
Solver-Backed Neural Combinatorial Auctions:
Exact Feasibility, Auditable Allocations, and

Regret-Stability Bounds

Liz Lemma Future Detective

January 16, 2026

Abstract

Differentiable economics (e.g., RegretNet) learns revenue-maximizing
auctions by gradient methods but struggles in combinatorial auctions
because feasibility is hard to enforce and randomization/relaxations
can be difficult to implement. Recent CA-focused architectures (CANet/CAFormer)
enforce feasibility via differentiable constructions (softmax/min factor-
ization), enabling randomized mechanisms but leaving a gap between
differentiable feasibility and operational implementability, and intro-
ducing optimization brittleness. We propose a neuro-symbolic alter-
native: a neural network proposes solver-friendly bundle scores (and
optional price parameters), and an exact winner-determination opti-
mizer (MIP/DP) computes the allocation that maximizes these scores
subject to strict combinatorial feasibility. Payments are learned with
an IR-by-design scaling, and incentive compatibility is enforced ap-
proximately via regret minimization as in RegretNet, now with the
allocation guaranteed feasible and integral at deployment. Our core
contributions are (i) an exact feasibility/implementability guarantee
by construction, (ii) a clean IR guarantee, and (iii) a stability bound
quantifying how solver suboptimality and regret-oracle error translate
into true regret. We benchmark against CAFormer/CANet and heuris-
tic AMA/VVCA baselines, showing improved robustness and auditable
deployment pathways in 2026-style settings with sophisticated bidders
and operational constraints.

Table of Contents

1. 1. Introduction: why combinatorial feasibility and implementability
dominate deployment in 2026; limitations of soft feasibility layers;
overview of solver-backed mechanisms and contributions.

2. 2. Related Work: differentiable economics (RegretNet, equivariant/transformer
variants), CA-focused feasibility layers (CANet/CAFormer), AMD/AMAs/VVCAs,
differentiable optimization layers and solver-in-the-loop learning.

1

3. 3. Model: combinatorial auction primitives, bundle space and bidding
language, feasibility constraints, utilities, regret and IR definitions;
discussion of what is closed-form vs what is numerical.

4. 4. Mechanism Class (Solver-Backed): score network, exact winner
determination objective, tie-breaking and measurability, payment pa-
rameterization with IR-by-design; optional contextual features and
permutation-equivariance.

5. 5. Training as Bilevel Optimization: outer objective (revenue with re-
gret penalty/budget); inner deviation search; three gradient strategies
(LP relaxation + implicit differentiation; straight-through estimators;
primal-dual / cutting-plane surrogates); when each is appropriate.

6. 6. Theory: (i) feasibility/implementability guarantee, (ii) ex-post IR
guarantee, (iii) regret stability bound under solver/oracle approxima-
tion, (iv) discussion of integrality gap when training on relaxations and
deploying integral solutions.

7. 7. Experiments: synthetic CAs (2x2, 2x3, 2x5) and scaling studies;
compare to CAFormer/CANet and heuristic baselines; stress-test re-
gret with stronger deviation oracles; runtime and solver statistics; ab-
lations on solver tolerance and gradient method.

8. 8. Auditing and Deployment: reproducibility of allocations, logging
solver certificates, transparency of score functions, handling random-
ized extensions (optional), and governance constraints.

9. 9. Conclusion and Next Steps: open problems (large m with bidding
languages, stronger IC certificates, online updates under shift) and how
solver-backed pipelines fit platform realities.

2

1 Introduction

Combinatorial allocation problems sit at the center of modern market design,
but the engineering requirements of deployment have sharpened in ways that
are easy to understate. In 2026, large marketplaces and procurement plat-
forms routinely operate under contractual and regulatory constraints that
treat feasibility as a hard requirement rather than an average-case aspiration:
an item cannot be allocated twice; a bidder cannot be assigned two incompat-
ible bundles; and an outcome must be auditable as a deterministic mapping
from reported bids to allocations and payments. When these constraints
fail even rarely, the consequences are not merely small welfare losses. They
include downstream operational failures (e.g., infeasible fulfillment plans), le-
gal exposure (e.g., breach of non-discrimination commitments), and strategic
vulnerabilities (e.g., bidders learning to induce pathological rounding). This
paper takes those deployment realities as the starting point, and asks how
we can leverage modern learning architectures without softening the core
implementability guarantees that combinatorial auctions require.

The appeal of learned mechanisms is clear. Rich bidder preferences over
bundles generate a high-dimensional input space, and classical parametric
families can be too rigid to capture the allocation and pricing patterns
that maximize revenue subject to reasonable incentive constraints. Neural
networks offer a flexible way to map bid profiles to allocation-relevant sig-
nals and pricing parameters. The central difficulty is that the economically
meaningful output—a feasible allocation of indivisible items—is intrinsically
discrete. Most end-to-end differentiable approaches therefore introduce a
surrogate: they relax the combinatorial feasibility constraints, compute a
fractional or smoothed assignment, and then either (i) interpret the relaxed
output as a lottery, or (ii) round it to a deterministic allocation. These ap-
proaches are often attractive during training because they supply gradients,
but they shift the key economic question to the gap between the surrogate
and the deployed mechanism.

This gap is not benign. A “soft feasibility layer” can satisfy constraints
only approximately, in expectation, or up to numerical tolerance, yet a de-
ployed marketplace must satisfy feasibility exactly on every instance. Even if
one rounds relaxed allocations, the resulting outcome can be discontinuous in
bids, can violate monotonicity properties that support incentive alignment,
and can interact unpredictably with payment rules that were tuned to the
relaxed model. Put differently, the relaxation may be differentiable, but the
deployed mechanism is not the one being optimized. From an economic per-
spective, this breaks the link between the training objective (often a proxy
for revenue subject to a proxy for incentive compatibility) and the strategic
object of interest (utility under the actual integer allocation rule). From an
operational perspective, it invites a fragile pipeline in which a small change
in solver tolerances, hardware, or rounding heuristics can alter allocations

3

and payments in ways that are hard to certify or explain.
We therefore focus on a solver-backed design principle: feasibility should

be enforced by construction at the point of deployment, using the same con-
straints that define the intended combinatorial auction. Concretely, we let
a neural scorer map the bid profile to a matrix of scores over bidder–bundle
pairs, and we then select an allocation by solving a winner-determination
problem over the true feasible set. The optimizer is not an approximation
to feasibility; it is feasibility. This architecture matches how many real
platforms already operate: they have mature integer-optimization pipelines
(often with years of tuning and domain-specific constraints), and the ques-
tion is how to incorporate learning into the decision rule without discarding
the solver that guarantees correctness. The neural network does not out-
put an allocation directly; it outputs guidance to an allocation solver that
remains the final arbiter of implementability.

A second deployment-driven requirement concerns individual rationality
(IR). In many applications, especially where participants are businesses with
outside options, ex-post IR is not merely a desirable equilibrium property;
it is a participation constraint that must hold mechanically to avoid dis-
putes. Standard payment constructions that target incentive compatibility
(e.g., VCG-style payments) can be computationally expensive or incompat-
ible with the chosen allocation rule, and learned payment networks can in-
advertently produce negative utilities for truthful bidders if unconstrained.
We adopt a simple IR-by-design parameterization: each bidder’s payment
is a scale factor in [0, 1] applied to her own reported bid for the allocated
bundle. This guarantees that a truthful bidder never pays more than her
value for what she receives, independent of others’ bids. The point is not
that this payment form is universally optimal, but that it provides a clean
baseline that is robust to training error and easy to audit.

Our third motivating concern is incentive robustness under approxima-
tion. Even when feasibility is exact, learned mechanisms are typically eval-
uated and trained using approximate best-response computations, and real
winner-determination solvers may return near-optimal solutions with a known
optimality gap. Both approximations matter strategically. If the regret ora-
cle fails to find profitable deviations, a mechanism can appear approximately
incentive compatible while still being exploitable by sophisticated bidders.
If the allocation solver is slightly suboptimal in the score objective, the in-
duced allocation can change discontinuously, and the corresponding utilities
can shift in ways that create artificial regret. Deployment again forces us to
be explicit: we need to understand how these approximation errors propagate
into the economic quantities we care about, rather than implicitly assuming
away the gap between an idealized model and the implemented system.

Within this framing, the contribution of the paper is to articulate and
analyze a mechanism class in which the hardest deployment constraint—
combinatorial implementability—is handled exactly, while the remaining

4

learning components are designed to admit transparent guarantees and error
accounting. We organize the analysis around three claims. First, because the
winner-determination step optimizes over the true combinatorial feasibility
set, the deployed allocation is always deterministic and feasible, avoiding lot-
tery interpretations and eliminating the need for decomposition or rounding
arguments. Second, because payments are constrained through an explicit
scaling factor, truthful participation is ex-post individually rational by con-
struction. Third, when we relax the idealizations used in training—allowing
an η-optimal allocation solver and a δ-approximate deviation oracle—we can
bound the gap between measured regret and true regret under mild regularity
(Lipschitz) conditions on how payments respond to allocation changes. This
last point is conceptually important: it separates what is genuinely learned
(the scoring and scaling functions) from what is guaranteed by engineering
modules (the solver) and clarifies which approximations can cause incentive
violations.

Beyond these headline properties, we view the solver-backed lens as a
way to discipline the broader conversation about differentiability in market
design. Differentiable surrogates are invaluable during training, but the cor-
rect benchmark is the deployed mechanism. When training differentiates
through a continuous relaxation of the winner-determination problem, one
is effectively optimizing a different allocation correspondence than the one
implemented at test time. The resulting training–deployment mismatch can
show up as revenue loss, increased regret, or brittle sensitivity to instance
distribution. We therefore treat the relaxation not as part of the mechanism
definition, but as a numerical tool whose error can be empirically measured
and, under suitable smoothness, theoretically related to performance differ-
ences. This perspective supports a pragmatic workflow: keep deployment
exact and auditable, use relaxations only where they provide tractable gra-
dients, and explicitly track how far the relaxed solution is from the integral
one on the instances that matter.

We also emphasize what this approach does not solve. Solver-backed im-
plementability does not make the mechanism strategyproof; it simply ensures
that whatever strategic properties we achieve are properties of a well-defined,
feasible, deterministic auction. The payment scaling rule enforces truthful
IR but can restrict revenue relative to more complex pricing rules, and it
does not preclude profitable misreports. Moreover, the approach inherits
the computational complexity of winner determination over the chosen bun-
dle language; when K is large, the solver can become the bottleneck, and
careful instance design (or restricted bidding languages) remains essential.
Finally, our guarantees are conditional on bounded values and on regularity
properties that may fail for highly discontinuous payment schemes; learn-
ing can still produce sharp decision boundaries that are strategically fragile
under distribution shift.

