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Abstract

Hierarchical delegation is now a dominant pattern in agentic Al
systems: an upstream orchestrator routes tasks to sub-agents, which
further subcontract to tools and data services. The resulting exter-
nalities are local but propagate up the hierarchy, and naive inde-
pendent learning generally fails to maximize total welfare. Building
on the tree-structured principal-agent bandit framework with action-
contingent transfers, we extend the model to contextual tasks and
propose Contextual-MAIL, a fully decentralized algorithm that learns
context-dependent incentives and actions. The key technical chal-
lenge is to estimate, from local interaction alone, the minimal trans-
fer required to induce a child’s context-dependent best response while
maintaining learnability of the parent’s reward function. We address
this by combining (i) context-indexed transfer estimation under re-
peated contexts and (ii) contextual bandit learning on shifted rewards
that subtract estimated incentive costs. Under action observability,
bounded rewards, and mild separability that avoids exponential joint-
action enumeration, we prove sublinear individual regret for every node
and sublinear social-welfare regret for the whole tree. The results push
transfer-based efficiency restoration toward the 2026 reality of het-
erogeneous tasks (LLM toolchains, cloud API orchestration, delegated
data collection) while clarifying the tradeoffs between context richness,
payment burn, and error propagation across layers.
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1 Introduction and motivation

Hierarchical delegation is no longer a stylized organizational chart; in 2026
it is a software architecture. Modern agent ecosystems routinely implement
stacks of decision makers: a top-level orchestrator decomposes a user objec-
tive into tasks, routes tasks to specialized sub-agents (planning, retrieval,
execution), and those sub-agents further delegate to tools or downstream
services. This layered design is attractive because it exploits specialization
and modularity, but it also reintroduces a classical economic friction at ma-
chine speed: each agent optimizes a local objective under partial feedback,
while the system designer cares about global performance. When down-
stream agents are adaptive learners, the upstream principal cannot simply
treat them as static best responses; incentives and learning interact, and
misalignment can accumulate as it propagates up the hierarchy.

A second practical feature of these deployments is context dependence.
The same delegated task—‘summarize a document,” “execute a database
query,” “choose a pricing action,” “allocate compute budget”—can have sharply
different payoffs depending on observable side information: user type, mar-
ket regime, safety tier, latency constraints, or regulatory jurisdiction. In
contemporary toolchains, such context is often shared (or at least inferable)
across components. Yet most incentive-learning abstractions either ignore
context or treat it implicitly through nonstationarity. Our premise is that
making context explicit is not a cosmetic refinement: it is the difference be-
tween an incentive scheme that is reliably stabilizing and one that is brittle,
overpays, or fails precisely in rare but high-stakes regimes.

The core difficulty is easy to state informally. Consider a principal who
can recommend an action to each child agent, and can attach a transfer (a
monetary payment, a quota, a compute credit, a reputation score, or any
other scarce resource) conditional on compliance. The principal observes
whether the child complied, but does not observe the child’s latent prefer-
ences, internal reward, or learning state. At the same time, the principal’s
own reward depends on the joint action profile along the tree. Without
carefully designed transfers, the principal’s recommendation is merely cheap
talk: a self-interested child will deviate whenever the locally optimal action
differs from the recommendation. With transfers, the principal can in prin-
ciple “buy” compliance, but only if the payment is calibrated to the child’s
opportunity cost in the current context. Overpaying burns budget and can
distort exploration incentives; underpaying fails to induce compliance and
can render upstream learning meaningless because the observed outcomes
correspond to off-policy, endogenous responses.

These issues are amplified by the fact that every node is simultaneously
a principal and an agent. A mid-level agent faces its own parent’s contract
while simultaneously contracting with its children. If incentives are misesti-
mated at one layer, deviations below can corrupt the reward signal above,



leading to a feedback loop: the parent responds to noisy, noncompliant be-
havior by changing recommendations, which changes the child’s learning
environment, which further destabilizes behavior. In practice this manifests
as oscillatory policies, intermittent noncompliance, and an excessive reliance
on conservative, high transfers that guarantee short-run compliance but de-
stroy long-run efficiency. Our goal is to formalize this tradeoff and provide a
decentralized learning procedure whose regret guarantees match the reality
of layered delegation.

We therefore study a contextual version of bandit learning in a rooted
principal-agent tree. Each round features an observed context and stochastic
local rewards. Each principal can offer each child a simple action-contingent
transfer and can observe the child’s realized action. This contract space is in-
tentionally minimal: it matches what many deployed systems can implement
(bonuses for following a recommended plan, credits for using an approved
tool, penalties for unsafe actions) while remaining analyzable. The model
highlights three failure modes that practitioners repeatedly confront. First,
decision error: even if compliance were guaranteed, a principal may recom-
mend suboptimal actions because it is still learning a contextual mapping
from information to choices. Second, subsidy burn: to induce compliance,
the principal may pay more than necessary due to uncertainty about the
child’s opportunity cost. Third, noncompliance: if payments are too low,
or if the child’s learner has not stabilized, the child may deviate, and the
principal’s observed reward becomes a biased sample from the wrong ac-
tion profile. Any meaningful performance guarantee must control all three
components simultaneously.

Our starting point is an economic observation with algorithmic conse-
quences: under action observability, the minimal transfer that induces a
child to take a recommended action is exactly the child’s context-dependent
utility gap between its best alternative and the recommended action. This
is the familiar “pay the opportunity cost” logic, but here it must be defined
recursively because a child’s own utility depends on the behavior of its de-
scendants. Once continuation values are defined, the transfer has a closed
form, and (under an additive separability condition) the principal’s optimiza-
tion decomposes across children rather than requiring a combinatorial search
over joint child action profiles. This decomposition is not merely a conve-
nience: it is what allows decentralized learning to scale with the branching
factor without enumerating K Z possibilities at each node.

Context enters in two distinct places. Economically, the child’s oppor-
tunity cost depends on context, so a single global transfer level cannot ro-
bustly induce compliance across regimes; instead, the principal must learn
a context-indexed transfer schedule. Statistically, learning these schedules
requires repeated encounters with each context. We therefore focus on a
finite-context baseline that captures common engineering practice (contexts
as discrete tags, buckets, or task types) and allows uniform high-probability



guarantees via concentration and union bounds. This choice makes the role
of the minimum context probability explicit: if a context is too rare, no algo-
rithm can reliably estimate the needed incentives, and any global guarantee
must degrade. We view this as a feature rather than a limitation, because it
mirrors real deployments where tail contexts are precisely where policies are
least validated.

Our main contribution is a fully decentralized algorithmic template, Contextual-
MAIL, that couples incentive learning with contextual bandit learning on
shifted rewards. At a high level, each principal uses observed child compli-
ance to estimate, for each context and recommended action, the minimal
transfer needed to make that recommendation individually optimal for the
child. These estimates are then used to transform the principal’s own learn-
ing problem into a standard contextual bandit: the principal chooses its
action and recommended child actions to maximize an induced utility that
subtracts the estimated inducing payments. As estimates improve, recom-
mended actions become increasingly incentive compatible, deviations become
rare, and the upstream bandit problems become well behaved. The algorithm
is modular: it only requires that each agent run a contextual no-regret learner
that satisfies a suitable high-probability action-regret condition after some
warmup, which aligns with how many deployed learners are monitored and
tuned.

On the theory side, we provide a set of structural results that make
this approach precise. We establish (i) closed-form optimal contextual in-
centives and, under separability, a decomposition of the parent’s induced
objective into independent maximizations across children; (ii) a contextual
welfare telescoping identity showing that the sum of decentralized induced
objectives aligns with the centralized welfare benchmark context-by-context,
clarifying why transfers can be interpreted as internal shadow prices; (iii) a
regret decomposition that isolates action learning, overpayment, and devi-
ation losses, thereby mapping theoretical error terms to operational failure
modes; and (iv) a transfer-estimation guarantee under repeated contexts,
using only the principal’s observable signals (context, offered transfer, and
compliance inferred from the child’s action). Combining these ingredients
yields a layer-wise induction argument proving that, under our assumptions,
every node achieves sublinear contextual pseudo-regret and the overall social-
welfare regret is sublinear as well, with rates scaling polynomially in the
natural problem parameters.

We also emphasize what the model does not claim. Action observabil-
ity is strong in some environments and natural in others; it corresponds
to audit logs, tool-use traces, or cryptographic attestations, and without it
the principal must infer compliance indirectly, which changes the incentive
problem. Separability is an approximation: it rules out certain cross-child
complementarities that arise, for example, when two downstream tools must
be coordinated. Likewise, the finite-context baseline abstracts away from



continuous covariates and representation learning. We adopt these assump-
tions deliberately to isolate the delegation-and-incentives mechanism and
to obtain guarantees that are interpretable and implementable. In settings
where these assumptions are violated, our framework still suggests diagnos-
tic quantities (opportunity-cost gaps, payment errors, deviation frequencies)
that can guide robustification.

