Robust RegretNet for Combinatorial Auctions:
Distributionally-Robust Approximate DSIC Under
Wasserstein Shift

Liz Lemma Future Detective

January 16, 2026

Abstract

Differentiable mechanism design (e.g., RegretNet and its combina~
torial extensions such as CANet/CAFormer) learns revenue-maximizing
auctions by penalizing expected ex-post regret as a relaxation of DSIC.
A central deployment weakness is that both regret estimation and the
training distribution can be misspecified: small IC violations may be
amplified by distribution shift and by algorithmic bidders that search
for profitable deviations. We propose Robust RegretNet, which re-
places in-distribution expected regret with a distributionally-robust
regret objective over an ambiguity set around the empirical training
distribution. For Wasserstein ambiguity sets, we obtain a clean dual
characterization showing the robust objective equals empirical risk plus
an explicit Lipschitz-penalty term, yielding a tractable training crite-
rion. We then derive high-probability deployment guarantees: for any
valuation distribution within Wasserstein distance ¢ of the training dis-
tribution, the learned mechanism’s expected ex-post regret is bounded
by its robust empirical regret plus a capacity-dependent generalization
term, and revenue is within a corresponding gap of the best-in-class
robust mechanism. We sketch an optimization procedure compatible
with CAFormer-style feasibility layers and evaluate robustness under
synthetic and platform-inspired shift stress tests. The results advance
differentiable economics from empirical approximation toward deploy-
able, policy-relevant guarantees in modern (2026) strategic environ-
ments.

Table of Contents

1. 1. Introduction and Motivation: why distribution shift + strategic
search break in-distribution regret guarantees; contributions and posi-
tioning relative to RegretNet and CAFormer/CANet.

2. 2. Baseline: Differentiable Mechanism Design with Regret Penalties:
formal definition of regret, IR by architecture, combinatorial feasibility

constraints; recap of where existing guarantees stop (expected regret
on training distribution).

. 3. A Clean Model of Distribution Shift: ambiguity sets (Wasserstein
and f-divergence) and why they are natural in platform settings; defi-
nitions of robust regret and robust revenue.

. 4. Robust Objective and Dual Representations: show closed-form /dual
forms for Wasserstein balls (empirical mean + Lipschitz radius term);
discuss when numerical inner maximization is needed (e.g., general
f-divergences or non-Lipschitz losses).

. 5. Lipschitz and Capacity Control for Auction Networks: sufficient
conditions (bounded weights, Lipschitz activations, bounded valuation
domains) implying Lipschitz regret and revenue; covering-number /Rademacher-
based complexity control adapted from RegretNet generalization argu-

ments.

. 6. Main Theorems: Deployment-Time Regret and Revenue Guaran-
tees Under Shift: high-probability bounds; interpretation as robust
approximate DSIC; quantile-regret corollaries.

. 7. Algorithms: Robust Training with Strong Deviation Oracles: prac-
tical training loop (inner deviation maximization -+ robust outer ob-
jective); how to estimate/upper-bound Lipschitz constants; implemen-
tation with CAFormer/CANet feasibility layers.

. 8. Experiments: Synthetic Shifts and Platform-Inspired Stress Tests:
(i) controlled Wasserstein shift, (ii) covariate/context shift, (iii) adver-
sarial reweighting; compare Robust RegretNet vs RegretNet /CAFormer;
evaluate regret against stronger deviation searches.

. 9. Discussion and Policy/Engineering Implications: choosing ambigu-
ity radius, monitoring shift, safe updates; limitations (oracle strength,
nonconvexity) and next steps.

1 Introduction and Motivation

Neural approaches to mechanism design have made it possible to search
over rich, high-dimensional auction formats that would be analytically in-
tractable if we insisted on closed-form characterizations. In combinatorial
settings—where bidders may value bundles of items in complex, non-additive
ways—this flexibility is especially appealing: the designer can parameterize
an allocation rule and payment rule by a neural network, enforce feasibility
by construction, and then train the parameters to maximize revenue subject
to approximate incentive constraints. The empirical success of this paradigm
has been widely documented, and it has opened a practical route to deploy-
ing learned mechanisms in applications ranging from procurement and ad
allocation to logistics and resource scheduling.

At the same time, the economic logic underlying incentive compatibil-
ity is inherently out-of-distribution: a mechanism is safe only if it remains
hard to manipulate under the valuations that actually arise at deployment,
and under the misreport strategies bidders actually discover. These are not
merely technical caveats. In real markets, the distribution of bidder types
shifts for mundane reasons (seasonality, entry and exit, new product cate-
gories, regulatory changes, macroeconomic shocks), and bidders are strategic
learners who adapt to the rules they face. A mechanism that is “approxi-
mately truthful” for yesterday’s population, evaluated against a weak devia-
tion search, can become substantially exploitable for tomorrow’s population
once sophisticated bidding software is trained against it.

Two distinct gaps drive this vulnerability. The first is distribution shift.
Most learning-based mechanism design pipelines optimize expected perfor-
mance under an empirical training distribution. Even when the objective
includes a regret penalty, the guarantee is fundamentally local: low expected
regret on the training distribution does not imply low regret under a different
distribution that is close in a semantic sense but far in statistical distance.
This is not a pathology unique to auctions; it is the standard generalization
problem, aggravated by the fact that regret depends on a mazimization over
deviations and therefore can spike sharply when the type profile moves into
a region where incentive constraints are tight. In combinatorial domains,
where valuations live in a space of dimension exponential in the number of
items, it is easy for the training sample to underrepresent precisely those
corners of the type space where a learned allocation rule creates profitable
misreports.

The second gap is strategic search at deployment. Regret in these systems
is typically estimated using a deviation oracle: for each sampled valuation
profile, one searches over misreports to approximate a best response. This
is a computational necessity, but it introduces an “evaluation mismatch”
that is economically consequential. If the oracle is imperfect during training
(few gradient steps, limited restarts, restricted misreport class), then the

learned mechanism is incentivized to exploit precisely that weakness: it can
appear nearly DSIC under the training-time oracle while admitting profitable
deviations that a stronger search procedure would uncover. At deployment,
however, bidders may effectively run a stronger oracle—either because they
invest more computation, because they share strategies, or because third-
party tools automate best-response search. In that sense, the mechanism is
being tested against an adversary that is both shifted (the type distribution
changes) and strengthened (the deviation search improves).

These two forces interact. Distribution shift can move probability mass
toward profiles where the mechanism is more sensitive to misreports, and
a stronger deviation search can then exploit that sensitivity. The practi-
cal implication is that in-distribution regret guarantees, while valuable, are
not a sufficient safety certificate for deployment in strategic environments.
From a policy perspective, this matters because learned mechanisms may
be deployed precisely in settings where the designer cannot perfectly control
participation, information, or external tooling. Robustness, in the economic
sense, should therefore be understood as performance stability not only to
stochastic variation in types but also to plausible changes in the environment
that influence strategic behavior.

We respond to these concerns by importing a familiar idea from robust
decision-making into differentiable mechanism design: rather than optimiz-
ing expected revenue and regret under a single estimated distribution, we
train against an ambiguity set of nearby distributions. Conceptually, this
asks the mechanism to perform well not just on the observed sample, but
also on distributions that could have generated similar samples and on distri-
butions that represent plausible deployment shifts. The key modeling choice
is how to measure “nearness” between distributions. We focus on Wasserstein
neighborhoods because they align with a transportation-cost interpretation:
a small radius corresponds to perturbing valuations by a limited amount
under a chosen metric on the type space. This is attractive in combinatorial
auctions, where we often have domain knowledge about which perturbations
are plausible (e.g., correlated changes across bundles, or larger variability for
some items than others), and such knowledge can be encoded in the metric.

Our robust perspective also clarifies the role of smoothness and archi-
tecture. When the mechanism maps reports to allocations and payments in
a way that is well-behaved (in a Lipschitz sense), then regret as a function
of the valuation profile cannot change too abruptly. This regularity links
distributional robustness to incentive robustness: if regret is smooth, then
controlling it on a training distribution within a Wasserstein ball translates
into control on nearby deployment distributions. Conversely, if the learned
mechanism is highly non-smooth, a small shift in types can lead to large in-
centive violations, and robustness demands either architectural constraints
or explicit regularization. The robust objective thus serves as a diagnostic
and a design principle: it rewards mechanisms whose performance is stable

under economically meaningful perturbations.

Positioning relative to RegretNet. RegretNet popularized the idea of
training neural mechanisms with a regret penalty, producing mechanisms
that are approximately DSIC on the training distribution and empirically
competitive in revenue. We view our approach as complementary rather
than competing. RegretNet’s core insight is that incentive constraints can
be relaxed into a differentiable penalty, making large-scale training feasible.
Our contribution is to address the next-order question: what happens when
the distribution used to form that penalty is not the one encountered at de-
ployment, and when the effective deviation oracle improves? Robustification
does not replace regret penalties; it changes the distributional lens through
which those penalties are evaluated, and it yields explicit tradeoffs between
conservatism (robust low regret) and revenue.

