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Abstract

Modern AI procurement and benchmarking often face a practical
asymmetry: the evaluator can randomize or conceal parts of the eval-
uation rule (e.g., hidden test sets, randomized red-team suites), while
the evaluated model must be deployed deterministically for nontrivial
periods due to compliance, reproducibility, or latency constraints. Mo-
tivated by ambiguous contracts (Dütting–Feldman–Peretz–Samuelson)
and incentive-aware evaluation (Kleinberg–Raghavan; Alon et al.), we
introduce a clean windowed contracting model capturing this asym-
metry. A principal announces a set of payment/evaluation rules and
privately commits to one rule for an entire deployment window; an
ambiguity-averse agent chooses a single deployed action/policy for the
window. We show that ambiguity can strictly improve principal util-
ity — even under monotone evaluation constraints — by discouraging
‘gaming’ actions that exploit known evaluation rules. We prove struc-
ture theorems: optimal ambiguous evaluation can be implemented by
a small support of simple contracts (single-outcome or threshold/step
rules) and computed in polynomial time. In contrast, when the agent
can hedge by mixing across actions within the window, ambiguity loses
all power, recovering the ‘mixing kills ambiguity’ phenomenon. We
provide comparative statics in window length and commitment/mixing
constraints, and interpret results as a theory of hidden benchmarks as
incentive instruments.
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1 1. Introduction: hidden benchmarks, gaming
vs improvement, why deployment commitment
makes ambiguity realistic in 2026.

Modern model deployment increasingly resembles a contracting problem with
a distinctive informational asymmetry: the benchmark by which a system
is judged is often not fully revealed to the provider. In procurement, plat-
form ranking, safety auditing, and enterprise evaluation pipelines, the eval-
uator typically has access to internal ground truth, private test suites, or
proprietary user feedback streams that are not shared in full with the model
provider. At the same time, the provider does observe enough about the eval-
uation *process* to adapt. This combination—partial transparency about
the rules, paired with strategic adaptation—creates the familiar tension be-
tween genuine improvement and gaming. Our goal is to isolate a mechanism-
design logic that is already implicit in many 2026-era evaluation practices:
deliberately maintaining *structured ambiguity* over the scoring rule can
improve incentives, even when payments must be monotone in an ordered
notion of performance.

The motivating problem is a version of Goodhart’s law. When a principal
publishes a single deterministic metric or rubric, a sophisticated agent may
optimize specifically for that metric, often by exploiting quirks that do not
correspond to the principal’s true objective. In model evaluation, “gaming”
can mean overfitting to a known test distribution, learning dataset artifacts,
strategically abstaining, or shifting effort toward borderline cases that move
a thresholded score while degrading performance elsewhere. The principal’s
dilemma is not that the metric is uncorrelated with value; rather, the met-
ric is an imperfect proxy, and the agent’s optimization pressure amplifies
the proxy’s weaknesses. Simply “making the metric better” is costly, slow,
or sometimes impossible when the relevant objective is multidimensional,
partially unobservable, or evolves over time.

A natural response is to introduce randomness or secrecy into evaluation.
In practice, evaluators already do this: rotating test sets, holding out pri-
vate benchmarks, varying prompts, sampling items adaptively, and applying
undisclosed post-processing rules (e.g., filtering, weighting, or thresholding)
that are hard to reverse-engineer. These practices are often justified infor-
mally as anti-overfitting measures. We study a clean economic analogue:
the principal commits ex ante to a *set* of permissible outcome-contingent
payment rules and then privately selects which one is used. The agent ob-
serves the set but not the realized rule and therefore evaluates each action
by its worst-case expected payment within the announced set. This captures
a common behavioral premise in high-stakes settings—providers act conser-
vatively when the evaluation rule is not fully known, especially when failures
are salient and reputationally costly.
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A key modeling choice is that the agent must commit to a single action
for a nontrivial deployment window. This is not merely a technical con-
venience; it is what makes ambiguity realistic rather than vacuous. Many
2026 deployments involve continuous service: a model is selected, integrated,
and then run for days or weeks with monitoring and periodic audits. Swap-
ping policies per request is often infeasible because of engineering overhead,
latency constraints, compliance logging, or the need for consistent user ex-
perience. Even when A/B testing is feasible, it is typically controlled by the
platform (the principal) rather than the provider. Hence, it is natural to
treat the agent’s choice as a pure commitment within a window, while out-
comes are realized repeatedly and aggregated. In our setting, ambiguity is
also persistent within the window: the principal’s privately selected contract
applies to all rounds in that window, mirroring “hidden benchmarks” that
remain fixed for a quarter, a release cycle, or an audit period.

This windowed commitment has two conceptual implications. First, it
clarifies why benchmark secrecy can be credible: the principal can precommit
to a family of scoring rules (for governance or transparency reasons) while
still keeping the realized rule hidden to protect the integrity of the evaluation.
Second, it separates two forms of robustness. Repetition within the window
reduces statistical noise about outcome frequencies, but it does not eliminate
strategic uncertainty about the mapping from outcomes to payments. In
other words, even with abundant data, the agent may still face ambiguity
about how the principal will translate observed outcomes into compensation
or acceptance.

Our central theme is that ambiguity can be beneficial precisely because it
lets the principal “target” different gaming behaviors with different worst-case
scoring rules while holding fixed the expected payment for the desired action.
Intuitively, a single deterministic monotone payment schedule may be forced
into a compromise: if it punishes one deviation, it may inadvertently reward
another. By committing to a small menu of monotone rules and selecting
one privately, the principal can ensure that each undesirable deviation faces
at least one rule under which it performs poorly, and an ambiguity-averse
agent internalizes this through worst-case reasoning. At the same time, the
principal can maintain consistency for the intended action so that ambiguity
does not create unnecessary risk premia in equilibrium.