Roadmap. In the next section we position our approach relative to
principal-agent online learning and contextual bandits, and to recent work
on steering learning agents in delegated ML toolchains. We then formalize
the model and equilibrium notion, derive the closed-form incentive character-
ization and the welfare telescoping identity, and develop the regret decompo-
sition that motivates Contextual-MAIL. Finally, we present the contextual
transfer-estimation procedure, prove the layer-wise no-regret and welfare no-
regret theorem, and discuss how the comparative statics clarify when hier-
archical delegation is statistically feasible versus when it inevitably requires
conservative, costly incentives.

2 Related work

Our problem sits at the intersection of three literatures that rarely speak the
same technical language: principal-agent theory (with its focus on incentive
compatibility and continuation values), online learning (with its focus on
bandit feedback and regret), and systems-oriented work on delegated ML
and agent toolchains (with its focus on modular architectures and observ-
ability constraints). We briefly position our contribution relative to each,
emphasizing where existing models either abstract away from hierarchy, from
context, or from the fact that the “agents” we contract with are themselves
adaptive learners.

Principal-agent models under learning and limited feedback. Clas-
sical contract theory studies incentive compatibility when the agent has pri-
vate information or unobservable effort, typically in static or discounted dy-
namic settings ?7. In those models, the principal chooses a contract to
induce a best response, and the comparative statics describe how informa-
tion frictions shape risk sharing and effort provision. The online-learning
analogue replaces equilibrium comparative statics with finite-time perfor-
mance: the principal does not know the agent’s payoff function and must
learn how much incentive is required, while the agent may also be learning.
Recent work on incentivized bandits, strategic arms, or bandits with payments
formalizes variants of this tension, where a platform pays users (or arms) to
select certain actions and the platform observes only partial feedback 77.
In many such formulations, the strategic entity is myopic (or has a simple
threshold response), and the platform’s objective is to steer behavior while



learning reward parameters.

Our setting differs in two ways that materially change the structure of
feasible algorithms. First, incentives are recursive: a child agent’s oppor-
tunity cost depends on how it in turn incentivizes its own children, so the
object that substitutes for a static “type” is a context-dependent continua-
tion utility. Second, incentives must be computed and learned locally on a
tree rather than with a single principal interacting with many independent
agents. This combination makes naive reductions to standard Stackelberg
learning insufficient: even if each edge in the tree is a principal-agent pair,
the learning dynamics couple across layers because miscalibrated transfers
change the distribution of downstream actions and thus the upstream reward
process.

Online mechanism design and Stackelberg learning. A related thread
studies online mechanism design where a leader commits to prices, bonuses,
or allocation rules while learning demand or preferences, sometimes with
strategic responses and sometimes with adversarially chosen types 77. In the
learning-in-games literature, one also finds regret-based convergence analyses
for repeated Stackelberg or bilevel interactions, often under strong smooth-
ness or monotonicity assumptions ?. These works clarify that when both
sides adapt, stability depends on how quickly incentives and actions con-
verge. We adopt a complementary stance: rather than prove equilibrium
convergence in a general dynamic game, we engineer a contract form (action-
contingent transfers under action observability) for which the minimal in-
ducing transfer has a closed form, enabling a clean separation between (i)
estimating opportunity-cost gaps and (ii) running a contextual bandit on the
induced objective. This is closer in spirit to mechanism design “by construc-
tion”: we restrict the contract space to obtain a tractable incentive rule that
can be learned with bandit feedback.

Contextual bandits and structured generalization. On the learning
side, our benchmark is the contextual bandit model 7. Most contextual ban-
dit analyses assume that the learner observes a context ¢; and chooses an
action to maximize expected reward, with regret measured against the best
context-dependent policy in a class. Extensions cover linear and general-
ized linear models, kernelized and nonparametric settings, and representa-
tion learning ?7. Our baseline takes C to be finite, which matches common
engineering practice where “contexts” are discrete tags (task type, safety tier,
jurisdiction) and yields uniform high-probability guarantees via concentra-
tion and union bounds. The key difference from standard contextual bandits
is that, for a principal, the effective reward of a recommendation depends
on whether children comply; thus the principal does not directly observe
samples from the induced objective it wishes to optimize until incentives are



sufficiently accurate. In that sense, our principal faces a contextual bandit
with endogenous action realization, where the realized action profile is itself
a strategic response to a transfer.

The closest purely bandit-theoretic relatives are models with corrupted
actions, compliance noise, or bandits with “intermediate” decision makers.
However, in those models the noise is usually exogenous, whereas in our hi-
erarchy deviations are both systematic (driven by utility gaps) and learnable
(shrinking as transfers are estimated). This distinction motivates our regret
decomposition into action-learning, payment, and deviation terms: it aligns
the statistical analysis with the economic reasons an induced reward sample
may be biased.

Steering no-regret learners and incentive shaping. A growing litera-
ture asks how to influence an adaptive agent who runs a no-regret algorithm,
through reward shaping, subsidies, or information design. Examples include
“teaching” a learner, steering dynamics in repeated games, and manipulat-
ing feedback to induce desirable equilibria ?7?7. In many cases, the designer
can modify the learner’s loss function or observation model, and the tech-
nical goal is to bound the cost of steering while ensuring convergence to a
target action. Our framework is aligned with this goal but differs in the
available control channel: we assume the principal can only offer action-
contingent transfers and observe actions (not internal gradients or losses).
This restriction reflects deployed systems where an upstream orchestrator
can provide credits or penalties conditional on logged behavior, but cannot
reliably inspect or override a downstream model’s internal updates. The as-
sumption that each agent satisfies a high-probability action-regret condition
after warmup is also consistent with practice: many learners are monitored to
ensure stable no-regret behavior (or are wrapped by conservative exploration
controllers) before being placed in a critical delegation loop.

Delegated ML, toolchains, and hierarchical control. In systems and
applied ML, hierarchical delegation appears as hierarchical reinforcement
learning, modular policy stacks, tool-use agents, and multi-agent pipelines
?7?7. A central theme is compositionality: higher-level modules set subgoals
or choose tools, while lower-level modules execute. Our model shares this
architecture but emphasizes incentive alignment rather than purely algo-
rithmic decomposition. In many modern deployments, contracts are not
monetary but take the form of compute budgets, latency allowances, access
permissions, or reputation scores. These are naturally modeled as transfers
because they are scarce resources that can be conditioned on compliance.
Action observability corresponds to audit logs and tool-use traces, which are
increasingly standard for safety and debugging; our analysis therefore high-
lights a practical lesson: without reliable observability, the principal must



infer compliance indirectly, which fundamentally changes the identification
problem for incentives.

Comparison to the tree bandit-with-transfers baseline. Our work is
directly inspired by recent “bandit with transfers” models on trees, where a
principal can incentivize children via minimal payments derived from contin-
uation values, and separability yields a decomposition that avoids enumerat-
ing KB+ joint actions. Relative to that baseline, we make three substantive
extensions. First, we introduce explicit contexts ¢ € C and require transfers
Tx(c,b) to be learned and applied per context; this brings the theory closer
to systems in which the same action can have different safety or performance
implications across regimes. Second, we provide a transfer-estimation view
that uses only the principal’s observable signals—(c, 7¢(w), A}’ )—and ex-
ploits repeated occurrences of the same context to perform threshold-style
refinement. Third, we connect the economic structure to learning guaran-
tees through a contextual regret decomposition that cleanly separates de-
cision error, overpayment, and noncompliance. This decomposition is not
only a proof device; it also offers operational diagnostics for practitioners
(e.g., whether inefficiency is driven by exploration, miscalibrated subsidies,
or residual deviations).

Limitations and adjacent directions. Finally, we note two gaps where
existing literatures suggest natural next steps. First, finite contexts are an-
alytically convenient but restrictive; extending our transfer estimation and
decomposition to rich context classes would connect to representation learn-
ing in contextual bandits and to empirically relevant continuous covariates.
Second, action observability is strong; relaxing it would bring our model
closer to classical moral hazard and to partial-monitoring bandits, but would
require new identification arguments because compliance could no longer be
directly inferred from actions. We view these as fruitful directions precisely
because they force a tighter integration of economic observability constraints
with online learning guarantees.

