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Abstract

We study online decision-making in hierarchical principal-agent
systems where learning agents interact through local, action-contingent
transfers. Prior work shows that allowing one-step transfers in a tree
of bandit learners can restore social efficiency asymptotically: self-
ish learners behave as if they were collaborating. However, modern
platforms face binding payment constraints—limited liability, budget
caps, and credit constraints—that prevent principals from “overpaying
to force compliance.” We introduce per-node payment budgets into the
tree principal-agent bandit model and ask: what is the best welfare
achievable, and can decentralized learning attain it? Our first contribu-
tion is a dual characterization of the budget-feasible welfare optimum:
optimal incentives correspond to local minimal inducement payments
weighted by endogenous shadow prices of budget that propagate up
the hierarchy. Our second contribution is Budgeted-MAIL, a decen-
tralized primal-dual learning algorithm that combines bandit learning
on shadow-price-shifted rewards with online updates of each princi-
pal’s budget multiplier. We prove sublinear welfare regret relative to
the optimal budget-feasible benchmark and vanishing average budget
violations under mild conditions. Finally, we show an impossibility
gap: when budgets fall below inducement thresholds, full efficiency
is unattainable and welfare loss is necessarily linear. The framework
yields policy-relevant comparative statics—how welfare and required
transfers scale with depth, branching, and budget tightness—and pro-
vides a tractable foundation for designing incentive budgets in 2026-era
agentic supply chains and Al service marketplaces.
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1 Introduction and Motivation

Delegation has become the default organizational primitive in many “agent
economies” of 2026: firms deploy stacks of semi-autonomous services (pro-
curement bots, pricing agents, compliance monitors), platforms coordinate
networks of third-party sellers and advertisers, and public agencies increas-
ingly rely on automated intermediaries to route cases, schedule inspections,
or allocate scarce resources. What unifies these settings is not only that deci-
sions are distributed across a hierarchy, but also that the parties at different
layers learn and adapt over time from noisy feedback. A regional man-
ager experiments with promotion policies while local store agents respond;
a marketplace tunes ranking parameters while sellers react strategically; a
security team updates detection thresholds while downstream devices decide
whether to comply or free-ride. The economics is classical delegation, but
the operational reality is online: reward functions are initially unknown, ex-
perimentation is unavoidable, and the principal must shape agents’ behavior
through contracts that are themselves part of the learning loop.

In unconstrained models of repeated principal-agent interaction with ob-
servable actions, a clean benchmark often emerges: if transfers can be chosen
freely, the principal can “buy” the agent’s preferred action at a payment equal
to the agent’s opportunity cost, thereby aligning incentives at minimal cost.
This logic underlies a broad class of results in contracting theory and, more
recently, in the machine-learning literature on principal-agent bandits and
multi-level incentive design. It is also seductive as an engineering narrative:
if we can observe downstream actions and can pay (or subsidize) accordingly,
then we can restore efficiency even when each component optimizes its own
objective.

The point of departure in this paper is that real delegating organizations
rarely possess such unconstrained transfer instruments. Budgets are hard,
local, and often binding. A team lead can offer only limited bonuses to con-
tractors; a platform can subsidize only a small amount of promotional credit;
a regulator can provide only limited assistance or reimbursement; and in
many cases, payments are constrained by limited liability, compliance rules,
or accounting restrictions that effectively cap per-period transfers. These
constraints matter precisely in the environments where delegation is most
valuable: when downstream actions create upstream externalities (e.g., effort
that improves a shared model, safety investments that reduce systemic risk,
or data-quality choices that affect aggregate performance), and when uncer-
tainty makes it optimal to explore actions that may be privately unattractive.
In such cases, the principal may know what it would like the agent to do,
yet simply be unable to fund the required inducements.

We therefore study a tree-structured, repeated delegation problem with
bandit feedback in which each node is simultaneously an agent (to its par-
ent) and a principal (to its children), and in which each principal faces a



per-round budget cap on the total transfers it can pay to its children. Con-
ceptually, we can view each edge as a “micro-contract” that attempts to align
behavior locally, while the tree structure captures the fact that alignment
must propagate through multiple constrained layers. The central tension
is immediate and practical: budgets limit the set of implementable down-
stream action profiles, but learning and adaptation require the principal to
repeatedly test recommendations and adjust contracts. When payments are
scarce, the principal faces a three-way trade-off among (i) inducing high-
welfare actions that are privately costly to agents, (ii) conserving budget for
future rounds and future contingencies, and (iii) collecting information to
improve recommendations.

To build intuition before formalism, consider a principal who would like
each of several children to choose an action that benefits the principal but
is privately dominated for the child. With unlimited funds, the principal
can compensate each child exactly for the utility gap, implement the desired
profile, and do so in a way that is robust to the child’s own learning dynamics
(since the recommended action becomes optimal given the transfer). Under
a hard cap, however, even if each individual inducement is “small,” the costs
add up across many children; and when a single inducement is “large,” it
may be infeasible outright. The principal must then ration incentives: which
child actions are worth buying, which can be left to the child’s self-interest,
and how should these choices adjust as the principal learns the payoffs? In
a tree, the problem compounds. A node that is itself budget-constrained
cannot reliably implement the behavior its parent would like to see from its
subtree, so upstream policies must internalize downstream scarcity.

This paper aims to illuminate that trade-off with a model and analy-
sis that are simultaneously economic (explicit incentive constraints, imple-
mentability, welfare benchmarks) and algorithmic (unknown rewards, ban-
dit learning, finite-horizon performance). Our guiding message is that bud-
get constraints do not merely slow convergence or add technical nuisance;
they change the implementable set and thus create an intrinsic efficiency—
feasibility frontier. When budgets bind, the correct object is not the un-
constrained first-best, but a constrained welfare benchmark that accounts
for limited inducement capacity at every principal. Moreover, the shadow
value of budget—a Lagrange multiplier in the dual-—becomes an econom-
ically meaningful “internal price” that can be learned online and used to
coordinate decentralized behavior.

Our contributions are threefold.

e A budgeted delegation benchmark and its economic struc-
ture. We formalize the welfare-maximization problem subject to local
incentive compatibility and per-round budget caps. The key concep-
tual output is that budgets act like a local tax on transfers: when a
principal’s budget is scarce, it effectively inflates the cost of inducing



a downstream action. This reframes delegation under scarcity as a se-
quence of local choices over action recommendations, each trading off
direct reward against shadow-price-adjusted inducement costs.

e A dual (shadow-price) characterization that remains decom-
posable on a tree. By attaching multipliers to budget constraints,
we obtain a Lagrangian representation in which each node optimizes
a shadow-price-shifted objective. This delivers an inductive recursion
for continuation utilities and minimal inducing payments that mirrors
the unconstrained “pay-the-gap” logic, but with a crucial difference:
which gaps are worth paying depends endogenously on the shadow
price. In practical terms, shadow prices provide a portable summary
statistic of scarcity that can be communicated upward (as an implied
willingness-to-pay for inducement capacity) without requiring central-
ized optimization over the whole tree.

e A decentralized primal-dual learning algorithm and an un-
avoidable gap under tight budgets. We propose a simple Budgeted-
MAIL procedure in which each principal combines (i) a bandit learner
that chooses its own action and recommended child actions using shadow-
price-shifted rewards and (ii) a dual update that raises the shadow price
when spending threatens to exceed the cap. The algorithm is decen-
tralized by construction: each node uses local observations (its own
reward and observed child actions) and local budgets. At the same
time, we show that if budgets fall below the inducement threshold for
the unconstrained welfare-optimal profile, then no mechanism—even
with full information—can avoid a linear welfare loss relative to that
first-best. This impossibility result clarifies what performance guaran-
tees are meaningful when transfers are genuinely limited.

Beyond these headline results, the analysis offers comparative statics that
speak to organizational design. Increasing branching factor increases the
demand for inducement capacity and tends to raise shadow prices; deeper
hierarchies propagate scarcity upward, amplifying the welfare cost of tight
lower-level budgets; and environments with large private-vs-social incentive
gaps are precisely those in which local caps are most distortionary. These
patterns align with familiar managerial prescriptions (e.g., concentrate incen-
tive budgets where externalities are largest, simplify overly deep delegations,
avoid assigning agents tasks with misaligned objectives when incentives are
inelastic), but our framework makes these prescriptions operational in an
online, learning setting.

We also acknowledge limitations. Our model assumes action observabil-
ity along edges, which is realistic in some digital settings (logged actions,
verifiable compliance events) but not in all labor or procurement environ-
ments. We focus on per-round hard caps rather than intertemporal bud-



geting with borrowing and carryover, an abstraction that is appropriate for
many compliance-driven settings but may be too restrictive for firms with
flexible compensation pools. Finally, our welfare lens abstracts from distri-
butional concerns about who holds the budget and who bears risk; extending
the framework to risk aversion, fairness constraints, or endogenous budget
allocation across principals is an important direction for future work.

Roadmap. We begin by situating our contribution in the literatures on
online contract design, principal-agent bandits, limited liability, and primal—
dual online learning (Section 2). We then present the model and the con-
strained welfare benchmark (Section 3), develop the dual characterization
and the recursive structure of shadow-price-adjusted inducement (Section 4),
and analyze the decentralized Budgeted-MAIL algorithm and its regret prop-
erties (Section 5). We conclude with the impossibility gap and a discussion
of when tight budgets should be viewed as a feature (governance and safety)
rather than a bug (efficiency loss), along with implications for the design of
agentic organizations and platforms (Section 6).

2 Related Work

Our paper sits at the intersection of (i) dynamic/online contract design, (ii)
principal-agent learning models in which incentives shape exploration and
behavior, (iii) limited-liability and budget constraints in contracting, and
(iv) primal-dual methods for online learning under constraints. The closest
conceptual ancestor is the emerging literature that treats contracts not as
one-shot objects but as adaptive control instruments in environments with
unknown payoffs and strategic agents. Our contribution is to bring a par-
ticularly stark and operational scarcity constraint—hard, per-round payment
caps at every principal in a delegation tree—into that interface, and to show
that the resulting economic structure is naturally captured by shadow prices
that can be learned in a decentralized way.