We also emphasize what the model does *not* claim. Ambiguity is not
a free lunch if agents can finely hedge by mixing across actions within the
window, if they are not meaningfully ambiguity-averse, or if the principal
cannot credibly commit to the announced set of rules. Moreover, ambiguity
is not a substitute for measurement quality; it is a tool for incentive align-
ment when measurement is necessarily imperfect. Finally, our analysis uses
stylized outcome bins and i.i.d. realizations to highlight the incentive chan-
nel; extensions to richer feedback processes are important but orthogonal to
the mechanism we identify.
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With this motivation in place, we next situate our contribution relative to
work on ambiguous contracts, strategic evaluation/classification, inspection-
based contracting, and the appeal of simple (often monotone or threshold)
payment rules.

2 2. Related work: ambiguous contracts (Econo-
metrica 2024), strategic classification/evaluation
schemes, contracts with inspections, and robust-
ness/learnability of simple contracts.

A first point of contact is the recent literature on ambiguous contracts, for-
malizing environments in which the principal can commit to a set of con-
tingent transfers while the agent evaluates actions using a worst-case (or
otherwise ambiguity-sensitive) criterion. The Econometrica (2024) treat-
ment is especially close in spirit: it makes precise how “menus of contracts”
can be used as an incentive device even when the realized transfer rule is
not publicly observed. Our contribution is complementary along three di-
mensions that matter for evaluation practice. First, we embed ambiguity
in a repeated, windowed interaction in which the mapping from outcomes
to transfers is fixed within a window but hidden across the window, reflect-
ing the operational reality of internal benchmarks and audit cycles. Second,
we focus on an ordered outcome space and (optionally) monotone trans-
fers, which connects the theory to threshold- and rubric-based scoring rules
widely used in procurement, safety audits, and model leaderboards. Third,
we emphasize implementability and computation: rather than treating am-
biguity as a general preference perturbation, we characterize how a principal
can exploit ambiguity to “cover” multiple deviations using a small support of
simple contracts, and we provide a polynomial-time procedure for selecting
such a support.

A second strand relates to strategic classification and strategic evaluation
(including strategic prediction, performative prediction, and gaming of met-
rics). This literature typically takes the evaluation rule as a deterministic
and publicly known mapping from observable features to decisions or scores,
then studies how a strategic agent responds by manipulating inputs, selecting
effort, or shifting distributions. The central insight is that evaluation rules
create incentives that feed back into data generation, so naive “optimize the
metric” policies can lead to equilibrium distortions. Our perspective is not to
endogenize features or retrain a classifier, but to ask what a principal can do
when she is constrained to use outcome-contingent scores/payments and can-
not perfectly observe the agent’s action. In this respect, our model isolates
a distinct lever: commitment to structured ambiguity over evaluation rules.
Where strategic classification often proposes robustness to manipulation via
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regularization, causal features, or equilibrium-aware learning, we study how
a principal can discipline manipulation by ensuring that each gaming direc-
tion is penalized under at least one plausible rule in the announced set. This
lens is particularly natural in settings where publishing the full scoring rule
is itself known to invite overfitting, but governance constraints require the
principal to precommit to a class of admissible procedures.

A third connection is to classic and modern work on contracts with in-
spections, auditing, and monitoring. In those models, the principal may
probabilistically inspect, verify outcomes, or impose penalties conditional
on an audit signal, thereby creating incentives under limited observability.
The shared mechanism is that hidden or randomized enforcement can deter
opportunistic behavior. Our ambiguity device is conceptually similar—both
introduce uncertainty from the agent’s perspective—but it differs in what is
being randomized. Inspection models typically randomize information acqui-
sition or the probability of detection, whereas we randomize within a family
of payment mappings from already-observed outcomes to transfers. This dis-
tinction matters in many digital evaluation environments: the principal may
reliably observe outcome bins (scores, pass/fail categories, safety incidents)
but may not be able to credibly commit to intensive, individualized inspec-
tions; instead, she can credibly commit to a family of scoring rules and keep
the realized rule private. The windowed structure also parallels “inspection
regimes” that remain fixed for a compliance period: the agent learns that
the principal has selected one regime from a known set, but cannot condi-
tion behavior on the realized regime because switching actions is costly or
infeasible midstream.

Finally, we connect to work on the robustness and simplicity of opti-
mal contracts and mechanisms. A recurring theme in contract theory is
that simple transfer schemes—threshold bonuses, piece rates, or monotone
schedules—often suffice either exactly (via extreme point arguments) or ap-
proximately (via approximation and learning guarantees), especially when
outcomes admit an order and likelihood ratios satisfy regularity conditions.
In parallel, recent theoretical computer science and learning-theoretic work
studies when simple scoring rules are more learnable, more transparent, or
less vulnerable to manipulation than complex ones, sometimes formalizing
a tradeoff between expressiveness and robustness. Our results speak to this
tradeoff in a distinctive way: ambiguity can expand what is implementable
even when each element of the ambiguous set is itself extremely simple (e.g.,
a single-outcome payment or a step/threshold contract). Thus, rather than
viewing simplicity as an exogenous restriction that reduces performance, we
show that randomization across simple rules—implemented as ambiguity
from the agent’s perspective—can recover incentive power that a single de-
terministic rule lacks. At the same time, our analysis highlights a limitation
that is also familiar in the learnability literature: if the agent can effectively
hedge (e.g., by mixing across behaviors at fine time scales), then the advan-
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tage of ambiguity collapses, echoing the broader point that robustness tools
are sensitive to the agent’s feasible response set.

Taken together, these literatures motivate a model in which the princi-
pal’s commitment power lies not in perfect measurement or full transparency,
but in committing to a constrained family of evaluation rules and controlling
what is revealed when. We now formalize this as a windowed principal–agent
problem with ordered outcomes, limited liability, and an ambiguity-averse
agent who evaluates each action by its worst-case expected payment within
the announced set.

3 3. Model: windowed ambiguous evaluation, de-
ployment commitment, ambiguity-averse agent,
monotone evaluation constraint.

We study a principal–agent environment in which evaluation and payment
are jointly determined by a windowed procedure and by the principal’s com-
mitment to structured ambiguity over that procedure. The motivating inter-
pretation is a platform or evaluator (the principal) running periodic bench-
mark windows (audit cycles, leaderboard periods, procurement trials) during
which a provider (the agent) must deploy a single model or policy and can-
not costlessly revise it midstream. The principal observes coarse, ordered
outcome categories (metric bins) and can commit to pay as a function of the
realized bin, but does not wish—or is not allowed—to fully reveal the exact
scoring rule used within the window.