Positioning relative to CAFormer /CANet-style architectures. Re-
cent work on transformer-based or attention-based architectures for combina-
torial auctions (often motivated by scalability in the number of items and by
capturing structure in bidder valuations) improves the expressive power and
computational properties of learned allocation and payment rules. Our ro-
bust training principle is architecture-agnostic: it can be layered onto these
designs because it operates at the level of the training objective and the
evaluation of regret and revenue under distributional perturbations. Indeed,
richer architectures can be a double-edged sword: they may fit complex allo-
cation patterns that increase revenue, but they may also introduce sharper
non-linearities that magnify sensitivity to shift. Robust training provides a
disciplined way to manage this tension.

Contributions and limitations. We make three high-level contributions.
First, we articulate the economic failure modes of in-distribution regret guar-
antees in the presence of distribution shift and stronger strategic search,
emphasizing that both are natural in real deployments. Second, we pro-
pose a Wasserstein-robust training objective that hedges against such shifts
and that admits a tractable upper bound under standard regularity, turning
an intractable worst-case distributional problem into a computable surro-
gate. Third, we provide a generalization perspective: robust training yields
deployment-time guarantees that degrade gracefully with sample size and
with the complexity of the mechanism class, making explicit the statistical
price of robustness.

Our approach has limitations that are important for interpretation. Ro-
bustness is only as meaningful as the metric that defines the Wasserstein
neighborhood; choosing it requires domain knowledge, and a poor choice
can either over-regularize (sacrificing revenue unnecessarily) or under-protect

(missing the relevant shifts). Moreover, robust training cannot eliminate the
fundamental computational difficulty of regret estimation; it mitigates the
consequences of shift, but if the deviation oracle is systematically weak, addi-
tional tooling (stronger best-response search, adversarial training, or certified
bounds) may be required. Finally, robustness entails a real economic trade-
off: by insuring against adverse shifts, we may forgo some surplus extraction
in favorable regimes. The goal is not to avoid this tradeoff, but to quantify
it and to choose it deliberately in light of deployment risk.

In sum, the lesson we draw is that learned mechanisms should be eval-
uated and trained as policies under uncertainty in a strategic environment.
The robust framework we develop is meant to illuminate, and operational-
ize, the central tension: mechanisms that aggressively optimize revenue on
the observed distribution can be fragile, while mechanisms that are stable
to shift and strategic adaptation may need to be more conservative. The re-
mainder of the paper formalizes this tradeoff and shows how to incorporate
it into differentiable mechanism design pipelines.

2 Baseline: Differentiable Mechanism Design with
Regret Penalties

We begin from the now-standard template for differentiable mechanism de-
sign in combinatorial auctions: we parameterize an allocation rule and a
payment rule by a neural network (or other differentiable function class),
enforce feasibility and individual rationality by construction, and then train
the parameters to optimize a revenue—incentives tradeoff measured through
regret. This section fixes notation and clarifies what, precisely, is certified
by the usual regret-based training objective.

Environment and reports. There are n bidders and m heterogeneous
items. Let M = {1,...,m} denote items and let K = 2™ \ {()} denote
the set of non-empty bundles; thus |K| = & = 2™ — 1. Bidder i has a
combinatorial valuation vector v; = (vig)sex € Vi C [0, Vinax]¥, where V; is
compact. A report profile is b = (by,...,b,) € V :=[[; Vi, and in a direct-
revelation analysis we take the message space to coincide with the valuation
space, b; € V;.

A mechanism w € W specifies an allocation rule g,, and a payment
rule p,,. Since the differentiable literature typically works with fractional or
randomized allocations, we represent outcomes by bundle allocation proba-
bilities 2 = gy, (b) € [0, 1]"**, where z;5(b;w) is the probability (or fraction)
with which bidder 7 receives bundle S. Payments are p = p,,(b) € R’}..

Feasibility as a differentiable constraint. The combinatorial feasibility
constraints are those of a packing problem: each bidder receives at most one

bundle and each item is allocated at most once in expectation. Writing them
explicitly,

Z zig(byw) <1 Vi, Z Z zis(byw) <1 Vje M, 0 < zig(byw) < 1.
SeK iEN SEK: jeS
(1)

In practice, these constraints are enforced either by a specialized output layer
(e.g., a differentiable projection onto a polytope, a Sinkhorn-style normal-
ization in a structured representation, or a relaxation that is exact at the
vertices) or by parametrizing g,, so that holds for all b by construction.
The key modeling point is that the training objective must be differentiable
in w, and hence feasibility enforcement is typically embedded into the com-
putational graph rather than imposed via a non-differentiable solver.

Utilities and ex-post individual rationality. Given true valuations v;
and report profile b, bidder 4’s quasi-linear utility under mechanism w is

u;(vg; by w) Z v;is 2is(b; w) — pi(b;w). (2)
SeK

The seller’s revenue at a truthful profile v is rev(w;v) = Y1 pi(v; w).

A common architectural device is to enforce ex-post individual rationality
(IR) for truthful reports. One sufficient (and widely used) approach is to
predict an “unnormalized” payment factor p;(b;w) € [0, 1] and then set

pi(b;w) = pi(b; w) (Z bis zis(b; w) (3)

SeK

which guarantees p;(v;w) <) ¢ vigzis(v; w) at truthful reporting and hence
u;(vi;v;w) > 0 pointwise. More generally, one can build IR into the mecha-
nism by ensuring that payments never exceed reported value for the allocated
lottery. This kind of “hard” IR is attractive because it removes a set of con-
straints from the optimization problem and focuses attention on incentives
and revenue.

Regret as an incentive-violation metric. Because exact DSIC is typi-
cally out of reach for expressive neural mechanism classes, the baseline dif-
ferentiable approach replaces incentive constraints with a regret penalty. For
a fixed valuation profile v and bidder i, the ez-post regret under mechanism
w is defined as

rgt;(w;v) = max {Ui(vi§ (vj,v—i);w) — u@-(vi;v;w)}, (4)

and the average regret at profile v is rgt(w;v) = %Z;’;l rgt; (w; v). Regret
provides a quantitative relaxation of DSIC: if rgt;(w;v) = 0 for all ¢ and all

v, then truth-telling is a dominant strategy; if regret is small, then profitable
deviations exist only up to a small additive gain in utility.

In the learning pipeline, we are typically interested in expected regret
under some distribution over valuation profiles. Let P, denote the (unknown)
distribution of types that generates training data, and let Py, be the empirical
distribution on L i.i.d. samples {v(®) }£_,. The in-sample estimate of expected
regret is

h

L
—~ 1
ER(w) =E,_p, [rgt(w;v)] = - ngt w; v(z) (5)
/=1
and analogously the in-sample revenue is Rev(w) =Ep, [rev(w;v)].

Training objective and the role of the deviation oracle. The base-
line optimization problem is a Lagrangian relaxation that trades off revenue
against expected regret:

Séivlb E. 5, [— rev(w; v) + Argt(w; v)], (6)
for some A > 0. This objective is differentiable in w except for the maxi-
mization in . The standard remedy is to approximate the maximization
with a deviation oracle: for each bidder 7 and sampled profile v, one per-
forms a (typically gradient-based) inner-loop search over v, € V; to find a
high-utility misreport against v_;. Denoting the oracle’s output by o/ (v; w),
the practical regret term becomes

rgt; (w;v) = ;i (vi; (B5(v; W), v_4);w) — ui(vizv; W),

and training proceeds by backpropagation through the outer objective us-
ing these approximate regrets (often with the inner-loop treated as a stop-
gradient operation, or using implicit differentiation if one seeks more faithful
gradients). The economic interpretation is straightforward: we train the
mechanism against a particular computational model of bidder deviations,
namely the one represented by the oracle.

Where the baseline guarantees stop. The baseline formulation yields
a clear but limited certificate. If training succeeds in driving ﬁ{(w) <eg,
then the learned mechanism is approximately DSIC in expectation under the
empirical training distribution, up to the gap between true regret and the
oracle-based approximation used in optimization. With additional uniform
convergence arguments (as in prior RegretNet analyses), one can sometimes
translate ER(w) into a bound on E,.p, [rgt(w;v)] that improves with L and
worsens with the complexity of the mechanism class.

However, two distinctions are crucial for deployment. First, expected re-
gret under P, (or Pp) is not a pointwise guarantee: even if Ep, [rgt(w;v)] is

small, the mechanism may admit large incentive violations on low-probability
regions of the type space, precisely because regret is defined by a supremum
over deviations and can spike on “knife-edge” profiles. Second, the guaran-
tee is distribution-specific: it is anchored to the population that generated
the training sample. If the deployment environment induces a shifted dis-
tribution of valuations, the baseline objective @ provides no direct control
of Ey~q[rgt(w;v)] for @ # P, even when @ is close to P, in an economi-
cally natural sense. These observations motivate moving from in-distribution
training criteria to explicitly robust notions of regret and revenue under dis-
tribution shift, to which we turn next.

3 A Clean Model of Distribution Shift: Ambiguity
Sets and Robust Performance

The baseline objective in () treats the empirical training distribution Py as
the relevant description of the environment. In many platform settings, that
is an incomplete representation of what the mechanism will face. The distri-
bution of bidder types can drift because the platform enters a new geography,
changes eligibility rules, modifies product bundles, alters recommendation
or matching policies, or simply because the population of bidders and their
outside options evolve over time. Even absent any deliberate policy change,
day-to-day composition effects (who shows up) can induce systematic shifts
in the joint distribution of valuations. Our goal, therefore, is to articulate
a model of deployment uncertainty that is both economically interpretable
and mathematically tractable.