Taken together, the message is simple but, we think, underappreciated:

5

in combinatorial auctions, feasibility and implementability are the non-negotiable
substrate on which all other economic objectives sit. A mechanism that is el-
egant in a relaxed model but operationally infeasible is not merely imperfect;
it is not deployable. By structuring the mechanism around an exact solver
and embedding learning only in components that do not compromise feasi-
bility, we obtain a clean separation between what must be guaranteed and
what can be optimized. This separation illuminates the central trade-off we
study throughout: how far one can push revenue via expressive learned scor-
ing and pricing while maintaining robust, quantifiable control over incentive
problems under the approximations that real systems necessarily use.

2 Related Work

Our work sits at the intersection of (i) learning-based mechanism design,
where the mapping from reported types to outcomes is parameterized by a
neural network and trained against incentive constraints, and (ii) solver-in-
the-loop decision systems, where a learned model produces a score or cost
vector that is then optimized subject to hard combinatorial constraints. The
common thread is a shift in emphasis from closed-form auction rules to imple-
mentable pipelines that can be deployed in large marketplaces with complex
constraints. The key difference across strands is where feasibility and incen-
tive properties are enforced: directly by economic structure (e.g., VCG/affine
maximizers), by differentiable relaxations and penalties (common in end-to-
end learning), or by an external optimizer that enforces constraints exactly
(the approach we pursue).

2.1 Differentiable mechanism design and regret-based train-
ing

A prominent modern line of work treats mechanism design as a learning prob-
lem: parameterize an allocation rule and payment rule by neural networks
and train parameters to maximize expected revenue subject to approximate
incentive compatibility, often operationalized by ex-post regret. RegretNet
? is the canonical example in multi-item settings: it uses a differentiable
architecture to produce allocations (frequently via softmax-like normaliza-
tion or other continuous proxies) and payments, and it penalizes estimated
regret computed by an inner optimization over misreports. Subsequent work
refined the approach along several dimensions, including more expressive ar-
chitectures, improved regret estimation, and better handling of constraints
such as individual rationality or budget balance ??. The broad appeal is
conceptual and practical: rather than deriving a mechanism from first prin-
ciples, one can search a rich function class while keeping incentives “in the
loop” via adversarial deviations.

6

Two design challenges recur in this literature. First, allocation feasi-
bility is often represented through a continuous relaxation (e.g., fractional
allocations), followed by rounding or lottery interpretations. This can be
entirely reasonable in divisible-goods environments, but becomes delicate in
combinatorial auctions over indivisible items because feasibility is inherently
discrete. Second, incentive constraints are evaluated through approximate
best responses, typically using gradient-based inner loops; this creates a nat-
ural gap between the measured regret (against the deviation algorithm) and
the true regret (against all misreports). Many papers acknowledge this gap
and validate empirically with stronger attackers, but the conceptual point
remains: approximate regret minimization is only as reliable as its deviation
oracle, and the oracle itself can be sensitive to nonconvexities induced by the
learned mechanism.

Our perspective is closest in spirit to the regret-minimization program,
but we separate what is learned from what is guaranteed. In particular,
we keep combinatorial feasibility outside the neural network by making the
deployed allocation the outcome of a winner-determination solver over the
true feasibility set. This shifts the learning burden from “learn to allocate
feasibly” to “learn scores that induce good allocations when optimized ex-
actly,” which better matches how production marketplaces already enforce
constraints. At the same time, we treat approximate best responses and
solver tolerances as first-class objects, rather than hidden numerical details,
which motivates explicit error accounting for incentive metrics.

2.2 Symmetry, equivariance, and transformer variants

A second cluster of related work builds inductive bias into learned mecha-
nisms by exploiting the symmetries of auction environments: bidder identi-
ties are often exchangeable, and item labels can be permuted without chang-
ing the underlying economic structure. Architectures that are permutation-
invariant or permutation-equivariant can therefore improve sample efficiency
and stability. This includes deep set constructions, graph neural networks,
and transformer-style models tailored to set inputs ??. In auction settings,
such inductive biases have been used both for allocation/payment networks
and for value/policy prediction subroutines that feed into an optimizer.

In combinatorial auctions, symmetry-aware architectures are particularly
compelling because the input dimensionality grows quickly with the bundle
language. A well-designed equivariant scorer can share statistical strength
across bidder–bundle pairs and can mitigate overfitting to arbitrary index-
ing conventions. However, symmetry alone does not resolve the central dis-
creteness issue: even an equivariant network typically outputs continuous
scores or fractional assignments, and one must still address how an inte-
gral allocation is produced and how the learning signal reflects that inte-
gral decision. Our solver-backed approach is complementary: permutation-

7

equivariant scoring can be layered on top of the exact winner-determination
module, yielding an architecture that is both structurally aligned with the
environment and operationally constrained by hard feasibility.

2.3 Combinatorial-auction-specific feasibility layers (CANet,
CAFormer, and related approaches)

Several recent papers focus directly on combinatorial auctions and attempt
to reconcile learning with feasibility by embedding a feasibility layer or struc-
tured decoder. Representative approaches (often associated with names such
as CANet and CAFormer in the applied literature) use architectures that
output bundle-level assignment scores and then produce allocations via dif-
ferentiable approximations to winner determination, or via specialized round-
ing procedures designed to satisfy non-overlap constraints. Some methods
employ LP relaxations of the underlying integer program and differentiate
through the relaxed KKT system; others use continuous surrogates such as
Sinkhorn balancing, Gumbel perturbations, or soft matching layers to ap-
proximate combinatorial structure while retaining gradients.

These designs are valuable because they highlight the central engineering
constraint: winner determination is not a minor detail, but the core of the
mechanism. The feasibility-layer view also aligns with how practitioners im-
plement allocation constraints (often as optimization models maintained by
operations teams). The limitation, from our standpoint, is that a feasibility
layer is often trained as a relaxation and then deployed after discretization.
The resulting training–deployment mismatch can be material: the model
may learn to exploit artifacts of the relaxed problem (e.g., spreading mass
across bundles) that disappear after rounding, and payment rules tuned on
relaxed outputs can behave unpredictably when the final integer allocation
changes discontinuously.

Our design choice is therefore intentionally conservative: we treat fea-
sibility as a hard constraint that is enforced at deployment exactly by an
integer optimizer. Relaxations, when used, are treated as numerical tools
for training rather than part of the mechanism definition. This mirrors a
common practice in industrial systems: the optimization model is a stable
“contract” that is auditable and version-controlled, while the learned com-
ponents provide guidance (scores, priors, or warm starts) without changing
the feasibility specification.

2.4 Classical truthful mechanisms: VCG, affine maximizers,
AMAs, and VVCAs

A different but essential reference point is the classical mechanism design
literature, which provides exact incentive guarantees through carefully struc-
tured allocation and payment rules. In combinatorial auctions with quasilin-

8

ear utilities, the Vickrey–Clarke–Groves (VCG) mechanism achieves dominant-
strategy incentive compatibility (DSIC) and efficiency when the allocation
maximizes reported welfare ?. More generally, affine maximizers (some-
times framed as maximal-in-range or weighted welfare maximization with
bundle-dependent offsets) paired with VCG-style payments preserve DSIC
while restricting the allocation rule to a fixed range or a transformed ob-
jective ?. This is closely related to the literature on virtual valuations and
Myersonian approaches in multi-dimensional settings, though full optimality
typically requires complex type spaces and is computationally challenging in
combinatorial domains.

Approximate mechanism design (AMD) and approximately optimal mech-
anisms (often abbreviated informally as AMAs) explore how to trade off
optimality and tractability, including welfare approximations and restricted
message spaces ?. More recent work on generalized VCG variants and vir-
tual VCG auctions (VVCAs) seeks to retain incentive properties under cer-
tain parametric transformations of bids or values, sometimes motivated by
the desire to capture revenue-optimal distortions while keeping computation
manageable. These lines underscore an important point: if one can commit
to an affine-maximizer allocation rule and compute the corresponding VCG
payments (including counterfactual solves), then exact DSIC is available.

We view these truthful constructions as both a benchmark and a design
alternative. They offer strong guarantees but can be restrictive in practice:
(i) the required payments may be computationally heavy in large combinato-
rial problems due to multiple counterfactual optimizations; (ii) the space of
affine transformations may be too rigid to match revenue goals under realistic
value distributions; and (iii) platforms sometimes face business constraints
(e.g., capped payments, posted-price-like requirements, or auditability con-
straints on pricing formulas) that complicate direct use of VCG. Our mech-
anism class can be seen as occupying a different point in the design space:
we retain exact feasibility and a simple, auditable IR guarantee, while ac-
cepting that incentive compatibility is approximate and must be measured
and controlled.

2.5 Differentiable optimization layers and decision-focused
learning

Finally, our solver-backed architecture connects to a growing machine learn-
ing literature on differentiable optimization and decision-focused learning.
Methods such as OptNet, differentiable convex optimization layers, and im-
plicit differentiation through KKT conditions make it possible to embed lin-
ear or convex programs inside neural networks and backpropagate through
their solutions ??. More recent work develops gradient estimators for dis-
crete optimization via perturb-and-MAP, straight-through estimators, and
continuous relaxations, as well as frameworks that train predictive models

9

end-to-end for downstream decisions (“predict-then-optimize” and SPO-style
objectives) ??.

The key lesson from this literature is methodological: one can often train
a model to be useful for an optimizer without requiring the entire pipeline
to be smooth everywhere. However, discrete solvers introduce nondifferen-
tiabilities and potential instability, and gradient surrogates can bias learning
toward the relaxed problem. This resonates directly with our deployment
motivation. In high-stakes allocation systems, the solver is not merely a
training artifact; it is the operational engine that must satisfy hard con-
straints and be robust to corner cases. We therefore adopt a solver-in-the-
loop stance that is common in decision-focused learning, but we evaluate it
through an economic lens: the relevant objects are utilities, revenue, and
regret under the deployed integral allocation rule and the implemented pay-
ments.

2.6 Positioning and roadmap

To summarize, existing learning-based mechanism design work provides pow-
erful tools for searching over expressive outcome rules, but often relies on re-
laxed feasibility and approximate incentive enforcement. Classical truthful
mechanisms provide exact DSIC but can be computationally burdensome or
too rigid for revenue optimization in rich combinatorial domains. Differen-
tiable optimization offers a pragmatic bridge, yet it raises the question of
what guarantees survive discretization and solver tolerances.

Our contribution is to organize these themes around a deployment-first
separation: exact feasibility is handled by the integer optimizer; individual
rationality is enforced by a transparent payment parameterization; and in-
centive robustness is assessed with explicit accounting for solver and oracle
approximations. With this positioning in place, we now turn to the model,
where we formalize the combinatorial auction primitives, the bidding lan-
guage, the feasibility constraints, and the regret and IR criteria that we use
throughout.

3 Model

We study a single-shot combinatorial auction with a finite set of bidders N
(with |N | = n) and a finite set of indivisible items M (with |M | = m). An
allocation assigns to each bidder at most one bundle of items and ensures
that no item is allocated to more than one bidder. Our goal in this section
is to make the primitive objects explicit—the bundle language, feasibility
constraints, and preference and reporting spaces—and to state the incentive
and participation criteria that we use to evaluate learned mechanisms. We
also highlight which parts of the framework are closed-form (and therefore

10

exact by construction) versus which parts rely on numerical optimization in
practice.