Actions, outcomes, and ordering. The agent chooses an action (a de-
ployed model/policy) from a finite set A = {1, . . . , n}. Outcomes lie in an
ordered set Ω = {1, . . . ,m}, where larger indices correspond to better ob-
servable performance according to the principal’s reporting standard (e.g.,
higher accuracy tier, lower incident-severity tier recoded so that higher is
better, “pass” levels in a rubric). Conditional on action i, each round’s out-
come j ∈ Ω is drawn i.i.d. from a distribution qi = (qi1, . . . , qim). The i.i.d.
assumption is a reduced-form way to capture a stable deployment environ-
ment within a window: the agent’s action is held fixed, and the principal
observes repeated, comparable evaluations.

The principal derives per-round reward rj from outcome j, with rj ex-
ogenous and commonly known (we can normalize rj ∈ [0, 1] without loss for
the comparative statics we emphasize). For action i, the principal’s expected
per-round reward is

Ri =

m∑
j=1

qijrj .
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Transfers and limited liability. A (deterministic) evaluation/payment
rule is a nonnegative transfer vector t = (t1, . . . , tm) ∈ Rm

+ , where tj is the
payment made when the realized outcome is j. Limited liability (tj ≥ 0)
captures that evaluators typically cannot impose fines on providers, only
withhold payments or bonuses. Given action i and contract t, the agent’s
expected per-round payment is

Ti(t) =
m∑
j=1

qijtj ,

and the agent’s per-round utility is Ti(t)− ci, where ci is the (known) cost of
deploying action i (development, compute, compliance burden, or foregone
alternative revenue).

Because outcomes are ordered, we will often (optionally) restrict atten-
tion to monotone transfers:

t ∈ M ⇐⇒ t1 ≤ t2 ≤ · · · ≤ tm.

This captures evaluation policies where “better observed performance cannot
be paid less,” as in threshold bonuses, rubric grading, and monotone score-
to-payment mappings used for governance reasons.

Deployment windows and commitment within a window. Interac-
tion occurs over a window of length L ≥ 1. Within a window the agent
must commit to a single pure action i ∈ A and cannot switch actions across
rounds. This constraint is central: it corresponds to operational frictions (in-
tegration costs, model update policies, approval gates) and makes a window
resemble a single deployment decision followed by repeated measurement.
We later contrast this with a setting in which the agent can effectively mix
across actions at a fine time scale (e.g., randomized routing or per-instance
model switching), which will sharply change the value of ambiguity.

Ambiguous evaluation (menus of contracts). Rather than commit-
ting to a single t, the principal announces an ambiguous contract (or eval-
uation menu) τ = {t(1), . . . , t(K)}, a finite set of feasible transfer vectors
(typically τ ⊆ M under monotonicity). The principal commits ex ante that,
for the entire window, she will privately select one contract t ∈ τ and use
it consistently on every round. The agent observes the announced set τ but
does not observe which t is selected, and—because of the pure-action com-
mitment—cannot condition behavior on that private realization. Practically,
one can think of τ as a publicly disclosed family of admissible scoring rules,
with the realized rule held back (or revealed only after the window) to reduce
overfitting and gaming.
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Ambiguity aversion and best responses. We model the agent as ambi-
guity averse in the max–min sense: upon seeing τ , the agent evaluates action
i by its worst-case expected payment over t ∈ τ . Since payoffs add over L
i.i.d. rounds and the same i and t apply throughout the window, the agent’s
window utility is

UA(i | τ) = L ·
(
min
t∈τ

Ti(t)− ci

)
,

and the agent chooses a best response

i∗(τ) ∈ argmax
i∈A

min
t∈τ

(
Ti(t)− ci

)
.

Participation (individual rationality) requires UA(i
∗(τ) | τ) ≥ 0, equivalently

mint∈τ Ti∗(τ)(t) ≥ ci∗(τ). We interpret this as an outside option normalized
to zero and emphasize that ambiguity here disciplines incentives only insofar
as the agent internalizes the worst-case contract in the announced set.

Principal payoff and observability. The principal observes the realized
outcome sequence (jℓ)

L
ℓ=1 and knows which t ∈ τ she selected, but does not

observe the agent’s action. Her expected window payoff, given the induced
action i∗(τ) and chosen t, is

UP (τ ; t) = L ·
(
Ri∗(τ) − Ti∗(τ)(t)

)
.

A key design consideration (made explicit later) is that, to speak unam-
biguously about “the” payoff from τ , the principal may restrict attention to
ambiguous sets where the implemented action’s expected payment is consis-
tent across t ∈ τ .

This model isolates the tradeoff we care about in evaluation practice:
the principal can commit to a constrained class of outcome-contingent rules
(often monotone and simple), yet by retaining controlled ambiguity she may
alter incentives without changing what is observable. In the next section
we show that, under the i.i.d. window structure, the windowed problem re-
duces to a scaled one-shot contracting problem, which lets us map evaluation
rules directly to standard contract objects and carry over implementability
arguments.

Baseline equivalence: the windowed problem is a scaled one-shot
problem. Although our motivating environments are explicitly dynamic—
a benchmark window contains L evaluations—the strategic object is funda-
mentally static under our two commitment assumptions: (i) the agent must
choose a single pure action i for the entire window, and (ii) the principal pri-
vately selects a single contract t ∈ τ and applies it throughout the window.
With i.i.d. outcomes conditional on i, both parties’ window utilities become
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linear in L, and the incentive constraints reduce to the familiar one-shot
max–min constraints.

Fix an ambiguous set τ and an action i. Let j1, . . . , jL ∼ qi i.i.d. denote
the realized outcome sequence. Because the same t is applied in every round,
the agent’s realized total transfer under t is

∑L
ℓ=1 tjℓ , whose expectation is

E
[ L∑
ℓ=1

tjℓ

∣∣∣ i, t] =

L∑
ℓ=1

m∑
j=1

qijtj = L · Ti(t).