Online contract design and dynamic delegation. Classical dynamic
contracting studies how a principal shapes effort or information acquisition
over time under hidden actions or hidden information (e.g., 7, 7). In these
models, continuation values and intertemporal incentives play a central role,
and the main difficulty is typically informational (moral hazard/adverse se-
lection) rather than computational or statistical. A more recent line of work,
motivated by platform governance and algorithmic management, emphasizes
contracts that must adapt under uncertainty about the environment itself.
Our setting shares the dynamic and recursive flavor of these models but dif-
fers along two dimensions. First, we adopt observable actions along edges,
so local incentive constraints take a simple “recommendation plus transfer”



form; the difficulty comes from limited transfer instruments and from ban-
dit feedback on rewards. Second, we focus on hierarchical organizations (a
rooted tree) in which each node is both principal and agent; recursion arises
not only from intertemporal continuation values but also from delegation
depth.

In the theory of organizations, hierarchical contracting and delegation are
standard primitives (e.g., 7). What is less standard is to couple those prim-
itives with online learning, where policies must be evaluated and improved
while agents simultaneously best-respond to the evolving contract environ-
ment. We view our model as a step toward an economic theory of “agentic”
hierarchies in which incentive design and experimentation are inseparable
operational tasks.

Principal-agent bandits and incentivized learning. A parallel machine-
learning literature studies bandit and reinforcement-learning problems with
strategic responders. This includes work on incentivizing exploration and
recommendation compliance, often in settings where a principal has a stream
of users/agents with private preferences, and must trade off short-run welfare
with long-run learning (see, e.g., 7 and follow-ups). Our setting differs in
that the same strategic agents persist over time and learn via no-regret dy-
namics, which makes compliance constraints “local” and repeatedly relevant
rather than a one-shot persuasion problem.

Most closely related are principal-agent bandit models with action-contingent
payments and observable actions, in which the principal can align incentives
by paying an agent the minimal amount needed to make a recommended
action optimal. In a tree, this logic becomes a recursive mechanism: induc-
ing an action at one level may require that the agent, acting as a principal,
can in turn induce behavior downstream. The MAIL framework of ? for-
malizes this recursion and shows that, absent binding payment constraints,
a decentralized learning rule can achieve strong welfare guarantees by ef-
fectively implementing “pay-the-gap” inducements throughout the hierarchy.
Our paper is positioned as a scarcity-aware analogue: we keep the same core
observability and learning assumptions but impose binding caps on transfers
at every principal, which breaks the unconstrained implementability bench-
mark and forces a new welfare benchmark, new comparative statics, and a
different algorithmic architecture (primal-dual rather than purely primal).

Limited liability and budgets in contracting. Limited liability, cash
constraints, and budget caps are among the most studied frictions in contract
theory (e.g., 7; see also survey discussions in 7). In many models, limited
liability alters the shape of optimal contracts by truncating punishments
or restricting the principal’s ability to extract surplus. In our model, the
friction has a simpler but sharper interpretation: even when actions are



observable and the principal would like to “buy” a privately costly action,
the required inducement may be infeasible because total payments cannot
exceed p, in a given round. This creates an implementability constraint that
is combinatorial across children (costs add across edges) and propagates up
the hierarchy (a node cannot promise what it cannot fund).

We also emphasize that per-round caps capture institutional realities that
are not well modeled by intertemporal borrowing: compliance regimes that
limit bonuses per period, platform subsidy policies with hard caps, procure-
ment rules, and safety governance that intentionally restrict the ability of
any single manager or subsystem to “bribe” downstream components. By
treating these caps as hard constraints rather than soft penalties, we obtain
an explicit efficiency—feasibility frontier: some action profiles are not merely
suboptimal but infeasible to induce, even with full information.

Learning under constraints: bandits with budgets and online La-
grangians. From an algorithmic perspective, our approach connects to
online learning with resource constraints, including bandits with knapsacks
and related constrained online optimization problems (e.g., 7, 7). In those
models, a learner chooses actions that consume a global budget over time,
and the key technique is often a primal-dual reduction: maintain a shadow
price for the scarce resource, optimize a price-adjusted reward, and update
the price based on observed consumption. Our setting shares the mathe-
matical motif but differs economically: budgets are not “consumed” by the
principal’s own actions, but by transfers that must be paid to satisfy incen-
tive constraints for other strategic learners. Moreover, budgets are local to
each node and apply per round, rather than being a single global knapsack
over a horizon. This locality is what makes the dual decomposition eco-
nomically meaningful: A, is naturally interpreted as the marginal value of
inducement capacity at principal v, and it enters exactly as a “tax” on the
payments that v would like to make.

Our Budgeted-MAIL algorithm draws on the broad toolbox of online
primal-dual methods and constrained online convex optimization (e.g., 7,
?, 7). The conceptual difference is that the primal decision at each node
is not a direct action but a recommendation-and-transfer menu subject to
downstream best responses, and the regret object is welfare relative to an
implementable benchmark rather than reward relative to a fixed arm. We
therefore combine two kinds of guarantees: no-regret behavior of agents un-
der contracts (a behavioral assumption aligned with the principal-agent ban-
dit literature) and primal-dual control of budget violations (an algorithmic
guarantee aligned with constrained OCO).

Mechanism design on trees and decentralized governance. A fi-
nal connection is to mechanism design and incentives in networks and hi-



erarchies. Tree-structured environments are attractive because they permit
recursion and local message passing; this is a reason they appear both in
organizational economics and in distributed systems. Our dual characteriza-
tion can be read as a welfare-relevant “price system” for inducement capacity:
each principal learns a local multiplier and, through the induced behavior of
its subtree, effectively communicates scarcity upstream without centralized
coordination. This resonates with market-design intuitions (prices summa-
rize constraints) but in a setting where what is being priced is not a physical
input but the ability to alter other learners’ behavior via transfers.

Summary of our position. Relative to unconstrained principal-agent
bandit models (and MAIL in particular), we ask what survives when trans-
fers are scarce in a hard sense. The answer is that the pay-the-gap logic
remains locally correct conditional on feasibility, but optimal recommen-
dations become shadow-price-dependent and, in some instances, first-best
welfare is unattainable regardless of learning. Relative to constrained ban-
dit/OCO work, we contribute an economic mapping from dual variables to
implementable contracts in a multi-level delegation environment, and we
identify an impossibility gap that is not an artifact of finite-time learning
but a genuine implementability loss induced by budgets. This sets the stage
for the model in Section [3, where we formalize the tree game, define budget-
feasible contracts, and state the constrained welfare benchmark that our
analysis targets.

3 Model

We study a repeated principal-agent interaction on a rooted tree that cap-
tures hierarchical delegation with observable actions but unknown rewards.
Time is discrete, indexed by rounds ¢ = 1,...,7. The organization is a
rooted tree G = (V, E) with depth D, where each node v € V is simulta-
neously (i) an agent to its parent P(v) (undefined for the root), and (ii) a
principal to its children C(v). We write C(v) = ) for leaves, and we al-
low heterogeneous branching (a uniform branching factor B is a convenient
special case).

Actions and contracts. FEach node v chooses an action A} every round
from a finite set A with |A| = K (allowing node-specific sets A, is straight-
forward). In addition, each principal v can offer to each child w € C(v) a
simple action-contingent contract consisting of a recommended action and a
nonnegative transfer:

(BY, m(w)) € A x R

The interpretation is deliberately minimal: principal v recommends that
child w take action Bj*, and commits to pay 7(w) if (and only if) w complies,



e, if AY = B{’. We impose nonnegativity (limited liability) at the edge
level, so we do not allow fines.

A node v may itself receive a contract (B}, 7(v)) from its parent P(v).
To streamline notation, we treat (Bf,7:(v)) as absent at the root and set
7¢(v) = 0 when v has no parent. We emphasize that contracts are local: a
principal can condition transfers only on the child action along that edge,
not on unobserved outcomes elsewhere in the tree.

Observability and within-round timing. We adopt an informational
structure tailored to recursive delegation. Along each edge (v,w) € E, the
parent observes the child action. Formally, after play in round ¢, each node
v observes the realized reward X/ of its own node as well as the realized
actions of all children {A} : w € C(v)} and whether each promised transfer
was paid. No node observes other nodes’ realized rewards.

Within each round, interaction unfolds top-down. At the beginning of
round ¢, each node v observes the contract offered by its parent (if any).
Then, starting from the root and proceeding down the tree, each node
chooses its action A} and simultaneously offers contracts {(B}", 7¢(w)) }wec(v)
to its children, subject to the budget constraint described below. Children
then choose their actions after observing the offered contracts, and so on un-
til the leaves act. Rewards then realize, and information is revealed upward
(actions are observable along edges).

This sequential timing makes the recursion operational: when v decides
what to offer a child w, the contract shapes w’s action directly, but it may
also affect how w subsequently contracts with its own descendants and thus
the induced behavior in the entire subtree rooted at w.

Bandit rewards on nodes. Each node v has an unknown mean reward
function

0,0 Ax AL 500,1),  0,(ay, ac()),

which depends on v’s own action and the action profile of its children.
(Leaves have 6, : A — [0,1].) The realized reward in round ¢ is

XP = 0,(A7,A°") 4 &b,

where {e}} are mean-zero i.i.d. sub-Gaussian noise terms (uniformly over v
and t). Thus each node faces a local bandit problem: it observes only the
realized payoff of the action it actually took (and the actions of its children),
but does not observe counterfactual rewards for actions not chosen, nor the
mean function 6,.

The dependence of 6, on children actions is the key economic externality:
upstream nodes may benefit from downstream behavior that downstream

10



agents would not privately choose absent incentives. Transfers are the in-
strument used to internalize these local externalities along the edges of the
tree.

Utilities and transfer accounting. Utilities are quasi-linear in transfers
and coincide with realized rewards plus incoming payments minus outgoing
payments. Specifically, node v’s per-round utility is

U = XP(ALATY) + 1Ay =B n(v) — > 1{AP = B} n(w).
weC(v)

Transfers are purely internal redistribution and cancel in aggregate. Conse-
quently, the object of interest from a system designer’s perspective is social
welfare, defined as the sum of mean rewards across nodes and time:

T
C
SWr = 30, (A7, A7),
t=1 veV
Because rewards depend on induced actions throughout the tree, welfare is
determined jointly by learning (discovering high-reward action profiles) and
incentives (making those profiles behaviorally implementable).

Hard per-round budget constraints (limited inducement capacity).
Our central friction is that each principal has a hard cap on total transfers it
can promise in a round. For each node v, let p, € [0, 1] denote its per-round
budget. Then feasibility requires

Z T(w) < po, YoeV, Vte{l,...,T}.
weC(v)

This constraint is local (one constraint per principal), contemporaneous (ap-
plies each round), and applies to promised transfers rather than realized
transfers. It captures institutional settings in which principals cannot bor-
row against future budgets and cannot condition payments on future out-
comes: a manager cannot promise more bonus payments than a compliance
rule allows; a platform cannot subsidize beyond a daily cap; a subsystem
cannot allocate more “incentive mass” than a safety policy permits.