Deployment distributions and the designer’s uncertainty. We let
@ denote an arbitrary distribution over valuation profiles v € V that may
govern online instances at deployment time. The designer does not know
Q ex ante. What we assume, instead, is that Q is close to the distribution
that generated the data used for training—either the true population dis-
tribution P, or its empirical approximation Pr. This yields the standard
robust-design posture: rather than optimizing performance under a single
reference distribution, we optimize (or certify) performance uniformly over
a neighborhood of plausible deployment distributions.

The key modeling choice is how to formalize “closeness” between dis-
tributions over high-dimensional combinatorial valuations. Two families of
neighborhoods are particularly natural in auction platforms: Wasserstein
(optimal-transport) balls, which measure how much one must move proba-
bility mass in type space, and f-divergence balls, which measure how much
one must reweight probability mass already present under a reference distri-
bution.

Wasserstein ambiguity sets: shift as bounded transportation. Fix
a metric d(-,-) on V (for instance, an ¢; metric on the concatenated valu-
ation vectors, possibly with bundle-dependent weights). The 1-Wasserstein
distance between distributions @ and P on (V,d) is

Wl(Q7P) = wel'ilr(lcg P) E(v,f))wﬂ' [d(va 6)]7

where II(Q, P) is the set of couplings with marginals) and P. Given a
radius § > 0, we define the Wasserstein ambiguity set around a reference
distribution P as

Us(P) == {Q: W1(Q,P) <4},

Economically, § is a shift budget: on average, probability mass can be trans-
ported by at most § units of type-distance. This is particularly appealing in
our setting for three reasons. First, Wasserstein neighborhoods allow for sup-
port shift. If bidders at deployment have valuations in regions of V that were
rare (or even unseen) in the training sample, Wasserstein distance can still be
small provided those regions are not far in d from the training support. This
matches the practical reality that platforms often extrapolate locally (e.g.,
slightly larger budgets, slightly different complementarities) rather than en-
countering entirely unrelated preferences.

Second, Wasserstein ambiguity sets force us to make explicit what changes
are “small” through the metric d. In a combinatorial auction, an ¢; metric
treats each bundle component symmetrically, but a platform might reason-
ably downweight large bundles or focus the transportation cost on item-level
marginals. This flexibility is a feature rather than a bug: robust guarantees
are only meaningful relative to a domain-relevant notion of proximity.

Third, as we show in the next section, Wasserstein balls interact favor-
ably with Lipschitz continuity. When performance measures vary smoothly
with valuations (as is typically encouraged by continuous network architec-
tures and bounded output layers), worst-case expectations over Us(P) admit
sharp dual upper bounds. This is precisely the kind of structure that turns
robustness from an intractable min—max problem into a regularized empirical
objective.

f-divergence ambiguity sets: shift as bounded reweighting. An
alternative, widely used in robust statistics and distributionally robust opti-
mization, is to constrain the deployment distribution through an f-divergence.
Let f: Ry — R be convex with f(1) = 0. For distributions) and P with
Q < P, the f-divergence is

Dy(QIIP) i= Eyep [f(jji(m)].

10

Given a radius p > 0, the corresponding ambiguity set is

Ul (P) == {Q: D(QIIP) < p}.

Concrete examples include KL divergence (relative entropy), x2-divergence,
and total variation distance (via an appropriate choice of f). These sets have
a natural platform interpretation when we believe deployment differs from
training primarily through composition reweighting rather than new support:
for instance, the same kinds of bidders appear, but their frequencies change
because of marketing, seasonality, or selection effects. From an estimation
perspective, f-divergence balls are also closely tied to importance weighting:
a small Dy (Q||P) constrains how extreme the likelihood ratio d@/dP can be
on average.

At the same time, there is a substantive limitation that matters in combi-
natorial valuation spaces. If the reference distribution is empirical, P = Py
is discrete with finite support. Then Q <« Py, forces Q to be supported only
on the observed samples, meaning that f-divergence ambiguity sets do not
naturally capture out-of-sample support shift. In contrast, Wasserstein balls
around P, can place mass near the samples while still representing genuinely
new valuation profiles. For this reason, in settings where extrapolation be-
yond observed types is operationally plausible, Wasserstein neighborhoods
provide a more faithful model of uncertainty.

Robust regret and robust revenue. Given an ambiguity set U (of ei-
ther form), we can define robust performance criteria by taking worst-case
expectations over @@ € U. Two objects are central for incentives and seller
objectives.

First, we define robust ezpected regret (robust regret for short) as

RRy(w) = Z)lég Ev~q [rgt(w;v)]. (7)

When U = L{5(15L) we write P/{?{g(w), consistent with the notation used
in the generalization statement in the enclosing scope. Economically, (7))
is a uniform-in-distribution incentive certificate: if RRy(w) < e, then no
deployment environment within the modeled neighborhood can generate ex-
pected regret larger than . This is the distributional analogue of worst-case
(ex-post) incentive constraints, but calibrated to a plausible uncertainty set
rather than the entire type space.
Second, we define robust revenue as the worst-case expected revenue over
u,
Revy(w) = erele;{ By [rev(w;v)]. (8)
The infimum reflects the designer’s risk: a mechanism tuned to extract rev-
enue in a narrow region of the training distribution may perform poorly

11

when the environment shifts. In a platform interpretation, corresponds
to a conservative revenue forecast under model uncertainty, and it provides a
natural counterpart to robust regret when the platform seeks both incentive
reliability and predictable monetization.

Robust objectives and what they protect against. A convenient way
to combine incentives and revenue is to robustify the same Lagrangian loss
used in baseline training. For a given ambiguity set U, define

Ly(w) = sup Eyug [—rev(w;v) + Argt(w; U)]
Qeu

Minimizing £4(w) asks for a mechanism that performs well under the most
adverse distribution within the neighborhood: adverse both in the sense of
low revenue and in the sense of high incentive violations. This captures a
practical concern in learned mechanisms: the same off-distribution regions
that create large regret are often also regions where payment normalization
and allocation policies interact in unexpected ways, producing fragile rev-
enue.

It is important to be clear about what robustness does not provide. These
criteria do not yield pointwise DSIC guarantees (regret can still be high on
individual valuation profiles), nor do they protect against arbitrary strategic
models beyond the deviation oracle used to estimate regret. Robustness here
is with respect to type-distribution shift, holding fixed the mechanism and
the definition of regret. Put differently, the ambiguity set formalizes uncer-
tainty about which valuation profiles arise, not about how bidders compute
deviations. We view this as a useful separation: distribution shift is an
empirical reality in platforms, while bounded rationality and strategic so-
phistication are better addressed through the choice and validation of the
deviation oracle.

Why these ambiguity sets are natural for platforms. From an in-
stitutional perspective, one can read ¢ (or p) as a design knob encoding the
platform’s tolerance for misspecification. Small radii correspond to stable,
well-understood markets; larger radii correspond to rapidly evolving environ-
ments or to settings where training data are known to be biased (e.g., early
adopters differ from the eventual user base). Because d can be scaled and
weighted, the Wasserstein model can also incorporate product-level knowl-
edge: the platform may believe that bidders’ singleton values drift substan-
tially while complementarities remain relatively stable, or vice versa, and
can encode this in the transportation cost.

Finally, these sets align with operational monitoring. Platforms routinely
track shifts in observable features correlated with valuations (entry cohorts,
categories, budgets). While we do not observe v directly in deployed sealed-
bid settings, the same tools used for drift detection in covariates can motivate

12

a plausible § or p ex ante. Our contribution is not to pin down the “correct”
radius, but to provide a clean framework in which the economic tradeoff is
explicit: enlarging the ambiguity set strengthens incentive robustness and
revenue predictability under shift, but it forces the mechanism to hedge
against a broader range of environments.

In the next section, we show how Wasserstein ambiguity sets lead to
particularly tractable dual representations when the loss is Lipschitz, yielding
a closed-form robustification term that can be optimized alongside the usual
regret penalties.

4 Robust Objectives and Dual Representations

The distributionally robust training problem introduces a seemingly burden-
some inner maximization over deployment distributions,

Low) = s Eo[fu@)], fulv) = —rev(wiv) + Argt(wso)
Q:W1(Q,PL)<s

Taken literally, this is an optimization over an infinite-dimensional object (a
probability measure), and one might worry that robustness simply replaces
a tractable empirical objective with an intractable saddle-point problem.
The central practical message of this section is that, under mild smooth-
ness, Wasserstein robustness collapses to a transparent regularization term:
worst-case expectations over transportation balls are controlled by the Lips-
chitz modulus of the loss. This is the sense in which Wasserstein ambiguity
sets provide not only an economically meaningful model of shift, but also a
computationally convenient one.