Since the agent evaluates τ via a worst case over t ∈ τ , his expected window
payoff is

UA(i | τ) = min
t∈τ

(
L · Ti(t)

)
− L · ci = L ·

(
min
t∈τ

Ti(t)− ci

)
.

Therefore, comparing two actions i and i′ under the same τ is identical in
the windowed and one-shot formulations: multiplying all payoffs by L does
not change the argmax. Formally,

i∗(τ) ∈ argmax
i∈A

min
t∈τ

(
Ti(t)− ci

)
⇐⇒ i∗(τ) ∈ argmax

i∈A
UA(i | τ).

The participation condition similarly collapses to its one-shot version:

UA(i
∗(τ) | τ) ≥ 0 ⇐⇒ min

t∈τ
Ti∗(τ)(t) ≥ ci∗(τ).

Thus, the window length L scales levels (total dollars and total surplus) but
not comparisons (which actions are optimal, and which constraints bind).

Principal objective under scaling (and why we separate consis-
tency). The same linearity holds for the principal’s reward and payments.
Under action i, expected total reward over the window is L ·Ri and expected
total payment under t is L · Ti(t), so

UP (τ ; t) = L ·
(
Ri∗(τ) − Ti∗(τ)(t)

)
.

From the standpoint of choosing the menu τ , this immediately implies a
scaling lemma: maximizing principal payoff in the windowed model is equiv-
alent to maximizing the per-round objective Ri∗(τ)−Ti∗(τ)(t), since L is just
a positive multiplicative factor.

One subtlety is that the principal’s expected payoff depends on the pri-
vately selected t ∈ τ unless we impose an additional tie-down. In applica-
tions, we want τ to be interpreted as a publicly committed evaluation policy
rather than a vague promise whose realized stringency is discretionary. This
is what motivates our consistency requirement: for the implemented action
i∗(τ), the expected payment is the same across all t ∈ τ , i.e.,

Ti∗(τ)(t) = Ti∗(τ)(t
′) ∀ t, t′ ∈ τ.
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Under consistency, the principal’s payoff is well-defined as a function of the
set τ alone (not of an unspecified selection rule), and the scaling equivalence
becomes clean: the optimal τ in the window is exactly the optimal τ in the
one-shot problem, with payoffs multiplied by L.

Mapping evaluation rules to contracts. This reduction is useful be-
cause it lets us translate a broad class of practical evaluation procedures
into standard contract language. An evaluation rule in our setting is any
commitment that maps each realized outcome bin j ∈ Ω to a nonnegative
payment tj , potentially subject to monotonicity t1 ≤ · · · ≤ tm. Once we
adopt i.i.d. outcomes and within-window commitment, such a rule is fully
summarized by the vector t ∈ Rm

+ , exactly as in a one-shot principal–agent
model with discrete outcomes.

Ambiguous evaluation then corresponds to a menu of such rules τ =
{t(1), . . . , t(K)}, with the agent responding to τ via worst-case expected pay-
ment. In operational terms, τ captures a family of admissible scoring rubrics
(or audit tests) that are publicly specified, while the realized rubric is held
fixed but unrevealed during the window. The scaling equivalence tells us
that the only economically relevant object is the collection of per-round ex-
pected payments {Ti(t) : i ∈ A, t ∈ τ}: the distribution of the sequence
(jℓ)

L
ℓ=1 matters only through its mean effect on payments and rewards when

actions cannot be adjusted midstream.
Two clarifications delimit the scope of this equivalence. First, it relies

on separability of transfers across rounds: we pay tjℓ each round rather than
a bonus based on the empirical distribution of outcomes over the entire
window. Allowing truly history-dependent transfers would expand the con-
tract space (outcomes become multinomial counts), and would be a different
mechanism-design problem. Second, it relies on the pure-action commitment
within a window: if the agent could randomize or switch actions across
rounds, the window would no longer be strategically equivalent to one shot.
We exploit this contrast later; here, the key point is that under our baseline
frictions, repeated evaluation is simply a scaling device, and ambiguity op-
erates through one-shot max–min incentives applied to per-round outcome
bins.

Main separation: ambiguity can strictly improve welfare even un-
der monotone evaluation. We now isolate the economic force behind
our strict-gain result with a fully explicit instance in the smallest nontriv-
ial ordered setting (m = 3 outcome bins). The intuition is that different
“gaming” actions load on different parts of the outcome distribution. Any
single monotone payment rule must trade off how strongly it rewards the
middle bin versus the top bin, whereas an ambiguous monotone evaluation
can make each deviation face a different worst-case rule while keeping the
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target action’s expected payment fixed (consistency).

An explicit n = 4, m = 3 instance. Let outcomes be ordered Ω =
{1, 2, 3}, and restrict attention to monotone contracts t = (t1, t2, t3) with
0 ≤ t1 ≤ t2 ≤ t3. Consider four actions with outcome distributions

q1 = (0.3, 0.5, 0.2), q2 = (0.7, 0, 0.3), q3 = (0.7, 0.25, 0.05), q4 = (1, 0, 0),

and costs

c1 = 0.18, c2 = 0.08, c3 = 0.03, c4 = 0.

Let the principal’s per-round reward be increasing but coarse,

r1 = 0, r2 = 1, r3 = 1,

so that rewards depend only on “clearing the threshold” j ≥ 2. Then

R1 = Pr
q1
[j ≥ 2] = 0.7, R2 = 0.3, R3 = 0.3, R4 = 0.

Thus, from the principal’s perspective, action 1 is the uniquely valuable
action; actions 2 and 3 represent distinct ways of manipulating the evaluation
distribution while producing little true value.

A monotone ambiguous evaluation that implements i = 1. Consider
the ambiguous monotone set τ = {t(H), t(M)} with

t(H) = (0, 0, 1.05) (top-bin bonus), t(M) = (0, 0.3, 0.3) (threshold/step payment).

Both are monotone, and they satisfy consistency for action 1:

T1(t
(H)) = 0.2 · 1.05 = 0.21 and T1(t

(M)) = (0.5 + 0.2) · 0.3 = 0.21.