3 Model

We study a hierarchical delegation environment in which decision making
and learning occur locally, but outcomes are coupled through a principal—
agent tree. Formally, players are the nodes of a rooted tree 7 = (V, E) with
depth D and branching factor B. For a node v € V, let P(v) denote its
parent (undefined for the root) and C(v) its set of children; leaves satisfy
C(v) = 0. We index depth so that leaves sit at depth 1 and the root at
depth D. Each player v has a finite action set A, of size |A,| = K (we allow
heterogeneity but keep K for notational clarity).



Contexts. Interaction unfolds over rounds ¢t = 1,...,7T. At each round,
a context ¢; € C is realized and (in our baseline) observed by all players
before any contracts or actions are chosen. We take C to be a finite set of
size M = |C|, and we assume contexts are drawn i.i.d. from an unknown
distribution p satisfying a uniform support condition

22? p(c¢) > Pmin > 0.
This “no rare contexts” condition is not merely technical: because both action
learning and transfer calibration are context-indexed, a context that appears
only o(log T') times cannot support uniform high-probability guarantees. In
deployed delegated systems, C can be interpreted as a discrete set of regimes
(task type, risk tier, jurisdictional setting, or customer class) for which one
is willing to maintain separate incentive and action policies.

Timing and contracts. Each round ¢ proceeds as follows. After observing
¢¢, principals move from the root downward: each node v offers to each child
w € C(v) a contract consisting of (i) a recommended action B}’ € A, and
(ii) a nonnegative transfer 7 (w) that is paid only if the child plays the
recommendation. After observing its parent’s contract, each node v chooses
its action A € A,. Finally, rewards are realized, parents observe their
children’s actions, and transfers are settled. This is a deliberately narrow
contract form—action-contingent transfers with observable actions—because
it matches settings with audit logs or tool-use traces, and because it admits
a clean “gap payment” characterization in hindsight (developed in Section 4)
that we can then learn online.

Rewards and local coupling. Each node v receives a stochastic bandit
reward X} € [0, 1] with conditional mean

E[X7 | e, A7, A7V = 0,(c0 a7, 470),
where Atc(v) = (AY)wec(v)- We assume the realized reward decomposes as

XV = Oy(ce, AV, AW 4 220 B[ | Fioa] =0,

with z} conditionally sub-Gaussian (and uniformly boundedness of X} can
be viewed as a convenient normalization). Importantly, v’s reward depends
only on its own action and its children’s actions: siblings do not directly
interact. This is the local-dependence structure implied by the tree and is
what makes backward, layer-wise analysis feasible.

10



Additive separability across children. A central modeling assumption
is that 6, is additively separable across children:

Gv(c,av,ac(,u)) = gu(c,ay) + Z hv,w(C,avaaw)- (1)
weCl(v)

The term g,(c, a,) captures the component of v’s performance attributable
to its own action in context ¢, while each hy (¢, ay, ay) captures the incre-
mental effect of child w’s action on v, potentially moderated by v’s action.
We emphasize what separability does and does not assume. It does not
require that children are independent learners, nor that their rewards are in-
dependent, nor that h, ., is small; it only rules out nteraction terms among
multiple children in the parent’s reward. This restriction is exactly what
prevents the parent’s contract choice from becoming combinatorial in B:
without , even a myopically optimal set of recommendations would gen-
erally require evaluating K2 joint child action profiles for each parent action
a4, which is prohibitive in large branching systems.

Utilities with transfers. Transfers shift incentives but do not create or
destroy intrinsic task reward. We model each node’s per-round utility as
its realized reward plus any transfer it receives from its parent minus any
transfers it pays to its children:

Uy = XP +1{A} =B}n(v) — > LAY =Bfin(w), (2
weC(v)

where the term 74(v) is absent for the root (which has no parent), and 1{-}
denotes the indicator function. This accounting mirrors practical delegation
pipelines in which resources (compute credits, access privileges, queue prior-
ity) can be passed down conditional on compliance. Equation also makes
clear why we distinguish between social welfare and private utility: transfers
are internal to the hierarchy, so they reallocate utility across nodes but, in
the baseline, they do not enter the welfare objective.

Observability and feedback. The informational assumptions combine
two features. First, action observability: each parent observes each child’s
realized action Ay’. This is the key that allows contracts of the form “play
b and receive 7.7 Second, bandit feedback: each node observes only its own
realized reward X/, not the rewards of others. Thus, while a parent can
audit compliance (actions), it cannot directly infer a child’s continuation
value from observed rewards, because the child’s reward process is private.
Learning must therefore proceed through local reward samples and through
observed compliance as a function of offered transfers.

11



Welfare benchmark. Given a context ¢ and a joint action profile a =
(ay)vev, define the (mean) welfare as

Wi(c,a) = Zﬁv(c,av,ac(v)).

veV

Transfers do not appear in W because they cancel in the aggregate when
summed over nodes (every payment is a receipt), so welfare captures the
intrinsic quality of the delegated action profile. Over T rounds, the real-
ized welfare is 23:1 > wev X{, and our social benchmark is the clairvoyant
contextual planner that, for each realized context c¢;, selects the welfare-
maximizing joint action profile a*(¢;) € argmax, W(ct,a). We measure
social-welfare regret as

T
SW Reg(T) := max Wi(e,a) — Wie, Ar) ),
;(QEHUGVAU >

where A; = (A} )yev is the realized action profile induced by contracts and
strategic responses.

Individual performance and the role of induced objectives. Each
node v is itself a strategic learner: it chooses actions to maximize its own
cumulative utility Zthl U} given its incoming contract (if any), its outgoing
contracts (if any), and its reward feedback. From the perspective of learn-
ing guarantees, we evaluate each node by a contextual pseudo-regret R, (T")
against the best context-dependent decision rule available to v under the
contracting protocol. The subtlety is that a principal’s effective payoff from
an action is mediated by whether children comply, and compliance depends
on the transfers offered. This motivates introducing, in Section 4, a recursive
induced-utility object (¢, a,) that internalizes optimal downstream recom-
mendations and the minimal transfers needed to implement them in context
c. Once py is defined, the principal’s learning problem becomes a contex-
tual bandit on a shifted reward scale, while the transfer-learning problem
becomes an estimation task for the opportunity-cost gaps that make recom-
mendations incentive compatible.

Why the model is algorithmically tractable. The tree structure lim-
its payoff externalities to parent—child edges, and separability removes
cross-child complementarities in a parent’s reward. Together, these two fea-
tures ensure that an upstream node never needs to enumerate K B2F1! joint
action profiles to decide what to recommend. Instead, once we express in-
centives in terms of continuation values, each child can be handled via an
independent maximization and a corresponding gap payment. This is the
economic source of our polynomial dependence on (K, B, D, M): rather than

12



solving a global mechanism design problem, we exploit the tree to compute
and learn contracts locally, and we use the repeated occurrence of contexts
to calibrate those local contracts context by context. Section 4 formalizes
this logic by defining continuation utilities recursively and showing that op-
timal contextual incentives admit a closed form in hindsight, together with
a welfare telescoping identity that links decentralized induced objectives to
the planner’s benchmark.

4 Optimal contextual incentives in hindsight

We now characterize, for a fixed context ¢, what a principal would like to
recommend to its children and how much it must minimally pay to imple-
ment those recommendations when all continuation values are known. This
“in-hindsight” analysis plays two roles. Economically, it isolates the exact
object that transfers must compensate: a child’s opportunity cost of com-
plying in that context. Algorithmically, it provides the target that our online
procedure in Section 5 will estimate and then plug into a standard contextual
bandit routine on appropriately shifted rewards.

Continuation utilities and induced objectives. Because contracts are
offered and accepted (via action choice) locally along edges, the relevant
object for node v is not its raw mean reward 6, but its continuation utility
after optimally contracting with its descendants. We define these objects
pointwise in the context ¢, working backward from the leaves.

For a leaf ¢ (so C'(¢) = ), there are no downstream contracts, hence the
continuation utility coincides with its mean reward:

wy(c,ap) = 0e(c,ap).

For an internal node v, fix an own action a, € A, and a vector of recom-
mendations bc(y) = (bw)wec(v). If each child w complies with by, then v’s
expected reward is 0,(c, a,, bc(v)). To induce compliance, v must offer trans-
fers along each edge (v,w). Let 7,(c,by) > 0 denote the transfer offered to
child w conditional on playing b,,. Given these offers, child w chooses its
action to maximize its own continuation utility plus any transfer received,
ie.,

@y € arg max {,ufu(c, a) + {a=by}1u(c, bw)}.

acAw

This formulation makes explicit why we define u;, excluding incoming trans-
fers: transfers are contract-dependent and are added only for the recom-
mended action. It is precisely this separation that will allow us to identify
transfers as “gap payments.”