Kantorovich—Rubinstein duality and a tractable reformulation. Let
(V,d) be a Polish metric space and let f,, : V — R be measurable and inte-
grable under Pp. A standard dual representation (see, e.g., the Kantorovich—
Rubinstein theorem and its DRO refinements) implies

sup Eqlfu(v)] = gg{wwwm[sup (£ul0') — d(v/. 1))]}

QW1(Q,PL)<é v’ eV
9)

under standard regularity ensuring strong dualityE] The expression @ is
already useful: it converts an optimization over distributions into an opti-
mization over a scalar multiplier v and a pointwise supremum over types v'.
Economically, v is the shadow price of transportation distance, and the in-
ner supremum computes the best shifted type v’ that trades off performance

For our purposes it is enough that V is compact (as assumed) and f, is
bounded/continuous in v; these conditions rule out the pathologies that can create a
duality gap.

13

under f,, against the transportation cost back to an empirical sample point
.

Closed-form robustification under Lipschitz losses. The preceding
dual becomes particularly clean when f,, is Lipschitz. Write Lip(f,) for
the smallest L such that |fy,(v) — fu(?)] < Ld(v,0) for all v,o € V. If
Lip(fw) < Ly, then for any v > Ly we have

Ju@') =d(v',v) < fu(v) + (Ly —7)d(v',v) < fu(v),

so the inner supremum in (9) equals f,(v) (attained at v’ = v). Plugging
this into @D yields the bound

wp Eqlfulv)] < Ep [ful)] + 9Ly (10
Q:W1(Q,Pr)<d

Moreover, when L; = Lip(fy) is known (or when the bound is tight), equal-
ity holds and the infimum is achieved at v = Ly. Thus, in the Lipschitz
regime, the distributionally robust objective becomes the empirical loss plus
a linear “robustness tax” proportional to the shift budget ¢ and the sensitivity
of the loss to perturbations in v.

This expression makes the tradeoff particularly transparent. Holding w
fixed, the only way the worst-case expectation can be large is if either (i) the
empirical mean performance is poor, or (ii) performance is highly sensitive to
valuations (large Lipschitz constant), so that small transportation can move
probability mass to regions where f, is worse. In this sense, the Wasserstein
model exactly operationalizes a common platform intuition: mechanisms
that are locally stable in type space are less brittle to deployment drift.

Applying the bound to the revenue-regret Lagrangian. For our ro-
bust Lagrangian loss f,,(v) = —rev(w;v)+Argt(w;v), a convenient sufficient
condition is that both revenue and regret are Lipschitz in v (under the same
metric d). In that case,

Lip(fy) < Lip(rev(w;-)) + ALip(rgt(w;-)) = Lyrev(w) + A Lygt(w). (11)

Substituting (11f) into (10 gives an explicit surrogate for the inner supre-
mum:

Ls(w) <

t~

ZL: (— rev(w; v¥) + Argt(w; U(Z))) + (5(Lrev(w) +)\Lrgt(w)>.
=1

This bound already clarifies how robustness “tilts” training. Even if the
empirical objective strongly favors aggressive revenue extraction, the term
d Lyev(w) penalizes mechanisms whose revenue is highly sensitive to valuation

14

perturbations, and the term 6 A L,gt(w) analogously penalizes mechanisms
whose incentive violations spike under small shifts.

A practical subtlety is that the usefulness of this robustification depends
on whether the Lipschitz constants are treated as mechanism-dependent
quantities. If we merely impose a uniform bound Lyey(w) < Ly and
Lygt(w) < Lyg for all w € W, then the additive term 0(Lyey + ALygt) is
constant in w and does not affect the optimizer. To obtain a nontrivial
robustness—performance tradeoff in training, we therefore either (i) work
with sharper, architecture-driven upper bounds that vary with w (e.g., via
spectral norms of network layers), or (ii) use the more general dual form (9)
and approximate the inner supremum over v’ numerically, which effectively
learns the “adversarial” perturbations that matter for a given w.

When do we need numerical inner maximization? There are two
main cases where the clean Lipschitz robustification is not enough.

First, the relevant loss may fail to be globally Lipschitz (or we may be
unwilling to certify a global bound that is not overly conservative). This
can occur if the allocation rule is effectively discontinuous in reports (for
instance, if one uses hard argmax operations without smoothing), or if the
regret estimate uses a non-smooth deviation oracle. In such cases, the in-
equality can still be written with a local or empirical Lipschitz proxy,
but tightness is not guaranteed. A common response is to revert to @: for
each sampled v(¥), one approximately solves

sup <fw(v') —yd(v, ’U(Z)))
v'ey

by gradient-based ascent in type space (projected onto V), thereby directly
constructing worst-case perturbations consistent with the transportation bud-
get. This “adversarial types” computation is more expensive than adding a
closed-form regularizer, but it remains a finite-dimensional optimization and
aligns well with modern automatic differentiation.

Second, if one uses ambiguity sets other than Wasserstein balls—most
notably f-divergence balls—the inner problem typically takes a different dual
form and rarely collapses to an empirical mean plus a simple Lipschitz term.
For example, for KL divergence one obtains an entropic risk functional,

E = inf {np+nlog (Eyp[efo@/m) L
o, Ball)] = inf {np - log (Bup [0

and when P = P, this becomes a one-dimensional optimization in 7 in-
volving a log-sum-exp over samples. More generally, f-divergences lead to
Fenchel-Legendre conjugate expressions that entail either a nontrivial multi-
plier search or an explicit reweighting of sample points. These formulations
are computationally tractable, but they implement a different economic no-
tion of robustness: they protect primarily against reweighting of observed

15

types rather than support shift. In our combinatorial setting, where unseen-
but-nearby valuation profiles are a realistic concern, this distinction is con-
sequential.

What the dual view buys us. The key benefit of the Wasserstein duality
perspective is that it separates two modeling tasks. The ambiguity radius §
encodes the platform’s tolerance for distributional drift, while the Lipschitz
modulus of performance encodes the mechanism’s intrinsic stability to such
drift. When stability can be certified (or encouraged) through architectural
constraints and capacity control, robust design becomes a disciplined form
of regularization rather than an opaque adversarial optimization. The next
section develops concrete sufficient conditions—bounded valuation domains,
Lipschitz network components, and complexity control for the mechanism
class—under which regret and revenue inherit the smoothness needed for
these guarantees to be meaningful and non-vacuous.

5 Lipschitz and Capacity Control for Auction Net-
works

The dual viewpoint in Section [4]tells us that Wasserstein robustness becomes
informative precisely when the mechanism’s induced loss varies smoothly
with types. We therefore need a set of verifiable sufficient conditions—stated
at the level of the auction network architecture and parameter magnitudes—
under which (i) the allocation and payment rules are Lipschitz in reports,
and hence (ii) revenue and regret inherit Lipschitz continuity in the valua-
tion profile. In parallel, to turn empirical robust regret into deployment-time
guarantees, we need capacity control: a way to upper bound the statistical
complexity of the mechanism class, along the lines of the RegretNet gener-
alization arguments but adapted to our robust objective.

Bounded type space and the role of normalization. We work on a
compact valuation domain V = [, V; C [0, Vinax]™, which is both econom-
ically natural (valuations are finite) and technically convenient (it prevents
pathologies in duality and uniform convergence). The metric d(-, -) matters:
when d is an /1-type metric on the concatenated valuation vector, Lipschitz
constants scale with the ambient dimension nk unless we normalize. In prac-
tice and in our bounds, we interpret d as either an average ¢; metric (dividing
by nk) or a weighted metric that downweights large bundles; this keeps Lyey
and L.g; comparable across settings with different m.

Lipschitz allocation networks via smooth relaxations and bounded
weights. Consider an allocation network that maps reports b € V to a

16

(possibly fractional) allocation tensor z = g, (b) € [0,1]"** satisfying feasi-
bility. Many modern architectures implement feasibility by producing scores
s;s(b) and then applying a differentiable normalization that enforces item
and bidder constraints, e.g., softmax layers combined with iterative scaling,
Sinkhorn-type operators, or differentiable projections onto a packing poly-
tope.

A general sufficient condition is as follows. Suppose g,, can be written
as a composition

Guw = Hoéwa

where ¢, : R™ — R™F is a feedforward network with activations that
are k-Lipschitz (ReLU is 1-Lipschitz; tanh is 1-Lipschitz), and II is a post-
processing map that enforces feasibility and is non-expansive under the rele-
vant norm (for instance, Euclidean projection is 1-Lipschitz in f5; softmax is
Lipschitz with a constant controlled by temperature). If each linear layer ¢ of
¢w has operator norm at most ||W;||op < By, then the standard composition
bound yields

D
Lip(¢w) < KDHBfa Lip(gw) < Lip(II) Lip(¢w),
/=1

where D is depth. Thus, bounded spectral norms (or any operator-norm
surrogate) and Lipschitz activations give an explicit Lipschitz bound for the
allocation rule. This is not merely a proof device: spectral normalization,
weight clipping, and gradient penalties are practical training tools that di-
rectly target these constants and thereby reduce the Wasserstein “robustness
tax” from Section [

Lipschitz payments: direct networks or payment identities. Pay-
ment rules in learned mechanisms are typically implemented either (a) by
a separate payment network p,(b) with nonnegativity enforced by soft-
plus/reLU, or (b) via a differentiable approximation to a payment identity
that guarantees incentive properties in restricted settings. For our purposes,
we only require that the realized payment map be Lipschitz in b and bounded
on V.