Therefore, under τ the agent’s worst-case expected payments are

min
t∈τ

T1(t) = 0.21, min
t∈τ

T2(t) = min{0.315, 0.09} = 0.09, min
t∈τ

T3(t) = min{0.0525, 0.09} = 0.0525, min
t∈τ

T4(t) = 0.

Subtracting costs, the worst-case utilities are

0.21−0.18 = 0.03, 0.09−0.08 = 0.01, 0.0525−0.03 = 0.0225, 0−0 = 0,

so the ambiguity-averse agent strictly prefers i = 1 and participates. The
principal’s per-round payoff under τ is

UP (τ) = R1 − T1(t)︸ ︷︷ ︸
=0.21

= 0.7− 0.21 = 0.49,

well-defined because of consistency.
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Why no deterministic monotone evaluation can match this payoff.
For any monotone t = (t1, t2, t3), write it in “increment” form:

t1 = α, t2 = α+ a, t3 = α+ a+ b, α, a, b ≥ 0.

Then Ti(t) = α + aPrqi [j ≥ 2] + bPrqi [j = 3]. Crucially, α shifts all ac-
tions’ expected payments by the same constant, so it cannot help incentive
compatibility; it only increases transfers. Hence, any optimal deterministic
monotone contract sets α = 0.

With α = 0, the IC constraints for inducing i = 1 against deviations 2
and 3 become

0.7a+ 0.2b− c1 ≥ 0.3a+ 0.3b− c2 ⇐⇒ 0.4a− 0.1b ≥ 0.10,

0.7a+ 0.2b− c1 ≥ 0.3a+ 0.05b− c3 ⇐⇒ 0.4a+ 0.15b ≥ 0.15,

together with IR 0.7a + 0.2b ≥ c1 = 0.18. Minimizing the implemented
action’s expected payment T1 = 0.7a + 0.2b subject to these inequalities
yields an optimum at b = 0 and a = 0.375, giving

min{T1(t) : t ∈ M implements 1} = 0.7 · 0.375 = 0.2625.

Therefore, the best deterministic monotone payoff from implementing action
1 is at most

0.7− 0.2625 = 0.4375 < 0.49 = UP (τ).

Moreover, implementing any other action i ̸= 1 yields per-round payoff at
most Ri−ci ≤ 0.22, so the deterministic optimal payoff is also strictly below
0.49.

Interpretation as anti-gaming. Action 2 “chases the top bin” (it is paid
heavily under t(H)) but is disciplined by the threshold contract t(M) in the
menu; action 3 “chases the middle bin” (it is paid under t(M)) but is disci-
plined by t(H), which effectively ignores the middle bin. Deterministic mono-
tone evaluation cannot simultaneously be stringent on both margins without
raising the target action’s expected payment; ambiguity-with-commitment
achieves exactly that separation.

Structure: why small support and extreme-point contracts suffice.
The explicit construction above is not a knife-edge artifact. It reflects a
general geometric feature of the principal’s design problem under max–min
preferences: to implement a target action i, the principal only needs (i)
consistency for i—all contracts in the support induce the same expected
transfer Ti(t)—and (ii) at least one contract that serves as a worst case for
each relevant deviation i′ ̸= i. Once we view τ as a device for assigning
different deviations to different “most punitive” contracts while keeping i’s
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expected payment fixed, it becomes natural that the support can be small,
and that we can restrict attention to extreme-point contracts.

Formally, fix a candidate implemented action i and let T̄ denote the
common value of Ti(t) over t ∈ τ . Under consistency, the agent evaluates
action i as T̄ − ci, while each deviation i′ is evaluated as mint∈τ Ti′(t)− ci′ .
Hence, implementation reduces to finding the smallest T̄ such that, for every
i′ ̸= i,

min
t∈τ

Ti′(t) ≤ T̄ − ci + ci′ and T̄ ≥ ci (IR).

The principal’s objective for a fixed i is then to minimize T̄ (to maximize
Ri − T̄ ), subject to being able to “push down” each deviation’s worst-case
expected payment.

Small-support theorem (general) and SOP reduction. A key sim-
plification is that we can assume each t ∈ τ is a single-outcome payment
(SOP): t = γej for some outcome j and scalar γ ≥ 0, where ej pays only
on outcome j. Intuitively, if a contract is chosen to be the worst case for a
deviation i′, then (holding Ti(t) = T̄ fixed) we should concentrate payment
on outcomes that are relatively more likely under i than under i′. Concen-
tration is exactly what SOP contracts do; they are extreme points of the
limited-liability polytope and therefore minimize linear objectives subject to
linear constraints.

This yields the following structural statement: there exists an optimal
ambiguous contract τ⋆ with

|τ⋆| ≤ min{m, n− 1},

such that every t ∈ τ⋆ is SOP. The n − 1 bound reflects that, in the worst
case, we need at most one “covering” contract per deviation; the m bound
reflects that SOP contracts come in only m distinct outcome locations, so
additional contracts are redundant. Importantly, this is an existence result:
optimal menus may admit multiple representations, but there is always one
with small support and extreme-point form.

Monotone outcomes: step contracts replace SOP. When we impose
monotonicity t ∈ M (i.e., t1 ≤ · · · ≤ tm), SOP contracts are typically
infeasible. The correct replacement is a step (threshold) contract: pick a
cutoff k ∈ {1, . . . ,m} and a level γ ≥ 0, and pay

t
(k)
j =

{
0, j < k,

γ, j ≥ k.

Step contracts are the relevant extreme points of the monotone, limited-
liability set once we mod out by dominated “smoothing” that raises pay-
ments in low outcomes without improving incentives. Accordingly, the same
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support bound continues to hold, with “SOP” replaced by “step,” and with
the economic interpretation that ambiguity chooses among a small number
of thresholds so that different deviations fear different thresholds.

Efficient computation: minimizing the consistent transfer for each
candidate action. These structural reductions lead directly to a fast al-
gorithm. Fix i and a target consistent expected payment T̄ . Consider a
single SOP contract t = γej that satisfies Ti(t) = T̄ . This forces γ = T̄ /qij
(assuming qij > 0), and induces deviation i′ to receive

Ti′(t) = qi′jγ = T̄ ·
qi′j
qij

.