3.1 Bundles and bidding language

Let K ⊆ 2M \ {∅} denote the collection of allowable bundles over which
bidders may express values and bids, with |K| = k. We write S ∈ K for
a generic bundle. Allowing an arbitrary K captures the practical reality
that a platform often restricts the message space: full enumeration of 2M is
infeasible except for very small m, and many marketplaces use structured
bundle languages (e.g., only singletons and a curated set of packages). Our
analysis treats K as fixed and common knowledge.

Each bidder i ∈ N has a (private) valuation vector

vi = (viS)S∈K ∈ [0, Vmax]
K ,

where viS is the value of receiving bundle S. We impose a uniform upper
bound Vmax < ∞ for two reasons. First, it is consistent with the bounded
supports used in training (values are typically normalized). Second, bound-
edness is convenient for stability and error accounting when we later discuss
approximate solution concepts and numerical approximations.

We emphasize that K serves two conceptually distinct roles. Econom-
ically, it defines which outcomes the mechanism may assign to a bidder
(because we will allocate at most one S ∈ K per bidder). Operationally, it
defines which reports bidders can submit. When K is rich (e.g., all nonempty
bundles), the model approximates an unrestricted combinatorial auction.
When K is sparse, the mechanism is best interpreted as operating under a
restricted language: bidders may still have underlying preferences over all
subsets of M , but only the coordinates in K are elicited and acted upon.
In that case, incentive properties we state are understood relative to this
restricted report space.

We assume an independent private values environment and take the
valuation profile v = (v1, . . . , vn) to be drawn from a distribution D over
[0, Vmax]

n×K . The distribution D is used to define expected performance
metrics (revenue and regret) and to motivate the training objective; the
mechanism itself is defined pointwise for every realized report profile.

3.2 Reports, allocations, and feasibility

In the direct mechanism we study, each bidder submits a bid vector

bi = (biS)S∈K ∈ RK
+ ,

and we write b = (b1, . . . , bn) for the bid profile. For analysis and for nu-
merical training, it is often convenient to restrict bids to a compact set such

11

as Bi = [0, Vmax]
K , either by design (bid caps) or by clipping. We keep the

notation Bi for an admissible bid space when needed and otherwise treat
bids as nonnegative.

We represent deterministic allocations using binary indicators xiS ∈
{0, 1}, where xiS = 1 means bidder i receives bundle S. Let x ∈ {0, 1}n×k

be the full allocation matrix. Feasibility is encoded by the standard combi-
natorial auction constraints:∑

i∈N

∑
S∈K: j∈S

xiS ≤ 1 ∀j ∈M, (1)

∑
S∈K

xiS ≤ 1 ∀i ∈ N. (2)

Constraint (1) enforces that each item is allocated at most once across all
bidders, and (2) enforces that each bidder receives at most one allowable
bundle. We denote the resulting feasible set by

X =
{
x ∈ {0, 1}n×k : (1) and (2) hold

}
.

A (deterministic) allocation rule is a mapping x(·) that assigns to each bid
profile b an element x(b) ∈ X .

This binary formulation makes the discrete nature of the problem explicit.
In particular, even for moderate m and expressive K, optimizing over X is
NP-hard (winner determination). This computational fact is central for us:
it motivates why, in deployment, a platform typically uses an exact mixed-
integer optimizer or a high-quality heuristic. It also explains why many
learning-based approaches introduce continuous relaxations during training.
We will later separate these concerns by defining the mechanism using the
deployed (integral) allocation, while treating any relaxation as a training
instrument rather than as part of the economic object.

3.3 Outcomes, utilities, and payments

A direct mechanism maps bids to an outcome (x(b), p(b)), where x(b) ∈ X
is the allocation and p(b) = (p1(b), . . . , pn(b)) ∈ Rn

+ is the payment vector
charged to bidders. We assume quasi-linear utilities: for bidder i,

ui(vi; b) =
∑
S∈K

xiS(b) viS − pi(b). (3)

Because x(b) assigns at most one bundle to each bidder, the value term in
(3) simply picks out the value of the awarded bundle (or 0 if no bundle is
awarded).

We evaluate mechanisms using both bidder-facing and seller-facing cri-
teria. The seller’s (gross) revenue at bid profile b is

rev(b) =
∑
i∈N

pi(b).

12

Revenue is the natural objective for a platform, but it is only meaningful
when paired with participation and incentive constraints: a high-revenue
rule that induces systematic misreporting or violates individual rationality
is not implementable in practice.

3.4 Incentives and participation

We use dominant-strategy incentive compatibility (DSIC) as a benchmark
and ex-post regret as the operational measure of approximate incentive align-
ment. DSIC requires that truthful bidding is optimal regardless of what
others report:

ui
(
vi; (vi, b−i)

)
≥ ui

(
vi; (b

′
i, b−i)

)
∀i, ∀vi, ∀b−i, ∀b′i ∈ Bi. (4)

Exact DSIC is generally demanding in combinatorial settings, especially
when one seeks computational tractability and revenue optimization simul-
taneously. Consequently, much of the learning-based literature (and our ap-
proach) evaluates incentive alignment through ex-post regret, which captures
the gain from the best unilateral deviation after seeing realized values.

Formally, for a fixed mechanism (and later, fixed parameters θ), define
bidder i’s ex-post regret at a valuation profile v as

rgti(v) = max
b′i∈Bi

ui
(
vi; (b

′
i, v−i)

)
− ui

(
vi; (vi, v−i)

)
.

Taking expectation over v ∼ D yields the expected ex-post regret

rgti = Ev∼D
[
rgti(v)

]
. (5)

A mechanism is approximately DSIC in the regret sense when rgti is small
for all bidders. We stress an interpretive point: regret is an ex-post concept,
so it does not require equilibrium assumptions. It is therefore well suited
to empirical evaluation and to the adversarial-training paradigm, where a
deviation algorithm searches for profitable misreports.

We also impose ex-post individual rationality (IR) under truthful bid-
ding:

ui
(
vi; (vi, b−i)

)
≥ 0 ∀i, ∀vi, ∀b−i. (6)

IR matters both normatively (participants should not be harmed by truthful
participation) and operationally (without IR, bidders may opt out or shade
systematically). In our mechanism class, IR will be enforced by a simple
payment parameterization; here, we keep IR as a criterion that any candidate
mechanism must satisfy.

13

3.5 Closed-form structure versus numerical components

The model above is purely definitional: it specifies the environment and
the desiderata. Implementing and evaluating a learned mechanism, how-
ever, introduces two computational problems that are easy to conflate but
conceptually distinct.

First, winner determination is the optimization problem implicit in com-
puting an allocation in X . Even when the mechanism is defined as maximiz-
ing some objective over X , solving that problem exactly can be expensive,
and practical solvers often expose an optimality tolerance. This matters
economically because allocation errors can translate into utility and revenue
errors, and therefore into mismeasured regret. For this reason, when we later
state bounds, we explicitly track a solver suboptimality level (denoted η) and
interpret it as a property of the deployed optimization pipeline.

Second, regret computation itself is an optimization problem: the maxi-
mization over b′i in (5) is rarely available in closed form for expressive mech-
anisms, especially when allocations change discontinuously with bids. In
practice, one uses a deviation oracle (e.g., gradient ascent on bids, multi-
start search, or other adversarial routines) that returns an approximately
optimal deviation. We will denote its suboptimality by δ, reflecting the fact
that the measured regret can underestimate true regret if the attacker fails
to find the best misreport.

By contrast, two components of our framework will be deliberately closed-
form and exact. The first is feasibility: allocations are required to lie in
X as defined by (1)–(2). The second is the IR constraint (6), which we
will guarantee through a payment form that never charges a bidder more
than a (scaled) version of her own report for the allocated bundle. These
exact properties are not merely theoretical conveniences; they correspond to
features that are straightforward to audit and enforce in production systems.

This separation clarifies what our learning problem is not. We are not
asking a neural network to learn the feasibility constraints of a combinato-
rial auction, nor are we relying on a relaxed allocation output that must
later be rounded with unclear economic interpretation. Instead, the learned
component will interact with the model through quantities that are compat-
ible with an exact solver, while the unavoidable numerical approximations
(solver tolerances and deviation search) are treated as explicit objects that
can be monitored, stress-tested, and accounted for when interpreting incen-
tive metrics.

4 Mechanism class: solver-backed neural allocations

We now define the mechanism class that we train and evaluate. The guiding
design choice is to separate (i) a flexible, learned scoring rule from (ii) an
exact combinatorial feasibility layer implemented by a winner-determination

14

solver. Economically, this makes the allocation rule interpretable as “maxi-
mize an objective over feasible allocations,” while operationally it mirrors
how platforms already implement combinatorial assignment problems: a
learned model proposes priorities, and a solver enforces the hard constraints.

4.1 Score network (learned priority rule)

Fix parameters θ. Given a bid profile b, the score network outputs a real-
valued score for each bidder–bundle pair,

sθ(b) =
(
sθ,iS(b)

)
i∈N, S∈K ∈ Rn×k.

We interpret sθ,iS(b) as the mechanism’s “priority” for assigning bundle S to
bidder i at the reported profile b. The network may use the full profile b,
not only bidder i’s own report bi, so the scoring rule can capture competi-
tion effects (e.g., favoring allocations that create tighter markets or reduce
fragmentation).

Two modeling remarks clarify what is, and is not, imposed here. First,
we do not require scores to equal bids or values; the scorer is a learned
transformation of reports into an objective that the solver will maximize.
This is precisely the lever that permits revenue-oriented behavior beyond
welfare maximization. Second, we do not impose monotonicity of allocations
in bids, which is typically needed for classical payment characterizations.
Instead, we will later regulate incentives by explicitly penalizing measured
regret during training.

In implementations, the scorer can be instantiated in a number of stan-
dard ways. One convenient parameterization embeds each bidder’s bid vec-
tor bi into a latent representation (via an MLP), aggregates information
across other bidders using a permutation-invariant layer (e.g., DeepSets-
style pooling or attention with symmetric aggregation), and then decodes
bundle-specific scores. Concretely, a template is

hi = ϕθ

(
bi, Agg

(
{ψθ(bℓ)}ℓ̸=i

))
, sθ,iS(b) = ρθ(hi, S),

where Agg is symmetric in the multiset of other bidders’ features. This
structure is not required for the theory, but it is useful in practice: it hard-
codes the symmetry that bidder labels carry no economic content, improving
sample efficiency and reducing spurious asymmetries that can translate into
brittle incentives.

4.2 Exact winner determination on scores

Given scores sθ(b), the mechanism selects an allocation by solving a deter-
ministic integer optimization problem over the feasibility set X :

xθ(b) ∈ argmax
x∈X

⟨sθ(b), x⟩ = argmax
x∈X

∑
i∈N

∑
S∈K

sθ,iS(b)xiS .