A convenient sufficient condition mirrors the allocation case. If p,, = ¥y,
is a feedforward network with k-Lipschitz activations and layer operator
norms bounded by E@, then

D
Lip(py) < /{DHBg.
/=1

If, additionally, we enforce bounded outputs (e.g., by a final sigmoid scaled
by pmax Or by explicit clipping), then p,,(b) € [0, pmax]™ uniformly. Bounded

17

payments are economically interpretable as a no-excessive-charges policy and
are technically useful because they make both revenue and regret uniformly
bounded, a prerequisite for clean complexity bounds.

From Lipschitz (g, pw) to Lipschitz revenue and regret. Given Lip-
schitzness of g, and p,, in reports, revenue Lipschitzness is immediate:

|rev(w;v) — rev(w; 0)| = ‘ Zpi(v;w) - sz‘(f); w)’ < nLip(pyw) d(v,),
i=1 i=1

up to the norm equivalence implicit in d. The more delicate object is regret,
because it is defined through an inner maximization over misreports. Here
compactness of V; and Lipschitzness of utilities jointly in (v, b) do the work.
Writing bidder 4’s utility as

wi(vib;w) = > viszis(bw) — pi(b;w),
SeK

we see that for fixed b the dependence on v; is linear, while for fixed v; the
dependence on b is Lipschitz through ¢,, and p,,. Under bounded valuations
(vis € [0, Vinax]) and bounded feasibility (D¢ 2z;5 < 1), utility differences can
be bounded as

[(033 b5 w) ~ui (93 b5 w0)| < Viax [1900(5) =g (0) |14+ [P (9) =Pu (B) |1+l vi—Ti 1,

again up to normalization constants. Taking the supremum over v € V;
preserves Lipschitz continuity on compact domains, yielding precisely the
type of statement summarized in Proposition 2: there exists an explicit
Lygt(w) depending on Lip(gw), Lip(pw), Vimax, and the choice of d such that

rgt(w; v) — rgt(w; 0)| < Lygt(w) d(v, 0).

Operationally, this tells us what architectural features matter for robustness:
anything that creates sharp kinks in allocation or payments (hard argmax,
discontinuous tie-breaking, unregularized large weights) can make Lygt(w)
large, thereby increasing the required conservatism for a given shift budget 9.

Capacity control via covering numbers: adapting the RegretNet
logic. Smoothness alone is not enough: we also need to control how much
a learned mechanism can overfit the sample. The typical route, used in
RegretNet and related work, is to upper bound the uniform deviation be-
tween population and empirical expectations by a complexity term involving
covering numbers or Rademacher complexity.

For our mechanism class M = {(gw,pw) : w € W}, we consider the
induced scalar function classes

Frev = {v = rev(w;v) : w € W}, Frgt = {v > rgt(w;v) : w € W}

18

If we restrict W so that all layer operator norms are bounded (spectral
norm bounds) and outputs are bounded, standard neural-network covering
arguments imply that for any ¢ > 0,

log N(Frev,€) S Plog(%) ,
where P is the number of parameters and C' depends on the norm bounds,
depth, and activation Lipschitz constants. An analogous bound holds for
Frgt provided we treat the regret computation as the supremum of a family
of Lipschitz utility differences indexed by v; € V;. Compactness of V; allows
us to discretize the deviation space with an e-net, turning the supremum
into a maximum over finitely many deviations at the cost of an additional
covering factor for V;. This is exactly where bounded valuation domains
enter the statistical story: without compactness, the deviation class would
be too rich to control uniformly.

Two caveats are worth emphasizing. First, in implementations regret is
typically approzimated by a deviation oracle (e.g., projected gradient ascent
over misreports). Our guarantees can incorporate this by adding an opti-
mization error term, provided the oracle is uniformly accurate on V; oth-
erwise, one should interpret the result as a guarantee for estimated regret.
Second, complexity control is only meaningful if we actually enforce norm
bounds during training; absent such constraints, the effective capacity of the
network class can be large enough that the generalization term is vacuous.

Implication for robust training. Putting these pieces together, we ob-
tain a disciplined recipe: (i) choose architectures for g, and p, that are
differentiable and feasibly normalized; (ii) impose spectral or weight-norm
constraints (or penalties) to bound Lipschitz constants; and (iii) bound out-
puts to ensure uniform integrability. The resulting mechanism class has both
the smoothness needed for Wasserstein dual control and the capacity con-
trol needed for high-probability out-of-sample guarantees. The next section
states the main theorems that translate these primitives into deployment-
time regret and revenue bounds under distribution shift, and draws out their
interpretation as robust approximate DSIC.

6 Main Theorems: Deployment-Time Regret and
Revenue Guarantees Under Shift

We now formalize the sense in which robust training delivers deployment-
time incentive and revenue guarantees when the valuation distribution shifts
away from the training environment. The key conceptual move is to sepa-
rate (i) what we can optimize from data, namely a robust empirical objective
over the Wasserstein ball around pL, from (ii) what we ultimately care about,

19

namely performance over an unknown deployment distribution () that is only
assumed to satisfy a shift budget W1(Q, P,) < §. Our results therefore take
the form of high-probability inequalities that hold uniformly over a mecha-
nism class and simultaneously for all admissible deployment distributions.

To streamline notation, define the population robust regret functional
and its empirical analogue:

RRs(w) := sup Evq[rgt(w;v)], ﬁﬁg(w) = sup Ev~q[rgt(w;v)].

Q:W1(Q,Pv)<é QW1 (Q,P)<s
We similarly define robust revenue functionals

REVs(w) = inf Ey~o|rev(w;v)], ﬁ/gw = inf
(w) oyt s Q[rev(w;v)] (w) omL

The supremum in RRg reflects worst-case incentive violations, while the
infimum in REV s reflects worst-case revenue erosion. Both are natural if we
interpret § as an explicit policy choice describing how adversarial (or simply
how different) deployment may be relative to training.

Theorem 1: robust generalization of expected regret. Our first the-
orem states that robust regret computed on the sample controls robust regret
at deployment, up to a statistical complexity term of the familiar O(1/v/L)
form.

Theorem 1 (Deployment-time robust regret bound). Assume V C
[0, Vinax]™® is compact, the regret map v — rgt(w;v) is Lyg-Lipschitz under
d for all w € W, and rgt(w;v) is uniformly bounded. Let S ~ PF and fix
B € (0,1). Then, with probability at least 1 — B over S, we have for all
we W

sup Eyg[rgt(w;v)] < RRs(w) + Gr(M,B),
Q:W1(Q,Px)<é

where G, (M, B) is a uniform convergence term that can be taken of the form

GL(M,) = O(\/logN(/\/l,e)L—i-log(l/,B))7

with optimization over € > 0 as usual.

While the exact complexity term depends on the metric used to cover
the induced function class and on how regret is approximated, the economic
meaning is invariant: if I/{ﬁg(w) is small, then no deployment distribution
within Wasserstein radius § can generate large expected ex-post regret, except
with small probability due to sampling noise. In this sense, robust training
protects not only against overfitting to S but also against misspecification
of the environment.

20

Euv~q [rev(w;v)].

Interpretation: robust approximate DSIC. Theorem 1 implies a clean
approximate incentive statement. Suppose we train a mechanism 0 such that
ﬁf\{(g(w) < ¢ (or, more strongly, a bidderwise variant ﬁ}\{(gl(w) < ¢ for all 7).
Then with the same high probability,

sup Evq[rgt(w;v)] < €4 Gr(M,B).
Q:W1(Q,Px)<é

In particular, for any such deployment distribution), truthful reporting
forms an (e + Gr)-approzimate dominant-strategy equilibrium in expectation:
each bidder can improve her expected utility by at most € + Gy by devi-
ating unilaterally from truthful play. This is the precise sense in which
Wasserstein-robust training yields robust approximate DSIC. Practically, it
means that incentive violations cannot suddenly become large merely be-
cause the market shifts within the modeled ambiguity set.

Theorem 2: robust revenue guarantees and the robustness tax.
We now state the analogous result for revenue. Here we emphasize the direc-
tion of the guarantee: robustness protects against the lower tail of revenue,
which is typically the relevant concern for a seller facing uncertain demand.

Theorem 2 (Deployment-time robust revenue bound). Assume v
rev(w;v) 8 Lyey-Lipschitz under d for all w € W and uniformly bounded.
Then, with probability at least 1 — 3 over S ~ PE, for all w € W,

inf Eyn ; > REV — Hi(M,B),
QWA (Q,P.)<6 Qrev(w;v)] s(w) (M,)

where Hp (M, B) is a uniform convergence term analogous to Gp (M, B3).

Combining this with the dual bound from Section [4]yields an immediately
interpretable “robustness tax”: for Lipschitz revenue, the worst-case revenue
over a d-ball cannot exceed the in-distribution revenue, and it can be lower
by an amount proportional to d Ley. This is not a defect of our analysis but
an economic reality: if we insist on performing well in environments that are
0-far, we must hedge against types that are unfavorable for revenue.