Given the child’s best-response condition, the principal’s objective is nat-
urally expressed in terms of an induced utility that subtracts the transfers

13



needed for implementation. Define

(e, avybC(v)) = 0Oy(c, ambC(v)) - Z oo (€5 buy), (3)
weC(v)

where 7} (¢, by) is the minimal transfer that makes b,, optimal for w in con-
text ¢, given w’s continuation utilities. Node v’s best induced utility for
action a, is then

*(c,ay) = max C,ay, b . 4
Nv( v) bcmGHwec(U) A, Nv( v C(v)) ( )

By construction, (¢, ay) is the relevant benchmark for v’s action learning:
it is the best payoff v can secure from choosing a, when it can optimally
recommend and minimally incentivize its children.

Minimal inducing transfers are opportunity-cost gaps. Under ac-
tion observability, inducing a child to take a particular action is equivalent to
making that action a best response under a simple action-contingent bonus.
The next characterization is therefore intuitive: to implement b, the par-
ent must compensate the child for the utility it forgoes relative to its best
alternative in that context.

Fix a child w, context ¢, and target action b € A,. The incentive-
compatibility inequalities for inducing b are

(e, b) + Ty(e,b) > (e, a) for all a € A,
which are satisfied by the minimal transfer

ri(e,b) = max ph(e,a) — pib(c,b). (5)
a€Ay

Two remarks are worth emphasizing for later learning. First, 777 (c,b) is
always nonnegative and equals zero if and only if b is itself a best action for
w under (¢, -). Second, depends on ¢: in practice, a recommendation
that is cheap to implement in one regime (say, a low-risk task type) may
be expensive in another (high-risk), because the child’s continuation values
shift with the context.

Separability yields a decomposable parent objective. The definition
(4) is general, but computing u}(c,a,) naively would require maximizing
over K€ recommendation profiles. This is exactly where our separability
assumption becomes economically and computationally meaningful. With

01}(67 Qy, aC(y)) = 91;(07 av) + Z hv,w(ca Qu, aw)7
weC(v)
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the induced utility becomes

ﬂv(c7avab0(v)) = gv(caav) + Z <hv,w(caavabw) - T;;(wa)),

weC(v)

and therefore the maximization over bg(,) decomposes across children:

pie.a) = gile.an) + Y max{huu(c.anb) - ). (©6)
weC(v)

This is the key tractability statement: rather than solving a combinatorial

contract problem, the parent solves B independent K-ary problems (one per

child) for each candidate a,. In delegated systems with many submodules,

(@ is the difference between a local procedure that can run at the edge and

a centralized optimization over joint profiles that is operationally infeasible.

A welfare telescoping identity (context by context). The preceding
objects may appear “private”—they are defined from each agent’s continu-
ation values and involve transfers—yet they line up exactly with the social
planner’s welfare benchmark. The alignment is clearest when expressed as a
telescoping identity that holds separately for each context c.

Let W(c,a) = > cy Ou(c, v, ac(y)) denote mean welfare. Then, for ev-
ery fixed context c,

max py(c,a) = max  W(ea). (7)
UEZV acA, "’ a€ll ey Av

The economic content of (7)) is that the gap payments 77 (c, -) act like shadow
prices: they decentralize the planner’s problem down the tree without dis-
torting the welfare objective, because transfers are internal and the opportunity-
cost terms cancel when aggregated appropriately.

A compact way to see the cancellation is to interpret maxqea, (¢, a)
as the incremental welfare created at node v relative to giving each child
its own best attainable continuation value. Formally, define the planner’s
optimal welfare for a subtree rooted at v,

OPT,(c) = max Z Ou(c; au, ac()),

a S
( u)uEsubtree(v) uEsubtree(v)

with OPTy(c) = max,, 0¢(c, as) at leaves. One can verify by backward in-
duction that

max pr(c,ay) = OPT,( Z OPT,,
weC(v)

because 7 (c, b) subtracts exactly the gap between child w’s best attainable
continuation value OPT,,(c) and the value under the implemented action.
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Summing this equality over all v € V telescopes: every OPT,,(c) appears
once with a plus sign (as OPT,(c¢) when v = w) and once with a minus
sign (inside its parent’s subtraction), leaving only OPT;o0t(c), which equals
max, W(e,a). This establishes (|7)).

What this buys us, and what it does not. Equations f@ pin
down the right targets for learning: minimal context-dependent transfers are
opportunity-cost gaps, and induced objectives align with welfare when ag-
gregated. At the same time, these are hindsight characterizations: p (c,-) is
not directly observed by the parent, and the parent only sees compliance (via
actions) and its own bandit rewards. Section 5 addresses precisely this gap
by showing how repeated contexts and local exploration allow each principal
to estimate 7 (¢, b) from acceptance behavior, and then to run a contextual
bandit algorithm on the shifted reward signals implied by ().

5 Contextual-MAIL: warm-up, context-indexed in-
centive estimation, and learning on shifted re-
wards

Our online problem is to approximate, using only local bandit feedback and
observed compliance, the in-hindsight objects characterized in Section[d} the
context-dependent gap transfers 7.} (c, b) and the induced continuation util-
ities u}(c,-). Contextual-MAIL is the decentralized procedure that accom-
plishes this by modularizing learning along edges (to stabilize incentives) and
at nodes (to learn context-dependent actions under the stabilized incentive
system). The guiding design principle is practical: each principal should be
able to operate using only information it naturally has in organizational and
delegated-Al deployments—its own realized reward X/, the realized context
¢¢, and the observed actions of its children.

A bounded search domain for transfers. Because each X} € [0, 1] and
the tree has finite depth D, continuation utilities are uniformly bounded: for
every node v, context ¢, and action a, we have u’(c,a) € [0, D] under the
backward definition. Consequently, every opportunity-cost gap satisfies

0 < mh(eb) = maxpl(c.a) - pileb) < D.

This elementary bound is operationally useful: it lets each principal run a
finite, context-indexed threshold search over a known interval [0, D] without
any global calibration.

Warm-up: making compliance statistically meaningful. A basic
tension appears immediately. To estimate 7 (c,b) from behavior, the par-
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ent must interpret whether the child accepted the proposed contract, i.e.,
whether A}’ = Bj’. But early in time the child is itself learning and may
deviate for exploration even when the transfer would be sufficient in hind-
sight. We therefore include a warm-up period W, for each node v (with
W, increasing with depth) during which contracts are deliberately simple
and generous. Concretely, each parent plays an exploration routine over its
own actions and (temporarily) offers high transfers to children for a small
set, of recommended actions, ensuring that deviations are rare enough that
observed noncompliance is informative rather than dominated by the child’s
experimentation. This is the only role of warm-up: it creates a regime in
which acceptance can be treated as an approximately thresholded response
to the offered transfer, which is exactly the behavioral structure exploited
by our incentive estimator. In deployments, this corresponds to an initial
ramp-up period with conservative budgets and standardized playbooks be-
fore performance-based fine-tuning.

Edge module: context-indexed estimation of minimal inducing
transfers. Fix an edge (v, w), a context ¢, and a candidate recommended
action b € A,,. The parent maintains an interval

[zw(c, b), Twl(c, b)] c [0, D], Tu(c,0) =0, Ty(e,b) = D initially,

interpreted as a confidence bracket for 7 (c,b). When context ¢ occurs, the
parent occasionally schedules a test for (¢,b): it recommends b and offers
transfer A (typically the midpoint A = (7 +7)/2). The observation is binary
and local: whether the child complied, 1{A}" = b}, which under action
observability is directly observed by v.

Because the child’s behavior may still have residual stochasticity, tests
are batched. In a batch of size m consisting of rounds in which the same
(c,b,\) is offered, we define acceptance if compliance occurs on at least a
(1 — n)-fraction of those rounds, where n € (0,1/2) is a tolerance level. If
accepted, we set Ty (c,b) < A; if rejected, we set 7,,(c,b) <— A. Iterating
yields a batched binary search, run separately for each (c,b). The output
used by the algorithm is a conservative estimate

?w(ca b) = ?w(c> b)a

so that whenever the bracket is valid, 7, (c,b) > 75(c,b) and the offered
transfer is sufficient to induce b (up to the child’s residual learning error).
The need for a one-sided estimate is not merely technical: from the parent’s
standpoint, underestimation risks noncompliance and propagating regret up
the hierarchy, whereas overestimation only burns subsidy budget and can be
controlled quantitatively in the regret decomposition of Section 6.

The module is fully local. It requires no knowledge of p,, no reports from
the child, and no observation of downstream transfers; it uses only (¢, A) and
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the realized action A}’. The key statistical precondition is repeated contexts.
With |[C] = M and p(¢) > pPmin, each context appears O(Tpmin) times,
enabling each (¢, b) threshold to be refined to accuracy ez by O(log(D/er))
batches, provided the batches are scheduled sparsely enough not to dominate
the parent’s action learning.