For some arguments it is useful to compare the hard cap to an average-
budget relaxation, in which one replaces the per-round constraint by a long-
run constraint of the form

t=1 weC(v)

Our main focus, however, is the hard constraint above, because it directly
restricts which action profiles can be induced in a given round and therefore
generates a sharp implementability frontier.

11



Policies, histories, and induced play. A contracting policy for node v
specifies, at each round ¢, how v chooses its own action Ay and its outgo-
ing contracts {(B}", 7¢(w))}wec(v) as a function of v’s information: its past
rewards {X{ }s<¢, observed past children actions {AY },ec(v), s<t, and past
contracts and transfer realizations on incident edges. An agent policy for
node v specifies how v responds to the current incoming contract (B}, 7¢(v))
and its own history when choosing A}. Together, the profile of policies in-
duces a distribution over action and reward trajectories.

To connect the model to the principal-agent logic, we require that agents
respond to the current contract according to a one-step best-response condi-
tion with respect to their own continuation value for the round. Concretely,
fix a node w and a round ¢. Conditional on the contract (By”, 7¢(w)) offered
by P(w), node w chooses an action that maximizes its (possibly history-
dependent) expected utility for that round:

Ay € arg Teaj( {ufﬁ?t(a) + 1{a = BZU}’I}('IU)},
where ,ufl?’?t(a) summarizes w’s expected intrinsic payoff from choosing a,
including the effect of how that choice changes downstream behavior through
w’s own contracts to C'(w). In the full-information version of the model, Mfuoélt
is induced by the known 6’s; in our learning environment, it is the object
that w learns over time via bandit feedback while simultaneously responding
to incentives.

Operationally, we assume nodes follow no-regret bandit learning dynam-
ics conditional on the contracts they receive (a high-probability action-regret
condition). This behavioral assumption is the bridge between incentives and
learning: it ensures that, when a principal offers a transfer sufficient to make
a recommendation locally optimal, the agent will converge to compliance up
to vanishing regret.

Feasible contracts and implementability. A profile of contracts in
round t is budget-feasible if it satisfies the per-round caps at every principal.
Given budget feasibility, a recommended action profile is inducible in round
t if there exist transfers (respecting budgets) such that every node finds it
optimal to take its recommended action given its incoming contract and its
own contracting problem with its children. In depth D > 2, inducibility is
inherently recursive: to induce a child to take an action that is privately
costly, the parent must pay; but that payment must itself be compatible
with the child having enough budget to induce the behavior that makes the
action attractive in its subtree. This recursive feasibility is precisely what
hard budgets make economically salient: the hierarchy can fail not because
agents are unresponsive, but because principals lack the inducement capacity
to align incentives through multiple constrained layers.

12



The remainder of the paper uses this model to define a constrained welfare
benchmark—the best achievable welfare under incentive compatibility and
budget feasibility—and to design decentralized learning rules that approach
it.

4 Budget-Feasible Benchmarks

Our learning goal is inherently comparative: we can only evaluate a decen-
tralized algorithm relative to what is achievable under the same incentive and
budget frictions. We therefore formalize a constrained welfare benchmark—
the best performance attainable by any (possibly history-dependent) con-
tracting scheme that is incentive compatible along every edge and respects
the hard per-round budget caps. Doing so also clarifies the economic con-
tent of the budgets: they do not merely slow learning, but can shrink the set
of implementable action profiles and thereby generate an intrinsic efficiency
loss even under full information.

Budget-feasible, incentive-compatible play. Fix a round ¢. A (pure)
contract profile is a collection {(B}", 7¢(w))}(vw)er together with an action
profile {A}},cv. We say the contract profile is budget feasible if each prin-
cipal respects its cap,

Z T (w) < py Yo e V.
weC(v)

Given feasibility, we say the recommended actions are locally incentive com-
patible if every node w (including internal nodes) is willing to follow its
recommendation given its one-step continuation payoff. Using the notation
from the model, this condition takes the form

AY € arg max {ufu"’?t(a) + 1{a = B;”}Tt(w)}, Yw eV,

with the understanding that (Bj", 74(w)) is absent for the root. Intuitively,
uf,j’,?t(a) aggregates what w expects to earn (net of its own outgoing trans-
fers) when it chooses a, accounting for how a affects contracting and behavior
in the subtree below w. The key point is that budgets matter twice: they
constrain a principal’s ability to induce its children, and they also constrain
an agent’s ability to shape its own continuation payoff by inducing its de-

scendants.

The constrained welfare optimum. To benchmark welfare, we adopt
a full-information yardstick in which the mean reward functions {6,} are
treated as known to the benchmark planner, but the planner is constrained
to use the same local contracts, limited liability, and per-round budgets as

13



in the actual game. Formally, let II(p) denote the set of (possibly random-
ized, history-dependent) policy profiles such that along every sample path:
(i) all outgoing transfers satisfy the hard caps p, in every round, and (ii)
agents’ action choices are sequentially rational given the offered contracts
(equivalently, satisfy the local one-step best-response condition induced by
the policies in the continuation). We define the budget-feasible welfare bench-
mark as

T
OPT(p) = max E, ZZHU( f,AtC(U))

m€ll(p) t=1veV

Because transfers cancel in welfare and the environment is stationary across
rounds, OPT(p) can be interpreted as the welfare achieved by an optimal
stationary constrained contracting pattern repeated each period (random-
ization may still be useful to convexify implementability). The important
feature of OPT(p) is that it benchmarks efficiency subject to inducement
capacity: it already internalizes the fact that some downstream actions are
too expensive to elicit when budgets are tight.

Constrained equilibria (constrained-SPNE). The decentralized game
induces equilibrium restrictions beyond feasibility: principals are not coor-
dinated by a central planner, and each node acts in its own interest given
anticipated downstream responses. Accordingly, it is useful to also name the
strategic benchmark: we call a policy profile a budget-feasible subgame perfect
Nash equilibrium (constrained-SPNE) if it is a SPNE of the extensive-form
game induced by our timing and observability, with the additional restriction
that every principal’s outgoing transfers satisfy Zwec(v) Tt(w) < p, at every
history. In the full-information version of the model, a constrained-SPNE
exists under mild compactness assumptions (e.g., allowing mixed contracts),
and its equilibrium welfare cannot exceed OPT(p). For our learning results,
OPT(p) is the appropriate welfare target; constrained-SPNE is the appro-
priate interpretive notion for decentralization.

Inducibility under hard budgets. A central object in both benchmarks
is the set of action profiles that a principal can induce from its children in
a given round. The observable-action, action-contingent contract structure
implies a simple logic: to make a recommendation b optimal for a child w,
the parent must compensate w for the maximum utility loss w would incur
from complying rather than taking its best alternative.

To make this precise, fix a node w and suppose we consider the full-
information continuation problem in the subtree rooted at w, taking as given
that w will optimally contract with C'(w) subject to its own budget p,,. Let
(@) denote w’s resulting one-round expected intrinsic utility (own reward
minus optimal outgoing transfers) when w chooses action a at the top of its
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subtree. Then the minimal inducing payment needed to make b optimal for
w is

7 (w) = maxpy(a) = puw(®) = 0.

This is the smallest transfer that (weakly) closes the utility gap between b
and w’s best deviation. Under limited liability, there is no cheaper way to
enforce b because the parent cannot punish noncompliance.

Given these edge-wise costs, a parent v can induce a recommended profile
bow) = (bw)wec(v) in one step only if it can afford the sum of the necessary

gap payments:
Z Th, (W) < po.
weC(v)

This condition highlights the economic role of the branching factor: even
when each individual child is cheap to incentivize, the total inducement
cost scales additively across children, so fixed p, turns inducement into a
knapsack-type choice over which downstream behaviors to internalize.

Depth-2 example: closed-form feasibility and “pay-the-gap.” The
logic above becomes fully transparent in the canonical depth-2 case where
the children are leaves. Then p,,(a) = 04 (a) because w has no descendants
and no outgoing transfers. Hence

7 (w) = max O (a) — 6,(D),
and v can implement bc(,) if and only if Zwec(v) 7, (w) < py. Moreover,
whenever implementation is feasible, the minimum-cost contract is simply to
pay each leaf exactly its gap payment. In this sense, with observable actions,
budgets do not change how we incentivize a fixed recommendation—they
change which recommendations are feasible.

A minimal illustration uses K = 2 actions, A = {{,h}. Let a leaf w
privately prefer ¢, say 6,,(¢) = 1 and 6,,(h) = 0, while the parent v benefits
from h, say 6,(a,, h) = 1 and 6,(a,, £) = 0 (holding a, fixed). Then 75 (w) =
1. If p, > 1, the parent can induce h and attain welfare 140 at nodes (v, w)
in each round; if instead p, < 1, inducing h is impossible even with full
information, and the unique feasible recommendation is ¢, yielding welfare
0 + 1. The direction of the welfare loss depends on where the externality
lies: budgets prevent the upstream node from internalizing the downstream
private cost, so the organization may systematically choose actions that are
privately attractive but socially misaligned.

When full efficiency is impossible (an impossibility gap). The pre-
ceding example also isolates the key impossibility phenomenon: if the un-
constrained welfare-maximizing action profile requires, at some principal v,
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total minimal inducement exceeding p,, then no mechanism in our class can
implement that profile. Because the constraint is hard and contemporane-
ous, repeated interaction does not help: the principal cannot “make up” for
a shortfall today by promising more tomorrow, nor can it use negative trans-
fers to economize on payments. Consequently, there exist environments in
which any budget-feasible contract scheme—even under full information and
perfect rationality—incurs a constant per-round welfare gap relative to the
unconstrained optimum, and hence a linear loss ©(7") over horizon T'.

This observation motivates two design choices in the remainder of the pa-
per. First, we evaluate learning performance against OPT(p), not against an
infeasible unconstrained benchmark. Second, we explicitly track how bud-
gets reshape inducement incentives throughout the hierarchy: when a down-
stream action is expensive to elicit, the constrained optimum may rationally
substitute toward cheaper-to-induce behaviors, even if they are locally less
productive. The next section formalizes this substitution through a dual
representation in which budgets appear as endogenous shadow prices that
“tax” transfers and propagate upward through the tree.

5 Duality and Shadow-Price Characterization

Budgets fundamentally couple a principal’s inducement decisions across chil-
dren: even with full information, a node cannot independently choose the
“best” recommendation for each child if the resulting gap payments are jointly
unaffordable. A convenient way to separate this coupling—both analytically
(to characterize the benchmark) and algorithmically (to design decentralized
updates)—is to attach an endogenous shadow price to each node’s budget
and study the resulting priced problem.