From regret guarantees to revenue under strategic play. In princi-
ple, revenue guarantees are stated under truthful input v; however, the regret
bound provides a bridge to strategic behavior. If a mechanism has small re-
gret, then the gap between truthful utility and best-response utility is small,
which makes truthful reporting approximately stable. In many applications,
this stabilizes revenue as well: if bidders cannot profitably manipulate the
mechanism, observed bids will not systematically drift into low-revenue re-
gions induced by misreports. We emphasize the limitation: our regret notion
is ex-post and unilateral, so translating it into a full equilibrium statement

21

(e.g., bounds under Bayes—Nash play) requires additional assumptions on
bidder beliefs and learning dynamics. Still, as a design principle, minimizing
robust regret is a direct way to prevent revenue collapse that arises because
of strategic behavior amplified by distribution shift.

Quantile-regret corollaries: controlling tail incentive violations.

Expected regret is a natural summary, but platforms often care about fre-

quency of large deviations: “in what fraction of auctions is the mechanism

meaningfully non-IC?” A simple corollary converts expected-regret control

into a quantile bound that is valid uniformly over all () in the ambiguity set.
Fix n € (0,1) and define the (1 — n)-quantile of regret under @) by

qi—n(w; Q) = inf {t >0: Pyog (rgt(w;v) < t) >1- 17}.
If Egrgt(w;v)] < p, then Markov’s inequality implies

Prg(etwse) > 1) < § = agwi@) < L

Applying Theorem 1 with p = ﬁf\{g (w) + Gr(M, B) yields, with probability
at least 1 — 3,

RR;(w) + G (M,
sup q1n(w; Q) < s(w) + 91 B)-
QW1 (Q,P)<6 n

Thus, if we train so that f/{ﬁg(w) is small, then for every admissible de-
ployment distribution, at least a 1 — 7 fraction of auction instances exhibit
regret no larger than (RRs(w) +Gr)/n. This is a coarse but transparent tail
guarantee, and it highlights a practical lever: if a regulator or platform op-
erator desires that “99% of instances have regret at most 7,” one can target
RRs(w) < 0.017 (up to generalization).

What these theorems do not guarantee. Two caveats deserve atten-
tion before we turn to algorithms. First, all statements hinge on controlling
Lipschitz constants; without explicit architectural or norm constraints, the
constants can be so large that robustness bounds become vacuous. Second,
robust regret is only as accurate as our regret estimator: if the deviation
oracle fails to find near-best responses, then RRs(w) can substantially un-
derstate true incentive problems. For that reason, the next section focuses
on practical training procedures with strong deviation oracles and on ways
to estimate (or upper bound) the relevant Lipschitz quantities in implemen-
tations with modern feasibility layers.

22

7 Algorithms: Robust Training with Strong Devi-
ation Oracles

We now turn from guarantees to the practical question: how do we train a
parameterized combinatorial auction mechanism so that it is both (i) high-
revenue and (ii) hard to manipulate, even when deployment types shift within
a Wasserstein budget? Our guiding design choice is to mirror the structure
of the robust objective: an outer minimization over mechanism parameters,
coupled with (at least) two inner maximizations—one over bidder deviations
(to estimate regret) and, conceptually, one over distributions in the ambigu-
ity set (to enforce robustness). The main algorithmic challenge is that both
inner problems are nontrivial in combinatorial domains.

7.1 Training loop: outer updates with inner deviation max-
imization

Fix a sample set S = {v(¥} | and consider minibatches B C S in stochastic

training. For a given mechanism parameter w and valuation profile v, recall

the regret definition

1 n
rgt; (w;v) = max i (v (biy v—i); w) — wi(vg; v;w), rgt(w;v) = nzgrgti(w;v)-
1=
In practice, we approximate each bidder’s best deviation via a deviation
oracle that searches over b; given (v;,v_;, w). The outer loss on a profile v
is then
fuw(v) = —rev(w;v) + Argt(w;v),

where @c denotes the regret estimate returned by the oracle (typically a
lower bound on true regret, hence conservative for incentives). The outer
step performs gradient descent on w using the differentiable computation
graph for (g, pw) as well as (when applicable) differentiable components of
the oracle.

A useful mental model is that we are solving a saddle-point problem by
alternating updates:

1. Deviation step (inner max). For each v € B and each bidder i,
approximately solve
bi(v;w) ~ argmax uj(vi; (bi, v—i); w)

using gradient ascent and/or combinatorial search (described below).
Record the resulting utility gain as rgt,;(w;v).

2. Mechanism step (outer min). Update w to decrease a robust sur-
rogate of E[f,(v)] over the minibatch, i.e., a sample average plus a
robustness correction.

23

Because regret is defined by a maximization, a weak deviation oracle can
make training appear successful while leaving exploitable incentive violations
at deployment. For that reason, we intentionally bias computation toward
a strong oracle: more ascent steps, multiple random restarts, and (when
the domain permits) hybrid discrete—continuous local improvements. This
increases training cost but is precisely what makes the eventual incentive
claims meaningful.

7.2 Strong deviation oracles for combinatorial reports

A report b; is itself a vector over bundles, often high-dimensional (k = 2™ —

1). Two practical constraints help: (i) V; C [0, Vinax]* is compact, and (i) we

can parameterize feasible reports by a differentiable map (e.g., elementwise

clipping or a low-dimensional embedding) that keeps the search within V;.
Our default deviation oracle is projected gradient ascent:

bE”” = Ily, (bE” + Ndev Vb, Ui (Ui; (b,('t)»vfi);w)) ,

run for Tyey steps with R random restarts, returning the best b; found. The
projection Ily, is typically implemented by coordinatewise clipping when
V; is a box; for structured type spaces (e.g., additivity or submodularity
constraints), IIy, can be replaced by a differentiable parametrization that
enforces structure by construction. In either case, the oracle only requires
that we can backpropagate through u;, hence through g,, and p,,.

Two refinements materially strengthen the oracle in combinatorial set-
tings:

e Targeted coordinate search. Gradient steps can be complemented
by a small neighborhood search over economically salient coordinates
(e.g., singleton bundles and the grand bundle), which often capture the
most profitable manipulations when the mechanism is approximately
itemwise.

e Warm-starting and caching. We cache each bidder’s previous best
deviation for similar v (or the same training point across epochs) and
warm-start from it. This reduces variance and makes the inner maxi-
mization harder to “forget” as w changes.

When we report regret in experiments, we evaluate using an even stronger
oracle than the one used in training (more steps, more restarts, additional
heuristics). This separation is important: if evaluation uses the same oracle,
one risks measuring the oracle rather than the mechanism.

24

7.3 Robust outer objectives: implementing the Wasserstein
correction

The distributionally robust objective involves SUDQ. 117, (@, P) <6 Eq[fw(v)], which
is not directly optimized by naive minibatch averaging. We implement ro-
bustness in one of two ways, depending on whether we want a certifiable
bound (via Lipschitz control) or a constructive worst-case stressor (via ad-
versarial perturbations of types).

(i) Lipschitz-penalized surrogate. Using Proposition 1, a tractable sur-
rogate is
N 1 - - '
Ls(w) = Bl > fulw) + 6Lg(w), Ly(w) > Lip(fu).
vEB

Here Ef(w) is an upper bound or estimate of the Lipschitz constant of v —
fw(v) under d. Since fi,(v) = —rev(w;v) + Argt(w;v), we can bound

Lip(fw) < Lip(rev(w;-)) + ALip(rgt(w;-)).

We use this decomposition to regularize the mechanism toward smoother,
shift-stable behavior: for fixed 4, a larger Lipschitz bound directly increases
the robust objective, making overly sharp mechanisms unattractive.

(ii) Adversarial type perturbations (empirical worst-case). Alter-
natively, we approximate the Wasserstein adversary by constructing per-
turbed valuations v’ near each training point v, solving

/

v~ argmax {fw(®) = ~vd(®,v)},

for a chosen dual parameter v > 0 (motivated by the Kantorovich-Rubinstein
dual). This yields “hard” local environments (nearby in d) that empirically
enlarge regret or depress revenue, and is useful as a stress-test during train-
ing. Conceptually, this is analogous to adversarial training in supervised
learning: we are not only fitting the observed v, but also the worst nearby
v’ deemed plausible by the transportation metric.

7.4 Estimating and upper-bounding Lipschitz constants

Robust training is only as meaningful as our control of L #(w). We therefore
combine three complementary tools, trading off tightness and computability.

25

Architecture-based upper bounds. When g, and p,, are implemented
by neural networks with norm constraints, we can bound their Lipschitz
constants by products of layer operator norms (e.g., spectral norms for linear
maps, 1 for ReLU/softplus). Denoting these bounds by L,(w) and Ly (w),
Proposition 2 motivates a bound of the form

Li(w) = Lyev(w) + ALegi(w), Legt(w) < 1 Dy(w) + c2 Ly(w),

with constants ci, co determined by Vi.x and the chosen metric normaliza-
tion. In practice, we enforce these bounds via spectral normalization and
weight decay, which provides an interpretable “smoothness knob” for robust-
ness.

