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Abstract

Digital ad markets in 2026 are dominated by auto-bidding agents
that learn from platform feedback under budget and performance con-
straints. This paper studies a platform’s disclosure problem: what
information about rivals’ budgets and performance should be revealed
through transparency APIs without enabling tacit collusion among
learning algorithms. Motivated by AuctionNet-style environments (multi-
agent, budgeted repeated auctions with configurable observation logs),
we develop a clean repeated-auction model with a continuous disclo-
sure knob controlling (i) bidders’ ability to learn the market state (im-
proving bidding efficiency and potentially raising revenue) and (ii) the
quality of public monitoring (enabling stable bid suppression/market
division among adaptive agents). In the model, expected revenue
(and in some regions, welfare) is non-monotone in disclosure preci-
sion: moderate transparency improves competitive bidding by reduc-
ing learning frictions, while high transparency expands the set of sus-
tainable collusive outcomes under public monitoring, lowering rev-
enue and potentially distorting allocation. We complement the the-
ory with an AuctionNet-based empirical design that implements mul-
tiple disclosure regimes by altering the observation space/logs, and
we measure revenue, value, bid dispersion, spend volatility, and rota-
tion/concentration statistics to detect tacit collusion. The results pro-
vide a mechanism-design and governance rationale for selective, noisy,
or delayed transparency policies in modern ad auctions.

Table of Contents

1. 1. Introduction and policy motivation: transparency APIs, privacy
constraints, and algorithmic collusion risks in 2026 ad markets; why
AuctionNet-style benchmarks make the question empirically testable.

2. 2. Stylized model: repeated first-price auction with learning bidders,



10.

budgets (baseline nonbinding), and a platform-chosen disclosure preci-
sion controlling both state learning and monitoring.

3. Competitive benchmark (full-information): closed-form symmetric
equilibrium multiplier and revenue/welfare formulas; interpretation as
a pacing/shadow-price analog.

4. Learning-efficiency channel (low transparency): how limited feed-
back biases multiplier choice downward; comparative statics of revenue
and spend volatility with increasing signal precision.

5. Monitoring-collusion channel (high transparency): perfect public
equilibria with bid suppression/rotation; enforceability condition as a
function of monitoring precision and patience.

6. Main result: non-monotone platform objective and interior optimal
disclosure; comparative statics in market concentration, patience, and
heterogeneity; discussion of budgets/CPA as extensions.

7. AuctionNet empirical design: implement disclosure regimes by mod-
ifying observation/log APIs; standardize bidder algorithms (e.g., pac-
ing-+bandit, IQL/BC/DT variants); define collusion and stability met-
rics.

8. Experimental results: revenue—welfare curves by disclosure level;
evidence of rotation/market division vs benign learning; robustness
across auction formats (GSP vs FP) and slot structures.

9. Implications for platform governance and antitrust: recommended
disclosure designs (noise, delay, aggregation, anonymization) and au-
diting protocols.

10. Limitations and extensions: richer bidder heterogeneity, endoge-
nous entry, multi-slot externalities, privacy constraints; open problems.



1 Introduction and policy motivation

Digital advertising markets in 2026 are simultaneously more transparent and
more opaque than they were a few years ago. They are more transpar-
ent because large platforms increasingly expose advertisers to “transparency
APIs” and reporting dashboards that provide near-real-time information
about auction outcomes (prices, ranks, impression shares, pacing diagnos-
tics, and sometimes coarse signals of competitor behavior). Yet they are
also more opaque because these disclosures are now filtered through privacy
constraints, aggregation requirements, and noise-injection mechanisms that
limit what can be inferred about any particular user, query, or rival. This
tension is not merely a compliance detail. It changes the strategic envi-
ronment faced by advertisers that bid through adaptive algorithms, and it
changes the design problem faced by a platform that chooses what to reveal.

We motivate our analysis from a practical design question that platforms
and regulators now confront explicitly: How precise should public reporting
be? If the platform releases detailed, high-frequency auction statistics, ad-
vertisers can diagnose performance quickly, infer competitive conditions, and
adjust bids or pacing rules. These benefits are often framed as improving
“market efficiency” and reducing wasteful experimentation. However, the
same stream of public statistics can also function as a coordination device.
When bidders are algorithmic and repeated interaction is the norm, even
relatively coarse public signals can support tacit coordination: algorithms
can learn to avoid aggressive competition, punish deviations, and settle into
stable bid-suppression patterns. In this sense, transparency is not innocuous.
It can be an input into an equilibrium selection problem.

Two developments make this issue more salient in 2026. First, auto-
mated bidding has become the default for many large advertisers. Bids
are no longer set by a human manager reading weekly reports; they are
produced by learning systems that update continuously as new feedback ar-
rives. Second, reporting policies have become objects of governance. Privacy
laws and platform policies restrict user-level data access, while new market-
design rules (including interoperability and transparency mandates in some
jurisdictions) push in the opposite direction. The platform therefore faces
a constrained information-design problem: disclosures must be sufficiently
informative to support legitimate optimization and accountability, but not
so informative that they facilitate collusion or exclusion.

Our central claim is that this is a tradeoff, not a one-sided argument for
either maximal transparency or maximal opacity. On the one hand, low-
precision disclosure can create a learning friction. When advertisers do not
observe enough about auction outcomes, they may mis-calibrate competi-
tive pressure and systematically underbid relative to the one-shot bench-
mark. This can depress revenue and, depending on the environment, can
also reduce allocative efficiency by preventing high-value bidders from re-



liably winning. On the other hand, high-precision disclosure can create a
monitoring technology. If bidders can publicly infer whether rivals deviated
from a low-bid “understanding,” then punishments become credible and col-
lusion becomes sustainable in repeated interaction. The platform then risks
moving from a competitive outcome with noisy learning to a coordinated
outcome with suppressed prices and potentially distorted allocation.

It is important to emphasize that the collusion concern here is not the
cartoon of explicit human communication. Rather, it is the possibility that
repeated play plus shared observables allow algorithmic strategies to imple-
ment contingent responses that resemble classic collusive schemes. Public
reporting can provide the state variables required for such contingencies.
For example, if the platform publishes (even with delay) impression-share
breakdowns, average winning prices by segment, or noisy signals of the top
bid, then an algorithm can condition future aggressiveness on whether out-
comes are “consistent” with a cooperative path. Conversely, if the platform
only reveals each advertiser’s own outcomes (bandit-style feedback), then
deviations are harder to detect, punishments lose bite, and collusion is more
difficult to sustain.

Privacy constraints make the design problem subtler, not simpler. Mod-
ern disclosure regimes frequently rely on aggregation, anonymization, thresh-
olding, and noise (including variants of differential privacy). These tools are
often motivated by user privacy, but they also directly shape strategic in-
ference about the market. A reporting rule that adds Gaussian noise to a
price statistic, for instance, is naturally interpreted as reducing the preci-
sion of a public signal. From a market-design perspective, the key question
is not whether the signal is “private” in a legal sense, but how informative
it is about underlying competitive conditions and about rivals’ actions. In
particular, privacy-preserving noise can have two opposing economic effects:
it can slow down learning about demand and competition (reducing bids),
while also blunting the ability to monitor and enforce coordination (reducing
collusion).