A Lagrangian for hard per-round budgets. Fix the full-information
benchmark problem (so the mean rewards are known) and consider one
generic round, suppressing time indices for readability. For each principal v,
the hard cap }_,cc(,) T(w) < py is a local feasibility constraint on its outgo-
ing transfers. Introducing a multiplier A, > 0 for this constraint yields the
Lagrangian in which paying one unit of transfer by v carries an additional
marginal penalty \,. Because each node’s realized utility already subtracts
its outgoing transfers, the shadow price effectively inflates the cost of paying
by a factor (14 A,): in the priced problem, a transfer 7(w) reduces v’s priced
objective by (1 + A,)7(w), while A, p, is a constant rebate term.

Formally, for a fixed multiplier vector A = (Ay)yev, we evaluate a con-
tract/action profile by the priced objective

Z (91)(%, ac(w)) — Z (14 Xy)7(w) + )\v,%>,

veV weC(v)
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subject to the same local incentive constraints that make each recommenda-
tion sequentially rational. The key point is that A removes the hard coupling
from the objective (budgets are no longer constraints), replacing it with a
soft coupling through prices. When )\, is large, node v behaves as if it faces
a steep internal “tax” on transfers and therefore substitutes toward cheaper-
to-induce downstream actions.

Shadow-price-shifted continuation utilities. To obtain a recursive char-
acterization, we define priced continuation objects that mirror the tree struc-
ture. Fix a node v and suppose that the continuation problems in the sub-
trees rooted at its children are summarized by action-indexed values ) (a)
for each w € C(v). We interpret 1.\ (a) as the maximal priced expected utility
attainable in the subtree rooted at w when w is induced to choose top-level
action a, and then optimally contracts with its own children (recursively) in
the priced sense.

Given these child values, if v chooses its own action a € A and recom-
mends an action profile bg(,) = (bw)wEC(v) to its children, then the priced
one-step payoff to v (including continuation from children) is

uﬁ(a,bc@)) = 0Oy (a, bC(v)) + E Nf\u(bw) - E (1"")‘11)7'1;)\(“’) + Appu,
weC(v) weC(v)
(1)

where Tg;)\(w) is the minimal transfer required to make b, optimal for w
given its priced continuation. The corresponding priced value of choosing a
at v is

*,A

A A A
= 5 b 5 == .
1y (@) bc(ﬁ% o P (@, b)) 1y max i, ()

The root’s value MI’A (for root r) is the priced objective of the entire tree
under A.

Two features of are worth emphasizing. First, the ) (b,) terms
propagate the benefits of downstream welfare upward, so that a parent trades
off its own reward against improvements achievable in each child subtree.
Second, (1 + \,) appears only on transfers paid by v, capturing precisely
that the scarcity is local: even if it is cheap for w to pay its children, this
does not relax v’s cap, and so it does not enter v’s price.

“Pay the gap” remains optimal under prices. The priced recursion
relies on the fact that, for any fixed recommendation b to a child w, we never
want to overpay w: transfers are costly in , and, with observable actions
and limited liability, only the event A" = b can be rewarded. Hence the
minimal payment that induces b is still the relevant object.
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Concretely, define the priced continuation value for w as ) (-) as above.
Then the least transfer that makes b a best response for w (weakly) is

M (w) = max () — p(b) > 0. (2)
Necessity follows from the one-step IC inequality for w: to prevent deviation
to the best alternative action, the contract must cover the maximal utility
gap. Sufficiency follows because paying exactly Tb* A (w) makes b attain the
same continuation utility as the best deviation, and any tie-breaking can
be handled by an arbitrarily small perturbation (or by allowing mixed ac-
tions/contracts). Importantly, is recursive: what it costs to induce b at
w depends on how valuable w’s own downstream inducements are under .

Backward induction on the tree (dynamic programming). Equa-
tions f define a dynamic program indexed by A. At leaves w, we have
C(w) =10, so

pn(@) = 0u(@) + Awpu, 7 (w) = maxbu(a) — bu(b),

(where the Ay py term is constant in a and thus irrelevant for the argmax).
For an internal node v, assume inductively that we have computed ) (-) and
thus 7% (+) for all w € C(v). Then we compute ) (a, be(v)) via (1)), maximize
over bc(y) to obtain i (a), and finally form the inducing payments T ’)‘(v)
via (2)) when v itself is treated as an agent of P(v).

This recursion delivers a transparent economic interpretation. For fixed
A, node v chooses recommendations bg,) as if it faced a menu of child ac-
tions, where selecting b,, yields continuation benefit uf‘u(bw) but carries priced
cost (1 + AU)TI:LA(w). Thus A, acts as an internal exchange rate between
downstream utility gains and current budget consumption, and the recur-

sion makes explicit how tightness in one layer propagates upward through

.

The dual viewpoint and its limitations. Let g(\) denote the optimal
priced value obtained by applying the recursion above (equivalently, max-
imizing the Lagrangian-relaxed objective under IC). For any A > 0, g(\)
upper bounds the constrained optimum, and the dual problem is to mini-
mize this upper bound over A:

inf g(\).
;rzlog(k)

When a strong duality argument applies (typically requiring a convexifica-
tion, e.g., randomized contracts or an average-budget relaxation), a mini-
mizing A\* can be interpreted as the shadow prices of the original hard caps:
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Ay > 0 only when v’s budget is effectively binding (in the complementary-
slackness sense), while A¥ = 0 when v has slack and behaves as if uncon-
strained. Under pure, per-round hard caps, the primal problem is gener-
ally nonconvex (discrete actions, knapsack-like feasibility), so exact strong
duality need not hold; nevertheless, the priced recursion remains the right
organizing principle for both comparative statics and learning. In particu-
lar, Budgeted-MAIL will treat A\, as an online price updated from observed
spending, and will learn behavior that approximately optimizes the priced
objective while driving long-run budget violations to zero.

6 Budgeted-MAIL: Decentralized Primal-Dual Learn-
ing with Budget-Feasible Inducement

The shadow-price recursion in Section [5] suggests an operational lesson: if
we knew the right multipliers A, then each node could behave as if it faced
a stable internal price of budget, paying the (priced) gap when it wants to
induce a child action and otherwise economizing on transfers. Budgeted-
MAIL instantiates this idea online, under bandit feedback and without a
central coordinator. Each node v runs two coupled learners: a primal bandit
routine that selects (i) its own action and (ii) recommendations to its children
to maximize a shadow-price-shifted objective, and a dual update that raises
(resp. lowers) its local shadow price when it overspends (resp. underspends)
relative to p,. The only information exchanged is along edges: contracts
(B}, 1t(w)), observed actions, and (optionally) low-dimensional continuation
summaries used to compute conservative gap payments.

Local payment estimation: conservative gap upper bounds. A dis-
tinctive difficulty relative to the unconstrained setting is that we cannot rely
on “pay extra and learn” when budgets bind. If v ever offers a transfer that is
too small to make b optimal for a child w, then w may deviate, corrupting the
parent’s learning signal; if v offers a transfer that is too large, it may violate
py. Budgeted-MAIL therefore uses conservative estimates of the minimal
inducing payment.

At a high level, we ask each child w to maintain bandit estimates of its
priced continuation values p(-) (for its current local multiplier \,), and
to expose to its parent an upper-confidence proxy ﬁmt(-) together with a
confidence radius f3,,; such that, with high probability,

| (a) — Nﬁ;(a)‘ < Bu Va € A.

(We discuss implementability below; in the simplest instantiation, fi, (a) is
an empirical mean of a shaped reward and f3,,; is a standard sub-Gaussian
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UCB radius.) Given this, the parent v computes, for each candidate recom-
mendation b € A, an upper bound on the true priced gap Tb*”\(w) from :

Foe(w) = (maxfiui(a)) = fuwe(®) + 2B (3)

When the confidence event holds, 7, +(w) > 7, ’)‘(w), so paying 7, +(w) makes
b a (weak) best response for w under the priced continuation. This “optimism
on costs” is intentionally asymmetric: we would rather slightly overpay early
(while still respecting p,) than underpay and lose control of the induced
action.

Two practical remarks are important. First, if v is under a hard cap,
overpayment must be controlled by restricting which profiles b¢(,) are ever
recommended. Second, when K is large, sending fi,(a) for all a can be
communication-heavy; one can compress by sending only max, fi, ¢(a) and
Tt (b) for the recommended b, at the cost of limiting the parent’s ability
to evaluate counterfactual recommendations. Our theory is agnostic to this
engineering choice; it only uses that 73, ;(w) is a valid upper bound with high
probability.

The primal bandit step: learning on shadow-price-shifted rewards.
Fix a node v. In each round ¢, v chooses its own action A} € A and a
recommendation B}’ € A for each child w € C'(v). We view the pair

2 = (abo) € 2 = Ax AW

as a “meta-action” (an arm) available to v. Given z = (a, bc(y)) and a current
shadow price A, ¢, the priced recursion motivates the following local score:

~

Sut(2) = Ouslabow) + Y Auwilbe) — L+Ae) D Fo,e(w), (4)
wel(v) weC(v)

where §U7t(a, bo(v)) is v’s bandit estimate of 6, (a, bo(y)) from its own realized
rewards X/. In words, v trades off (i) its immediate expected reward, (ii)
the continuation value it expects to unlock in each child subtree by inducing
by, and (iii) the shadow-price-inflated transfer needed to implement those
inductions.

Budgeted-MAIL allows any standard adversarial /stochastic bandit sub-
routine to select z; € Z, based on the feedback available to v. A canonical
choice is an Exp3-style routine over Z, using realized payoffs

S v ) C(v w w
Xy = X{( £y A ( )) -1+ )‘Wf) Z HAY = B} (w),
weC(v)

augmented by the children’s reported continuation summaries. A simpler
(and often sharper under i.i.d. rewards) alternative is UCB on Z,, using that v
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observes X and the realized child action profile Atc(v). The cost of generality
is computational: |Z,| = K'TlI¢(I grows exponentially in the branching
factor. This is not merely an artifact of our analysis: without structure on
0,(-), v faces a genuine combinatorial bandit problem. In applications with
large B, one typically imposes separability or low-order interactions (e.g., 6,
additive across children), in which case decomposes and the primal step
becomes tractable via per-child indices.