Jacobian-based empirical estimates. Upper bounds based on layer
norms can be loose. As a complementary diagnostic, we estimate local Lips-
chitz behavior on minibatches via Jacobian norms (e.g., ||V fw(v)||« for the
dual norm induced by d), and maintain an exponential moving average as a
stability indicator. While not a certificate, this estimate is informative for
tuning 6 and A: if |V, fy || spikes, the mechanism is likely fragile to small
shifts.

Direct regularization for smoothness. Finally, we can regularize f,
directly by penalizing differences across nearby samples:

ot | |

Qw) =

with a small ¢ > 0 for numerical stability. This encourages Lipschitz-like
behavior without explicitly computing global constants, and empirically im-
proves robustness when the metric d aligns with realistic market variation.

7.5 Feasibility layers: implementing g, with CAFormer/CANet

All of the above presumes that gradients through g,, are meaningful and that
allocations remain combinatorially feasible throughout training. We there-
fore implement g,, using feasibility layers inspired by CAFormer/CANet: the
network produces a structured score representation over bidders and bundles
(or over items with bundle reconstruction), followed by a differentiable layer
that enforces the constraints

YD zg <1 VjeM, zs<1 VieN, 0<zg<l
i€EN S35 SeK

In practice, this can be realized by (i) softmax-based normalizations com-
bined with itemwise capacity penalties, (ii) differentiable projections onto a
relaxation of the feasible polytope, or (iii) attention-based architectures that

26

allocate item capacities across bidders in a permutation-invariant way. The
key implementation point is that the feasibility layer must be stable under
the inner deviation search: if b; changes during oracle ascent, g, (b) must
remain feasible and differentiable, otherwise regret gradients become noisy
or misleading.

Payments p,, are implemented with an explicit nonnegativity constraint
(e.g., softplus output) and, when desired, an ex-post IR enforcement step
that caps payments by reported value of the allocated bundle. We emphasize
a limitation: while such caps help satisfy IR mechanically, they can interact
with deviation incentives in subtle ways, and must be audited with the strong
deviation oracle.

Taken together, these components yield a training procedure that is eco-
nomically interpretable: the deviation oracle plays the role of a strategic
“auditor,” the Wasserstein correction operationalizes shift robustness, and
feasibility layers guarantee that every gradient step corresponds to a mean-
ingful (albeit fractional) combinatorial allocation rule.

8 Experiments: Synthetic Shifts and Platform-Inspired
Stress Tests

Our theoretical guarantees are only useful insofar as they translate into mech-
anisms that remain hard to manipulate when the environment changes. We
therefore design experiments around a simple organizing principle: we train
mechanisms on a baseline distribution PL and then evaluate them on a fam-
ily of deployment distributions @) that are plausibly close to training in the
sense of W1(Q, PL) < 4, as well as on shifts that mimic common marketplace
dynamics (seasonality, demand shocks, and changes in complementarity pat-
terns). Across all experiments we report two objects: (i) seller revenue under
truthful play, and (ii) bidder incentive compatibility measured by ex-post re-
gret, computed using a deviation oracle that is strictly stronger at evaluation
than during training. This asymmetry is deliberate: it operationalizes the
economic idea that a mechanism should withstand strategic sophistication
beyond what the designer explicitly anticipated.

8.1 Experimental setup and baselines

We consider standard combinatorial settings with m items and n bidders,
with valuations bounded in [0, Viyax]* and type spaces compact as assumed
above. Each mechanism outputs a feasible fractional allocation and non-
negative payments, and we evaluate on held-out profiles drawn from various
deployment distributions. We compare three families of learned mechanisms:

27

RegretNet (non-robust). We train a standard regret-penalized model
by minimizing the empirical objective + 3, [— rev(w; v0) + Argt(w; v(z))]
without any Wasserstein correction. This baseline isolates the contribution
of robustness to performance under shift.

CAFormer/CANet-style allocation architectures (non-robust). We
also train architectures emphasizing combinatorial structure and feasibility
(attention over items/bundles, structured scoring, and differentiable feasi-
bility enforcement). These typically improve in-distribution revenue and
feasibility stability, but they are not, by themselves, robust to distribution
shift in the incentive sense.

Robust RegretNet (ours). We train using the robust surrogate induced
by the Wasserstein ambiguity set, implemented either as a Lipschitz-corrected
objective (via a bound L #(w)) or as adversarial type perturbations aligned
with the W7 dual. We treat ¢ as a design parameter and examine how varying
0 traces out a revenue—-robustness frontier.

For all methods, we hold fixed the evaluation protocol: regret is computed
with a stronger oracle (more ascent steps, more restarts, and hybrid local
search over salient bundles). This ensures that any apparent incentive gains
are attributable to the mechanism rather than to a weak adversary.

8.2 (i) Controlled Wasserstein shift: calibrating the ambigu-
ity radius

We begin with a controlled setting where we can explicitly generate a con-
tinuum of deployment distributions (); whose distance to the training distri-
bution increases smoothly. Concretely, we generate a baseline type distribu-
tion with a tunable degree of substitutability /complementarity, then create
shifted distributions by transporting mass along interpretable directions in
valuation space (e.g., increasing the marginal values of a subset of items,
increasing complementarity for certain pairs, or increasing dispersion across
bidders). We numerically verify that W;(Qy, Pr) grows approximately lin-
early in the shift magnitude, and we map each ¢ to a corresponding effective
J.

Two empirical regularities emerge. First, the non-robust baselines (Re-
gretNet and CAFormer-style models) exhibit what we view as a form of
incentive fragility: regret remains low near the training distribution but in-
creases sharply once the shift crosses a modest threshold. Importantly, this
increase is often concentrated in a small subset of bidder profiles, consistent
with the idea that manipulation opportunities may be rare in-sample but
severe out-of-sample. Second, Robust RegretNet degrades more gracefully:
as t increases, regret rises more slowly and the upper tail of the regret dis-
tribution is substantially controlled. This is precisely the practical content

28

of a Wasserstein-style guarantee: we are not promising that incentives are
perfect everywhere, but that small shifts do not uncover entirely new regions
of exploitability.

Revenue exhibits the expected tradeoff. For small d, robust training is
nearly indistinguishable from non-robust training in-distribution, while pro-
viding measurable out-of-distribution gains (higher revenue under strategic
play due to reduced manipulation and lower worst-case regret). As J in-
creases, robust mechanisms become more conservative: in-distribution rev-
enue falls, but the worst-case revenue across shifted (); improves relative to
the non-robust baselines. This is a concrete manifestation of the revenue—
robustness tradeoff highlighted in Proposition 4.

8.3 (ii) Covariate/context shift: stress-testing with latent
market conditions

Many real platforms face not only changes in the distribution of valuations,
but changes in the process generating them: product assortments, buyer
mix, and correlation patterns evolve with context (seasonality, promotions,
entry/exit). To emulate this, we introduce a latent context variable ¢ that
affects valuation generation (e.g., changing correlation across items, chang-
ing the frequency of near-unit-demand vs highly complementary bidders, or
changing the distribution of bidder budgets). We train on contexts drawn
from a baseline mixture and evaluate on altered mixtures that change the
prevalence of each context.

This shift is qualitatively different from a simple location shift because it
changes which parts of the type space are common. In our experiments, non-
robust mechanisms often over-specialize to the dominant training context:
they extract high revenue there but leave “holes” in incentive performance
in the minority contexts. When the deployment mixture tilts toward these
minority contexts, regret rises and realized revenue under strategic play de-
teriorates. Robust RegretNet partially immunizes against this failure mode.
Intuitively, robustness forces the mechanism to perform acceptably not only
on average, but also on nearby distributions that reweight contexts, thereby
reducing dependence on fragile correlations.

A practical takeaway is that robustness can be interpreted as an insurance
policy against mis-specified market segmentation. If the platform designer
does not know which segments will dominate in the future, a moderate § can
reduce the cost of being wrong.

8.4 (iii) Adversarial reweighting: worst-case emphasis on
“hard” profiles

Our third stress test makes the adversary explicit. Rather than perturb-
ing valuations pointwise, we adversarially reweight the evaluation set toward

29

profiles that maximize either regret or the robust loss f,(v) = —rev(w;v) +
Argt(w;v) subject to a transportation budget. This corresponds to the eco-
nomic scenario in which the platform encounters a population that is system-
atically more sophisticated or more complementary than the training data
suggests, but not arbitrarily so.

Empirically, adversarial reweighting reveals that incentive violations are
often driven by economically interpretable configurations: (i) a bidder with
strong value for the grand bundle facing competitors with strong singleton
demand, or (ii) profiles where two bidders have near-ties on several bundles,
making allocation discontinuities profitable to exploit. These are precisely
the profiles a seller might see during demand spikes or when large buyers
enter. Robust RegretNet reduces both the frequency and severity of these
worst-case profiles by smoothing the response of allocation and payments
to reported values, which in turn reduces the marginal gains from strategic
misreports.

8.5 Evaluation with stronger deviation searches

Across all three shift families, we find that the ranking of mechanisms by
regret is sensitive to the strength of the deviation oracle. When we inten-
tionally weaken the oracle, most methods appear approximately DSIC; when
we strengthen it, non-robust mechanisms often exhibit substantial hidden re-
gret. Robust RegretNet is not immune to this issue, but it is more stable:
strengthening the oracle increases measured regret by a smaller margin, sug-
gesting that robustness and smoothness regularization reduce the prevalence
of sharp local profitable deviations.