15

This maximization is exactly a winner-determination problem with “virtual
values” given by the learned scores. Because X already encodes integrality
and combinatorial feasibility, the output allocation is implementable by con-
struction; there is no rounding step whose economic meaning would need to
be justified.

A subtle but important point is that the argmax correspondence may not
be single-valued when there are ties in the total score. For economic anal-
ysis (utilities, regret, and measurability of the induced outcome function),
it is convenient to work with a well-defined selection xθ(b). We therefore
assume a deterministic tie-breaking rule that depends only on (sθ(b), b) in a
measurable way. Two standard approaches suffice. The first is lexicographic
tie-breaking: among score-maximizing allocations, choose the allocation with
the smallest index under a fixed ordering of (i, S)-pairs. The second is in-
finitesimal perturbation: add a fixed, vanishingly small priority vector ε · π
(with distinct entries in π) to the score matrix before solving, which breaks
ties without materially changing objectives. Either method yields a single-
valued mapping b 7→ xθ(b) and rules out knife-edge discontinuities driven
purely by indifference.

We emphasize that the solver is a module in the mechanism. From the
platform’s perspective, it is an auditable component: the allocation is the
solution to a transparent integer program whose constraints are fixed and
whose objective coefficients are the scores produced by the learned model.
This modularity is central to the broader motivation. Many learning-based
mechanisms differentiate through relaxations during training, but what is
actually deployed must obey the hard allocation constraints. By defining the
economic object directly in terms of the solver-backed integral allocation, we
ensure that feasibility is not an empirical property but a logical one.

4.3 Payments with “IR-by-design” scaling

The payment rule is parameterized to guarantee ex-post individual ratio-
nality under truthful bidding, while still allowing the mechanism to learn
nontrivial pricing. For each bidder i, we compute a scaling factor

αθ,i(b) ∈ [0, 1],

and charge
pθ,i(b) = αθ,i(b)

∑
S∈K

xθ,iS(b) biS . (7)

Because xθ,iS(b) selects at most one bundle, the payment is simply αθ,i(b) biS⋆

if bidder i receives S⋆, and 0 otherwise. This form has two practical advan-
tages. First, it automatically respects a strong payment cap: no bidder pays
more than her own reported bid for the allocated bundle. Second, it decou-
ples allocation feasibility from payments: payments can be adjusted without
affecting the constraint satisfaction of xθ(b).

16

The scaling factor αθ,i(b) can itself be produced by a neural network (with
a final sigmoid or clipping to enforce [0, 1]). Architecturally, we typically let
αθ,i depend on features that summarize bidder i’s competitive environment—
for example, the gap between the best and second-best score-maximizing
allocations involving i, or pooled statistics of others’ bids. This allows the
mechanism to learn pricing patterns such as charging more when competition
is intense, while remaining within the IR envelope implied by (7).

It is important to be explicit about the limitation of this payment family.
The rule (7) does not, by itself, ensure incentive compatibility: a bidder
can manipulate both (i) whether she wins and (ii) the price conditional on
winning through the dependence of αθ,i(b) on reports. In other words, we are
trading the classical closed-form characterization of DSIC mechanisms for a
design that hard-codes IR and feasibility while leaving incentive alignment
to be encouraged (but not guaranteed) via regret minimization. The value of
the approach is not that it eliminates strategic behavior in general, but that
it yields a mechanism that is always implementable and safe from obvious
participation failures, and whose remaining incentive issues can be measured
and targeted directly.

4.4 Contextual inputs and symmetry (optional but useful)

Many applications require the mechanism to condition on side informa-
tion beyond bids: item attributes, bidder segments, time-of-day effects, or
reserve-price policies. We accommodate this by allowing the scorer and the
payment scaler to depend on observed context c (common knowledge and
non-strategic), writing sθ(b, c) and αθ,i(b, c). Nothing in the allocation or
payment definitions changes; context is simply an additional input to the
learned components. This is useful in practice because it lets the mechanism
adapt to predictable demand shifts without treating them as strategic signals
embedded in b.

When using context, it becomes even more important to respect eco-
nomic symmetries. At a minimum, bidder identities are arbitrary labels,
so the mechanism should be permutation-equivariant in bidders: permuting
bidders in the input should permute the scores and payments in the out-
put. Analogously, if items are exchangeable within known categories, one
may impose structured equivariance in how bundles are represented. These
inductive biases do not alter the formal mechanism class, but they influence
which θ are reachable under finite data and therefore shape the attainable
revenue–regret frontier.

4.5 A note on DSIC special cases

Although our baseline class is designed for approximate incentive alignment,
it nests a classical DSIC construction as a special case. If we restrict the

17

scorer to an affine-maximizer form, sθ,iS(b) = wibiS + κS with fixed weights
and bundle boosts, and replace (7) with the corresponding VCG payment
computed on these transformed bids, then the resulting solver-backed mecha-
nism is DSIC and ex-post IR. We view this as a useful anchor: it shows that
the solver-backed architecture is compatible with exact dominant-strategy
truthfulness when one is willing to impose the relevant structure. Our main
focus, however, is on the more flexible class above, which can depart from
affine maximization and learn richer allocation heuristics, while using regret-
based training to control the strategic distortions that this flexibility intro-
duces.

5 Training as bilevel optimization

Having specified how a parameter vector θ maps reports b into an allo-
cation xθ(b) and payments pθ(b), we now describe how we choose θ from
data. The economic tension is familiar: a revenue-seeking platform would
like to learn aggressive allocation and pricing rules, but doing so typically
creates profitable misreports. In our framework we do not attempt to en-
force dominant-strategy truthfulness by construction (except in the special
cases noted earlier); instead, we train θ to trade off revenue against a direct,
ex-post measure of strategic vulnerability.

5.1 Outer objective: revenue with regret control

We assume access to a distribution D over valuation profiles v = (v1, . . . , vn),
either from a structural model, a simulator, or historical estimates. Training
proceeds on i.i.d. samples v ∼ D, where we interpret the “truthful” report as
b = v. For a fixed θ, define realized revenue and bidder utilities at a profile
b as

revθ(b) =
∑
i∈N

pθ,i(b), ui(vi; b) =
∑
S∈K

xθ,iS(b) viS − pθ,i(b).

The key incentive metric is ex-post regret: for each i, holding other reports
fixed at truth, we compare truthful utility to the best attainable utility from
unilateral deviation. At a valuation profile v, the (true) ex-post regret is

rgti(θ; v) = max
b′i∈Bi

ui
(
vi; (b

′
i, v−i)

)
− ui

(
vi; (vi, v−i)

)
, (8)

where Bi ⊆ RK
+ is the admissible bid set (often [0, Vmax]

K , possibly with
additional structure such as sparsity or budget caps). In training we combine
revenue and regret in one of two equivalent ways:

max
θ

Ev∼D

[
revθ(v)− λ

∑
i∈N

r̂gti(θ; v)
]

(9)

18

for a penalty weight λ > 0, or

max
θ

Ev∼D
[
revθ(v)

]
s.t. Ev∼D

[
r̂gti(θ; v)

]
≤ ε ∀i (10)

for a target regret level ε ≥ 0. The penalty form (9) is convenient for
stochastic gradient methods; the constrained form (10) makes the economic
interpretation explicit (“we are willing to tolerate at most ε of ex-post devi-
ation gains”) and motivates primal–dual training procedures.

Two remarks matter for interpretation. First, r̂gti(θ; v) is necessarily
estimated by an inner optimization routine, so it is a lower bound on rgti(θ; v)
unless the inner problem is solved exactly. Second, because our mechanism is
solver-backed and may be discontinuous in bids, gradients are not classical
everywhere; training is therefore a numerical procedure whose outputs we
evaluate with explicit deviation search, and whose approximation error we
later track via δ (oracle suboptimality) and η (solver suboptimality).

5.2 Inner problem: deviation search as an “attacker”

For each sampled v and each bidder i, we require an approximate maximizer
of b′i 7→ ui(vi; (b

′
i, v−i)). We treat this as a best-response computation against

the mechanism induced by θ, with all other bids fixed to truth. Formally,
the inner problem is

b⋆i (θ; v) ∈ arg max
b′i∈Bi

ui
(
vi; (b

′
i, v−i)

)
. (11)

In practice, we compute an approximate solution b̂i(θ; v) using a deviation
oracle. A standard choice is projected gradient ascent in bid space, with
multiple random restarts and a projection operator ΠBi to enforce feasibility:

b
(t+1)
i = ΠBi

(
b
(t)
i + γt∇biui

(
vi; (b

(t)
i , v−i)

))
,

where gradients are computed through the mechanism implementation us-
ing one of the strategies discussed below. Because the objective can be non-
concave and non-smooth, we do not interpret this as “solving” a well-behaved
optimization problem; rather, it is an adversarial search for profitable devi-
ations, and its quality is summarized by a suboptimality gap δ in the sense
that

ui
(
vi; (̂bi(θ; v), v−i)

)
≥ max

b′i∈Bi

ui
(
vi; (b

′
i, v−i)

)
− δ

(typically in expectation over the oracle randomness and training samples).
This δ is not merely a computational nuisance: it has a direct economic
meaning, since a weak attacker can make a mechanism appear more incen-
tive compatible than it is. We therefore report regret measured with the
strongest deviation oracle we can afford computationally, and we later state
performance bounds in terms of δ.

19

5.3 Three gradient strategies

The central computational difficulty is that both the allocation xθ(b) and the
deviation b̂i(θ; v) depend on θ through argmax operators. We highlight three
practical approaches, each with different biases and computational regimes.

(i) LP relaxation with (implicit) differentiation. A common approach
is to replace the discrete winner-determination problem by a continuous re-
laxation during backpropagation. Let X̃ be a polyhedral relaxation of X
(e.g., the standard LP relaxation of the assignment constraints), and define

x̃θ(b) ∈ argmax
x∈X̃

⟨sθ(b), x⟩. (12)

To obtain useful gradients, we typically add a strongly convex regularizer,
such as −τH(x) where H is an entropy-like term (or a quadratic prox),
yielding a unique and smooth solution map s 7→ x̃(s) for τ > 0. One can then
differentiate x̃θ(b) with respect to scores sθ(b) via the KKT conditions and
implicit differentiation, and backpropagate further through sθ(·) and αθ(·).
This route tends to produce low-variance gradients and stable optimization
when the relaxation is tight and the regularization is well tuned.

The drawback is conceptual: the forward pass used at deployment is in-
tegral and solver-backed, while the backward pass is driven by x̃θ. When
the integrality gap is material, training may optimize the relaxed objective
rather than the deployed one. We treat this as a training–deployment mis-
match and later relate performance gaps to ∥xθ(b) − x̃θ(b)∥1 and payment
sensitivity. Practically, we have found LP-based differentiation most appro-
priate when (a) instances are large enough that exact differentiation through
an IP solver is infeasible, and (b) the relaxation is empirically tight on the
distribution of interest.