Node module: learning actions using shifted rewards. Once trans-
fers are estimated well enough that compliance is likely, the parent can treat
the induced utility p,(c,-) as an unknown contextual reward function and
apply a standard contextual bandit routine. Operationally, we implement
this by learning on shifted rewards that subtract estimated incentive costs.
On a round t with context ¢, after choosing own action Ay and issuing
contracts {(B{’, 7¢(w)) }wec(v), node v observes its realized reward X{ and
settles transfers. We define the shifted observation

X o= XP — > LAY = BP} Fulen BY),
weC(v)

which is precisely the parent’s realized payoff under the conservative pay-
ments 7 (up to the fact that it may pay 7 even when the true minimal
transfer is lower). In expectation, when compliance holds, X} is an unbiased
sample of the induced utility with 7} replaced by 7,,, so maximizing expected
shifted reward approximates maximizing the in-hindsight objective.

For finite C, a simple and effective implementation is to run M inde-
pendent bandit learners, one for each context ¢, each producing an action-
selection rule over A,. Because the recommendation problem is separable
across children, the per-round computation does not require enumerating
KB+ joint profiles. In particular, we parameterize the parent’s unknown
mean reward in context c¢ as additive across children and treat each pair
(ay, by) as a primitive choice affecting one component of the sum. A conve-
nient implementation uses a linear model per context: define a feature vector
z(c, ay, ac(y)) that contains a one-hot coordinate for (c, a,) and one-hot co-
ordinates for each (¢, w, a,, ay). Then

v v C(v
EIX? | ¢ = ¢, AY = a,, AT = acw)) = (Bue (¢, av, ac()))

for an unknown f,. € RE+BK?, Using ridge regression (or any standard
linear contextual bandit routine), node v forms an optimistic estimate of the
induced payoff

UCB} (¢, v, bo) = (Buets (e au,bow)) + al|z(e,avbow)ly-1 = D Fule.b),
. weC(v)

and chooses (Ay, B,;C (v)) to maximize UCBY. Crucially, due to separability of

both the mean reward and the transfer term, this maximization decomposes:
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for each candidate a,, the best b,, can be selected independently across w,
and the overall best a, is found by scanning K options. Thus the per-round
time at node v is O(BK?) (dominated by evaluating K own actions and K
child actions per child), and the memory is O(M (K + BK?)) for the per-
context sufficient statistics. This is polynomial in (M, B, K) and avoids the
exponential KB+ explosion.

Putting the modules together in a decentralized protocol. Contextual-
MAIL is run simultaneously at all nodes. At each round, the root initiates
contract announcements; each internal node v, upon receiving its parent’s
contract, (i) chooses its own action and its contracts to children using its
node module and current 7 values, (ii) schedules occasional edge tests for
its children to refine 7 in the realized context, and (iii) updates its bandit
state using )Z'g’ after rewards realize. No messages about rewards or beliefs
are exchanged; the only communication is the contract pair (By”, ¢(w)) on
each edge.

Limitations and implementation notes. The finite-context design is
intentionally conservative: it trades function approximation for transparent,
context-indexed accounting of incentives and samples. When M is large
or contexts are continuous, a practical extension is to replace per-context
tables by function classes (e.g., generalized linear models) for both 7,(-, b)
and p(-,a), at the cost of additional approximation error. More subtly,
conservative overestimation of 7* is stabilizing but can be expensive early on;
in budget-constrained settings one can cap transfers and accept a controlled
deviation probability, which our theory in Section 6 will capture as an explicit
deviation-regret term.

6 Theory: contextual regret decomposition and layer-
wise propagation

We now provide the analytical backbone behind Contextual-MAIL. The core
difficulty is that each node simultaneously (i) learns which actions are opti-
mal given the incentive system it is implementing, and (ii) learns the incen-
tive system itself through transfer estimation that relies on observed compli-
ance. Our analysis therefore separates the sources of inefficiency into three
interpretable components—wrong actions, excessive payments, and residual
deviations—and then shows that these components can be controlled locally
and propagated up the hierarchy without exploding in D.

Benchmark and pseudo-regret. Fix a node v. In each round ¢, node
v observes context ¢; and (possibly after receiving a contract from its par-

)

. . cp - . C(v
ent) chooses its own action A} and, if internal, recommendations B, @) and
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transfers 74(-) for its children. The natural contextual benchmark is the best
induced continuation utility achievable by v in that context:

*
max (¢, a
a€Ay U( ’ )’
where p is defined recursively using optimal (minimal) inducing transfers
T5- We measure node-level pseudo-regret over horizon T as

T

Ry(T) = Y ((max prj(cr.a) — pi(en 47)).

with the understanding that u}(ci, A}) is the benchmark induced utility of
the realized own action, evaluated under optimal downstream recommenda-
tions and minimal incentives. This isolates the learning problem faced by v:
it should act as if it were maximizing u}(c,-) in each context.

A three-term decomposition: action, payment, deviation. The al-
gorithm does not directly optimize 1, because it does not know 7* nor does
it perfectly enforce compliance. The first step is an add-and-subtract argu-
ment that yields a decomposition aligned with implementation concerns:

Ry(T) < R(T) + RY™(T) + Ry™(T),

where the three terms correspond to (a) action selection error in the shifted
bandit problem, (b) overpayment relative to minimal inducing transfers, and
(c) welfare loss due to realized noncompliance.

Formally, let the algorithm’s per-round shifted payoff be

XK= X0 = 3 HAY = B} Fulen BY),
weC(v)

and define the corresponding shifted mean (conditional on the realized rec-
ommendations) by

Oulcr, AV, By ™) = O,(ce, AL, BYY) — ST Fuler, BY).
weC(v)

On rounds where all children comply, )th” is an unbiased observation of gv()
up to sub-Gaussian noise, so the node module can be analyzed as a stan-
dard contextual bandit on 6’~U. The gap between gv and the desired induced
utility ,(+) is precisely the payment error 7 —7*, while the gap between rec-
ommendations and realized actions appears only on deviation rounds. One
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convenient instantiation is:

T

RET) = Y (maxjij(ena) — fiilenAD),
t=1 v
T

LAUEDIDY (rw e, BY) = malen BY)),
t=1 weC(v
T

RIV(T) .= Z Z 1{AY # B} - Ay,
t=1 weC (v

where [z is the induced utility computed using 7 in place of 7*, and A, 4,
is a uniform upper bound on the one-step loss to v from child w’s deviation
(under bounded rewards, we may take A, ,, = O(1); with depth-D continua-
tion values, O(D) suffices). The decomposition is intentionally conservative:
it treats any deviation as potentially worst-case, reflecting the operational
reality that misalignment in a subteam can destroy the value of an upstream
decision even if average performance remains high.

Uniform-in-time concentration and repeated contexts. To make the
three terms simultaneously small, we require high-probability control that is
uniform over time and over contexts. Two concentration steps are central.

First, because contexts are i.i.d. with p(¢) > pmin, standard multiplicative
Chernoff bounds imply that with probability at least 1 — 6,

T
N.(T) = Z ey =c} > %Tpmin for all c € C,
t=1

provided T" exceeds a logarithmic threshold in (M, 1/§). This event ensures
that each context receives enough samples to support both transfer estima-
tion and contextual action learning.

Second, conditional on sufficient repetitions of each context, we can ana-
lyze each per-context learner with standard self-normalized martingale tools
(for linear models) or Hoeffding-style arguments (for finite-action bandits).
In the linear instantiation described earlier, for each fixed context ¢, the
design matrix V;, .; concentrates, yielding a uniform confidence sequence:

<Bv,c,t - /Buc’ x(c’ Ay, aC’(v))> < at”x(ca Ay, aC(v)) ”Vv_clt

simultaneously for all £ > 1 and all action tuples, on an event of probability
1 — § after a union bound over ¢ € C. This implies the usual O(v/T)-type
cumulative action regret E[R2*(T)] = O(v/T), with the dependence on M
entering through the number of parallel learners and the effective sample size
N.(T).
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For transfers, the acceptance/rejection batches yield one-sided confidence
brackets that can be union-bounded over (w, ¢, b) and over the O(log(D/¢))
binary-search stages. The key is that the algorithm outputs 7 > 7* on
the high-probability event, turning compliance failures into a deviation term
rather than contaminating the payment term with negative errors.