Hard-budget implementability: feasible recommendation sets and
truncation. To guarantee Zwec(v) Tt(w) < py for every t, we couple the
primal step with a feasibility filter based on the conservative gap bounds ({3)).
Specifically, define the safe set of recommendation profiles at time ¢:

Bf}?tfe = {bC’(v) S AC’(v) : Z ?bw,t(w> < Pv}-
wel(v)

In the hard-budget version, the primal learner is restricted to arms z =
(a,bo(w)) with bogy) € Bif’fe, and the offered payments are set as

T (w) = ?B;u,t(w).

When the confidence event holds, these transfers both (i) induce the intended
child actions (up to tie-breaking/no-regret effects) and (ii) satisfy the budget
constraint by construction. If Bfffe is empty early on due to large uncertainty
(large Buw,:), a conservative fallback is to recommend an arbitrary profile and
offer zero transfers, thereby spending nothing while still collecting data on
0,. This behavior is economically natural: when a principal is unsure how
expensive it is to incentivize its agents, it temporarily “waits and learns”
rather than risking a budget blow-up.

A more aggressive variant replaces the safe-set restriction with trunca-
tion: choose b¢(,) using (4) and then project the payment vector (7p,,+(w))w
onto the ¢; ball of radius p,. Truncation preserves feasibility but may break
IC for some children, so its analysis requires explicitly accounting for devi-
ation regret; we therefore treat it as a practical heuristic unless additional
slack conditions are imposed.

Dual updates: endogenous local prices from observed spending.
Each node updates its own shadow price using only its outgoing transfers,
reflecting that the constraint is local. Let

Sor = L{AY = B} (w)

weC(v)

denote realized spending (equal to offered spending in the hard-budget safe-
set version, since all transfers are paid when inducement succeeds). Budgeted-
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MAIL performs the online projected subgradient update
)\U,t-l—l - )\U,t + B (Sv,t - pv):| +7 (5)

with step size 1, > 0. When v tends to hit its cap, A, rises and increas-
ingly discourages expensive inducements; when v persistently underspends,
Ay, drifts down toward zero and the node behaves approximately uncon-
strained. From a policy perspective, A\, can be interpreted as a revealed
“marginal value of public funds” internal to the organization: high shadow
prices identify which managerial layers are effectively cash-constrained and
therefore where relaxing p,, would yield the largest welfare gains.

Decentralization and message passing. Budgeted-MAIL is decentral-
ized in the strong sense that each node v needs only: (i) its own realized
reward X/, (ii) its children’s realized actions (observable by assumption),
(iii) its own outgoing payments, and (iv) continuation summaries produced
by its children (e.g., fiw+(-) and Sy, ¢). No node needs to know the global
tree, the rewards of distant nodes, or the budgets of other principals. Com-
putation is local: v’s primal learner ranges over Z,,, and its dual update (/|
uses only s, ;.

We emphasize a limitation that is intrinsic to any fully decentralized ap-
proach: while action observability makes inducement verifiable, continuation-
value communication is not itself contractible in our model. Our theoretical
algorithm therefore implicitly treats these messages as part of the mecha-
nism implementation (cooperative computation), not as strategic reports.
In settings where nodes may misreport such summaries, one would need an
additional layer of incentive design (e.g., audit schemes or proper scoring
rules), which is outside our scope. Subject to this caveat, Budgeted-MAIL
provides a clean separation of roles: contracts enforce behavioral compliance
(actions), while learning and dual updates determine which behaviors are
worth purchasing under scarce budgets.

6.1 Main Theorems: Regret, Feasibility, and the Role of
Depth and Branching

We now state the performance guarantees that justify Budgeted-MAIL as an
economically meaningful substitute for an offline planner with full knowledge
of # and full control over downstream behavior. Throughout, we evaluate
performance against the constrained welfare benchmark OPT(p) defined by
incentive compatibility and the per-round hard caps p. Given a realized play
path (A7)y+, we define welfare regret

T
RegiV(p) == T-OPT(p) — E|Y S 6,(47, 47|,

t=1 veV
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and, for each principal v, the cumulative budget violation

T
Violp(v Z ( Z (w) — pv>+, Violy(v) = %ViolT(v).

t=1 weC(v)

Our theorems come in two flavors that correspond to two notions of feasi-
bility. The hard-budget variant enforces ZwEC 7t(w) < p, pointwise in ¢
(strong feasibility). The soft-budget variant allows overspending but controls
Violr(v) via a dual update (weak feasibility). This distinction is not merely
technical: in applications, a hard cap corresponds to genuine limited liability
or cash-on-hand constraints, while a soft cap corresponds to budgeting on an
accounting horizon (e.g., quarterly) where temporary overdrafts are possible
but penalized.

Theorem 6.1 (Hard-budget feasibility and regret under slack). Fiz § €
(0,1). Consider the hard-budget safe-set version of Budgeted-MAIL in which
each principal v restricts recommendations to Bsafe and sets Ty(w) = Tpw ((w).
Suppose each node’s estimation routine yields conﬁdence radii By such that,
with probability at least 1 — §, all continuation-value estimates satisfy the
uniform event

‘ﬁw(a) — ,u,f)‘(a)‘ < Bt YveV, Vt<T, Va € A.

Assume additionally a uniform slack (strict feasibility) condition: there ex-
ists a benchmark policy achieving OPT(p) whose induced minimal payments
satisfy, for every principal v and every round, Zwec(v) T*(w) < py — Yo for
some v, > 0. Then, with probability at least 1 — 9,

1. (Strong feasibility) For allv and allt < T, )"
Violr(v) =0).

wEC(U ( ) < Pu (hence

2. (Inducement validity on the confidence event) Every recommended child
action is a best response under the priced continuation, up to the child’s
own no-regret deviations.

3. (Welfare regret) For suitable learning rates and dual stepsizes, the wel-
fare regret satisfies

RegiV(p) < Z <01Wv + 6(Rv(T))>7
veV

where Ry(T') is the action-regret rate of v’s chosen primal routine on the
meta-action set Z,, and O(-) hides polylogarithmic factors in (T, K, |V|,1/9).

The economic content of Theorem is that strict feasibility (a margin
~Yv) converts conservative overestimation of gap payments into a transient
cost rather than a permanent distortion. Early on, 3, is large, so 7 +(w)
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can be substantially above 7'; ’)‘(w); without slack, this can exclude welfare-
relevant profiles from Bf’j‘fe, forcing the principal to behave as if it were poorer
than it truly is. Slack ensures that, once 3, falls below =, (after a node-
dependent burn-in W), the safe set contains the benchmark’s recommended
profile and the algorithm can compete with OPT(p) without ever violating
hard caps. From a policy perspective, this highlights a practical design
principle: if one insists on strict per-period cash constraints, it is valuable to
leave explicit “headroom” in budgets to accommodate incentive-estimation
uncertainty.

When slack is absent, the appropriate comparison point for hard-feasible
learning is necessarily weaker. One can either (i) benchmark against OPT (p—
) for an explicit buffer v that shrinks with 7', or (ii) switch to weak fea-
sibility and let the dual variable absorb temporary overspending. The next
theorem formalizes the second path.

Theorem 6.2 (Soft budgets: sublinear welfare regret and vanishing aver-
age violation). Consider a soft-budget version of Budgeted-MAIL that allows
arbitrary recommendations and uses the projected dual update (b)) with step-
size 1, < 1/V/T. Assume bounded rewards, sub-Gaussian noise, and that
each node’s primal routine guarantees expected action regret R,(T) = o(T)
on Z, with respect to the priced score it observes. Then there exist constants
ca,c3 > 0 such that, for all T,

Reg?V(p) < Y (@Wv + 5(RU(T))> + 5(2 pv\/T>,

veV veV
and, simultaneously for each principal v,

— 1

E[Violr(v)] < c3VT, so  E[Violy(v)] O(ﬁ) .
Theorem [6.2] captures the canonical primal-dual tradeoff: we obtain a
clean no-regret guarantee against OPT(p) without requiring strict feasibility,
at the price of allowing O(v/T) cumulative overspending. In organizational
terms, the dual variable A, ; plays the role of an internal accounting price:
if a layer persistently overspends, the algorithm raises A, ; and makes future
inducements more expensive, pushing behavior toward cheaper-to-incentivize
actions. The vanishing average violation statement ensures that, over long
horizons, each layer’s realized spending is asymptotically consistent with its

budget cap, even though per-period strict feasibility is not enforced.

Rates and the impact of branching. The abstract form O(R,(T)) in

both theorems is deliberate: the regret rate is inherited from the chosen
bandit routine and from the size/structure of Z, = A x A®)_ If v treats
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each z = (a,bc(y)) as an independent arm and uses an adversarial algorithm
such as Exp3, then a typical guarantee is

Ro(T) = O(s/T|Zv|log\Zv\) - O<\/TK1+|C(v)| (1—|—|C’(U)|)logK>,

which is exponential in |C(v)|. This formalizes an economically intuitive
congestion effect of span-of-control: even if budgets were ample, a manager
with many agents faces a combinatorial exploration problem unless payoffs
decompose. Conversely, if 0, (a, bc(yy) is additive across children or has low-
order interactions, then the priced score decomposes and the effective regret
can scale only polynomially in |C'(v)| (e.g., via per-child indices), restoring
tractability. Our welfare theorems remain valid under either regime; what
changes is the concrete form of R, (7).

Rates and the impact of depth. Depth affects learning through two
channels. First, deeper trees increase the number of active learners, so
bounds that sum over v € V worsen mechanically with |V|, which in a
B-ary tree scales like O(B”). Second, continuation values p are defined
recursively, so estimation errors and burn-in periods propagate upward: a
principal cannot reliably evaluate expensive recommendations for a child
whose subtree has not yet learned its own continuation values. This is why
the node-dependent time-to-learn parameters W, appear additively. Eco-
nomically, this is a dynamic version of the standard multi-layer contracting
friction: upstream decisions are only as good as the downstream agents’
ability to predict and implement the consequences of those decisions.