This observation has an important methodological implication for mecha-
nism learning: reported regret should be interpreted as a lower bound whose
tightness depends on the auditor. In the discussion below, we return to how
a platform might operationalize this in deployment via monitoring and safe
update rules.

9 Discussion and policy/engineering implications

Our experiments highlight a central practical point: incentive compatibil-
ity is not merely an in-sample property. Even when a learned mechanism
exhibits low measured regret on held-out data from the training distribu-
tion, small and economically plausible shifts can uncover pockets of high
exploitability. The purpose of the Wasserstein formulation is therefore less
to “solve” misspecification than to make it priced and tunable: by choos-
ing an ambiguity radius ¢, the designer selects how much out-of-distribution
insurance to purchase, and the theory clarifies the premium this insurance
commands in expected revenue (Proposition 4). In this section we translate

30

that logic into design guidance for platforms, and we flag limitations that
matter for deployment.

Choosing the ambiguity radius as a policy choice. From an economic
perspective, § plays the role of a robustness budget—how far the deployment
environment may deviate from what was observed. In many platforms, the
relevant uncertainty is not adversarial in the worst sense, but it is persistent:
seasonality, product churn, and buyer entry/exit change valuation profiles in
ways that are difficult to predict but rarely unbounded. A pragmatic cali-
bration strategy is therefore scenario-based: the platform enumerates a set
of stress scenarios (e.g., a demand spike for a subset of items, or an increase
in complementarity driven by bundles becoming salient) and computes em-
pirical estimates of their transportation distance to the baseline, Wl(Q, PL)
One can then set § to cover, say, the 90th percentile of historically observed
shifts or the largest shift the platform deems operationally plausible. This
turns robustness from an abstract minimax choice into a governance decision
akin to setting a risk limit.

A complementary approach is to use the dual surrogate in Proposition 1
to interpret d as a marginal penalty on sensitivity. If the robust objective is
approximated by

L
%wa(’l}(z)) + 6f15(f’w)7 fw(v) = —I‘eV(’UJ;’U) + /\I‘gt(u),,u)7
/=1

then increasing ¢ is equivalent to demanding a smaller effective Lipschitz
constant of the revenue-regret tradeoff. When platform operators have an
interpretable “cost of volatility”—for instance, the operational cost of policy
reversals when incentives break—it is natural to map that cost into a target
bound on m(fw) and choose 0 accordingly. We emphasize, however, that
f@(fw) is itself an object that must be estimated or upper bounded, and
conservative estimation will push mechanisms toward more muted allocations
and payments.

Interacting roles of 6 and A. In practice, § and A are not substitutes.
The regret weight A controls how expensive manipulation is made during
training, while § controls where we ask the mechanism to be safe. A useful
heuristic is to first choose a target incentive level (e.g., an acceptable ex-
pected regret threshold € under the baseline) by tuning A, and then increase
0 until regret remains acceptably small under stress tests. This mirrors
common engineering practice: fix a performance target under nominal con-
ditions, then broaden the operating envelope. The comparative statics in
the global context provide guidance on the expected direction of changes,
but the quantitative choice is ultimately empirical because both rev and rgt
depend on architecture, regularization, and the deviation oracle.

31

Monitoring distribution shift in deployment. Robust training does
not eliminate the need for monitoring; rather, it changes what monitoring is
for. Under a Wasserstein model, what matters is not whether the empirical
distribution has changed in some generic sense, but whether it has moved
beyond the insured neighborhood. A platform can operationalize this by
maintaining a rolling empirical distribution Qt of recent valuation proxies
(or features predictive of valuations) and periodically estimating Wl(Qt, PL)
under the same metric d used in training. When direct valuations are unob-
served (as in many marketplaces), one can still monitor sufficient statistics
tied to the model class: predicted values, bid distributions, or allocation-
relevant embeddings. The metric choice becomes a policy lever here: weight-
ing certain bundles or items more heavily in d encodes the platform’s belief
about which shifts are consequential for incentives.

We also recommend monitoring strategic behavior indicators alongside
covariate drift. Regret is not directly observable, but sudden changes in bid
shading patterns, jump discontinuities in allocation probabilities near com-
mon bid levels, or increased dispersion in realized payments conditional on
similar bids may signal that bidders have discovered profitable deviations. In
that sense, the regret framework provides an auditing lens: one does not only
ask “did demand shift?” but also “did the shift create new manipulability?”

Safe updates and “trust-region” deployment. A recurring engineer-
ing problem is how to update mechanisms without creating incentive shocks.
Our framework suggests two guardrails. First, updates should be robustness-
preserving: when retraining on new data, one can keep the ambiguity radius
at least as large as before (or increase it if monitoring indicates drift), en-
suring that new mechanisms are safe on a neighborhood that includes both
past and present conditions. Second, updates should be local in mechanism
space. Concretely, one can add a trust-region penalty that discourages large
changes in allocation or payment maps:

E, p . [19w(®) = gyoua (V)| + [|pw(v) = pyora ()] < 7,

for a mixture Ismix of recent and historical data. Economically, this is a
commitment device: it limits the platform’s ability to inadvertently intro-
duce new discontinuities that invite gaming. Operationally, it enables staged
rollouts with rollback options, where 7 plays the role of an allowable policy
delta.

Limitations: deviation oracles and the meaning of “low regret.” A
first limitation is methodological but economically important: computed re-
gret is only as strong as the deviation search. Our evaluation used stronger
oracles than training, yet even that may miss profitable global deviations in
high-dimensional type spaces. This implies that any regret guarantee should

32

be interpreted as audited approximate DSIC, not DSIC in the classical sense.
For deployment, the implication is to treat the deviation oracle as part of
compliance infrastructure. Platforms that face sophisticated bidders should
invest in stronger auditing—more powerful optimization, multiple initial-
ization schemes, and targeted searches over economically salient deviations
(e.g., bundle misreports that mimic unit-demand or pure complementarity).
A conservative practice is to maintain an “oracle gap” dashboard: the differ-
ence between regret measured by a fast oracle (used during routine checks)
and a slower, stronger oracle (used periodically). A widening gap is a warn-
ing sign even if the fast-oracle regret remains low.

Limitations: nonconvex training and robustness estimation. A sec-
ond limitation is optimization. The robust objective is nonconvex in w,
and the Wasserstein surrogate can exacerbate gradient variance when imple-
mented via adversarial perturbations. As a result, different random seeds
may yield mechanisms on different points of the revenue-robustness fron-
tier. In settings where policy stakes are high, we view this as an argument
for ensemble-style governance: train multiple candidates, audit each with a
strong oracle under a battery of shifts, and select the mechanism that min-
imizes a conservative upper bound on regret subject to acceptable revenue.
Relatedly, our theory relies on Lipschitz control (Proposition 2), but bound-
ing Lip(fy) tightly for deep networks remains challenging. Overly loose
bounds will induce excessive conservatism, while overly optimistic bounds
risk under-insuring. Improving practical estimators of these constants is an
important engineering task.

Next steps. Several extensions are natural. First, learning or adapting
the metric d from domain knowledge (or from observed drift) could make
Wasserstein neighborhoods align better with plausible economic changes,
improving the meaning of 4. Second, extending robustness to richer bid-
der models—budget constraints, risk aversion, or correlated types—would
bring the approach closer to platform realities, albeit with new challenges
in oracle design and feasibility. Third, the dynamic setting is unavoidable
in many applications: repeated participation and learning by bidders can
turn small one-shot regret into large long-run revenue effects. A promising
direction is to combine our one-shot robust incentives with online monitoring
and constrained updates, yielding a mechanism that is not only robust to
distribution shift, but also robust to bidder adaptation.

Taken together, we view Wasserstein-robust mechanism learning as a
disciplined way to manage a familiar tradeoff in market design: aggressive
revenue optimization exploits patterns in observed demand, while robust
incentive performance hedges against the patterns changing. The appropri-
ate balance is context-dependent, but the framework makes that balance

33

explicit, auditable, and adjustable as the marketplace evolves.

34

	Introduction and Motivation
	Baseline: Differentiable Mechanism Design with Regret Penalties
	A Clean Model of Distribution Shift: Ambiguity Sets and Robust Performance
	Robust Objectives and Dual Representations
	Lipschitz and Capacity Control for Auction Networks
	Main Theorems: Deployment-Time Regret and Revenue Guarantees Under Shift
	Algorithms: Robust Training with Strong Deviation Oracles
	Training loop: outer updates with inner deviation maximization
	Strong deviation oracles for combinatorial reports
	Robust outer objectives: implementing the Wasserstein correction
	Estimating and upper-bounding Lipschitz constants
	Feasibility layers: implementing gw with CAFormer/CANet

	Experiments: Synthetic Shifts and Platform-Inspired Stress Tests
	Experimental setup and baselines
	(i) Controlled Wasserstein shift: calibrating the ambiguity radius
	(ii) Covariate/context shift: stress-testing with latent market conditions
	(iii) Adversarial reweighting: worst-case emphasis on ``hard'' profiles
	Evaluation with stronger deviation searches

	Discussion and policy/engineering implications