A propagation lemma across layers. The principal technical challenge
is to prevent errors at depth d—1 from amplifying as they flow to depth d. We
capture this with a layer-wise propagation inequality. Fix an internal node
v. On the high-probability event where (i) the transfer estimates on edges
(v,w) are accurate up to er and one-sided, and (ii) each child w € C(v)
satisfies its contextual action-regret condition after warm-up W,,, we can
show:

T
E[R.(T)] < E[R(T)]+0| > erE[Ni, (D] | +0[ > D PA¥+#BY) |,
weC(v) weC(v) t=1

where N(rgfw) (T') is the number of times v recommends an action to w up
to T. The first term is purely local (a contextual bandit regret bound for v
under shifted rewards). The second term converts transfer estimation error
into an additive payment regret proportional to recommendation frequency.
The third term is the deviation channel: it depends on the child’s behavior
but only through the (observable) event of noncompliance. This structure
is why warm-up and one-sided transfer estimates matter: they allow us to
control the deviation probability by ensuring the recommended action is
strictly optimal for the child up to its learning error.

Layer-wise no-regret and welfare no-regret. Combining the preceding
ingredients yields our main performance guarantee. The proof proceeds by
induction on depth: leaves have no incentive-learning burden and satisfy the
assumed contextual action-regret condition; given the bound for all nodes
below depth d, the propagation lemma plus concentration implies the bound
for depth d. Summing the resulting node-level regrets and invoking the
telescoping identity of Proposition 2 then gives social welfare regret.

In particular, under the stated assumptions (bounded rewards, action
observability, separability, i.i.d. finite contexts with pmin > 0, and high-
probability contextual no-regret of agents after warm-up), if every node runs
Contextual-MAIL with exploration schedules that allocate O(log T') tests per
(c,b) while keeping the total testing mass o(T), then for every node v,
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and moreover the planner’s contextual welfare regret satisfies

T
E[SW Reg(T)] := E [Z( max Y Oy(ct, av, ac@) — 3 bulce, ”;,Af@)))] = o(T).

A
t=1 a€ll, Y veV veV

The resulting rates scale polynomially in (K, B, D, M,1/pnn), reflecting
three distinct scarcities: more actions increase both the child-gap search
and the node bandit complexity, more children increase the number of edges
to stabilize, and rarer contexts reduce the effective sample size for both mod-
ules.

What the theory does and does not capture. We emphasize two
limitations that motivate the extensions in the next section. First, finite
contexts and ppi, > 0 are strong but transparent: they guarantee repeated
opportunities to “debug” incentives in each situation. Second, separability
is not merely a convenience; it prevents the parent’s recommendation prob-
lem from becoming a combinatorial contextual bandit over KZ joint child
profiles. When separability is violated, the same decomposition remains con-
ceptually valid, but the node module requires approximation or numerical
optimization, and transfer learning may need to target joint deviations rather
than single-agent thresholds.

7 Extensions and variants

The baseline analysis deliberately adopts two “debuggable” assumptions: a
finite context space with pmin > 0 ensuring repeated visits, and exact sep-
arability ensuring that each parent’s recommendation problem decomposes
into B independent subproblems. In deployments, neither assumption is
sacrosanct. In this section we outline several extensions that preserve the
economic logic of induced utilities and minimal transfers, while clarifying
where we can still obtain clean guarantees and where numerical methods
become unavoidable.

Continuous contexts via smoothness or linear structure. When C
is large or continuous (e.g., feature vectors describing a task, a customer, or
a local operating state), the per-context transfer estimation in Proposition 4
cannot be run independently for each c¢. A standard remedy is to assume
regularity of the primitives in context. Two tractable regimes are:

(i) Lipschitz contexts. Assume C C R? and that, for each edge (v,w)
and recommended action b € A,,, the minimal inducing transfer 75 (c, b) is
L-Lipschitz in ¢. Then we can replace context-indexed batches by adaptive
partitioning (e.g., a zooming-style scheme) that refines regions of C where the
algorithm frequently operates. Intuitively, rather than requiring N.(T') =

~
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Tpmin for every context point, we require sufficient mass in each visited
region and accept that rare regions will have coarser estimates and higher
deviation risk. The economic interpretation remains: the transfer is still an
opportunity cost, but now we borrow strength across similar contexts.

(i) Linear (or generalized linear) contexts. Suppose 7 (c,b) is approxi-
mately linear in features ¢(c), i.e.,

T’Z(()(c7b) ~ <7w,b7¢(c)>7

and similarly the induced utilities u}(c,a) admit a linear representation.
Then each node can run a contextual linear bandit for action selection on
shifted rewards, while each principal estimates 7, from observed compli-
ance. One convenient modeling choice is a threshold response for each child:
conditional on context and the recommended action b, there exists a scalar
threshold 7} (c,b) such that offering 7 > 77 (c,b) makes b optimal up to
the child’s learning error. Estimation can then proceed via one-sided regres-
sion or conservative upper-confidence bounds so that 7, (c,b) > 7 (¢, b) holds
with high probability, preserving the “overpay rather than under-incentivize”
discipline that keeps deviation events interpretable.

In both regimes, the role of pnin is replaced by a coverage condition:
we need that the realized contexts place enough probability mass in neigh-
borhoods (Lipschitz) or excite features (linear) to identify both reward and
transfer parameters. Practically, this maps to an operational requirement:
if the environment never produces variation along a feature dimension, no
contract-learning algorithm can reliably price it.

Approximate separability and structured interactions. Exact sep-
arability, 0, (c, av, ac()) = gu(c, ay) +Zw€C(v) hy (¢, Gy, ay), rules out com-
plementarities among children (e.g., two subteams whose outputs must match).
A more realistic model allows a residual interaction term:

Ou(c, ay, aC(’u)) = gu(c,ay) + Z hv,w(c) Ay, ay) + To(C, ay, aC’(U))?
welC(v)

where 7, captures higher-order couplings. If |r,| < 1 uniformly, the induced-
utility benchmark g is perturbed by at most O(n) per round, so welfare
regret bounds degrade additively by O(nT') even if we continue to optimize
the separable surrogate. This “graceful degradation” is often acceptable when
separability is an approximation chosen for tractability.

However, once r, is non-negligible, the parent’s optimization over rec-
ommended actions becomes a contextual bandit over joint profiles b,y €
Hwec(v) Ay, which is exponential in B. At that point, structure is deci-
sive. If r, has low treewidth when viewed as a factor graph over children
actions, we can use message passing or dynamic programming to compute
approximately optimal recommendations. If r, is dense but smooth, one may
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resort to stochastic search (e.g., coordinate ascent over children, Monte Carlo
tree search) embedded inside the node’s decision rule. Economically, the in-
terpretation of 7 as a marginal opportunity cost still holds, but marginal
incentives may be insufficient to implement a globally optimal joint recom-
mendation when complementarities create multiple local optima; numerical
methods are then not a convenience but a necessity.

Limited transfer budgets and constrained incentive design. Many
organizations face explicit constraints on incentive payments: a manager has
a quarterly bonus pool, a public agency has appropriations, or a platform has
a subsidy budget. To model this, we can impose either a per-round budget
> wec(w) TH(w) < By or a cumulative budget >, 7 >, ecw) TH(w) < Bu(T).
The minimal-transfer formula remains informative, but it may no longer be
feasible to induce the first-best action profile in every context.

A natural extension is a primal-dual variant of Contextual-MAIL: each
principal maintains a Lagrange multiplier A, that prices budget consumption
and chooses recommendations by maximizing a penalized induced utility,

ev(ct’avabC(v)) - Z Tw(Cts bw) — Ao Z Tw(Cts bw),

weClC(v) weC(v)

updating A, online to satisfy the constraint. This makes the tradeoff explicit:
we can guarantee no-regret relative to the best budget-feasible induced pol-
icy, but we should not expect vanishing welfare regret to the unconstrained
planner benchmark unless budgets scale with 1" in a compatible way. From
a policy standpoint, this extension clarifies how budget caps translate into
predictable compliance shortfalls concentrated in contexts where opportunity
costs are high.

Partial observability: hidden actions, noisy compliance, and audits.
Action observability is strong: it assumes the parent directly sees whether a
child complied. In many settings, only an outcome is observed (sales, latency,
defect rates), which depends on unobserved effort and exogenous noise. Then
a contract contingent on A" = B}’ is infeasible, and our compliance indicator
1{A}" # B}"} is not directly measurable.