Strong versus weak feasibility: when do we need which? If limited
liability is literal (no overdrafts, no intertemporal smoothing), strong fea-
sibility is non-negotiable, and Theorem shows that we can still achieve
no-regret behavior provided there is slack. If, instead, budgets represent
accounting rules or internal targets that can be averaged over time, Theo-
rem suggests that weak feasibility is sufficient and may be strictly more
powerful, because it avoids excluding high-welfare recommendations that
are only temporarily estimated to be expensive. In either case, the theorems
clarify the central tradeoff illuminated by our model: scarce budgets are not
merely a static constraint on payments, but an endogenous force shaping
which parts of the delegation tree can be profitably explored, which behav-
iors can be reliably purchased, and how quickly shadow prices converge to
their economically meaningful levels.
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6.2 Impossibility and Lower Bounds: Threshold Budgets,
Linear Gaps, and Propagation

The regret guarantees in Section are intentionally stated relative to the
budget-feasible benchmark OPT(p). This is not only an analytical conve-
nience: when budgets are hard per-period caps, there are environments in
which the unconstrained welfare-optimal behavior cannot be implemented by
any contract scheme, even with full information and perfect optimization.
In those cases, learning is not the bottleneck; feasibility is. We therefore
separate two distinct questions: (i) can the welfare-optimal recommenda-
tions be purchased at all under p? and (ii) conditional on feasibility, can a
decentralized learner approach OPT(p)?

Budget thresholds for implementability. Fix an instance (i.e., a col-
lection of mean reward functions 6,) and consider the welfare-optimal (un-
constrained) stationary profile that would be chosen by a planner who can
recommend actions and pay transfers without any capsE] Denote one such
optimal recommendation rule by "¢ = (b;),ev. Given observable ac-
tions and one-step IC, the minimum payment needed to induce b;; at an
edge P(w) — w is the agent’s (continuation) gap between its best action
and the recommended one. In the depth-2 case this is exactly T (w) =
maxgeA Oy (a) — 0,(blr); in general depth, the same logic holds with contin-
uation values, yielding the recursively defined 750 (w).

This leads to a simple necessary condition for implementability under
hard budgets:

Sy¢ = Z ngg(w) < py Yv e V. (6)
weC(v)

When @ fails at some principal v, there is no sequence of contracts—
adaptive, history-dependent, or randomized—that can induce the uncon-

strained recommendation bléc(v) in every round while respecting the per-round

*,O)

cap, because (by definition of 7 every IC contract inducing b;;7 must pay
0

at least T, (w) on that edge, and payments cannot be shifted across time.
We err;uphasize that @ is not merely a sufficient condition that might
be loosened with more sophisticated mechanisms. Under our primitives—
observable actions, limited liability 7 > 0, and per-round caps—the gap-
payment lower bound is tight: the only way to implement an action that is
privately suboptimal is to pay at least its utility gap in that round. Thus

budgets create a hard implementability frontier in the space of action profiles.

Linear welfare loss when budgets are too tight. When the uncon-
strained optimum is infeasible, the welfare comparison to the unconstrained

!Bquivalently, p, = oo for all v, or no payment constraints.
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planner necessarily exhibits a linear gap in horizon T'. The next statement
formalizes the idea (and complements Proposition 4) that repeated interac-
tion does not wash out a binding feasibility constraint.

Proposition 6.3 (Infeasibility implies a per-round welfare gap). There exist
depth-2 instances with a principal v and a single leaf child w, action set
A =1{0,1}, and budget p, < 1 such that:

1. the unconstrained welfare-optimal recommendation plays by = 1 in
every round and requires 17 (w) = 1;

2. under the hard cap p, < 1, no contract can induce A’ =1 with proba-
bility one in any round t;

3. consequently, any budget-feasible policy (even with full information)
satisfies

T
u C(u
E|Y S 6.aAr, A7) < T-OPT(x0) — AT
t=1 ue{v,w}

for some constant A € (0,1] that does not depend on T

A concrete construction is instructive. Let the child’s reward be 6,,(0) =
1 and 6,(1) = 0, so the child strictly prefers action 0 by a gap of 1. Let
the principal’s reward be 6,(1) = 1 and 6,(0) = 0, so the principal strictly
prefers the child to play 1. Then welfare is maximized by inducing 1 (total
welfare = 1 per round), but the required payment is 77 (w) = 1. If p, < 1, the
action 1 is simply not purchasable; any budget-feasible interaction induces
0 (welfare = 1 at the child, 0 at the principal) or some mixture that cannot
reach the unconstrained welfare. The welfare shortfall is a constant A per
round, hence linear over time.

The broader lesson is that “learning the right incentives” cannot substi-
tute for “having enough incentives to offer.” In a bandit environment, one
might hope that exploration could discover states in which inducement is
cheap; however, in our model the relevant gaps are properties of the agents’
payoffs, and if the desired behavior is always privately dominated by at least
A, then hard caps force a persistent distortion.

Lower bounds with branching: additive infeasibility across chil-
dren. Budgets bind through sums, so branching amplifies infeasibility in a
mechanically additive way. Consider B leaf children wy,...,wp with iden-
tical gaps: for each child, the welfare-relevant recommended action requires
a minimum payment g > 0. Then implementing the unconstrained profile
at v requires total payment Bg. If p, < Bg, at most |p,/g] children can be
induced each round (in any IC, budget-feasible scheme), and the resulting
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welfare loss scales proportionally with the number of “unfunded” children.
This is a sharp sense in which span-of-control and budgets interact: even
when each bilateral misalignment is small, aggregate misalignment can ex-
ceed a manager’s cap and force rationing of incentives.

Propagation with depth: constrained continuation values cascade
upward. Depth introduces a second amplification channel that is less purely
accounting-based and more economic: a binding budget deep in the tree low-
ers feasible continuation values, which then changes what is worth inducing
upstream. Formally, define the feasible continuation value of a node v as
the optimal expected welfare obtainable in the subtree rooted at v, subject
to IC and budgets p within that subtree. Denote this value (in per-round
terms) by VAL,(p). By construction, VAL, (p) satisfies a backward recur-
sion: it is the maximum, over v’s own action and inducible recommendations
to children, of ,(-) plus Zwec(v) VAL, (p), subject to the payments needed
to implement those recommendations fitting under p,. A budget reduction
at a descendant u reduces VAL, (p); through the recursion, it weakly reduces
VAL, (p) for every ancestor v of u. In this sense, feasibility constraints “prop-
agate” upward even if the constrained node is several layers away from the
root.

This propagation can create large losses when upstream payoffs are com-
plementary in downstream behavior. In a chain (a path graph) of depth D,
one can construct instances where each node’s high-payoff action is valuable
only if its child takes a particular costly action. If the lowest-level principal
lacks budget to induce that costly action, then the child never takes it; the
parent then finds its own high-payoff action unattractive; and so on up the
chain. The result is not merely a localized loss at the constrained node,
but a cascade in which each layer abandons an otherwise welfare-improving
action because the downstream condition cannot be satisfied. In the dual
language, a tight cap at a lower node corresponds to a high shadow price A,
which reduces the shadow-price-shifted continuation utility passed upward;
upstream principals behave as if downstream improvements were “taxed,”
and may rationally stop paying for them even when their own budgets are
slack.

Implications for what our learning guarantees can and cannot promise.
These lower-bound phenomena delimit the scope of any algorithmic result:
without sufficient budgets, there is no policy that can approximate the un-
constrained planner’s welfare, and thus one should not evaluate decentralized
learning against OPT(c0). Instead, OPT(p) is the correct target because it
internalizes the implementability frontier induced by hard caps. Put dif-
ferently, our primal-dual perspective is not only a method for computing
or learning near-optimal behavior; it is also a diagnostic: when the learned
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shadow prices are persistently high at certain nodes, this is an endogenous
certificate that the organization is operating on the boundary of feasibility,
where linear welfare gaps relative to unconstrained ideals are unavoidable.

The next section turns this diagnostic into comparative statics: we inter-
pret A\, as the marginal value of relaxing p,, establish monotonicity proper-
ties, and discuss how the budget frontier scales with tree size, offering design
guidance for credit limits and incentive budgets in platform and organiza-
tional settings.

6.3 Comparative Statics and Interpretation: Shadow Prices,
Monotonicity, and Budget Design

Budgets enter our model as hard per-round feasibility constraints, and Sec-
tion shows that these constraints can generate persistent (indeed linear-
in-T') efficiency losses relative to an unconstrained planner. Here we ask a
different, more design-oriented question: holding fixed the underlying pay-
off environment (6,),cy, how does achievable welfare vary with the budget
vector p = (py)vev, and how should we interpret the dual variables (Ay)yey
that arise in the shadow-price characterization?

Shadow prices as marginal value of budget. We start with the eco-
nomic content of A,. In the dualized welfare problem, A, > 0 is the multiplier
on v’s per-round cap Zwec(v) Tt(w) < py. When strong duality holds (or
when we work with the usual convexification via randomized contracts / re-
laxed average constraints), A\, admits the standard envelope interpretation:
it is the marginal value of relaxing v’s cap. Concretely, let OPT(p) denote
the optimal budget-feasible welfare benchmark over horizon T'. Define the
per-round value V(p) := LOPT(p). Under regularity conditions ensuring
differentiability of V' at p, we obtain the sensitivity formula

oV (p)
Ipy

= A(p), (7)

where \*(p) is an optimal dual solution. Even without differentiability, A% (p)
can be interpreted as a subgradient: it upper-bounds the welfare gain from
a small budget increase and is zero whenever the constraint is slack at the
optimum. Economically, A} measures the shadow return (in welfare units per
dollar of transfer capacity) of incremental budget at node v. This is precisely
the statistic we would like a decentralized learning scheme to output if our
goal is budget design rather than only policy optimization.

This interpretation connects directly to Budgeted-MAIL. The dual up-
date

)\th'f'l = [A’U7t + n(ZwEC(U) Tt(w) - pv)] +
is a textbook “price adjustment” rule: when the realized spend at v exceeds
the cap, the internal price of budget rises, and future recommendations shift

29



toward cheaper-to-induce child actions. When average violations vanish,
complementary slackness implies that persistent positive prices coincide with
binding caps in the long run. Thus the learned A, ; is not a mere proof
artifact; it is an operational measure of scarcity of incentive capacity at v.

Monotonicity in budgets and diminishing returns. We next formal-
ize the basic comparative statics of V(p). Because budgets only restrict
feasible contracts, increasing p can never reduce achievable welfare.

Proposition 6.4 (Monotonicity and concavity in p). Fiz the primitives
(04, A). Then V(p) is coordinate-wise nondecreasing in p: if p' > p com-
ponentwise, then V(p') > V(p). Moreover, under the convexified formula-
tion (e.g., allowing randomized contracts and considering per-round expected
budgets), V (p) is concave in p, and there exists an optimal dual vector \*(p)
such that X*(p) € OV (p).

The first claim is immediate: any policy feasible under p remains feasible
under p' > p. The concavity statement captures diminishing returns: once
we can already afford the key inducement gaps, additional budget has lower
marginal impact. Combining concavity with yields a useful monotonicity
of shadow prices:

o>p = XJ(p)<X(p) (in the sense of subgradients).  (8)

In words: relaxing a constraint cannot increase its own scarcity price. This
is the formal counterpart to the intuition that if a manager receives a higher
incentive budget, the “internal tax” on transfers should fall.