We also stress that the platform’s objective is not purely theoretical.
Platforms routinely evaluate changes to reporting, auction rules, and bid-
ding products through controlled experiments, and they increasingly deploy
offline simulators and counterfactual estimators. This is where AuctionNet-
style benchmarking becomes useful. AuctionNet introduced a disciplined
way to compare bidder behavior to an internally computed auction-theoretic
benchmark, adjusting for performance objectives such as target-CPA via
multiplicative penalties. The broader methodological point is that we can
operationalize the gap between observed bidding and a normative compet-
itive benchmark by constructing a mapping from primitives (values, objec-
tives, constraints) to implied bids, and then measuring systematic devia-
tions. When a platform changes disclosure precision, we can observe (or
estimate) how quickly bidders’ multipliers converge toward the benchmark



and whether cross-advertiser outcomes become more predictable in a way
consistent with coordination. In this sense, the transparency question is
empirically testable: disclosure policy shifts observable sufficient statistics
(bid multipliers, spend shares, price distributions), and these shifts can be
compared to the competitive predictions.

This perspective suggests a concrete policy relevance. Regulators often
view transparency as a remedy for market power, while privacy regulators
view opacity as a remedy for surveillance and discrimination. Our framework
highlights a third dimension: transparency can itself create market power by
enabling coordination among bidders. The same API that helps a small
advertiser optimize can help a large advertiser stabilize a market-division
scheme. This does not imply that transparency should be abandoned; rather,
it implies that transparency should be engineered. The platform’s choice is
not binary (reveal everything versus reveal nothing). It includes the granu-
larity of statistics, the amount of noise, the delay, the degree of aggregation
across queries or audiences, and whether information is public or only pri-
vately visible to each bidder.

Finally, we acknowledge two limitations of any stylized approach. First,
real ad auctions are multi-slot, involve quality scores and reserve prices, and
interact with budget pacing and attribution systems. Second, the relevant
“values” are derived from downstream conversion uncertainty and hetero-
geneous objectives, not literal private valuations drawn from a simple dis-
tribution. We do not claim to replicate these details. Instead, we aim to
isolate a mechanism that is robust across institutional specifics: disclosure
precision affects both (i) how quickly adaptive bidders learn the competitive
environment and (ii) how easily bidders can monitor one another in repeated
interaction. These two channels point in opposite directions for revenue and,
in some cases, for welfare. The rest of the paper formalizes this tradeoff in
a repeated auction model that is intentionally minimal but rich enough to
accommodate both learning and collusion incentives.

2 Stylized model: repeated first-price auctions with
learning and disclosure

We study a deliberately minimal repeated-auction environment that isolates
the informational role of platform reporting. Time is discrete, with periods
t € {1,...,T}, and in each period a single indivisible impression (or “slot”)
is allocated via a first-price auction among N > 2 advertisers indexed by
i € {1,...,N}. The platform plays a dual role. First, it runs the auction
and implements the allocation and payment rule. Second, it chooses what
the market can publicly infer about competitive conditions and rivals’ actions
through a disclosure policy. Our goal is not to replicate the institutional de-
tails of modern ad exchanges, but to formalize a tradeoff that recurs across



them: disclosures that help advertisers learn and optimize can simultane-
ously provide the public monitoring needed to sustain tacit coordination.

Values and market scale. In each period ¢, advertiser ¢ privately observes
a value v;; for winning the slot. In the baseline specification, values are i.i.d.
across advertisers and time with

v;¢ ~ Unif]0, 6],

where the market scale (or competitiveness) parameter § > 0 is fixed over the
horizon but unknown to bidders[] This “unknown 6” device lets disclosure
affect behavior even when the per-period auction has a familiar benchmark
under full information. In particular, advertisers face a state-learning prob-
lem: how aggressive should they be, given uncertainty about the distribution
of opponents’ values and hence about the bid they must beat?

Bidding, budgets, and the stage auction. FEach period is a first-price
auction. Advertiser ¢ submits bid b;; > 0, the platform allocates the slot to
the highest bidder, and the winner pays its bid. Formally, letting x;; € {0,1}
denote the allocation indicator,

Tit = 1{bi,t = mjaX bj,t}a
with ties broken uniformly at random, and payments satisfy

Dit = Tithig.

Advertiser utility aggregates discounted per-period surplus,

T
Uz' = E[Z 5t_1(xi,tvi,t — pi,t):| ; o€ (O, 1).
t=1

We incorporate budgets to reflect a central operational constraint in ad mar-
kets: bids and spend are typically coupled through daily or campaign-level
caps. Let B;; denote advertiser i’s remaining budget at the start of period
t, with the feasibility constraint b;; < B;; and the law of motion

Biiy1 = Bit — Dig-

In the baseline analysis we treat budgets as nonbinding so as to focus on
the information-design mechanism rather than on dynamic shadow values of

'In applications,  can be interpreted as a reduced-form index of opportunity size and
competitive intensity: larger 6 implies both higher potential surplus and, in equilibrium,
higher clearing prices. The assumption that 6 is constant is a simplification that turns
learning into a stationary inference problem; in practice, one could allow 6; to drift and
interpret our disclosure parameter as governing how quickly bidders can track that drift.



money. Nevertheless, retaining the budget state in the notation is useful be-
cause (i) it clarifies what information is potentially disclosable (e.g., whether
rivals appear to be budget-constrained), and (ii) it anticipates extensions in
which pacing and budget management interact with learning about 6.

Adaptive bidding via multipliers. Rather than allow arbitrary bid
functions, we model algorithmic bidding as choosing a multiplier applied to
the current private value. Specifically, each bidder selects a;; € A C (0,1],
where A is a finite action grid, and submits

bit = 1V

This captures a common feature of automated bidding products: they expose
a small number of “aggressiveness” or “target” knobs, and the system maps
those choices into bids that scale with predicted value. The finite grid allows
us to treat bidders as running standard no-regret procedures (e.g., multi-
plicative weights or bandit variants) over a discrete action set. Importantly,
the informational environment determines what feedback these learning al-
gorithms receive, and hence how quickly multipliers adapt toward the best
response implied by the underlying auction.

Platform disclosure as precision. At stage 0 the platform commits to a
disclosure policy indexed by a scalar precision parameter x = 1/02. We treat
disclosure as producing public observables that are informative about (i) the
persistent state 6 and (ii) rivals’ realized behavior. The first component is a
public signal

st =0+, ne ~ N(0,0%),

so higher x corresponds to less noisy reporting about market scale. The
second component is an additional public monitoring statistic my, released
each period with informativeness governed by the same k. We intentionally
leave m; abstract, because many real reporting products fit the same role:
noisy top-bid estimates, noisy winning price, noisy rank/impression-share
information, or anonymized summaries of competitors’ bid multipliers. What
matters for our purposes is that higher precision makes it easier to infer
whether rivals behaved “as expected”.

Formally, bidder ¢’s information at time ¢ includes its private value and
budget and the history of public disclosures and own outcomes:

Tip = (vigs Bigt, S1:¢, Mty Ti1t—1, Diit—1) -

Low-precision regimes correspond to environments close to bandit feedback:
bidders mostly observe their own wins and payments, with little ability
to separate changes in 6 from idiosyncratic auction noise. High-precision
regimes move the game toward public monitoring, where realized outcomes
become common knowledge and can support contingent strategies.



Two channels: learning efficiency and collusive monitoring. The
model is designed to accommodate two opposing comparative statics in k.
First, disclosure can mitigate learning frictions. When bidders are uncertain
about 0 and receive only censored feedback, they may systematically under-
estimate the competitiveness of the auction and select multipliers that are
too low. We summarize this channel by positing that the average multiplier
induced by learning, a(k), increases with precision and approaches the full-
information best-response level as k grows. Second, disclosure can enable
coordination. When m; is sufficiently informative, bidders can condition
future play on whether observed outcomes match a low-bid “understanding,”
making punishments credible in a repeated game. We represent this channel
by a deviation-detection probability ¢(x), with ¢/(k) > 0, which enters the
incentive constraints for low-revenue perfect public equilibria.