Thus, among SOP contracts that keep i at T̄ , the minimal payment to de-
viation i′ is

min
t:Ti(t)=T̄

Ti′(t) = T̄ · min
j∈Ω: qij>0

qi′j
qij

.

With ambiguity, we can include (at most) one SOP contract that attains this
minimum for each deviation i′, without affecting consistency for i. Plugging
this expression into the IC inequalities yields closed-form lower bounds on
T̄ ; taking the maximum over deviations (and IR) gives the minimal feasible
T̄ ⋆
i . The principal then computes, for each i,

Πi = Ri − T̄ ⋆
i ,

and selects the action (and corresponding menu) maximizing Πi.
Under monotonicity, the same logic applies with SOP replaced by step

contracts. For a threshold k, the constraint Ti(t
(k)) = T̄ pins down γ =

T̄ /Prqi [j ≥ k], and deviation i′ receives T̄ · Prqi′ [j ≥ k]/Prqi [j ≥ k]. We
can therefore evaluate each deviation’s “most punitive threshold” by scan-
ning cutoffs and comparing tail-probability ratios. Precomputing all tail
probabilities takes O(nm), and checking all (i, i′, k) combinations yields an
O(nm2)-type routine overall (with small constants), after which we again
pick the best i.

Regularity sharpening: two thresholds under ordered-likelihood
conditions. If outcome order is informative in the sense of MLRP/FOSD-
style single-crossing (so likelihood ratios or tail ratios move monotonically
in the cutoff), then the minimizing threshold for each deviation is extremal:
deviations are optimally punished either by a “high” threshold emphasizing
top outcomes or by a “low” threshold emphasizing broad passing. In such
environments, the set of binding deviations can be covered by at most two
step contracts, implying the existence of an optimal monotone ambiguous
contract with |τ⋆| ≤ 2. Practically, this says that when the metric is well-
ordered, the platform does not need a complicated random evaluation rule:
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two transparently interpretable thresholds can suffice to obtain essentially
all the gains from ambiguity-with-commitment.

We view these results as clarifying both power and limits: ambiguity ex-
pands implementability by letting the principal “separate” deviations across
a small menu, but the benefit is disciplined by extreme-point structure (sim-
ple contracts) and by efficient computation (no combinatorial explosion in
K).

When ambiguity fails: hedging within the window. All of the gains
from ambiguity-with-commitment rely on a knife-edge institutional feature:
within a deployment window, the agent must effectively commit to a single
action i ∈ A. If instead the agent can hedge by mixing across actions in-
side the window—for instance by routing different user requests to different
models, running an ensemble, or randomizing its policy per round—then the
principal loses the ability to make “different deviations fear different worst
cases.” In that environment, ambiguity becomes payoff-equivalent to a de-
terministic contract.

Formally, suppose that in stage (2) the agent can choose any mixed action
p ∈ ∆(A), interpreted as randomizing i.i.d. across the L rounds (or equiv-
alently selecting a randomized policy that induces the mixture distribution
over outcomes). Let qp ≡

∑
i piqi denote the induced outcome distribution,

and assume costs aggregate linearly as c(p) ≡
∑

i pici (the natural bench-
mark when each round uses one action with its per-round cost). Then under
an ambiguous contract τ the agent’s (per-round) objective becomes

max
p∈∆(A)

min
t∈τ

(
Tp(t)− c(p)

)
, where Tp(t) =

∑
j

(qp)jtj =
∑
i

piTi(t).

The key observation is that Tp(t)−c(p) is bilinear in (p, t), and the “min over
t” is taken over a finite set. Because the agent now chooses from a convex
set ∆(A), standard minimax logic applies: if we let co(τ) denote the convex
hull of τ , then

max
p∈∆(A)

min
t∈τ

(
Tp(t)−c(p)

)
= max

p∈∆(A)
min

t∈co(τ)

(
Tp(t)−c(p)

)
= min

t∈co(τ)
max

p∈∆(A)

(
Tp(t)−c(p)

)
,

where the last equality follows from Sion’s minimax theorem (compact con-
vex domains; continuity; linearity in each argument). Finally, since maxp∈∆(A)(Tp(t)−
c(p)) is linear in t, the minimizer over co(τ) is attained at an extreme point,
i.e., at some t ∈ τ . In words: once the agent can mix, the principal’s “menu”
is effectively replaced by its convex hull, and the worst-case evaluation se-
lects a single contract anyway. Hence the principal cannot do better than
what she could achieve by posting that single contract deterministically.

The economic intuition mirrors the formal argument. Ambiguity helps
when each deviation i′ ̸= i can be assigned a different punitive contract t(k)

16



(while the implemented i sees the same expected transfer under all t(k)).
Mixing lets the agent pick p that hedges across which contract is realized:
instead of being exposed to a deviation-specific “most punitive” contract, the
agent can choose a mixture that performs acceptably under every contract
in τ , thereby collapsing the principal’s ability to differentially discourage
deviations. Put differently, the principal’s use of ambiguity creates a form
of nonconvexity in the agent’s effective choice problem under pure actions;
allowing p ∈ ∆(A) convexifies the problem and restores a saddle point.

Limited mixing: why the gains shrink, and what remains. In many
applications, the relevant question is not “pure commitment versus full mix-
ing,” but the size of the agent’s hedging technology. Two practically mo-
tivated relaxations illustrate the general message that ambiguity gains are
fragile to hedging, but need not disappear immediately.

First, suppose the agent can mostly commit, in the sense that it must
place at least 1− δ probability on some single action:

∆δ(A) ≡
{
p ∈ ∆(A) : max

i
pi ≥ 1− δ

}
,

with δ ∈ [0, 1] capturing mixing capacity (e.g., operational constraints, gov-
ernance requirements, or audit risk that limits traffic-splitting). As δ in-
creases, the agent can better insure itself against the worst-case contract in
τ , so the principal’s optimal value under ambiguity is weakly decreasing in
δ, and converges to the deterministic optimum at δ = 1. Moreover, because
both rewards and transfers are linear in p, the principal’s incremental benefit
from ambiguity is (at least) continuous in δ: small amounts of hedging can-
not create large discontinuous jumps in payoffs. This is the sense in which
ambiguity is most powerful precisely when the deployment environment en-
forces near-pure action commitment.