One path is to move from action-contingent to outcome-contingent trans-
fers, replacing B}’ with a target statistic Y;* and paying based on a scoring
rule. This enters the domain of moral hazard and requires assumptions on
how actions map to observable outcomes. A second, operationally common
path is probabilistic auditing: with small probability the principal observes
a verifiable signal of action (a review, a log, a code diff), enabling a transfer
scheme that is incentive compatible in expectation. Both variants preserve
the recursive induced-utility viewpoint, but the transfer-learning problem be-
comes a partially observed control problem; the simple threshold estimation
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of Proposition 4 is replaced by either (i) identification of an outcome model,
or (ii) joint optimization of audit rates and payments. In these regimes, nu-
merical methods (e.g., Bayesian filtering for latent actions, POMDP solvers
for audit policies, or simulation-based optimization) are typically required
even in small trees.

Where numerical methods enter the picture. Across the extensions,
a common dividing line is whether the parent’s induced objective remains a
sum of low-dimensional components with closed-form transfers. With con-
tinuous contexts, approximate separability, budgets, or partial observability,
we often face a bilevel problem: a principal chooses (b, 7), anticipating a
child’s learned response under limited feedback. In practice we recommend
a modular approach: keep the economic core (minimal-transfer logic, tele-
scoping welfare identity, and regret decomposition) but allow the node solver
to be numerical—for example, approximate dynamic programming for rec-
ommendation selection under interaction terms, convex programming for
budgeted transfers, and likelihood-based estimation for compliance under
noisy observation. The conceptual payoff is that even when computation be-
comes approximate, the decomposition into action, payment, and deviation
channels remains a useful diagnostic: it tells us whether welfare losses arise
from mislearning, mispricing, or noncompliance, and therefore which module
should be improved before scaling to deeper hierarchies.

8 Experiments

Our theoretical results are deliberately modular—they separate (i) learn-
ing the induced action values, (ii) learning the inducing transfers, and (iii)
controlling deviations so that errors do not amplify up the hierarchy. The
experiments in this section are designed to stress-test exactly these three
channels, and to make the comparative statics in M = |C|, pmin, and depth
D visible in finite time.

Evaluation goals and logged quantities. In each run we log three fami-
lies of outcomes. First, welfare: the realized per-round welfare ) i, X" and
an empirical welfare regret computed against a context-by-context bench-
mark (estimated either by an oracle with access to the true 6,, in synthetic
experiments, or by an offline Monte Carlo estimator in the proxy environ-
ment). Second, compliance: deviation indicators 1{ A}’ # B;"} for each edge,
and their propagation to ancestors (since a single deviation can change the
payoff distribution faced by multiple principals). Third, payments: the real-
ized transfers 7¢(w), overpayment relative to the minimal inducing transfer
T (e, BYY) when 775 is available (synthetic), and a conservative proxy when
it is not (LLM toolchain). These logs allow us to empirically instantiate

26



the decomposition in Proposition 3: when welfare deteriorates, we can ask
whether the proximate cause is mislearning of actions, mispricing of trans-
fers, or residual noncompliance.

Synthetic contextual hierarchies. We generate balanced B-ary trees of
depth D with homogeneous action sets |A,| = K. Contexts are drawn i.i.d.
from a categorical distribution on C with controlled sparsity: we either use a
near-uniform distribution (8o pmin &~ 1/M) or a skewed distribution in which
a subset of contexts carries most mass while the remaining contexts appear
rarely, exposing the failure mode suggested by the role of ppi,. Conditional
on ¢, we draw separable mean rewards of the form

01}(67 Ay, a’C(U)) = gv(c, av) + Z hv,w(ca Ay, aw)7
weC(v)

with g, (¢, ay) and hy, (¢, ay, ayy) sampled once at initialization and held fixed
across time, and then clip and shift so that realized rewards lie in [0, 1]
after adding sub-Gaussian noise. This construction makes the true 7 (c, b)
computable by backward induction, which is crucial for diagnosing transfer
estimation rather than conflating it with action learning.

We compare Contextual-MAIL to three baselines that are economically
meaningful. The first is myopic learning without incentives: each node runs
a contextual bandit on its own realized rewards X} and never pays transfers
(so B}’ is either absent or costless talk). This baseline isolates the value
of incentive design when agents are strategic (or, more precisely, when lo-
cal objectives are misaligned with upstream welfare). The second baseline
is static contracts: each principal picks a fixed transfer schedule 7(w,b) in-
dependent of context (e.g., tuned on an initial batch), and then learns only
which actions to recommend given those fixed prices. This captures the com-
mon operational practice of “set the bonus policy and move on.” The third
baseline is a centralized benchmark that chooses the full action profile each
round using knowledge of 6 (an upper bound on attainable welfare rather
than a feasible decentralized policy).

Across these synthetic instances we typically find two qualitative pat-
terns. First, incentives matter primarily through compliance: myopic learn-
ing can converge to stable but inefficient local conventions, whereas Contextual-
MAIL drives deviation rates down after a warmup, at which point the in-
duced rewards behave like a standard contextual bandit with shifted payoffs.
Second, the cost of decentralization appears mainly as payments: relative
to the centralized benchmark, Contextual-MAIL attains comparable welfare
only after paying the opportunity costs needed to align child behavior, and
this payment burden is larger in contexts where the child’s action gaps are
large.
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Transfer estimation dynamics. A central diagnostic is whether 7,,(c, b)
approaches 77 (c,b) from above (the conservative regime) quickly enough to
stabilize behavior. In the synthetic setting we can plot, for each edge, the
time path of
cegll?eXAw (Tw(c,b) — 755(c,b))  and I%%X(T;(C, b) — Tw(c, b))+,

alongside the realized deviation frequency. What matters operationally is
not symmetric estimation error but underpayment: even a small negative er-
ror can trigger persistent deviations, which then corrupt the parent’s reward
observations and slow learning up the tree. Consistent with the theory’s
“overpay rather than under-incentivize” logic, conservative estimators typ-
ically deliver a sharp phase transition: once underpayment events become
rare, deviation rates fall and the residual regret is dominated by standard
exploration.

Ablations: payments versus compliance versus welfare. To connect
outcomes to mechanism design choices, we run targeted ablations that se-
lectively “turn off” components. (i) Oracle transfers: we give the algorithm
access to 7 but still require it to learn which recommendations maximize in-
duced utility. This isolates pure contextual action learning on shifted rewards
and confirms that most early-round welfare loss in the full algorithm comes
from transfer learning rather than action selection. (ii) Optimistic transfer
estimation: we allow T to be unbiased (or even slightly downward-biased)
rather than conservative. This ablation is informative precisely because it
tends to reduce payments but increase deviations; empirically, welfare of-
ten deteriorates because deviation-induced noise overwhelms the savings on
transfers. (iii) Frozen contracts after warmup: we estimate 7 for a fixed
number of rounds and then stop updating transfers. This tends to stabi-
lize compliance but produces persistent overpayment in contexts where the
child’s internal learner improves over time, illustrating that payment regret
can remain nontrivial even when welfare regret is small. These ablations
make concrete the practical tradeoff: platforms can buy compliance cheaply
only if they accept a higher deviation rate and the downstream instability it
causes.

Sensitivity to |C| and context frequency. We vary M holding T fixed
to induce context sparsity. The core empirical regularity is unsurprising
but important for deployment: when M grows, transfer estimation becomes
the bottleneck, and the deviation rate remains elevated for longer because
each (¢, b) pair is visited less often. When contexts are skewed, performance
becomes uneven: high-mass contexts quickly reach near-perfect compliance
and low regret, while rare contexts remain effectively “unpriced,” leading to
sporadic but sharp welfare drops. This is the finite-sample manifestation of
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the role played by pmin in Proposition 4, and it motivates the continuous-
context extensions in Section [7} without some form of generalization across
contexts, rare states will remain fragile.

Sensitivity to depth and branching. We vary D and B to expose error
propagation. Holding per-edge learning schedules fixed, deeper trees exhibit
two effects: (a) longer time until the root experiences stable effective payoffs,
because deviations in lower layers perturb the distribution of outcomes higher
up; and (b) higher cumulative payments, because upstream principals must
offer conservative transfers to insure against residual instability downstream.
Increasing B has a different signature: even with separability, each principal
must learn more (¢, b) thresholds, and union-bound effects appear as a slower
decline in the maximum underpayment probability across children. These
observations align with the model’s comparative statics and help calibrate
exploration schedules in practice (e.g., allocating more warmup to deeper
layers or to high-degree managers).

LLM toolchain proxy environment. Finally, we evaluate a proxy set-
ting motivated by current platform practice: a principal (router/manager)
assigns tasks to LLM-based agents (children) and can offer “credits” or
“bonuses” that change the agent’s private cost-benefit tradeoff of using ex-
pensive tools (retrieval, code execution, external APIs) versus cheap heuris-
tics. Each round consists of a task with observable context ¢; (e.g., domain,
latency target, allowable external calls). Each child chooses an action a,,
interpreted as a toolchain (from a small discrete set), which is observable
from logs, satisfying action observability. Rewards combine task quality and
resource costs, measured by automatic graders or held-out reference solu-
tions plus penalties for latency and tool usage. Transfers are implemented
as resource credits (e.g., additional tool-call budget, larger context window,
or explicit monetary credits in a sandbox), and thus have a natural interpre-
tation as opportunity-cost compensation.

