongly with p than promised payments under high
compliance); (iii) calibration time, measured as the time until promised pay-
ments stabilize within an ε-band; and (iv) performance externalities, i.e.,
how downstream compliance affects upstream rewards in the hierarchy. The
model predicts that (a) conditional bonuses scale approximately like 1/p, (b)
convergence times scale approximately like 1/p holding confidence targets
fixed, and (c) deeper or more externally coupled subtrees exhibit a higher
marginal value of verification. A practical implementation of Verified-MAIL
would require only local logging of receipts and transfers, making it amenable
to field deployment; welfare can be proxied by aggregate objective metrics
(delivery times, defect rates, customer satisfaction) net of transfers if trans-
fers are internal, or gross of transfers if payments are external and represent
real resource costs.

Conclusion. The central tradeoff illuminated by the model is that partial
verifiability is not a binary obstacle but a quantitative friction that simul-
taneously constrains incentive power and learning speed. A strictly positive
receipt probability p > 0 is enough to restore asymptotic efficiency in deep
hierarchies, but the path to that limit can be costly when p is small be-
cause the mechanism must promise large, rare payments and must learn
them from a thinned stream of evidence. The extensions above emphasize
where the theory is likely to bend in practice: networked (non-tree) influence
patterns require cost sharing and careful interface design; budgets and liq-
uidity impose hard feasibility constraints that make verification an essential
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substitute for transfers; and noisy verification introduces a quality threshold
beyond which auditing ceases to discipline behavior. Taken together, these
considerations suggest a concrete organizational lesson: investing in reliable
attestations and designing verifiable work interfaces can be as important as
optimizing the incentives themselves, particularly in long contracting chains
where small distortions compound.
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