(ii) Straight-through estimators (STE) with exact forward alloca-
tion. A second approach keeps the exact integral solver in the forward pass,
but uses a surrogate gradient in the backward pass. Concretely, we compute
xθ(b) by the true integer argmax over X , but when backpropagating we pre-
tend the mapping s 7→ x is differentiable and substitute ∂x/∂s with a proxy
(often the identity map, or the Jacobian of a smoothed softmax/LP layer
evaluated at the same scores). This is the straight-through idea:

forward: x← argmax
x∈X
⟨s, x⟩, backward:

∂L
∂s
≈ ∂L
∂x
· Ĵ(s).

The appeal is that the learned parameters see gradients that “respect” the
discrete allocation actually used to compute revenue and utilities, so the
optimization is not pulled toward artifacts of a loose relaxation. The cost
is bias: the gradients are not gradients of any true objective in general, and

20

convergence guarantees are weak. Nevertheless, STE often performs well
when the integer program is fast to solve (so we can afford many forward
calls, including within the deviation oracle), and when relaxations are too
loose to be informative.

From an economic standpoint, STE is best viewed as a heuristic that
searches parameter space for mechanisms with good empirical revenue–regret
tradeoffs under a given evaluation oracle. This perspective aligns with our
later emphasis on auditable properties (exact feasibility and the payment
cap) and measured incentive performance rather than purely analytic opti-
mality.

(iii) Primal–dual and cutting-plane surrogates for regret constraints.
A third route is to train the mechanism using a constraint-generation view
of regret minimization, which reduces reliance on differentiating through the
inner maximization (11). Consider the constrained program (10) and form
a Lagrangian with multipliers µi ≥ 0:

L(θ, µ) = Ev

[
revθ(v)

]
−

∑
i∈N

µi

(
Ev

[
r̂gti(θ; v)

]
− ε

)
.

Training alternates between (a) approximately maximizing L over θ (using
whichever gradient proxy is available for revθ and for the regret term evalu-
ated at the currently found deviations), and (b) updating µ by (stochastic)
subgradient ascent on constraint violations:

µi ←
[
µi + β

(
r̂gti − ε

)]
+
.

A closely related cutting-plane interpretation maintains, for each bidder, a
growing set of “witness” deviations Wi found by the oracle. Instead of the
max in (8), we penalize the largest utility gain among the currently known
witnesses, periodically refreshing Wi by attacking the latest θ. This method
is attractive when the inner maximization is expensive or unstable: rather
than differentiating through the argmax, we treat it as a separation oracle
that identifies violated incentive constraints. Economically, it mirrors how
one would audit a mechanism: search for a profitable deviation, add it to
the test suite, and retrain to remove the vulnerability.

5.4 When each approach is appropriate

The choice among these strategies is ultimately governed by instance scale
and by what we want to be “exact.” LP-based differentiation tends to be
the method of choice when we need smooth, low-variance gradients and can
tolerate some mismatch between relaxed and deployed allocations; it is also
well suited to large markets where only approximate winner determination is
feasible during training. STE is most compelling when we insist that the for-
ward pass reflect the true deployed mechanism and have access to a fast exact

21

(or near-exact) solver; it typically pairs well with strong deviation search,
since the oracle is attacking precisely the mechanism that will be evaluated.
Primal–dual and cutting-plane approaches are useful when we want explicit
control of regret constraints and are willing to treat deviations as adversarial
examples that are iteratively discovered rather than fully optimized at every
step.

In all cases, we emphasize the same discipline: training is a numerical
procedure with approximations, so we report both revenue and measured
regret under a specified oracle, and we interpret results through the lens of
approximation gaps. The next section formalizes which properties are exact
by construction (feasibility and truthful IR) and how solver and oracle errors
(η, δ) propagate into bounds on the true regret of the learned mechanism.

6 Theory: exact constraints and approximation-
aware incentive guarantees

Our mechanism class is intentionally modular: a learned scorer proposes what
the platform would like to do, while a winner-determination solver enforces
what the platform is allowed to do. This separation is economically useful. It
lets us make two statements that are fully distribution-free and ex post (they
hold for every realized bid profile), while treating incentive performance as an
empirical object that we control through regret minimization and quantify
through approximation bounds.

6.1 Feasibility and implementability are enforced by the solver

In combinatorial auctions, the first-order operational requirement is that the
mechanism output a valid assignment of items and bundles: no item can
be allocated twice, and no bidder can receive two bundles. Many differen-
tiable approaches relax this requirement during training and only enforce
it approximately at deployment, which can create additional complications
(randomization to restore feasibility, decomposition of fractional allocations,
etc.). In contrast, we treat feasibility as a hard constraint built into the
allocation rule.

Formally, recall that the feasible set X consists of binary allocation ten-
sors x = (xiS)i∈N,S∈K satisfying the standard item non-overlap constraints
and the at-most-one-bundle-per-bidder constraints. Given bids b, the score
network computes sθ(b), and the platform computes

xθ(b) ∈ argmax
x∈X

⟨sθ(b), x⟩.

Because the maximization is taken over X , every returned allocation is in-
tegral and combinatorially feasible by construction. The only subtlety is

22

tie-breaking: if the score objective admits multiple maximizers, we must se-
lect one in a deterministic, measurable way (e.g., lexicographic tie-breaking
on the vector x, or by adding an infinitesimal perturbation to scores that is
fixed ex ante). Once we do so, xθ(·) is a single-valued rule.

Economically, we interpret this as an implementability guarantee. The
platform can audit the output allocation without reference to training data
or distributional assumptions. This matters in practice because feasibility
failures are not merely a theoretical nuisance: they correspond to physical
infeasibilities (allocating the same item twice) and to contractual ambiguities
(a bidder receiving multiple bundles when only one is permitted).

6.2 Ex-post individual rationality via a payment cap

The second property we build in is a conservative payment structure that
ensures truthful bidders never face negative utility. The payment charged to
bidder i at bid profile b is

pθ,i(b) = αθ,i(b)
∑
S∈K

xθ,iS(b) biS , αθ,i(b) ∈ [0, 1].

This rule is intentionally simple: we charge at most the bidder’s own reported
value for whatever bundle she receives, scaled by αθ,i(b). The learned compo-
nent αθ,i(b) can be interpreted as a “discount factor” that trades off revenue
against robustness (high α extracts more surplus but can raise incentives to
shade or misreport).

To see why this delivers ex-post IR under truthful bidding, fix bidder i
with true values vi, fix any profile of other bids b−i, and suppose bidder i
reports bi = vi. Then her realized utility is

ui
(
vi; (vi, b−i)

)
=

∑
S∈K

xθ,iS(vi, b−i) viS − pθ,i(vi, b−i)

=
∑
S∈K

xθ,iS(vi, b−i) viS − αθ,i(vi, b−i)
∑
S∈K

xθ,iS(vi, b−i) viS

=
(
1− αθ,i(vi, b−i)

) ∑
S∈K

xθ,iS(vi, b−i) viS ≥ 0,

since αθ,i ∈ [0, 1] and values are nonnegative. This is an ex-post statement:
it holds for every realized (vi, b−i), not merely in expectation over a training
distribution. The guarantee is also auditable at deployment time: it relies
only on the inequality α ∈ [0, 1], which is easy to enforce by parameterization
(e.g., a sigmoid output).

We emphasize what this guarantee does not do. It does not imply in-
centive compatibility: a bidder may still profitably deviate (indeed, training
is designed to reduce such opportunities). Nor does it guarantee IR under
arbitrary misreports; if a bidder inflates her bid, the payment cap is relative

23

to her own report, so she can always “talk herself into” an unaffordable pay-
ment. The point is narrower and operational: under truthful reporting, the
mechanism never charges more than realized value for the allocated bundle.

6.3 Regret stability under solver and deviation-oracle ap-
proximation

We next formalize how two computational approximations affect measured
incentive performance.

Solver approximation. Even when we conceptually define xθ(b) via an
exact argmax, deployments often allow a solver optimality tolerance, or use
heuristics that return a near-optimal solution. To model this, let x⋆(b) denote
an exact maximizer of ⟨sθ(b), x⟩ over X , and suppose the solver returns xθ(b)
satisfying

⟨sθ(b), x⋆(b)⟩ − ⟨sθ(b), xθ(b)⟩ ≤ η for all b. (13)

Feasibility is unchanged: as long as the solver optimizes over X , the returned
solution remains integral and feasible, regardless of η. What changes is
welfare (in score space), and through it, utilities and regret.

Deviation-oracle approximation. Regret is defined by a best-response
computation. In training and evaluation we approximate it with an “at-
tacker” that searches for profitable deviations. Let b̂i(θ; v) be the deviation
found by the oracle for bidder i at profile v. We summarize the oracle quality
by δ in the standard additive sense:

ui
(
vi; (̂bi(θ; v), v−i)

)
≥ max

b′i∈Bi

ui
(
vi; (b

′
i, v−i)

)
− δ. (14)

The measured regret uses b̂i, while the true regret uses the exact maximizer.

A Lipschitz bridge from allocation error to utility error. To connect
η to incentives we need a regularity assumption that bounds how sensitive
payments (and hence utilities) are to changes in the allocation. A convenient
sufficient condition is that, for each i and fixed b, the payment functional is
L-Lipschitz in the allocation argument in ℓ1:∣∣pi(x, b)− pi(x′, b)∣∣ ≤ L∥x− x′∥1. (15)

Because values are bounded by Vmax and allocations are binary with limited
support (each bidder receives at most one bundle), utility is also Lipschitz in
x up to constants that depend on Vmax and the size of the market. Intuitively,
a solver error can only change a bidder’s payoff if it changes whether she wins
and which bundle she wins; with bounded values and Lipschitz payments,
the corresponding payoff impact is bounded.

24

Regret underestimation bound. Combining (13)–(15) yields a stability
statement of the following form: the regret we measure with an approximate
oracle and an approximate solver upper-bounds the true regret up to additive
terms that scale with δ and η. Concretely, letting rgttrue(θ) denote expected
regret with exact best responses and exact score-maximizing allocations, and
rgtmeasured(θ) denote the corresponding quantity computed with the δ-oracle
and the η-optimal solver, we obtain

rgttrue(θ) ≤ rgtmeasured(θ) + δ + O(Lη), (16)

where the hidden constant depends on how score suboptimality translates
into ℓ1 allocation deviations on the encountered instances (in particular, on
the normalization and range of scores and on the effective size of X). The
economic interpretation is direct: a weaker attacker (δ large) mechanically
understates manipulability, and a looser solver (η large) introduces additional
noise into utilities that can create or destroy profitable deviations. Impor-
tantly, neither approximation breaks the hard properties above (feasibility
and truthful IR), but both can materially affect incentive performance.

6.4 Training on relaxations and deploying integral alloca-
tions

Finally, we address a mismatch that arises when we differentiate through
a relaxation. During training, a common choice is to replace the integer
program over X by a continuous relaxation X̃ ⊇ X , producing a fractional
optimizer x̃θ(b). The hope is computational: x̃θ(b) depends smoothly on
scores (often after adding a regularizer), giving low-variance gradients. De-
ployment, however, uses the integral xθ(b) from the true solver.