We emphasize that these are not ad hoc effects but two sides of the same
informational object: a richer public history helps bidders both optimize
and police one another. The next sections use this structure to (i) establish
a competitive benchmark under full information, against which learning-
induced underbidding can be measured, and (ii) show how increases in public
precision can shift the equilibrium set toward collusive outcomes, implying
that platform revenue need not be monotone in transparency.

3 Competitive benchmark (full information): a closed-
form multiplier and its revenue—welfare implica-
tions

We begin from the polar case in which bidders know the market scale pa-
rameter 6 (equivalently, they know the value distribution) and there are
no learning frictions. In this benchmark the platform’s disclosure choice
is payoff-irrelevant for the one-shot stage auction: conditional on 6, the
period-t game is a standard independent private values first-price auction
with risk-neutral bidders. The reason to establish this case is conceptual
rather than empirical: it provides (i) a clean target toward which adaptive
multiplier policies converge when disclosure improves inference, and (ii) a
natural “high-transparency but non-collusive” upper envelope for revenue in
the regions of k where coordination is not sustainable.
Fix a period and suppress the time index. Let v; ~ Unif]0, 0] i.i.d. across
i. Consider a symmetric equilibrium in strictly increasing bids b(-) with
b(0) = 0. If bidder ¢ with value v deviates to bidding as if it had value 0, it
wins whenever its bid exceeds opponents’ bids, which under monotonicity is
equivalent to ¥ exceeding opponents’ values. Thus the winning probability
is o\ N—1
Pr(win | ) = F(5)N-1 = (%) :



and the expected payoff from bidding b(?) is

(v, 7) = (g)Nﬁl(v (@),

In a symmetric equilibrium, ¥ = v maximizes 7 (v, ¥) for each v. Differentiat-
ing with respect to © and evaluating at ¥ = v yields the standard first-order

condition
N-1

(0= b(v)) = ¥(v),
whose solution with boundary condition b(0) = 0 is

b(v) = N ]\_f lv.
Two features of this expression are central for what follows. First, it is linear,
so the equilibrium can be summarized by a single multiplier a* = (N —1)/N.
Second, a* depends only on the number of competitors IV, not on : knowing
A matters for welfare levels and revenue levels, but not for the equilibrium
shading rate in this uniform specification ]

Because our bidders are constrained to proportional bidding b; ; = o 1v; ¢,
this benchmark also clarifies what “competitive” means in the restricted ac-
tion space. If the action grid A contains a*, then «* is the full-information
symmetric equilibrium action; if a* ¢ A, then the relevant benchmark is the
closest grid point(s) to a*, and learning converges (in the no-regret sense)
to that discretized best response. Either way, the comparative statics we
emphasize later can be read as movements in the average chosen multiplier
a(k) toward the competitive shading rate.

Revenue. In a first-price auction the platform’s per-period revenue equals
the winning bid. Let v(;) = max; v; denote the top order statistic. Under
the symmetric equilibrium above, the winning bid is b(v(l)) = a™v(y), hence

Rmmp(e) = E[b(’l}(l))] = EE[U(U]

For v; ~ Unif[0, 6], the expected maximum is well known:

N
E =——190
ol =57
so per-period expected revenue simplifies to
N -1
R°™MP(9) = ——6.
©) N+1

2This is a convenient knife-edge of the uniform family. With other distributions, 6-type
parameters can enter bidding through hazard rates, but the logic remains: disclosure that
helps bidders infer the relevant primitives pushes behavior toward the full-information
equilibrium mapping.



Over a horizon of T' stationary periods, the platform’s expected total revenue
is T R°°™P(9) if it does not discount, or 3.1, §* 1 RO™P(g) = %Rcomp(ﬁ)
if we apply the same discount factor used in bidder utilities. These ex-
pressions will serve as a natural yardstick: in the learning-dominated region
we can interpret increases in precision as raising revenue toward R™P(6),
while in the collusion-dominated region equilibrium selection can drive rev-
enue strictly below it.

Welfare and efficiency. Allocative efficiency is first-best in this bench-
mark. Since equilibrium bids are strictly increasing in values, the highest-
value bidder wins each period. Thus expected per-period welfare (total sur-
plus) equals

com N
WemP(9) = E[U(l)] = m&
and bidder surplus is simply W™P(0) — R°™P(0) = ﬁ@. The welfare

comparison will matter later because collusive schemes in repeated games
often involve bid suppression and/or market division (e.g., rotating winners),
which can break the monotonicity between bids and values and thereby gen-
erate misallocation relative to the competitive benchmark.

Interpretation as a pacing/shadow-price analogue. Although we ab-
stract from binding budgets in the baseline, the multiplier form admits a
useful interpretation that connects the static benchmark to pacing behav-
ior in practice. Suppose an advertiser faces an additional shadow cost of
spend, captured by a Lagrange multiplier A; > 0 on expected payments (or,
in a dynamic model, by the continuation value of remaining budget). In a
reduced-form one-shot problem, the bidder behaves as if paying (1 + \;) per
dollar of bid when it wins, so its objective resembles maximizing

Pr(win) (v — (14 Xi)b).

Under the same uniform-IPV logic, the symmetric equilibrium effectively
replaces v by v/(1 4 ;) in the bid function, yielding
N -1 v o*
. ;) = .
N Tra o )=

b(v; i) =

In this sense, the competitive multiplier a* is the “no-pacing” baseline:
any force that makes bidders behave as if their marginal dollar is more
expensive—tight budgets, conservative pacing, or (crucially for our purposes)
pessimistic beliefs about the competitiveness of the market—appears as a
downward distortion in the chosen multiplier. This is precisely why a linear
closed-form benchmark is useful here: it lets us translate informational fric-
tions into a single statistic, @(k), that can be compared directly to o* and
interpreted through the same lens as a shadow-price wedge.

10



Taken together, the full-information benchmark fixes a reference point
for both revenue and welfare and provides an economically interpretable
target for learning dynamics: higher-quality disclosure can push a(x) upward
toward o (reducing “as-if shadow prices” induced by uncertainty), even as
the same increase in public informativeness can enlarge the set of sustainable
coordination outcomes in the repeated game.

4 Learning-efficiency channel (low transparency):
limited feedback and downward-biased multipli-
ers

We now turn to the opposite polar force from collusion: when disclosure
precision is low, bidders face a learning problem about the effective com-
petitiveness of the environment, and this can depress bids even absent any
coordinated conduct. In our setting, low x means that the public signal
s¢ = 0 + m¢ is very noisy and that any auxiliary monitoring statistic my
(e.g., a noisy winning bid or noisy winning multiplier) is correspondingly
uninformative. Each advertiser therefore relies heavily on its own realized
experience—whether it won, what it paid, and the value it observed—to
update its bidding policy over the finite multiplier grid A.

Why limited feedback pushes multipliers down. A useful way to
summarize the learning friction is that each advertiser is trying to infer an
unobserved price pressure state from censored and noisy data. Even though
the full-information competitive multiplier o* = (N — 1)/N is constant in
our uniform benchmark, adaptive algorithms in practice do not directly solve
for o*. Instead they learn a mapping from state proxies (recent win rates,
realized costs, noisy public signals) to a multiplier choice, and that mapping
is typically conservative when the state is uncertain. We capture this con-
servatism as a downward bias in the average chosen multiplier relative to the
competitive benchmark.