Second, suppose the agent can adapt within the window by switching
actions across rounds but pays a per-switch friction (engineering cost, la-
tency, compliance burden). A simple reduced form is to augment costs
so that any nondegenerate mixture incurs an extra penalty κ > 0, i.e.,
c(p) =

∑
i pici + κ · 1{p not pure}. Then ambiguity can still matter when-

ever κ is large enough that the agent optimally chooses a pure action despite
the ability to hedge. Conversely, as κ ↓ 0 we recover the full-mixing bench-
mark and ambiguity again becomes redundant. This extension clarifies an
operational interpretation: ambiguity is valuable when “gaming” requires
a discrete switch to a different model or policy, not when the agent can
smoothly interpolate among behaviors at negligible cost.

Implementation takeaway. The design lesson is concrete. Ambiguity is
best understood as a commitment device that exploits the agent’s exposure
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to a single hidden evaluation rule during a window. If the platform can-
not prevent within-window hedging (ensembling, traffic-splitting, per-request
policy randomization), then ambiguous evaluation rules are unlikely to out-
perform well-chosen deterministic ones. Conversely, when the platform can
enforce one-model-per-window (through reproducibility constraints, signed
artifacts, logging, or auditability), the ambiguity gains analyzed above be-
come attainable rather than purely theoretical.

Partial ambiguity aversion (beyond max–min). Our baseline assumes
the agent evaluates an ambiguous contract τ via the worst-case transfer
mint∈τ Ti(t), which is the starkest form of ambiguity aversion. Many deploy-
ments, however, fall between max–min robustness and Bayesian averaging.
A simple interpolation is an α-max–min criterion: fix a reference distribu-
tion π over τ (e.g., the platform’s announced randomization device, or the
agent’s historical belief), and let the agent evaluate action i by

Uα
A(i | τ) = α ·min

t∈τ

(
Ti(t)− ci

)
+ (1− α) · Et∼π

[
Ti(t)− ci

]
, α ∈ [0, 1].

As α ↓ 0, the agent behaves more like a Bayesian expected-utility maximizer
over the hidden t; as α ↑ 1, we recover our model. The comparative static is
intuitive and general: holding fixed the pure-action commitment assumption,
the principal’s advantage from ambiguity is weakly increasing in α. Mechan-
ically, the principal’s design lever is to make each undesirable deviation i′ ̸= i
have some contract in τ that is especially unfavorable for it, while keeping
the implemented action’s expected transfer fixed across t ∈ τ (consistency).
When α < 1, that “bad” contract is discounted by (1 − α), so deterring a
deviation typically requires either (i) larger dispersion in payments across
contracts in the support (subject to limited liability and monotonicity), or
(ii) larger support size K so that each deviation is penalized more “often”
under π. In practice, this suggests a concrete operational implication: am-
biguity is most effective when the agent is institutionally required to plan
for worst-case evaluation (e.g., audits, compliance, or reputational downside)
rather than when it can treat evaluation as an average-case draw.

Drift across windows and learning about the evaluator. The win-
dowed model isolates a single deployment window of length L. In many
applications, the relevant environment is repeated, and both sides may face
nonstationarity. Two distinct “drifts” matter.

First, the mapping from actions to outcomes may drift: qi can change
across windows due to distribution shift, model updates, or user adaptation.
One role for ambiguity here is not strategic but robust : by selecting τ so that
the implemented action is one whose performance is less sensitive to which
t ∈ τ is used, the principal implicitly pushes the agent toward behaviors
that are stable across plausible evaluation realizations. In this sense, τ can
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be interpreted as a coarse description of “what the platform cares about,”
and robustness to that description can be desirable when the platform itself
anticipates drift in rj or in the mapping from outcomes to downstream value.

Second, the agent may learn across windows about the platform’s private
selection procedure. Even if τ is publicly announced, repeated interactions
can reveal which contracts are chosen more often, and realized payments
may partially identify t on outcomes that occur frequently. If the agent’s
behavior in later windows is driven by an inferred distribution π̂ over τ ,
then the designer’s commitment problem becomes dynamic: the platform
must decide whether to (i) commit to a stationary randomization over τ ,
making π common knowledge, or (ii) treat t as an internal policy that adapts
over time (which may erode credibility and, depending on the environment,
increase the agent’s incentive to “chase” the inferred evaluator). While we
do not model this repeated-game explicitly, the direction is clear: sustaining
the disciplining effect of ambiguity across windows requires either credible
commitment to the selection rule or periodic “refreshing” of τ so that learning
does not collapse the perceived ambiguity.

Multiple metrics as outcomes and the role of ordering. Ordered
outcomes Ω = {1, . . . ,m} are a reduced form for many real evaluations that
start from multiple metrics (accuracy, toxicity, latency, calibration, etc.).
One natural extension is to define each realized outcome as a multidimen-
sional metric vector, and then map it into an ordered bin j using a published
rubric (e.g., a weighted score, a Pareto ranking with tie-breaks, or a pass/fail
ladder). In this interpretation, monotone contracts t ∈ M are not merely a
technical restriction; they capture the institutional desire that “better” rubric
outcomes never receive lower payment.

Ambiguity then has a clean practical reading: rather than posting a
single fixed set of metric weights, the principal can announce a finite family
of acceptable rubrics (or thresholds) and privately commit to one for the
window. Different “gaming” actions often shift different metrics, so a single
deterministic weighting can be predictable and exploitable, whereas a small
set of rubrics can make any particular gaming direction risky. Our step-
contract structure under monotonicity corresponds exactly to thresholding
on an ordered aggregate score: the payment jumps when performance crosses
a particular standard, and ambiguity corresponds to uncertainty about which
standard (or which metric emphasis) will be applied.

Connections to hidden test sets and procurement practice. Finally,
the model helps formalize two widely used design patterns.