This introduces a conceptually simple but practically important question:
how far can performance under the relaxation deviate from performance
under the deployed integral rule? A useful way to answer it is to treat
revenue and utilities as functions of (x, b) and to bound their variation in
x. Under Lipschitz payments (and bounded values), we can control the gap
between relaxed and integral outcomes by the distance ∥xθ(b)− x̃θ(b)∥1. For
example, for revenue one can write∣∣rev(xθ(b), b)−rev(x̃θ(b), b)∣∣ ≤ ∑

i∈N

∣∣pi(xθ(b), b)−pi(x̃θ(b), b)∣∣ ≤ nL∥xθ(b)−x̃θ(b)∥1,

and therefore, taking expectations over v ∼ D (with b = v in the truthful
evaluation),∣∣∣E[rev(xθ(v), v)]− E

[
rev(x̃θ(v), v)

]∣∣∣ ≤ O
(
L · E

[
∥xθ(v)− x̃θ(v)∥1

])
, (17)

with an analogous bound for utilities and regret.

25

Equation (17) makes the key point: the relevant object is not an abstract
worst-case integrality gap, but the instance-weighted mismatch between the
relaxed solution used for gradients and the integral solution used for actual
allocations. When the relaxation is tight on the distribution of interest, this
mismatch is small, and training by relaxed differentiation can be well aligned
with deployment. When the mismatch is large, gradients can systematically
optimize a surrogate that the deployed mechanism does not implement, po-
tentially yielding disappointing out-of-sample revenue or brittle incentives.

This discussion also clarifies why we treat feasibility and IR as “by design”
properties, while treating incentive compatibility as an empirical target. Fea-
sibility and truthful IR hold exactly for the deployed mechanism regardless
of how we compute gradients. Regret, by contrast, depends on how well
training attacks reflect true best responses and on how closely the training-
time surrogate reflects the deployment-time allocation. The purpose of our
experiments is therefore not only to compare revenue levels, but to stress-test
regret under stronger deviation search and to quantify how solver tolerances
and gradient choices move the mechanism along the revenue–robustness fron-
tier.

7 Experiments: synthetic combinatorial auctions
and scaling behavior

Our experiments serve three purposes. First, we quantify the revenue–
robustness tradeoff induced by regret-regularized training in small combina-
torial auctions where the feasible bundle set is rich and strategic incentives
are nontrivial. Second, we benchmark against recent learned allocation rules
(e.g., CAFormer/CANet-style architectures) and simple operational heuris-
tics that practitioners often deploy when full mechanism design is infeasible.
Third, we stress-test the incentive claims by evaluating regret under increas-
ingly strong deviation search, and we document the computational footprint
of solver-backed deployment (solve times, optimality certificates, and sensi-
tivity to solver tolerances and gradient choices).

7.1 Environments and synthetic valuation models

We consider synthetic combinatorial auctions with (n,m) ∈ {(2, 2), (2, 3), (2, 5)}.
For these small markets we take the allowable bundle set to be the full non-
empty powerset, K = 2M \ {∅}, so that bidders may value any combination
of items. This choice deliberately creates complementarity patterns that
cannot be reduced to item-wise bidding without loss. Values are bounded
and normalized to viS ∈ [0, Vmax], which allows direct comparison across
environments and aligns with our approximation bounds.

To generate valuation profiles, we use a mixture of structured and un-

26

structured models. Concretely, for each bidder we first sample base item
values (aij)j∈M i.i.d. from a bounded distribution (e.g., uniform on [0, 1]),
and then construct bundle values as

viS = min
{
Vmax,

∑
j∈S

aij +
∑

{j,ℓ}⊆S

γi,jℓ

}
,

where γi,jℓ are pairwise synergy terms (possibly negative) drawn from a
mean-zero bounded distribution and truncated to preserve nonnegativity.
This produces a controlled spectrum from nearly additive preferences (small
synergies) to strongly complementary preferences (large positive synergies),
while maintaining bounded support. We also include a single-minded com-
ponent in which, with some probability, bidder i draws a target bundle Ti
and sets viTi high relative to other bundles; this is a useful stress case be-
cause profitable deviations can hinge on winning a specific bundle rather
than marginal shading.

Throughout, we evaluate truthful performance at bid profiles b = v (rev-
enue, allocations, and individual rationality), and we evaluate strategic ro-
bustness by computing ex-post regret with respect to misreports b′i drawn
from a rich continuous action space.

7.2 Mechanism training and evaluation protocol

We train the solver-backed neural mechanism by minimizing a standard
revenue–regret objective on i.i.d. valuation samples,

min
θ

Ev

[
−rev(v) + λ

∑
i∈N

r̂gti(θ; v)
]
,

where r̂gti is computed by an inner deviation oracle (attacker) that searches
for a profitable misreport against truthful opponents. We treat λ as a tuning
parameter that traces a Pareto frontier: larger λ produces mechanisms with
lower measured regret but typically lower revenue.

A central methodological point is that the deviation oracle is not only
a training tool but also an evaluation tool. Accordingly, we report two
regret numbers for each learned θ: (i) an in-training regret using the same
oracle class used during learning, and (ii) an out-of-training stress-test regret
using a strictly stronger oracle (more restarts, larger iteration budget, and
hybrid local–global search). This mirrors standard adversarial evaluation: a
mechanism is only as robust as the strongest deviations it fails to prevent.

7.3 Baselines: learned and heuristic comparators

We compare against two classes of baselines.

27

Learned allocation baselines. We include architectures in the CAFormer/CANet
family that directly output (or approximate) allocations from bids using
permutation-equivariant neural components. Because many such methods
rely on differentiable relaxations or sampling-based rounding, we evaluate
them under their recommended training and deployment pipelines. Where
the baseline outputs fractional allocations, we apply the baseline’s own rounding/post-
processing rule to obtain a deterministic feasible allocation for a fair revenue
and regret comparison. We emphasize that our main comparison axis is
deployed behavior: feasibility, revenue, and regret computed on the final
integral allocation.

Heuristic mechanisms. We implement simple operational heuristics that
are commonly used when full combinatorial optimization or principled pay-
ments are not available: (i) greedy winner determination on reported bun-
dle bids (sorting by bid or bid-per-item, then accepting non-overlapping
bundles), coupled with pay-as-bid payments; (ii) item-wise posted pricing
learned from data (allocating items or small bundles independently), which
is not expressive for complementarities but is fast; and (iii) a fixed-α pay-
your-bid scaling rule pi = α

∑
S xiSbiS with α chosen by validation to illus-

trate the limits of non-adaptive pricing. These heuristics provide a useful
“floor” for both revenue and robustness: they are easy to deploy, but their
incentive properties are typically poor and their allocations can be far from
score-optimal when complementarities matter.

7.4 Metrics and solver instrumentation

We report (a) expected truthful revenue E[rev(v)]; (b) expected ex-post re-
gret E[maxb′i ui(vi; (b

′
i, v−i)) − ui(vi; (vi, v−i))], estimated by the specified

deviation oracle; and (c) feasibility and truthful IR violation rates. In
our solver-backed class, feasibility violations are identically zero by con-
struction, and truthful IR violations are identically zero given the enforced
αθ,i(b) ∈ [0, 1]; we still log these statistics as sanity checks and to make
comparisons to baselines transparent.

Because our allocation rule calls a combinatorial optimizer, we also report
computational statistics that matter operationally: median and tail solve
times per instance, the distribution of optimality gaps when a tolerance
is used, and the frequency of tie cases under the chosen deterministic tie-
breaker. These logs are not ancillary: they reveal whether a mechanism that
is conceptually attractive is actually deployable at the transaction latencies
relevant to the application domain.

28

7.5 Results in small markets: revenue–regret frontiers

Across the 2 × 2, 2 × 3, and 2 × 5 environments, we consistently observe a
smooth revenue–regret frontier as λ varies. Economically, this is the expected
pattern: pushing the mechanism toward higher revenue typically creates
sharper allocation discontinuities in bid space and stronger incentives to
manipulate; increasing the regret weight dampens these incentives, often by
learning more conservative payment scaling αθ,i(b) and by adjusting scores
to reduce the gains from small misreports.

Relative to CAFormer/CANet-style baselines, the solver-backed approach
tends to dominate in regimes where complementarities are important. The
underlying reason is straightforward: when bundle interactions matter, er-
rors in feasibility or rounding can change who wins which bundle, and regret
is highly sensitive to such winner changes. By separating the learned scor-
ing from the exact feasibility enforcement, we can focus learning capacity
on ranking allocations while delegating integrality to the solver. Relative to
greedy heuristics, the gains are larger: greedy allocation frequently sacrifices
high-value complementary bundles, and pay-as-bid pricing combined with
greedy selection tends to yield high regret under even moderate deviation
search.

7.6 Regret stress tests: stronger deviation oracles

We next evaluate robustness under a strictly stronger deviation oracle than
the one used in training. Practically, we increase the attacker budget (it-
erations and restarts) and augment gradient-based search with coordinate
perturbations and random search over bid vectors to escape local maxima of
the deviation objective. Two qualitative findings are robust.

First, regret estimates increase for all methods under stronger attacks,
which is expected: regret is a supremum over deviations, so better search
finds more profitable misreports. Second, the gap between in-training re-
gret and stress-test regret is materially smaller for mechanisms trained with
higher λ, consistent with the interpretation that regret regularization makes
the utility landscape less exploitable. This exercise operationalizes the δ-
dependence discussed earlier: the stronger oracle is simply a smaller-δ ap-
proximation to best response, and mechanisms that appear “IC” under weak
attacks often do not remain so under stronger ones.

Importantly, the stress test also clarifies a practical governance point: a
platform that reports only a single regret number without documenting the
attacker strength is not providing an incentive guarantee in any meaning-
ful sense. In our reporting, the attacker configuration is treated as part of
the experimental specification, and we view regret under multiple attacker
strengths as the analogue of robustness curves in adversarial machine learn-
ing.

29

7.7 Scaling studies and runtime behavior

To probe scalability beyond the smallest instances, we conduct scaling stud-
ies in which m increases and the bundle set K is either truncated (e.g., all
singletons and pairs) or sampled (a fixed budget of candidate bundles per
bidder) to mimic realistic bidding languages. We evaluate how (i) winner-
determination time, (ii) end-to-end mechanism latency, and (iii) achieved
revenue and regret change with problem size.

The computational pattern is the expected one for solver-backed mech-
anisms: solve time grows with the combinatorial complexity of X and with
the richness of K, but remains manageable when K reflects realistic bid sub-
mission constraints. Moreover, we find that warm-starting the solver with
the previous solution (or with a greedy feasible allocation) materially im-
proves median latency and reduces tail events in which the solver spends
time proving optimality. These observations motivate deployment practices
that treat the solver not as a black box but as a monitored subsystem with
performance knobs and logging (a theme we return to in the next section).

7.8 Ablations: solver tolerance and gradient method

Finally, we ablate two design choices that directly connect computation to
incentives.