Two caveats are worth flagging. First, with hard per-round caps and
purely deterministic contracts, V(p) need not be globally concave because
the feasible inducement set can be combinatorial (a knapsack-like selection
of which children to subsidize). Concavity is recovered in the standard way
once we allow randomization across affordable recommendation profiles, or
when we replace hard caps by average constraints. Second, even when V(p)
is concave, \*(p) need not be unique; in practice we view the learned X, ; as
converging to a consistent scarcity signal rather than a uniquely identified
object.

Scaling with tree size: branching and the “span-of-control” effect.
How large do budgets need to be as organizations or platforms scale? Our
model isolates two mechanical forces.

With branching, budgets bite additively because payments sum across
children. In the depth-2 case, Proposition 1 yields the exact affordability
condition Y, c o) T, (W) < py. If children are statistically similar, 77 (w) ~
g for a welfare-relevant recommendation, then a principal with B children
needs p, on the order of Bg to implement the same quality of downstream
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behavior. Holding p, fixed as B grows forces rationing: the principal shifts
to cheaper recommendations, induces only a subset of children, or both.
In shadow-price terms, the cost inflation factor (1 + \,) rises endogenously
with B, because the cap becomes tight more often. This is a precise sense in
which expanding span of control without commensurate incentive budgets
can reduce welfare even if each individual relationship is “easy” to manage
in isolation.

Scaling with depth: shadow-price propagation and effective up-
stream tightness. Depth creates a more subtle scaling channel. When
budgets bind in the lower layers, continuation values passed upward are
reduced, which changes what upper-layer principals find worthwhile to in-
duce. In the dual recursion, this shows up as shadow-price-adjusted minimal
inducing payments 7% and shadow-price-shifted continuation utilities p:
downstream scarcity effectively “taxes” upstream improvements. As a con-
sequence, even if a high-level principal has a generous p,, it may optimally
spend little because the downstream actions that would complement its own
choices are too expensive (in true or shadow costs) to implement further
down the tree.

This has a practical implication for diagnosing organizational bottle-
necks. A persistently high A, at a low-level node u is not merely a local
symptom; it predicts a global distortion because it depresses the net contin-
uation payoff of many upstream decisions. In this sense, budgets at lower
levels can have outsized welfare impact, a pattern familiar from operations
and platform settings where limited “credits” or “coupons” at the edge con-
strain the effectiveness of higher-level coordination.

Budget design as marginal-value equalization. Because )\, measures
marginal welfare per unit of budget at node v, it provides a principled rule
for reallocating incentive capacity across a tree. Suppose a designer can in-
crease total budget by a small amount ¢ (or reallocate budgets across nodes
while holding ), p, fixed). A first-order prescription is to allocate incre-
mental budget to the nodes with the highest shadow prices. In an interior
optimum of such a meta-problem, shadow prices would equalize across nodes
that receive positive budget increments, mirroring the classic equi-marginal
principle:

Ay~ A5 for nodes v,v’ that are jointly “on the margin” of investment.

Budgeted-MAIL therefore does more than learn near-optimal actions for a
fixed p: it produces the very statistics needed to redesign p. For example, a
platform deciding how many subsidy credits to allocate to different regions
(nodes) can interpret A\, as the welfare value of increasing the region’s credit
limit by one unit. Regions with high learned A\, are those where incentive
scarcity most constrains downstream behavior and hence overall welfare.
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Policy interpretation: credit limits, risk control, and robustness.
Finally, we connect these comparative statics to the motivating “credit pol-
icy” interpretation. Hard per-round caps are a stylized form of limited liabil-
ity and risk control: an organization may be unwilling or unable to expose
any manager to arbitrarily large incentive payouts in a single period. Our
analysis clarifies the tradeoff. Tight caps reduce worst-case transfer exposure
but can generate predictable efficiency losses and distort behavior toward
low-gap, low-impact actions. Shadow prices quantify this tradeoff locally
and dynamically: if )\, is near zero, raising p, is not valuable (and may
only increase risk); if A, is persistently large, the cap is an active bottleneck,
and increasing p, (or smoothing payments across time, if feasible) has high
expected welfare return.

We close with a limitation that also suggests a design lever. Our strongest
welfare and sensitivity conclusions align most cleanly with formulations that
allow randomization or average-budget relaxations. In practice, many plat-
forms can approximate such relaxations by smoothing credit usage (e.g.,
rolling budgets, credit banking, or allowing unused budget to carry over).
From our perspective, these are not merely engineering tweaks: they convex-
ify the feasible set, reduce knapsack-type discontinuities, and make shadow
prices more stable and interpretable as marginal values.

6.4 Experiments and Simulations (Illustrative)

Our theoretical results characterize what is feasible under hard per-round
caps and how shadow prices summarize scarcity. To complement that characterization—
and to sanity-check the behavior of a fully decentralized implementation—
we find it useful to study small-scale simulations in which the environment
is controlled and the relevant objects (welfare benchmarks, minimal induc-
ing payments, and dual optima) can be computed or tightly approximated.
The goal of these experiments is not to claim empirical realism, but rather
to make three qualitative points visible: (i) welfare exhibits sharp “budget
thresholds” that align with inducement feasibility; (ii) learned shadow prices
behave like scarcity signals and localize bottlenecks; and (iii) the interaction
between learning noise and hard caps can be diagnosed through deviation
frequencies and budget-violation statistics.

Toy tree environments. We simulate rooted trees with depths D €
{2,3,4}, branching factors B € {2,4,8}, and a common action set A =
{1,...,K} with K € {3,5}. Rewards are generated from bounded mean
functions 6, € [0,1] plus i.i.d. sub-Gaussian noise, consistent with our as-
sumptions. To make delegation nontrivial, we construct 6, to contain (a)
an “own-action” term that creates private incentives at each node and (b)
an “alignment” or “externality” term that makes a principal care about the

32



actions of its children. A convenient parametric family is

B .
Ov(ay,acpy) = ap(ay) + 1{ay = my—w(ay)} clipped to [0, 1],
C(v) e 1C(v)] wezc%v) { — } [0, 1]

J/

alignm?agt term

(9)
where ay(+) € [0,1] is drawn once at initialization (e.g., i.i.d. from a Beta
distribution and then normalized), 3, € [0, 1] controls the strength of ex-
ternalities, and 7, is a fixed mapping (possibly identity) encoding which
child action best complements v’s choice. Leaves have C(w) = (), so their
0w (ay) reduces to ay(ay). This construction ensures that (i) children face
private tradeoffs among their own actions, so inducement can be costly, and
(ii) upstream nodes benefit from coordinating downstream actions, so trans-
fers have social value.

Budgets are imposed per internal node, p, € [0,1], and we study both
homogeneous budgets (p, = p) and bottleneck budgets (e.g., a single low-
level node u has p, < p while others are large). We set horizons T in the
range 10% to 10, which is long enough to observe steady-state dual behavior
while still showing transient learning effects.

Algorithms and baselines. Our main algorithmic object is a decentral-
ized Budgeted-MAIL implementation: each principal v maintains (i) a bandit
learner over composite decisions (a,, bC(v)) with payoffs shifted by the cur-
rent shadow price and estimated inducement cost, and (ii) a dual update of
the form
Av,t-&-l = P\v,t + W(ZwEC(v) Tt(UJ) - pv)]+-

Transfers 7 (w) are set to the estimated minimal inducing payment consistent
with the recommended action B}’, possibly inflated by a small slack ¢ > 0
to reduce tie-breaking deviations. Because hard caps can be violated by
naive dual methods during transients, we also evaluate a conservative variant
that enforces feasibility by construction: if the estimated sum of minimal
payments for the intended recommendation profile exceeds p,, the principal
either (a) switches to a cheaper recommendation profile or (b) drops subsidies
to a subset of children until the cap is met.

We compare against three simple baselines meant to isolate what shadow
pricing contributes.

1. Unconstrained delegation: principals ignore budgets and pay the esti-
mated minimal inducing payments. This is infeasible under hard caps
but provides an upper envelope for what one would do absent con-
straints.

2. Greedy budget-myopic: each v chooses the recommendation profile that
maximizes its current empirical mean reward minus raw transfer cost,
without a dual term (equivalently A, = 0).
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3. Fized-price rule: each v uses a constant internal price )\, (hand-tuned
or set by a short calibration phase) and then runs only the primal
learner.

All methods use the same child response model (children act as no-regret
bandits conditional on contracts), so differences are attributable to how prin-
cipals select recommendations and manage caps.

Outcome metrics. We track four families of statistics.

1. Welfare: realized social welfare )", > X/ and its per-round aver-
age. For depth-2 trees we also compute a near-exact offline benchmark
by enumerating action profiles and applying the affordability condition
> w Th, (W) < py using the true means.

2. Budget usage and violations: 3,1 e () Te(w), the fraction of rounds
in which ), 7(w) = p, (cap binding), and the cumulative violation
YD T(w) — pyl4+ when feasibility is not enforced by construction.

3. Learned shadow prices: trajectories of A, ; and their time averages; we
also report cross-sectional summaries such as max, A, r and how prices
concentrate at bottlenecks.

4. Deviation frequency: the event rate 1{A} # B’} by depth and by
time, which is a practical proxy for whether inducement payments are
sufficiently estimated and sufficiently slackened to overcome learning
noise and tie-breaking.

Welfare—budget curves and inducement thresholds. A robust qual-
itative pattern is that average welfare as a function of a homogeneous bud-
get level p exhibits a pronounced “knee.” For small p, principals cannot
afford to induce the actions that generate alignment benefits in @, and
welfare remains close to what would arise from largely uncoordinated play.
As p passes the typical scale of minimal inducing payments (which depends
on the dispersion of au(-) at leaves and on downstream shadow costs in
deeper trees), welfare increases rapidly and then saturates once the rele-
vant high-impact recommendations become affordable. In depth-2 trees this
knee aligns closely with the empirical distribution of (. 75, (w) for the
welfare-relevant profile b, making the feasibility logic visible in a single plot.
In deeper trees the transition is smoother, but the same basic phenomenon
appears: once lower-level caps allow downstream coordination to “unlock,”
upstream spending becomes more productive.