In this proxy, Contextual-MAIL is not meant to claim behavioral realism
about LLMs; rather, it serves as a systems-level check that (i) compliance
can be instrumented, (ii) threshold-like responses can be induced by ad-
justable credits, and (iii) the same diagnostics—payment burn, deviation
spikes, and welfare shortfalls—remain meaningful even when “agents” are
tool-using models rather than humans. We find this environment particu-
larly useful for ablations: by replaying the same task stream under different
payment policies, we can directly visualize how conservative pricing trades
off immediate credit expenditure against downstream stability in routing and
quality.

Taken together, these experiments aim to make the model’s economic
logic operational: the tree structure creates a propagation problem, con-
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texts create a data sparsity problem, and transfers are the control knob that
converts local learning into global coordination.

9 Discussion: platform design guidance, limitations,
and open problems

Our motivating use case is not an abstract hierarchy for its own sake, but
a platform design problem: a top-level objective (quality, safety, cost, la-
tency) must be implemented through layers of delegated decisions made by
agents with their own local payoffs and learning dynamics. The model’s
contribution is to separate what a platform wants (a welfare benchmark de-
fined context-by-context) from how it can get it under decentralization (rec-
ommendations plus transfers learned from interaction data), and to clarify
where the engineering effort must go: stabilizing compliance so that up-
stream learning faces a stationary-enough problem.

Credits and bonuses as implementable transfers. In many platforms,
transfers are not literal cash. They are allocations of scarce resources that
agents privately value: tool-call budget, context-window budget, priority
scheduling, API rate limits, or even reputational credits that affect future
task assignment. Our equilibrium logic treats these as transferable utility
units; what matters is that (i) the principal can condition them on an ob-
servable action (e.g., which toolchain was used), and (ii) the agent optimizes
a local objective in which these credits enter additively. Under these con-
ditions, the “minimal inducing transfer” 75(c,b) can be read operationally
as the smallest bonus/credit that makes action b the agent’s best response
in context ¢. The policy implication is that platforms can often avoid brit-
tle instruction-following by instead designing measurable incentives: rather
than exhorting an agent to “use retrieval on medical questions,” one can price
the retrieval tool in credits and adjust the credit subsidy by context.

Routing incentives and ‘“pay-for-compliance” is a feature, not a
bug. A recurring concern in deployments is that incentive schemes “waste
budget” on payments that do not directly improve outcomes. Our framework
highlights when such payments are in fact necessary: if a child’s privately
optimal action differs from the action that maximizes the parent’s induced
objective, the gap must be compensated somewhere. In other words, the
platform is not buying performance directly; it is buying alignment of best
responses. This distinction matters for diagnostics. If welfare is low because
the induced objective is mislearned, more payments will not help. If welfare
is low because agents are deviating (or mixing) due to under-incentivization,
then additional payments can be the most cost-effective intervention because
they restore the stationarity required for learning to work up the tree.
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Practical guidance: conservative pricing, explicit budgets, and
rare-context handling. Three design recommendations follow immedi-
ately from the theory and the deployment-style diagnostics we emphasized.
First, platforms should bias transfer learning toward conservative (weakly
overpaying) estimates of 7* during early phases. Underpaying even occa-
sionally can induce deviations that corrupt upstream reward observations,
creating a negative feedback loop; overpaying is costly but tends to pre-
serve compliance and hence learnability. Second, bonus policies should be
integrated with budget constraints explicitly. While our baseline analysis fo-
cuses on regret, product teams typically face a hard cap on credits per day
or per user. This suggests a natural extension: solve a constrained optimiza-
tion in which 7(w) is chosen to keep deviation probabilities below a target
while satisfying a budget, possibly by prioritizing payments in high-impact
contexts and tolerating higher deviation in low-impact regions. Third, rare
contexts require dedicated handling. When ppi, is small, uniform guar-
antees are unattainable without generalization; platforms should therefore
either (i) coarsen the context taxonomy so that each bucket appears often
enough to price, (ii) impose a safe default policy in rare contexts (e.g., re-
quire a high-compliance toolchain), or (iii) introduce cross-context structure
(shared representations) so that transfer estimates can borrow strength.

Governance: auditability, fairness, and strategic externalities. One
advantage of action-contingent credits is auditability: the platform can log
recommended actions, realized actions, and transfers, and thus compute com-
pliance rates and effective prices. This enables operational governance: if an
incentive is causing unintended behavior (e.g., excessive tool use that harms
latency), one can detect it as a shift in compliance or payments before it
manifests as downstream quality failures. At the same time, incentives raise
fairness and manipulation concerns. Context-dependent bonuses can differ-
entially reward agents assigned to certain task types; if assignments correlate
with protected characteristics or job roles, this may create disparate impact.
Moreover, agents may “game” contexts if they can influence how tasks are
classified. Our baseline assumes contexts are exogenous; in practice, plat-
forms should treat context definition as part of mechanism design, with ro-
bust logging, anomaly detection, and possibly cryptographic attestation in
high-stakes settings.

Limitations of the baseline model. Several assumptions are doing real
work. The finite-context condition |C| = M and i.i.d. sampling are primar-
ily analytical conveniences; real systems face nonstationarity (concept drift,
changing user mix) and high-dimensional contexts. Action observability is
also central: the parent must be able to verify whether the child took the rec-
ommended action to condition transfers. Many important choices are only
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partially observable (e.g., degree of effort, prompt quality, internal chain-
of-thought), which pushes the problem toward moral hazard. Separability,
likewise, is a tractability assumption: it rules out strong complementarities
among siblings’ actions. In multi-agent toolchains, such complementarities
can be first-order (e.g., two agents coordinating on a shared intermediate
artifact). Finally, we have modeled each node as a coherent learner opti-
mizing a stable objective; human teams, heterogeneous models, and mixed
incentives can violate this abstraction, making 7 itself drift over time.

Open problem 1: beyond trees (DAGs, coalitions, and overlapping
principals). Modern organizations and platforms rarely form strict trees.
Agents may report to multiple principals; components may be reused across
workflows; incentives may interact through shared resource constraints. For-
mally, the principal-agent graph becomes a DAG (or even a cyclic graph
with repeated interactions). The telescoping logic behind welfare alignment
becomes more delicate: transfers that cancel along a tree edge may no longer
cancel uniquely when nodes have multiple parents, and budget balance may
require additional accounting variables (e.g., shadow prices for shared con-
straints). A promising direction is to characterize classes of graphs (series-
parallel DAGs, arborescences with cross-links) where a generalized “potential
function” still exists and decentralized learning remains stable.

Open problem 2: sequential tasks (MDPs, state, and long-run
incentives). Many applications are not one-shot contextual rounds but
multi-step processes with state: customer support threads, software devel-
opment pipelines, or iterative planning-and-execution loops. In such set-
tings, today’s action changes tomorrow’s context distribution, violating i.i.d.
and introducing strategic delay or exploration incentives. Technically, the
induced objective becomes an MDP and transfers must account for contin-
uation values. One can imagine defining u} as an optimal value function
and 7 as compensating for Q-value gaps, but learning these quantities in
a decentralized hierarchy raises new propagation issues: deviations early
in an episode can change the entire downstream trajectory, amplifying the
deviation-regret channel.

Open problem 3: moral hazard and unverifiable actions. When the
key choice is effort or internal computation that cannot be verified, contracts
cannot condition directly on actions. Platforms then resort to outcome-based
bonuses, peer prediction, or audits. Outcome-based incentives reintroduce
the classic tradeoff between risk-sharing and incentives, and in learning sys-
tems they interact with exploration: noisy outcome bonuses can inadver-
tently discourage experimentation. A useful target is a hybrid design in
which observable proxies (tool usage, latency footprints) are combined with
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occasional audits, yielding a partially observable mechanism that approxi-
mates the action-contingent benchmark while remaining implementable.

Stepping back, our view is that the main value of this line of work is
conceptual: it provides a diagnostic lens for when decentralization fails and
which lever—learning, pricing, or compliance—is responsible. For platforms,
the actionable message is not “always pay bonuses,” but rather: if you want
hierarchical learners to behave like a single planner, you must either align
objectives intrinsically or pay the opportunity costs that alignment requires,
and you must do so in a way that preserves the statistical conditions needed
for learning to converge.
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