Solver optimality tolerance. We vary the solver tolerance to induce dif-
ferent η-levels in the score objective. As tolerance loosens, we observe the
anticipated tradeoff: solve times decrease, but both revenue and regret be-
come noisier and, on average, regret increases. This is consistent with the
economic logic that suboptimal allocations can create new profitable devia-
tions by changing pivotal winner/loser events. The key practical implication
is that “faster” is not monotone-improving once incentives matter; solver tol-
erances should be treated as mechanism parameters that belong on the same
frontier as λ.

Gradient estimation through the allocation module. We compare
training with (i) differentiation through a continuous relaxation of winner
determination (with a fractional optimizer used only for gradients) and (ii)
straight-through estimators that treat the solver output as if it were differen-
tiable. The main difference is not feasibility—deployment is integral in both
cases—but alignment : relaxation-based gradients can be lower variance yet
can optimize a surrogate that differs from the deployed rule, while straight-
through gradients can be noisy but directly target the deployed decision.
Empirically, we find that tighter relaxations improve this alignment and re-
duce the need for heavy regret regularization to achieve a given robustness
level.

30

Taken together, these experiments emphasize the paper’s core message:
exact feasibility and truthful IR can be treated as non-negotiable operational
constraints, while incentive compatibility is an empirical robustness target
whose credibility depends on (i) the strength of deviation search used in
evaluation and (ii) the computational approximations used in winner deter-
mination and training. The next section turns to how these properties can
be audited and documented at deployment time.

8 Auditing and deployment: from a learned mech-
anism to an accountable system

A learned mechanism is not only an economic object but also an operational
pipeline: bids arrive, scores are computed, a discrete winner-determination
problem is solved, and payments are charged. This section describes how
we make that pipeline auditable in a way that is meaningful both economi-
cally (does the deployed rule match the intended rule?) and institutionally
(can a platform credibly justify outcomes to participants, regulators, and
internal risk teams?). Our guiding premise is simple: because the allocation
is computed by an optimizer over an explicit feasibility set, the mechanism
naturally produces artifacts—objective values, certificates, and deterministic
decisions—that can be logged and later re-verified.

8.1 Reproducibility of allocations as a first-class design re-
quirement

Reproducibility is the minimal standard for accountability: for a fixed bid
profile b, a bidder (or auditor) should be able to determine whether the de-
ployed allocation xθ(b) could have been produced by the announced mecha-
nism. Achieving this requires more than saving θ. In practice we must pin
down all degrees of freedom that can affect the solver-backed map b 7→ xθ(b).

First, we fix deterministic tie-breaking. Even when the objective ⟨sθ(b), x⟩
is integral and the feasible set X is discrete, multiple maximizers can exist.
We therefore implement a lexicographic tie-breaker (e.g., prioritize lower
bidder index, then smaller bundle index) by adding an infinitesimal but
deterministic perturbation to the score objective or by using the solver’s
built-in objective priority features. The key is that tie-breaking is part of
the mechanism specification, not an implementation accident.

Second, we version all mechanism components. A reproducible deploy-
ment record includes (i) the score network identifier (architecture and weights
hash), (ii) the precise bundle universe K and any preprocessing applied to
bids, (iii) the optimizer model (constraints defining X , objective scaling,
and any additional business rules), and (iv) the solver build and parame-
ter configuration. In our experience, solver parameters that are innocuous

31

for pure optimization (e.g., presolve aggressiveness, parallelism, or numerical
tolerances) can matter for determinism and should be treated as controlled
variables.

Third, we log the complete instance needed to replay the decision: the
bid profile b, the score matrix sθ(b), the chosen allocation xθ(b), the payment
scalars αθ,i(b), and the realized payments pθ,i(b). Logging sθ(b) is especially
valuable because it separates questions about the learned mapping (did the
scorer produce the announced scores?) from questions about the combinato-
rial optimization (did the solver maximize the announced score objective over
X ?). This division of responsibility mirrors how real organizations allocate
accountability across teams.

8.2 Logging solver certificates: optimality, gaps, and feasi-
bility proofs

The distinctive advantage of solver-backed deployment is that the winner
determination step can emit verifiable evidence about its own correctness.
When the solver is run to optimality, we obtain a proof of optimality in
the standard sense: a feasible integer solution xθ(b) and a matching bound
showing no better solution exists. When the solver is run with tolerance, we
obtain a quantitative certificate of suboptimality.

Concretely, for each auction instance we log:

• the incumbent objective value ⟨sθ(b), xθ(b)⟩;

• the best bound on the optimum reported by the solver (e.g., the branch-
and-bound dual bound);

• the resulting optimality gap, which we interpret as the realized η for
that instance;

• runtime and node counts (useful for diagnosing tail latency and for
identifying atypical instances);

• a feasibility report (e.g., confirmation that the returned xθ(b) satisfies
non-overlap and at-most-one-bundle constraints).

These logs allow an auditor to answer two economically relevant questions.
The first is implementability : did the platform allocate a feasible set of bun-
dles? This is immediate from the recorded xθ(b) and the explicit constraints
defining X . The second is fidelity to the scoring rule: did the platform ap-
proximately maximize the announced objective? This is quantified by the
recorded bound and gap, and it converts what would otherwise be a quali-
tative engineering claim into a numerical mechanism parameter.

32

Two practical refinements are worth emphasizing. (i) We store the solver
model in a canonical form (including objective scaling and any big-M con-
stants) to avoid the situation where a replay run differs because of innocuous-
looking reformulations. (ii) We monitor “certificate health” over time: if the
distribution of optimality gaps or runtimes drifts, this is an early signal of
distribution shift in bids, changes in K, or numerical instability in scores, all
of which are relevant for the incentive guarantees.

8.3 Transparency of the score function: what can be dis-
closed and what should be testable

A learned scorer sθ(·) is typically too complex to be communicated as a
closed-form rule, yet some degree of transparency is essential for trust. We
separate transparency into three layers: specification transparency, behavioral
transparency, and verifiable transparency.

Specification transparency means documenting what the scorer depends
on and what it does not depend on. In our setting, the scorer is a function
of reported bids b (and fixed public objects such as K), not bidder identi-
ties beyond permutation-equivariant structure, and not external covariates.
This matters for governance: if the platform claims that allocations are de-
termined solely by submitted bids and feasibility, then the code path must
reflect that claim.

Behavioral transparency means providing accessible explanations of why
a bidder won or lost, even if the underlying function is complex. Because the
allocation maximizes ⟨sθ(b), x⟩, a natural explanation is comparative: bidder
i lost bundle S because the chosen allocation had higher total score, often
due to conflicts on items j ∈ S. We can therefore generate a concise “blocking
set” explanation by reporting which allocated bundles overlap with S and
their associated scores. This is not a full incentive proof, but it is the kind
of local reason that participants can understand and contest if something
appears inconsistent.

Verifiable transparency is the strongest notion: an auditor can compute
sθ(b) for any b and check that deployment used those scores. One way to
implement this without fully open-sourcing proprietary models is to provide
a signed scoring service: for any submitted b, the service returns sθ(b) with a
cryptographic signature and a model hash, so that later the platform cannot
claim a different scoring function was used. Combined with solver certifi-
cates, this creates an end-to-end chain: bids → signed scores → certified
maximization → logged allocation and payments.

8.4 Auditing payments and individual rationality

Payment auditing is conceptually simpler than allocation auditing in our
class because payments are computed by a direct formula once xθ(b) is fixed.

33

For each bidder i, the logged tuple
(
αθ,i(b),

∑
S xθ,iS(b)biS , pθ,i(b)

)
is suffi-

cient to verify that

pθ,i(b) = αθ,i(b)
∑
S∈K

xθ,iS(b)biS , αθ,i(b) ∈ [0, 1].

This check is operationally important: it allows a platform to demonstrate
that it did not charge an amount exceeding the bidder’s own reported will-
ingness to pay for the allocated bundle. When bids are truthful (or when
governance requires interpreting bids as binding commitments), this is ex-
actly the type of property that risk and compliance teams look for.

We emphasize a limitation that is also a governance choice. Individual
rationality “by design” is with respect to a bidder’s report and the real-
ized allocation. It does not ensure that bidders will want to participate
under strategic misreports, nor does it prevent participants from harming
themselves through poorly chosen bids. In applications where bidders are
not sophisticated, additional guardrails (bid caps, bid validation, or user-
interface constraints) may be warranted and should be viewed as part of the
mechanism, not mere product design.

8.5 Randomized extensions (optional): how to preserve au-
ditability

Although our deployed rule is deterministic, there are reasons a platform
might consider randomized extensions: randomized tie-breaking to mitigate
perceptions of unfairness, randomized smoothing to reduce sharp discontinu-
ities in allocations, or explicit lotteries to approximate constrained-optimal
mechanisms when deterministic rules perform poorly. Randomization, how-
ever, can easily destroy auditability if it is implemented informally.

If randomness is used, we recommend treating it as a public input to the
mechanism. Operationally, we log the random seed and the pseudorandom
generator specification, and we generate the seed via a commit–reveal pro-
tocol (e.g., commit to a hash of the seed before bids are opened, reveal after
allocation). This prevents ex post manipulation of randomness to favor par-
ticular bidders while preserving replayability. For randomized tie-breaking,
the seed simply selects among score-maximizing allocations; for more sub-
stantive randomization, the seed determines the sampled allocation from a
declared distribution.

Randomization also changes what must be audited. Instead of verifying
a single decision xθ(b) as the argmax of a score objective, the auditor must
verify that xθ(b) is a valid draw from the declared distribution conditional
on b. This is feasible when the distribution has a tractable sampling proce-
dure with logged randomness, but it should be acknowledged as a nontrivial
extension rather than an implementation detail.

34

8.6 Governance constraints: embedding policy into X and
into reporting

Platforms rarely run auctions in a policy vacuum. Common constraints in-
clude eligibility rules, allocation caps, exclusion lists, geographic restrictions,
and, in some domains, fairness or non-discrimination requirements. A prac-
tical advantage of solver-backed design is that many such constraints can be
expressed directly as linear constraints and added to the feasible set, replac-
ing X by a constrained X ′. When governance rules are encoded this way,
compliance becomes auditable in exactly the same sense as item non-overlap:
the allocation itself is a certificate of adherence.

Not all governance objectives fit cleanly into X . Some are about infor-
mation rather than feasibility: privacy constraints on what is logged, disclo-
sure requirements about how outcomes are determined, or audit access con-
trols. Here we recommend a layered logging policy: store full bid and score
records in an access-controlled vault with retention limits, while publishing
a redacted public transcript (allocation, payments, and aggregated solver
statistics) sufficient to establish procedural fairness without exposing sensi-
tive bid data. For third-party audits, secure enclaves or privacy-preserving
attestations can allow verification of solver certificates and payment identi-
ties without disclosing bidder-level bids.