Hidden test sets are naturally modeled as ambiguity: selecting a secret
test distribution or a secret subset of items is equivalent to selecting a se-
cret evaluation rule t (more generally, a secret mapping from outcomes to
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transfers). The agent’s max–min response captures the engineering norm of
“assume the evaluator will catch the worst-case overfitting.” Our consistency
requirement parallels a common operational constraint: the platform wants
the target behavior to be rewarded similarly regardless of which hidden slice
is used, while overfitted or shortcut behaviors should be fragile to that choice.

In procurement and scoring auctions, buyers often evaluate bids using
multiple criteria with partially opaque weights, especially when they fear
tailoring or “proposal gaming.” In our language, the buyer posts τ as an
announced set of scoring rules and commits internally to one; the seller
chooses an action i (e.g., an effort/quality configuration) anticipating the
worst-case score within τ . The comparative static on ambiguity aversion is
again policy-relevant: ambiguity is most defensible when the procurement
environment plausibly induces worst-case thinking (e.g., audits, protests, or
ex post renegotiation risk). When vendors instead optimize for expected
scoring weights, the buyer may need either transparency (deterministic t) or
a genuinely randomized scoring rule with credible commitment, since “fake
ambiguity” will be learned and arbitraged over time.

Practical design guidance: when ambiguity helps and how to de-
ploy it. Our results point to a simple operational rule: ambiguity is valu-
able precisely when (i) the agent must make a discrete commitment for a
nontrivial horizon (a pure action within a window), and (ii) the principal
can write a small menu of evaluation rules whose worst-case effects differ
across potential deviations. In such settings, the principal should think less
in terms of “adding noise” and more in terms of covering deviations. Con-
cretely, starting from a candidate target action i, we can treat the design
problem as selecting a support τ = {t(1), . . . , t(K)} so that (a) the consis-
tency constraint pins down Ti(t

(k)) to a common level across k, while (b)
for each deviation i′ ̸= i there exists at least one k with a relatively low
Ti′(t

(k)). This “one bad contract per deviation” heuristic is exactly what the
small-support theorem formalizes, and it suggests a practical workflow: enu-
merate plausible gaming directions (candidate i′), then build step/threshold
contracts that are selectively punitive for each direction while keeping the
target’s expected transfer fixed.

Calibrating payments under limited liability and monotonicity.
Limited liability (tj ≥ 0) and monotonicity (t ∈ M) are not merely mathe-
matical conveniences; they are often compliance constraints. In such cases
we recommend designing within a low-dimensional family of step contracts
(e.g., one or two thresholds) and using consistency as a calibration condition
rather than an afterthought. A pragmatic approach is: choose a threshold
location (which outcome bins receive the “bonus”) and then scale the bonus
so that Ti(t) = ci+ε for a small rent ε ≥ 0. Once the target action’s expected
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payment is anchored, ambiguity can be introduced by varying which bins con-
stitute the threshold set across t ∈ τ (still respecting t ∈ M). This makes the
transfer rule interpretable to stakeholders (“pass the bar, get paid”), while
still making any particular form of gaming fragile to which bar is used.

Commitment and verifiability of the private selection. Because am-
biguity is implemented through a private choice of t ∈ τ , credibility is cen-
tral. If the agent suspects ex post manipulation of the selected contract after
outcomes are realized, then the relevant model is no longer our committed
ambiguity environment. In deployments, we therefore view a verifiable com-
mitment device as part of the mechanism: e.g., a publicly auditable random
seed committed before the window, an internal control with documented ac-
cess logs, or even a cryptographic commitment to t that can be opened after
the window. Importantly, commitment need not mean revealing t during the
window; it only needs to ensure that the selection was fixed for the window
and not outcome-contingent. Without such safeguards, ambiguity risks col-
lapsing into discretionary enforcement, which may be both less effective for
incentives and harder to justify procedurally.

Choosing the window length and the action granularity. Although
payoffs scale with L, the disciplining logic depends on the action being fixed
over the window. This yields a design tension: longer windows increase the
stakes of any single action choice (and may make worst-case planning more
salient), but they also increase the value of adapting, retraining, or “trying a
little of everything.” If the platform’s environment or the agent’s pipeline nat-
urally induces frequent per-instance adaptation, then the principal should ex-
pect the “mixing kills ambiguity” force to bite, and should shift effort toward
deterministic evaluation rules or toward restricting within-window adapta-
tion (e.g., locking a model version, forbidding per-request model selection,
or auditing for mixture behavior). Put differently, ambiguous evaluation is a
complement to governance that enforces a meaningful notion of commitment.

Limits of the model as deployed mechanism design. Several assump-
tions deserve emphasis. First, we treat {qi}i∈A as known primitives, but in
practice they must be estimated, often under distribution shift and strategic
response. Errors in qi can break consistency (the target action may no longer
have equal expected transfers across t ∈ τ) and can inadvertently subsidize
deviations. Second, we abstract from outcome manipulation and measure-
ment error: if the agent can influence the mapping from behavior to outcome
bin j, then the designer must jointly model the evaluation pipeline and the
action. Third, we treat the action set A as finite and coarse; when actions are
high-dimensional (continuous model choices), the relevant “deviations” may
be best represented by local perturbations, and the finite-support bounds
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become approximations rather than exact statements.

Open questions. Three directions seem especially important. (i) Robust-
ness to estimation and misspecification: can we characterize ambiguous con-
tracts that remain approximately incentive compatible when qi lies in an
uncertainty set, so that both the agent and the principal face ambiguity? (ii)
Dynamics and reputational constraints: in repeated interaction, how does the
principal optimally trade off short-run deterrence against long-run credibil-
ity, especially if agents can statistically test which t ∈ τ is used? (iii) Multi-
agent and market settings: when multiple agents compete (leaderboards,
procurement) ambiguity may deter gaming but also increase perceived risk,
potentially reducing entry or shifting effort toward safer but lower-value ac-
tions. Understanding these equilibrium participation effects, and how they
interact with fairness or transparency constraints on t ∈ M , is essential for
translating the theoretical advantage of ambiguity into responsible policy.
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