To make the mechanism concrete, suppose advertiser ¢ maintains a pos-
terior over 6 using the signal history si.;. With Gaussian noise, the posterior
mean 0; = E[0 | s1.¢] is a sufficient statistic for a large class of updates, and
its posterior variance satisfies

Var(6 | s1.¢) decreases in k (more precise disclosure shrinks uncertainty).

Now suppose the bidder’s learning algorithm implements a regularized best
response or “soft” maximization over a € A based on estimated payoffs. A
parsimonious reduced form is that the chosen multiplier can be written as a
smooth function of the bidder’s competitiveness estimate,

A~

iy = g(6),

11



where g(+) is increasing but concaveﬁ Then uncertainty about 6 lowers the
average multiplier by Jensen’s inequality:

~ ~

Elai¢] = E[g(0:)] < g(E[6]),

with strict inequality when 0, is nondegenerate. As k rises, 6, becomes more
precise, the dispersion of g(6;) shrinks, and E[c; ] increases. This provides
a microfoundation for our reduced-form object

a(k) = m(k)a™, m(k) € (0,1], m/(k) > 0,

where m(x) summarizes how disclosure precision mitigates conservatism in
adaptive multiplier choice.

A complementary (and empirically important) source of downward bias
comes from bandit feedback. When my is coarse, bidders often observe essen-
tially only their own realized payoff,

Uiy = i (Vig — big) = zig(1 — qig)vig,

and do not observe counterfactual outcomes under alternative multipliers.
In such settings, exploration of high multipliers is costly because it gener-
ates occasional large payments that dominate the realized utility signal; as
a result, no-regret algorithms frequently behave as if they have an addi-
tional shadow cost of spending, selecting smaller multipliers until sufficient
evidence accumulates. Higher x improves the signal-to-noise ratio of public
information and speeds up discrimination between multipliers, reducing the
time spent in this low-bid “safe” region.

Revenue monotonicity in the learning-dominated region. Given
proportional bids, the platform’s per-period revenue is the winning bid. In
the learning-dominated region we can treat the outcome as approximately
competitive conditional on the average multiplier scale &(k), so that win-
ning bids are scaled down relative to the full-information benchmark. In
particular, under the uniform scaling property and our proportional-bidding
restriction, the expected winning value remains E[v(l)] = NLHH, while the
expected winning bid is approximately a(r)E[v(;)]. Hence

L — *L _ comp
N 10 =m(k)a 0 = m(r) R°°™P(0).

Rlearn(/{) %d(ﬁ) N1

3Concavity is a standard implication of regularization (e.g., entropy-regularized choice
rules) and of cautious control rules that penalize overshooting. In practice, multiplicative-
weights and bandit algorithms tend to damp extreme actions when payoff estimates are
noisy, which is well approximated by concave response in the underlying competitiveness
proxy.

12



Thus, on any range of K where equilibrium selection is not distorted by
collusion, revenue inherits the monotonicity of m(x):

d
d—Rleam(n) =m/(k)R°™(0) > 0.
K
Economically, precision raises revenue by correcting the “as-if shadow price”
wedge induced by uncertainty and bandit learning: bidders stop behaving as

though spending is unusually expensive and move multipliers upward.

Spend and payment volatility. Beyond mean revenue, a second oper-
ational implication of the learning-efficiency channel is the stabilization of
spending over time. When disclosure is coarse, learning is slow and ex-
ploratory, so realized multipliers o;; exhibit substantial dispersion across
advertisers and across time. Because payments equal winning bids, this
translates into volatile spend at the platform level and volatile spend at the
advertiser level (important in practice for pacing).

A simple decomposition illustrates the comparative statics. Let the win-
ning payment in period ¢t be P = pyingy = max; o v;.  Write o, =
a(k) + €it, where E[g;4] = 0 and Var(e;;) = 02(k). Then a first-order
approximation around a(k) yields

Py = a(k)vays + 1), €1) 0
so that, suppressing higher-order order-statistic terms,
Var(P;) ~ a(k)? Var(v(y) ) + E[U(Ql)i] Var(e(1)-

Higher k affects this expression in two opposing but interpretable ways.
First, a(k) rises, mechanically increasing the scale of payments (and therefore
revenue). Second, and crucial for volatility, better disclosure reduces experi-
mentation and cross-sectional disagreement about competitiveness, so o2 (k)
falls. The second effect tends to dominate the variance term induced by mul-
tiplier dispersion, producing more stable payments and advertiser spending
paths even as average spend rises. In this sense, moderate transparency can
simultaneously raise revenue and improve pacing stability, aligning platform

and advertiser operational objectives in the low-x regime.

Summary and transition. Insum, when transparency is low, limited and
noisy feedback leads adaptive bidders to choose multipliers below the com-
petitive benchmark, which depresses revenue and typically increases spend
volatility through prolonged exploration and heterogeneous beliefs. Increas-
ing disclosure precision « alleviates these learning frictions, pushing a(k)
upward and stabilizing spending dynamics. The next section studies why
this benign monotonicity need not persist: as x becomes high enough that
the public statistic m; effectively monitors deviations, the same transparency
that helps learning can also support perfect public equilibria with bid sup-
pression and market division.

13



5 Monitoring-collusion channel (high transparency):
perfect public equilibria and enforceability

We now analyze the second, opposing force: when disclosure precision is high,
the public statistic m; can become an effective monitoring device that allows
bidders to coordinate on low-revenue outcomes and to discipline deviations.
The economic point is not that advertisers explicitly “collude” in a legal
sense, but that repeated interaction combined with sufficiently informative
common signals can support self-enforcing bid suppression as a perfect public
equilibrium (PPE). In modern ad auctions, where bidders are represented
by adaptive bidding systems that observe similar dashboards and market
reports, the relevant notion of coordination is often algorithmic and tacit:
bidders can condition on shared observables and on predictable responses to
those observables.

A canonical collusive scheme: bid rotation with suppressed multi-
pliers. To make the mechanism concrete, consider a stationary, symmetric
scheme in which bidders take turns winning the slot. Fix a low multiplier
o € A (with o < a*) and a public rotation rule (e.g., bidder i is the
designated winner in periods t = i (mod N)). On the collusive path, the
designated winner bids b; ; = aLvi,t while all others bid an even lower mul-
tiplier (e.g., a® — ¢ on the grid, or 0 if allowed), ensuring the designated
bidder wins at a suppressed price. This scheme is attractive because it re-
places competitive bidding with a predictable allocation of wins and a low
payment level.

Such a path generally sacrifices allocative efficiency: the slot is not neces-
sarily assigned to the highest-value bidder in each period, but rather to the
designated winner. This is precisely why the scheme can reduce platform
revenue and, depending on the environment, can also reduce welfare W.

Why monitoring matters: deviations are only deterred if they are
detected. The obstacle to sustaining the scheme is the one-shot tempta-
tion to deviate. A non-designated bidder can raise its multiplier in a period
when it is supposed to lose, capture the slot, and earn a positive surplus. The
only force that can deter this is the prospect of future punishment triggered
by public evidence of deviation. In a PPE, strategies must be measurable
with respect to the public history, so punishments can only condition on what
is publicly observed. If m; is too noisy, a deviator can frequently “steal” wins
without generating a detectable public trace.

We capture this by summarizing the monitoring environment with a
deviation-detection probability ¢(x) € [0, 1], increasing in precision k. Intu-
itively, as the platform releases more granular or less noisy information about
the winning bid, the winning multiplier, rank statistics, or spend shares, it
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becomes easier for rivals to infer whether the realized outcome is consistent
with the prescribed low-bid rotation.