Shadow prices as bottleneck detectors. When budgets are homoge-
neous, learned prices A, ; tend to settle into a band that decreases with p.
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When we introduce a single bottleneck node v with a low cap, the shadow-
price profile becomes highly localized: A, grows and remains persistently
elevated, while nodes away from the bottleneck often converge to near-zero
prices even if they have many children. This localization matches the eco-
nomic logic that the marginal value of budget is highest where binding con-
straints actually block inducement. Moreover, in depth-D trees, high A\ val-
ues at lower depths predict reductions in upstream willingness to pay: we
observe principals above the bottleneck shifting their recommended profiles
toward actions that are less complementary but cheaper to implement given
downstream scarcity. This is precisely the kind of endogenous “coordination
retreat” that the dual recursion is meant to encode.

Deviation events and conservative feasibility. Deviation frequencies
are informative because hard caps interact with estimation error: a princi-
pal might underpay early on, inducing occasional deviations even when the
intended profile is nominally affordable. In our simulations, adding a small
slack € to estimated minimal payments reduces deviations markedly, at the
cost of consuming more budget and thus increasing the frequency with which
caps bind. The conservative feasibility variant (which never exceeds p, by
construction) typically eliminates budget violations entirely and keeps de-
viations low after a short burn-in, but it can pay a welfare price when p,
is near the knee: by avoiding occasional over-spend, it sometimes forgoes
high-value profiles that would have been implementable with slightly more
aggressive exploration. This tradeoff is useful in practice because it separates
two distinct failure modes—we recommended the wrong actions” versus “we
could not afford the right ones™—and suggests that tuning e and the dual
step size 7 is partly a risk-management choice.

Sensitivity to nonstationarity. Finally, we probe robustness by intro-
ducing a single change point at time 7'/2, resampling a subset of the a,(-)
terms or changing the alignment strength 3,. Predictably, welfare drops im-
mediately after the change for all methods, but the recovery dynamics differ.
Methods with adaptive dual prices reallocate spending more quickly when
the environment shifts which children are “worth subsidizing,” whereas fixed-
price rules can remain stuck in a mispriced regime (either overspending on
low-value gaps or underspending when new profitable coordination opportu-
nities emerge). The same experiment highlights a limitation: if the environ-
ment becomes systematically more expensive to induce (larger gaps), then
with hard caps the post-change steady state may have permanently lower
welfare, not because learning fails but because feasibility tightens. This is
an important diagnostic role for A, ;: persistent upward drift in A following
a change point is an operational signal that the organization has moved into
a more budget-scarce regime.
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Taken together, these simulations make the main objects of our analysis
tangible: budgets generate sharp feasibility frontiers, shadow prices track
which caps are truly constraining, and deviation/budget statistics provide a
practical lens on whether welfare losses are incentive-limited or information-
limited.

7 Discussion and Extensions

Our focus on hard per-round caps }_,,cc ) Te(w) < py isolates the canonical
scarcity tension: even when downstream coordination is valuable, it may
simply be unaffordable in a given round. This modeling choice also makes
the dual interpretation clean—\, acts as a local shadow cost of spending
that feeds into recursive continuation values. At the same time, organiza-
tional budgeting in practice is often intertemporal, uncertain, and mediated
through richer contracting primitives than a single recommended action with
a compliance bonus. We briefly discuss several extensions that we view as
both natural and technically consequential.

Global (horizon) budgets and pacing. A common alternative is a hori-
zon budget at each principal v,

T
>N nmw) < B, (10)

t=1 weC(v)

possibly with B, = Tp, for comparability. Compared to per-round caps,
(10) admits intertemporal substitution: a principal can overspend early to
accelerate learning or to seize a transient high-value coordination oppor-
tunity, then underspend later to satisfy feasibility ex post. The dual now
attaches a multiplier to a single coupling constraint across time, so the natu-
ral shadow price A, becomes an intertemporal “pacing” signal rather than an
instantaneous feasibility signal. Algorithmically, this pushes us from “always
feasible” conservative rules toward online resource allocation methods: one
can interpret A, ; as the Lagrange multiplier of a remaining-budget constraint
and update it via online mirror descent or via a virtual-queue recursion that
tracks remaining slack. A key conceptual change is that deviation control
and budget control decouple: we can pay inducing amounts whenever de-
sired, but must schedule when we do so. This is closely aligned with how
many organizations manage annual budgets (front-loading versus end-of-year
spending) and suggests that shadow prices can be used operationally as pac-
ing rates.

Budget replenishment and stochastic budgets. Budgets are often un-

certain or replenished stochastically (e.g., monthly replenishment, revenue-
linked spending, or contingent funding). A stylized model replaces p, by a
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random process p,; observed at time ¢, retaining the per-round feasibility
constraint Y, T(w) < pyr. If py ¢ is exogenous and bounded, then the pri-
mal decision becomes a bandit problem with time-varying action feasibility,
and the dual signal A, ; must respond not only to overspending but also to
realized scarcity shocks. If p,; is endogenous (e.g., replenishment depends
on past performance), the incentives become more subtle: spending can af-
fect future capacity, which in turn changes optimal exploration. A practical
approach is to treat the budget process as a constrained stochastic con-
trol problem and to use drift-plus-penalty style updates (virtual queues) to
guarantee stability of long-run violations while preserving no-regret learning
on the primal side. The open theoretical question is whether one can obtain
high-probability welfare regret bounds that scale gracefully with the variabil-
ity of py ¢, especially in deeper trees where downstream volatility propagates
upward through continuation utilities.

Multi-parent delegation: DAGs instead of trees. Many real delega-
tion graphs are not trees: a downstream unit may be influenced by multiple
upstream stakeholders. A minimal extension replaces the tree by a DAG
in which an agent w has a set of parents Pa(w), each offering a contract
(B, 7,"F) for p € Pa(w). If transfers are additive, w’s one-step IC condi-
tion becomes

AY e argmax{ufg’nt(a) + Z 1{a = B,""} Ttw’p}.
acA
pePa(w)

This seemingly small change creates two conceptual difficulties. First, par-
ents can free ride on each other: if several principals value the same down-
stream action, each has an incentive to underpay and hope others cover the
gap, which can lead to coordination failure even when aggregate budgets are
ample. Second, the dual decomposition used in the tree case no longer cleanly
separates across edges because an agent’s best response couples multiple con-
tracts. One possible route is to impose a coordination protocol among par-
ents (e.g., a single “lead” principal sets the recommendation and others post
action-contingent subsidies), effectively turning the DAG into a tree plus side
payments. Another is to move to a mechanism-design viewpoint in which the
agent receives a single aggregated contract computed from parents’ bids, but
then incentive compatibility must be enforced against strategic principals as
well. Understanding when shadow-price signals remain local (as bottleneck
detectors) in DAGs is an open and practically relevant question.

Partial observability and moral hazard. Our baseline assumes along-
edge action observability, so transfers can be conditioned directly on compli-
ance. In many settings, the principal observes only a noisy proxy (output) or
an endogenous signal that depends on both actions and shocks. If v cannot
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verify A}’ then 7(w) must be conditioned on an observable signal YV,
and the minimal inducing payment becomes a function of likelihood ratios
rather than a deterministic gap. This pushes the model toward repeated
moral hazard with learning: the principal must simultaneously learn the
reward externalities and the signal structure well enough to design incen-
tives, while facing limited liability and budget caps. A central limitation
here is that “pay the gap” is no longer well-defined without observability;
the cheapest implementable incentive may require randomized payments or
score-based schemes, and hard budgets can bind precisely when noise is large
(since stronger incentives require larger expected transfers). Deriving a re-
cursion for 70" under partial observability, together with regret guarantees,
would substantially broaden applicability but likely requires new identifica-
tion and concentration arguments.

Menus, lotteries, and convexification. We restricted attention to sim-
ple take-it-or-leave-it recommendations with a compliance bonus. A richer
contracting language allows menus over actions, i.e., a function 7(-) where
the agent is paid 7(a) if it chooses action a. Menus can be useful even
with observable actions because they allow the principal to economize on
payments by targeting multiple near-optimal actions and by mitigating tie-
breaking and learning noise (an issue that becomes acute under hard caps).
More importantly, menus and lotteries can convexify the feasible set of in-
duced action distributions, which is often what is needed to justify strong
duality and tight primal-dual characterizations. From a learning standpoint,
however, menus enlarge the action space faced by the principal (it must learn
over a richer policy class), and under budget caps the menu design problem
resembles a knapsack over incentive intensities. A promising intermediate
step is to allow randomized recommendations with a fixed “gap-plus-slack”
payment rule, which can deliver convexification benefits while keeping the
induced behavior interpretable.

Strategic agents beyond no-regret responses. Our analysis treats
each node as an agent that runs a no-regret bandit algorithm conditional
on received contracts, which is a disciplined way to model bounded rational-
ity and limited information. Yet in many applications agents are forward-
looking and can anticipate the principal’s learning and dual updates. Under
hard budgets, this creates a new strategic lever: by deviating early, an agent
might increase the principal’s estimated inducement cost, thereby raising A
or shifting future recommendations, potentially securing higher future trans-
fers. Capturing such “manipulation of the shadow price” requires equilibrium
analysis with strategic learning on both sides (a repeated game with endoge-
nous information). The resulting impossibility and robustness questions are
largely open: which contract forms are manipulation-proof, and what welfare
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guarantees survive without a no-regret assumption?

Computational and statistical bottlenecks in deep hierarchies. FEven
with simple contracts, the backward recursion defining ,uZ’)‘ and 7 can be
computationally burdensome when K, B, or depth D is large, because each
principal effectively faces a combinatorial choice over (ay, b (y)). Our decen-
tralized learning perspective mitigates this by avoiding explicit enumeration,
but the regret bounds still typically degrade with the size of the composite
action space and with error propagation down the tree. This suggests two
complementary research directions: (i) impose structure on 6, (e.g., linearity,
separability, low-rank interactions) to obtain dimension-free learning rates;
and (ii) study message-passing or factor-graph methods that exploit local de-
pendence to approximate best responses and shadow-price updates without
full enumeration.

Interpretation and design implications. From a policy or management
perspective, the shadow prices A, provide a language for diagnosing whether
poor performance is information-limited (insufficient learning/exploration)
or resource-limited (budgets too tight to implement the desired coordina-
tion). Extensions such as global budgets and stochastic replenishment strengthen
this interpretation: A, becomes an internal “cost of funds” that can guide
pacing and contingency planning. At the same time, the impossibility gap
reminds us that no amount of learning can overcome binding feasibility con-
straints when key downstream actions are simply too costly to induce. Clar-
ifying the boundary between what can be recovered by better algorithms
(menus, pacing, structure) and what requires real resource relaxation re-
mains, in our view, the central open question raised by budgeted delegation.
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