Finally, governance must confront the fact that approximate incentive
guarantees are only as credible as their monitoring regime. We therefore
advocate a deployment-time “incentive dashboard”: periodic regret stress
tests on recent bid distributions (using held-out attacker budgets), monitor-
ing of solver gaps η, and alerting when these quantities drift. The goal is
not to claim static incentive compatibility, but to institutionalize a process
by which the platform can detect when previously learned parameters θ no
longer provide the desired robustness.

Taken together, these auditing practices turn a solver-backed learned
mechanism into a system that can be inspected, replayed, and governed.
They also clarify what remains open: scaling these assurances to richer bid-
ding languages, producing stronger (and cheaper) incentive certificates, and
updating mechanisms safely under distribution shift. We turn to these next-
step questions in the conclusion.

9 Conclusion and next steps

We have argued for a particular division of labor in learned mechanism de-
sign: use machine learning where the economics permits flexibility (the map-
ping from bids to scores and payment scalars), but retain an explicit opti-
mization layer where the economics demands hard guarantees (combinatorial
feasibility, integrality, and auditable maximization of a declared objective).
This architecture is, in our view, less a theoretical curiosity than a response

35

to platform reality. Real auctions are operated under latency constraints,
compliance obligations, and adversarial scrutiny; they therefore benefit from
mechanisms that can be replayed, explained in terms of logged artifacts, and
bounded by interpretable approximation parameters such as solver gaps and
deviation-oracle strength.

At the same time, our results should be read with the appropriate humil-
ity. The strongest guarantees we obtain “for free” are feasibility and individ-
ual rationality under truthful reporting given the payment scaling. Incentive
properties, by contrast, remain approximate and distribution-dependent: re-
gret is estimated with an attacker, and any bound inherits assumptions about
solver accuracy, Lipschitzness, and the adequacy of the deviation search.
This is not a defect of the approach so much as an expression of the central
difficulty in the area: in rich combinatorial environments, incentives are hard
to certify without reverting to restricted (and often low-revenue) classes such
as affine maximizers with VCG payments. The open question is therefore
not whether we can learn something that performs well on a training dis-
tribution, but whether we can make such performance operationally credible
under the stresses that accompany deployment.

We conclude by outlining three next-step problems where we believe
solver-backed pipelines provide a useful foundation, while also clarifying what
remains technically unresolved.

(1) Scaling to large item sets and richer bidding languages. Through-
out, we have described bidders as reporting a vector of values over an allow-
able bundle set K. This is a natural representation for analysis and for
many applications where m is modest and K is engineered (e.g., a menu of
feasible packages, or a set of precomputed routes). But it does not directly
resolve the core scalability bottleneck of combinatorial auctions: when m
is large, even representing bids over all bundles is impossible, and the in-
teresting economic problem shifts from winner determination to preference
elicitation.

One direction is to embed a bidding language into the mechanism and
treat K as endogenous. Bidders might submit structured bids (OR-of-
XOR, additive with pairwise complementarities, sparse hypergraph valua-
tions, or ML-generated value queries), and the platform expands these into
an instance-specific set of candidate bundles before solving. The mechanism
then becomes a composition of (i) a representation map from messages to
a bundle universe, (ii) a scorer, and (iii) a solver-backed allocation. This
raises new incentive questions. If a bidder can influence which bundles en-
ter K, then strategic behavior can occur even before the allocation step. A
principled design would therefore specify K as a deterministic function of
the message that is itself auditable, and it would seek message spaces where
manipulation of the candidate set is either unprofitable or bounded.

36

A second direction is iterative interaction: rather than asking for full
reports, the platform queries bidders adaptively, choosing a small set of bun-
dles to price or evaluate. Solver-backed methods remain relevant because
each iteration still requires a combinatorial optimization step under the cur-
rent information set, and certificates remain meaningful. The difficulty is to
reconcile iterative elicitation with incentive monitoring: regret is no longer
an ex post function of a one-shot report, but a dynamic object that depends
on the querying policy.

A third, more pragmatic direction is to admit that real platforms already
impose strong language restrictions (budget constraints, bid caps, limited
package sizes, or “business rules”) and to incorporate these directly. In that
case, the research goal is not to eliminate restrictions, but to understand
how to choose them to optimize the revenue–robustness frontier. Solver-
backed pipelines help because such restrictions can often be formalized as
constraints, and thus become part of X (on the allocation side) or part of the
admissible message space (on the reporting side), both of which are easier
to document and audit than ad hoc product choices.

(2) Stronger incentive-compatibility certificates beyond empirical
regret. A recurring theme is that approximate IC is only as convincing as
the process used to measure it. Today, many learned mechanisms are evalu-
ated by running a deviation oracle on samples. This is a useful engineering
test, but it is not yet a certificate in the sense that a regulator, a court, or
even an internal risk committee might demand. The gap between empirical
regret and a deployable guarantee is therefore an important research agenda.

One promising approach is to move from expected regret to instance-level
incentive diagnostics. Because the allocation step is solved (exactly or with a
logged gap), we can in principle produce bounds of the following flavor: given
the realized bid profile b, the logged solver gap η(b), and a characterization of
the local sensitivity of payments and scores, we can upper bound how much
any bidder could have improved by deviating within a declared deviation
class. Such bounds would not yield DSIC, but they could yield a defensible
statement such as “within the allowed misreport class, no bidder can gain
more than ϵ on this instance.” This shifts the governance question from
unverifiable global incentives to verifiable local guarantees.

A complementary approach is to restrict the mechanism class so that
incentives become certifiable by construction. Proposition 5 sketches one
extreme: affine maximizers with VCG payments yield DSIC, at the cost
of reduced expressiveness. There may be intermediate classes that preserve
some learned flexibility while admitting verification. For example, one might
enforce bidder-wise monotonicity properties, or train within a maximal-in-
range family where the range is explicitly enumerated and fixed, enabling
truthful payments in the VCG spirit. The challenge is to find restrictions

37

that are not merely theoretically convenient but also computationally viable
at scale.

A third approach is to improve the deviation oracle itself and, crucially,
to make its limitations explicit. In practice, an “attacker” is a piece of soft-
ware with a budget: it searches a parametric space of misreports, perhaps
using gradient methods or heuristics. Logging the attacker configuration, its
achieved utility improvements, and the residual optimization gaps can turn
incentive evaluation into an auditable process. Here solver-backed deploy-
ment again helps: when winner determination emits a gap, we can propagate
this gap into utility bounds (as in Proposition 3), thereby making clear how
much of the uncertainty comes from optimization error rather than from
strategic complexity.

(3) Online updates and distribution shift: safe learning in pro-
duction. A deployed platform rarely faces a stationary environment. Bid
distributions drift with seasonality, entry and exit, macro shocks, and strate-
gic adaptation to the mechanism itself. A static θ trained offline is therefore
at risk of becoming stale, while naive online updates risk introducing insta-
bility or, worse, creating opportunities for manipulation during the update
process.

A key open problem is to develop safe update rules that preserve hard
constraints (feasibility, IR-by-design) and do not materially worsen incen-
tive properties. One operationally plausible pattern is “shadow learning”:
update candidate parameters using recent data while keeping the deployed
mechanism fixed, then evaluate the candidate under stress tests (including
stronger deviation searches) before promotion. Another is to impose explicit
trust regions on parameter changes, so that the mapping b 7→ (sθ(b), αθ(b))
cannot shift too abruptly between versions; this connects naturally to the
Lipschitz-type stability conditions that appear in regret bounds.

More ambitiously, one might seek formal guarantees under shift by cou-
pling monitoring with re-optimization. Because solver-backed systems al-
ready log the quantities that matter—instance difficulty, objective gaps, and
realized payments—they can support change-point detection and conditional
retraining triggers. But the economic difficulty remains: bidders respond
strategically to the mechanism, so the data-generating process depends on
the policy being updated. This is an identification problem as much as an
optimization problem, and it suggests that techniques from off-policy evalua-
tion and robust reinforcement learning will need to be adapted to quasi-linear
strategic environments.

Why solver-backed pipelines fit platform realities. Across these open
problems, we see a consistent advantage of solver-backed design: it cre-
ates a clean interface between what is learned and what is enforced. The

38

optimizer enforces combinatorial constraints and produces certificates; the
learned components shape objectives and payments but do not silently vio-
late feasibility. This separation matters for governance. It allows compliance
teams to reason about constraints as constraints (and to update them as pol-
icy changes), while allowing research teams to iterate on scoring architectures
without rewriting the definition of X . It also allows engineering teams to
budget computational effort explicitly through the solver tolerance η, turn-
ing a latency–optimality tradeoff into a transparent mechanism parameter
rather than an opaque implementation detail.

The broader implication is that accountability in modern auctions should
not be framed as “learning versus theory,” but as a choice of which parts of
the mechanism are specifiable, checkable, and logged. Solver-backed learned
mechanisms are attractive precisely because they make many economically
meaningful claims checkable after the fact. The remaining challenge is to ex-
tend this checkability to incentives in a way that is both mathematically hon-
est and institutionally usable. We view progress on bidding-language scala-
bility, incentive certificates, and safe online updating as the most promising
route toward that goal.

39

	Introduction
	Related Work
	Differentiable mechanism design and regret-based training
	Symmetry, equivariance, and transformer variants
	Combinatorial-auction-specific feasibility layers (CANet, CAFormer, and related approaches)
	Classical truthful mechanisms: VCG, affine maximizers, AMAs, and VVCAs
	Differentiable optimization layers and decision-focused learning
	Positioning and roadmap

	Model
	Bundles and bidding language
	Reports, allocations, and feasibility
	Outcomes, utilities, and payments
	Incentives and participation
	Closed-form structure versus numerical components

	Mechanism class: solver-backed neural allocations
	Score network (learned priority rule)
	Exact winner determination on scores
	Payments with ``IR-by-design'' scaling
	Contextual inputs and symmetry (optional but useful)
	A note on DSIC special cases

	Training as bilevel optimization
	Outer objective: revenue with regret control
	Inner problem: deviation search as an ``attacker''
	Three gradient strategies
	When each approach is appropriate

	Theory: exact constraints and approximation-aware incentive guarantees
	Feasibility and implementability are enforced by the solver
	Ex-post individual rationality via a payment cap
	Regret stability under solver and deviation-oracle approximation
	Training on relaxations and deploying integral allocations

	Experiments: synthetic combinatorial auctions and scaling behavior
	Environments and synthetic valuation models
	Mechanism training and evaluation protocol
	Baselines: learned and heuristic comparators
	Metrics and solver instrumentation
	Results in small markets: revenue–regret frontiers
	Regret stress tests: stronger deviation oracles
	Scaling studies and runtime behavior
	Ablations: solver tolerance and gradient method

	Auditing and deployment: from a learned mechanism to an accountable system
	Reproducibility of allocations as a first-class design requirement
	Logging solver certificates: optimality, gaps, and feasibility proofs
	Transparency of the score function: what can be disclosed and what should be testable
	Auditing payments and individual rationality
	Randomized extensions (optional): how to preserve auditability
	Governance constraints: embedding policy into X and into reporting

	Conclusion and next steps