A simple Gaussian microfoundation for ¢(x). One convenient spec-
ification is that the platform releases a noisy public proxy for the winning
multiplier,

2 -2
my = Qwingt + ¢, et ~N(0,07), K=0,°.

Under the collusive scheme, oyin: = o deterministically (up to grid effects).
A profitable deviation in a “losing” period entails bidding a higher multiplier,
say aP > ol and winning with positive probability; conditional on winning,
the public signal shifts upward by A = oP —a®. A natural public test is to
flag a deviation when m; exceeds a threshold 7 chosen so that false positives
are rare on the collusive path. Under this test, the detection probability
conditional on a deviation-induced win is

_ D
q(k) = Pr(mt > T ‘ Qtyin,t = aD) =1- <I><T @ ) ,
Om
which is strictly increasing in x because o, decreases. This illustrates the
general point: even if deviations are not perfectly observed, increasing pre-
cision raises the likelihood that the public history contains enough evidence
to coordinate punishments.

Public punishments and the PPE incentive constraint. Given any
prescribed collusive path and any public punishment (e.g., grim-trigger rever-
sion to competitive play, or a harsh phase where all bidders bid aggressively),
sustainability is characterized by a familiar one-shot deviation constraint.
Let u! denote the on-path per-period expected utility for a representative
bidder, u9¢¥ the deviation payoff in the deviation period (optimizing over
multipliers, taking others as collusive), and «P"™ the expected per-period
payoff during the punishment phase. Let V! and VP" be the correspond-
ing continuation values. If a deviation is detected with probability ¢(x), the
PPE constraint takes the form

(1= 6)u + 6V > (1 - a)ud™ + 5((1 — )V 4 q(n)vwn),

equivalently,

udev _ ucol

=z Q(/i) (Vcol _ Vpun) :

This inequality makes transparent how monitoring and patience interact.
Holding primitives fixed, higher precision raises ¢(x), which relaxes the in-
centive constraint and expands the set of (d, k) pairs for which collusion can
be supported. Conversely, for any fixed §, there is a threshold k. (possibly
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infinite) such that collusion is infeasible for k < k. and feasible for k > k..
This is the monitoring-collusion channel: transparency does not merely in-
form learning; it also supplies the public correlation device needed to sustain
low-revenue coordination.

Revenue implications at high x. When a low-bid rotation (or a bid
cap) is sustainable, platform revenue falls because winning bids are mechan-
ically reduced relative to the competitive benchmark. Under proportional
bidding, the winning payment is P = Quin,tUwint, and collusion directly
lowers the multiplier component ain¢; under rotation it may also lower the
value component by inducing misallocation. Thus, for sufficiently high &,
further increases in precision can reduce revenue by strengthening enforce-
ability (raising q(k)), even though those same increases continue to improve
the learning environment.

Interpretation and design implications. This channel maps closely to
practical disclosure choices: releasing bidder-level win reports, near-real-time
clearing-price estimates, or fine-grained rank statistics can make it easier for
bidders to infer who “stole” an impression and to condition future behavior
accordingly. By contrast, aggregation, anonymization, or delay can reduce
the effective ¢(k) even if bidders still learn 6 reasonably well from coarser
market signals. Our stylized PPE analysis therefore suggests a design ten-
sion: the platform may want to share enough information to mitigate con-
servative learning, but not so much that it creates a high-powered public
monitoring technology.

Limitations. We emphasize that this is a reduced-form enforcement logic,
not a claim that real markets literally implement grim-trigger strategies. In
algorithmic environments, coordination can arise through shared features,
common optimization objectives, and similar learning rules; the relevant
question is whether public observables are sufficiently informative to make
reactive strategies (or learned policies) stable. Moreover, equilibrium selec-
tion is crucial: high s expands the set of feasible outcomes, but does not
dictate which outcome is selected. In the next section we combine these two
channels to show how an interior-optimal disclosure policy emerges once we
allow transparency to simultaneously reduce learning frictions and increase
the scope for coordinated bid suppression.

6 Main result: non-monotone disclosure incentives
and an interior optimum

We can now combine the learning-efficiency channel (which pushes bids up as
disclosure becomes more informative) with the monitoring-collusion channel
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(which can push bids down once public signals become sufficiently disciplin-
ing). The key implication is a non-monotone mapping from transparency
to the platform objective: increasing precision is beneficial when it mainly
corrects conservative learning, but harmful when it mainly supplies a high-
powered public monitoring technology.

To state the result cleanly, it is useful to work with a reduced-form rev-
enue decomposition that captures the equilibrium-selection switch discussed
above. For k below a critical precision level k., collusive PPEs are not en-
forceable, and outcomes track the learning-dominated “competitive” branch.
In this region, expected revenue inherits the monotonicity of the average
multiplier,

R (k) = m(k) R©™P(@),  m'(k) >0,

so that R*¥™/(x) > 0. For x above k., low-revenue coordinated outcomes be-
come feasible, and an equilibrium selection (or learning dynamics) may place
positive weight on bid-suppression schemes with revenue RCOI(F;). When
monitoring precision improves deviation detection, ¢’'(k) > 0, the enforce-
ability of these schemes increases; in many natural constructions (e.g., rota-
tion with threshold tests), this manifests as weakly lower selected revenue as
K rises further, i.e. R°V(k) < 0.
A compact way to represent this logic is the piecewise objective

Rlearn(/i) K < Ke,

R(k) =
min{ R (k), R°(k)} & > ke,
together with a strict “gap” at the onset of enforceability, R (k) < R'*™(k,.).
This gap is economically intuitive: the very first moment at which bid-
ders can credibly punish deviations, the platform becomes exposed to equi-
libria that mechanically depress the winning multiplier (and, under rota-
tion/market division, may also depress the realized winning value).

Proposition (interior-optimal disclosure). Suppose (i) R (k) > 0
on [0, kc); (ii) R (k.) < R (k,) and R°V(k) < 0 on [k, o0); and (iii)
R!ea™ ig continuous. Then platform revenue R() is strictly non-monotone
and admits an interior maximizer k* € (0, k).

Proof sketch. On [0, k.), revenue is strictly increasing, so any maximizer
must lie weakly above k. if the branch does not switch. But at k. the selected
outcome weakly drops to R°!(k.), which is strictly below the limit from the
left. Hence k = k. cannot be optimal, and no k > k. can dominate the best
point just below k. when R! is nonincreasing. Therefore the maximizer lies
strictly below k..
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Welfare and mixed objectives. The same logic extends to a revenue—
welfare objective J(k) = AR(k)+ (1 —A)W (k). Under competitive play, wel-
fare is first-best because the highest value wins each period; under rotation
or market division, welfare typically falls due to misallocation. Thus for suf-
ficiently high precision, transparency can simultaneously reduce revenue and
welfare by supporting coordination on allocations that ignore realized values.
When A < 1, the welfare loss makes the “high-«” region even less attractive,
strengthening the case for an interior optimum. Importantly, our conclusion
does not require that all high-precision equilibria are collusive—only that
the set expands and that plausible equilibrium selection (including algorith-
mic learning dynamics) can place weight on bid-suppression outcomes once
they become stable.

Comparative statics: concentration, patience, and heterogeneity.
The location of the interior optimum is governed by where the enforceability
threshold k. sits relative to the learning gains from raising .

First, greater market concentration (smaller N) tends to lower k. and
thereby lower the optimal precision x*. With fewer bidders, coordinating on
a rotation is simpler, and the temptation to deviate can be punished more
effectively because the continuation value from future assigned wins is large
relative to the one-shot gain. Formally, in the PPE constraint

udev _ ucol

Q(H?) (Vcol _ Vpun) ’

6 >

a smaller N often increases (V! — VP (collusion promises larger future
rents per bidder), so a lower detection probability ¢(x) suffices, implying a
smaller x..

Second, greater bidder patience (higher ¢) also lowers k. and thus lowers
k*. Patience magnifies the disciplining effect of any given monitoring signal,
because future punishments loom larger. In environments where the plat-
form cannot perfectly decouple learning-relevant disclosure from monitoring-
relevant disclosure, this comparative static implies that highly repeated mar-
kets (stable demand, long-lived advertisers, or high-frequency auctions) war-
rant less granular public reporting.

Third, greater heterogeneity in values, budgets, or objectives tends to
raise k. and thereby raise k*. Asymmetries increase the incentive to de-
viate from a symmetric market-division plan (high types want more share;
constrained types cannot sustain prescribed actions), and they make punish-
ments less credible or less coordinated. In the PPE constraint, heterogeneity
can raise u4®’ — 4 and /or reduce the effective continuation gap V¢! —yPun,
so higher ¢(x) (hence higher k) is required to support coordination. From a
design perspective, markets with diverse advertisers are therefore naturally
“self-protecting” against collusion, permitting the platform to share more
information to alleviate learning frictions.
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Extensions: binding budgets and target-CPA objectives. While
budgets are nonbinding in our baseline, binding budgets introduce a second
intertemporal linkage that interacts with disclosure. On the pro-transparency
side, better information can improve pacing and reduce conservative under-
delivery, raising effective multipliers and hence revenue in the low-x region.
On the anti-transparency side, disclosure of spend shares, win rates, or (es-
pecially) bidder-level budget exhaustion can act as an additional monitor-
ing device: it helps bidders infer whether a rival “stole” share or violated
a market-division plan, effectively increasing ¢(x) even if bid data remain
noisy. Moreover, budgets can make punishments harsher (a punished bidder
may be forced to spend inefficiently), which can further expand enforceable
collusion. These forces reinforce the central non-monotonicity: transparency
that is useful for pacing can simultaneously strengthen coordination.

A related extension is target-CPA bidding, where realized CPA enters
payoffs through a penalty (as in UZ»CPA). Such objectives can change both
channels. They can amplify learning benefits (because bidders must infer
competitive pressure to hit CPA targets without overbidding), but they can
also alter deviation incentives: aggressive deviations that win more often
may worsen realized CPA and reduce the effective gain from deviating. In
other words, CPA constraints can stabilize low-bid coordination by shrink-
ing ud®” — u! again pushing k. downward. This suggests that policy or
product changes that standardize bidder objectives (e.g., widespread target-
CPA automation) may increase the importance of limiting high-frequency,
bidder-identifying monitoring disclosures.

These results motivate an empirical design that varies disclosure regimes
in a controlled way and measures both learning-driven bid adjustment and
the emergence of stable bid-suppression patterns, which we implement next
via explicit logging and observation-policy changes in AuctionNet.

7 AuctionNet empirical design: implementing dis-
closure regimes and measuring coordination

Our empirical strategy uses AuctionNet as a controlled “information design”
testbed: we hold fixed the allocation and payment rule (a repeated first-price
single-slot auction unless otherwise stated), and vary only what the plat-
form reveals through the observation and logging interfaces. This mirrors
the theoretical object x in a way that is both implementable and auditable.
Concretely, we implement a family of disclosure regimes as observation poli-
cies that map the platform’s internal state at time ¢ into (i) bidder-facing
observations and (ii) researcher-facing logs. Bidder observations are the sole
inputs to bidding algorithms; researcher logs are never observed by bidders
and serve only for ex post measurement. This separation is important: it lets
us study how transparency affects strategic and learning dynamics without
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inadvertently changing bidders’ action space or the auction outcome func-
tion.

Disclosure regimes via observation/log APIs. We parameterize dis-
closure along two dimensions. First, precision is controlled by adding Gaus-
sian noise with variance 02 = 1/k to scalar statistics, matching the signal
structure s; = 6 + 1. Second, granularity controls which statistic is re-
leased (and at what temporal resolution), ranging from minimal bandit-like
feedback to near-public monitoring. In our baseline family, bidders always
observe their own realized value v; ¢, budget state B; ; (if budgets bind), and
own outcome (¢, ;). We then layer on public components (s, m;) that
vary by regime: (i) Low disclosure: bidders observe only (z;¢,pi+) and a
coarse aggregate s; about 6 with low  (high noise), yielding highly censored
feedback about rivals. (ii) Aggregate price statistics: release a noisy win-
ning bid (or noisy top bid) as m;, optionally delayed by d periods to reduce
high-frequency monitoring. (iii) Rank/quantile statistics: release noisy rank
information (e.g., “you were top-k”) or anonymized quantiles of bids, which
can improve learning about competitiveness while limiting bidder-identifying
monitoring. (iv) High disclosure: release a near-public monitoring signal
such as noisy realized winning multiplier, noisy spend shares, or bidder-level
win indicators (an anonymized identity code), which sharply increases the
scope for contingent punishments. In all cases, the auction rule is unchanged;
only the observation map changes. To ensure comparisons are not driven by
different randomness, we use common random numbers: for each experimen-
tal replicate, the full sequence of value draws {v;+} and signal noise draws
{n:} is held fixed across disclosure regimes.

Standardizing bidders: common action grids and learning budgets.
To isolate the effect of disclosure, we standardize bidder algorithms along the
dimensions that most directly interact with the theory: the action space A of
multipliers and the feedback structure. All bidders choose a;+ € A C (0,1]
and bid b;+ = o v, with budget feasibility enforced by truncation when
budgets bind. The default grid A is chosen to contain the competitive bench-
mark a* = (N —1)/N and a range of lower multipliers that can support bid
suppression. We then evaluate several algorithm families, each trained un-
der identical compute and data budgets: (i) a pacing+bandit baseline that
maintains a pacing multiplier (for budgets) and a no-regret bandit update
over A using own payoff feedback; (ii) independent Q-learning (IQL) over
discretized states that include recent public signals and own outcomes; (iii)
behavior cloning (BC) and decision transformer (DT) variants trained on
offline trajectories generated under a mixture of disclosure regimes, then
deployed online under a fixed regime. Across all families, we enforce sym-
metry ex ante (same architecture class, same hyperparameter search budget,
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same random seed schedule) to avoid mechanically creating “leader—follower”
asymmetries. When we introduce heterogeneity (e.g., different budgets or
value scalings), we do so explicitly and record it as a treatment dimension.

Operationalizing ‘“collusion” in a learning environment. Because
algorithms need not converge to a stationary equilibrium and may coordinate
implicitly, we define collusion through a set of outcome-based and behavior-
based metrics that are meaningful in repeated auctions. The central outcome
metric is a revenue suppression index relative to the competitive benchmark:

R(K)

Ecomp ’

RSI(k) = 1—

where RE™P ig computed either from known 6 in simulation or from a high-
disclosure calibration run where learning frictions are minimal. To distin-
guish “benign” low revenue driven by underbidding during learning from
coordinated suppression, we also measure whether allocation departs from
value-ranking. Let v(1); denote the highest value at ¢ and vyin: the winning
value; then a welfare loss proxy is

T
Misalloc(k) = % Z (U(l),t — VUwin,t)
t=1

which is near zero under competitive play but positive under rotation or
market division.

Behaviorally, we track rotation and market-division signatures in the se-
quences {z;;} and {a;;}. Rotation implies that wins cycle across bidders
with low within-bidder variance in multipliers; we quantify it by (i) the
entropy of the win-share vector, (ii) autocorrelation and spectral mass of
each bidder’s win indicator, and (iii) a “turn-taking” statistic measuring how
often the identity of the winner changes conditional on similar realized val-
ues. Market division implies persistent identity-based specialization: bidder
1 wins disproportionately in a subset of contexts even after controlling for
values. We measure this by fitting a predictive model for x;; using realized
values and public signals, and testing whether adding bidder identity materi-
ally increases predictive power; large incremental fit indicates identity-based
allocation beyond value-based competition.

Stability, punishments, and empirical detection probability. A key
theoretical object is deviation detection. Empirically, we capture its ana-
logue in two ways. First, we compute stability of the action profile as the
within-window variance of multipliers and the rate of switching across A;
collusive coordination typically exhibits low variance punctuated by abrupt
“punishment” episodes. Second, we run controlled deviation probes: in a
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small fraction of periods (unknown to the deviator’s policy but known to the
experimenter), we override one bidder’s action with an aggressive multiplier
(e.g., the upper tail of A) and record whether subsequent public histories
trigger statistically detectable punishment responses by rivals (e.g., sustained
increases in their multipliers or targeted win-denial behavior). The frequency
with which these probes lead to a punishment classification provides an em-
pirical counterpart to ¢(x), and allows us to connect disclosure regimes to
enforceability without assuming equilibrium play.

Implementation details and limitations. All metrics are computed on
held-out evaluation horizons after a training burn-in, and we report uncer-
tainty using across-seed variation and block bootstrap over time to account
for serial correlation. We emphasize that our empirical definitions are in-
tentionally conservative: we label a run as “collusive” only when revenue
suppression coincides with either misallocation or strong rotation/identity
signatures and high stability. This reduces false positives in regimes where
learning is slow. At the same time, we acknowledge a limitation: in al-
gorithmic environments, coordination can be subtle and may not resemble
textbook grim-trigger behavior. Our multi-metric approach is designed to
detect a broad class of stable bid-suppression patterns while remaining in-
terpretable for platform policy, which we then evaluate in the results section
by tracing revenue—welfare curves across disclosure levels.

8 Experimental results: revenue—welfare curves by
disclosure level

We now turn to the central empirical object predicted by the model: how
platform outcomes vary with disclosure precision k once bidders are adaptive
and can condition on public histories. Our main outputs are revenue ﬁ(/{),
welfare /W(/{), and the derived diagnostics RSI(x) and Misalloc(x) defined
above. We report results after a burn-in phase, and we average across seeds
with common random numbers so that differences across disclosure regimes
are not mechanically driven by different value realizations.

Revenue—welfare curves are non-monotone in precision. Across al-
gorithm families (bandit pacing, IQL, and offline-trained DT /BC policies),
we observe a robust inverted-U pattern in revenue as a function of disclosure
precision. At low  (high noise / weak monitoring), revenue is depressed rel-
ative to the competitive benchmark; the revenue suppression index RSI(k)
is high even though our behavioral collusion indicators are largely absent.
As £ rises from this region, R(k) increases sharply while Misalloc(k) re-
mains near zero. This is the learning-efficiency channel: with more infor-
mative (s¢, m¢), bidders more quickly infer competitiveness and select larger
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multipliers, pushing outcomes toward the competitive shading benchmark
a*=(N-1)/N.

Beyond an intermediate precision range, however, revenue peaks and then
declines as k continues to increase. Importantly, the revenue decline is ac-
companied by increasing misallocation and increasingly strong rotation/market-
division signatures. In this high-x region, the joint outcome pattern is incon-
sistent with “benign” learning dynamics (which would predict low revenue
and competitive allocation failures to vanish over time as learners improve).
Instead, we see persistent revenue suppression that co-moves with stable,
history-dependent behavior. In the language of the theory, the data trace the
switch from the learning-dominated branch R'**™(k) to a collusion-selected
branch R°!(k) once monitoring becomes sufficiently informative.

For welfare, we see a corresponding tradeoff. In intermediate regimes,
welfare is essentially first-best because the allocation remains approximately
value-ranked. At high x, the welfare curve bends downward: average wel-
fare falls and Misalloc(k) becomes economically meaningful, consistent with
rotation or market division that occasionally allocates the slot to a bidder
who does not have the highest realized value.

Separating learning from coordination using dynamics. To distin-
guish underbidding due to slow learning from coordination sustained by
monitoring, we examine the time profile of outcomes. Under low disclo-
sure, revenue is lowest early in the horizon and rises gradually; multipliers
exhibit high switching rates across A, and stability metrics indicate ongo-
ing exploration. This is the signature of informational frictions. Under
high disclosure, by contrast, revenue suppression emerges after a short tran-
sient, following which multipliers become extremely stable within long win-
dows. When deviations occur (either naturally through exploration noise or
through our controlled probes), the response is episodic: rivals temporarily
increase aggressiveness or adopt exclusionary patterns, and then return to
the low-multiplier regime. This “punishment-and-return” behavior is diffi-
cult to explain through independent myopic learning but is natural under
repeated-game logic with public histories.

These dynamics map cleanly into the detection-probability object (k).
Empirically, when we inject a deviation probe (forcing one bidder to play
a high multiplier for a short burst), we can classify subsequent histories as
“punishment” episodes with high probability under high x and low proba-
bility under low k. Thus, the empirical detection frequency is increasing in
precision, providing direct support for the monitoring-collusion channel.

Evidence for rotation and market division. Our behavioral metrics
identify two dominant coordination modes under high disclosure. First, in
many runs we see rotation: win shares are close to equal, the identity of the
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winner changes frequently even conditional on similar realized values, and
each bidder’s {z;+} exhibits strong periodic structure. Rotation is accom-
panied by low within-bidder variance in a;; and a small set of frequently
revisited multipliers, consistent with a tacitly coordinated “low bid, take
turns” pattern.

Second, in other runs we see market division: win probabilities become
strongly bidder-identity dependent even after controlling for v; ; and public
signals. In these cases, the incremental predictive power of bidder identity for
x;¢ is large, and the allocation deviates from value ranking in a systematic
way. Market division becomes especially salient when we introduce mild
heterogeneity (e.g., slightly different budgets or value scalings): rather than
eliminating coordination, heterogeneity often shifts the form of coordination
from symmetric rotation to asymmetric specialization.

Comparative statics in the laboratory: N and patience. While our
simulations are not a structural estimation exercise, the comparative statics
align with the theory. Holding algorithms fixed, the onset of coordination (as
measured by the joint event of high RSI(k), low switching, and high punish-
ment classification) occurs at lower precision when N is smaller. Likewise,
when we increase effective patience in the training objective (either via a
higher discount factor in RL-style updates or via longer-horizon training with
less restart noise), coordination becomes more prevalent at a given x. Both
patterns are consistent with the prediction that the “collusion-feasible” region
expands with concentration and patience, shifting the revenue-maximizing
precision downward.

Robustness across auction formats: first-price versus GSP-like rules.
We replicate the disclosure treatments under two alternative auction envi-
ronments. First, we implement a GSP-style payment rule (winner pays the
second-highest bid, with suitable tie-breaking), keeping the same observation
policies. The qualitative transparency tradeoff persists: increasing x initially
improves revenue through better learning of competition, but high x again
enables coordination that suppresses effective prices. The behavioral mani-
festation differs slightly: instead of suppressing the winning bid directly (as
in first price), bidders often coordinate on keeping the runner-up bid low,
which is the pivotal price in GSP. Accordingly, under high disclosure the
gap between the top two bids widens, and the second-order statistic (the
“price-setting” bid) becomes unusually stable.

Second, we consider a hybrid “value-based” bidding interface where bid-
ders choose multipliers but the platform computes scores that mimic quality
adjustment. The same patterns emerge provided that the disclosed mon-
itoring statistic is sufficiently aligned with the payoff-relevant object (e.g.,
revealing a noisy score or rank). This reinforces a practical lesson: it is
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the informativeness of the monitoring signal about rivals’ strategic state,
not the specific payment formula, that governs the feasibility of contingent
punishments.

Robustness to multi-slot structures. Finally, we extend to multiple
slots with position effects and either (i) independent first-price per slot or
(ii) a standard separable click model with rank-by-bid allocation. Multi-slot
environments amplify the scope for market division: bidders can implicitly
“claim” particular positions (or ranges of positions), yielding misallocation
both across bidders and across slots. Revenue non-monotonicity remains,
but the welfare losses at high x are larger because coordination can distort
the entire rank ordering rather than only the top allocation. These results
motivate our governance discussion: fine-grained, high-frequency disclosure
that reveals rank, price, and identity information can unintentionally pro-
vide exactly the public monitoring needed for sustained coordination in rich
allocation environments.

8.1 Implications for platform governance and antitrust: dis-
closure design and auditing

Our results place platform “transparency” in a different category from the
usual market-design levers (reserve prices, scoring rules, or auction format).
In the environment we study, disclosure is itself a strategic instrument: in-
creasing precision k simultaneously (i) alleviates learning frictions, raising
bids through m(k) 1 1, and (ii) strengthens public monitoring, raising devia-
tion detection ¢(x) and thereby enlarging the set of sustainable low-revenue
perfect public equilibria. The governance implication is that a platform can-
not treat richer reporting as unambiguously pro-competitive. What matters
is not only how disclosure helps an individual bidder optimize, but also how
it creates common knowledge of rivals’ strategic states, which is precisely the
input needed for contingent punishments.

Design principle 1: decouple “market-scale learning” from “rival-
action monitoring.” A practical reading of the model is that the platform
often wants to provide information about fundamentals (e.g., the market
scale 0, seasonality, demand shifts) without providing a high-frequency pub-
lic record of rivals’ bid multipliers. In our notation, this corresponds to
choosing high effective precision for s; (to push m(x) upward) while keep-
ing the monitoring statistic m; deliberately coarse so that ¢(x) remains low.
Concretely, this suggests that “transparency” should be implemented as fun-
damental guidance (forecast ranges, aggregate demand indices, or lagged
clearing-price bands) rather than as action disclosure (who bid what, who
won, at what multiplier, and with what remaining budget).
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Design principle 2: treat identity and timing as first-order policy
levers. Repeated-game coordination typically needs a mapping from devi-
ations to punishments, which in turn requires stable identifiers and timely,
payoff-relevant public signals. Two low-cost levers therefore matter dispro-
portionately: (i) anonymization (removing bidder identities from public re-
ports) and (ii) delay (publishing statistics with lags long enough to break
period-by-period contingencies). In the language of our detection object,
both reduce the effectiveness of punishments by lowering the probability that
a deviation is detected and attributed in time to respond, thereby reducing
q(k) even when the underlying data are eventually released.

Recommended disclosure menu. A governance takeaway is not “be
opaque” but “choose the coarsest disclosure that solves the intended learning
or budgeting problem.” In practice we can implement this through a menu
of design choices:

e Noise / coarsening (controlled x): release price or competition
indicators only in bins (e.g., deciles) or with calibrated noise. From our
perspective, the goal is to preserve enough signal to improve estimates
of ¢ while preventing precise inference of rivals’ o ;.

e Delay and batching: publish aggregates weekly (or over random-
length windows) rather than per auction. Batching preserves long-run
guidance while removing the tight linkage between a deviation today
and a punishment tomorrow.

e Aggregation across segments: aggregate over sufficiently broad
sets of queries or audiences. Fine segment-level transparency can inad-
vertently create many small “repeated games” where rotation is easier
and more stable.

¢ Anonymization and suppression of rank identities: avoid public
reports that let bidders reconstruct who is typically the runner-up, who
is pacing out, or whose budget is binding. Even when payments are
not disclosed, rank and identity information can make punishments
targeted and therefore credible.

e Private rather than public feedback: provide each bidder rich pri-
vate diagnostics (own spend, win rate, marginal returns), while keeping
cross-bidder comparables public only in coarse form. This shifts learn-
ing from public monitoring to idiosyncratic optimization.

¢ Randomized rounding / throttling of public statistics: when
publishing a statistic like “top bid” or “clearing multiplier,” apply stochas-
tic rounding so that small deviations do not deterministically change
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the public signal. This directly disrupts trigger strategies that hinge
on thresholds.

These interventions are complements: for example, anonymization without
delay may still permit inference via stable behavioral fingerprints, while delay
without coarsening may still permit coordination at the batch frequency.

Antitrust framing: disclosure as a potential facilitating practice.
Antitrust doctrine often focuses on explicit communication among rivals,
but information design by a central intermediary can create a functionally
equivalent coordination channel. In our setting, high-precision m; resembles
an “information exchange” mechanism: it supplies a shared scoreboard that
makes deviations observable and punishable. This is especially salient in
concentrated markets (small V) or where bidders are effectively patient (high
9), precisely the environments where our comparative statics predict a lower
optimal k*. A conservative governance stance is therefore to treat fine-
grained, high-frequency, identity-linked reporting as presumptively risky in
concentrated verticals, even when the platform’s intent is benign (e.g., “help
advertisers optimize”).

Auditing protocol: measuring ¢(x) and separating collusion from
slow learning. Because the same low-revenue outcome can arise from ei-
ther channel, governance requires audits that distinguish “underbidding due
to uncertainty” from “suppression sustained by monitoring.” We recommend
that platforms (and, where relevant, regulators) institutionalize three layers
of diagnostics.

(i) Outcome diagnostics. Track revenue and welfare jointly, not revenue
alone. Persistent revenue suppression coupled with measurable misallocation
is a red flag because learning improvements should tend to restore value-
ranking, whereas rotation/market division can depress both revenue and
allocation quality. In our empirical vocabulary, sustained elevation in RSI(k)
together with increases in Misalloc(k) is more consistent with coordination
than with benign learning.

(i) Behavior diagnostics. Monitor switching rates over A, periodicity
in win shares, and identity-predictability of allocations. Collusive regimes
typically exhibit low within-bidder variance in «;, long stretches of stabil-
ity, and sharp, episodic responses that resemble punishments rather than
exploration.

(iii) Probe-based detection tests. To directly estimate an operational ana-
logue of ¢q(k), platforms can run controlled “deviation probes” (e.g., tem-
porarily perturb the bidding interface for a small, consented subset, or inject
small randomized shocks into rankings) and measure whether the public-
history response resembles a punishment episode. Importantly, such probes
should be designed to avoid harming auction outcomes materially and should
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be auditable ex post (logged, pre-registered thresholds, and clear governance
over when probes are permitted).

Governance process: dynamic disclosure with guardrails. Finally,
because bidder algorithms evolve, the safe level of disclosure today need
not be safe tomorrow. We therefore view disclosure as a policy that should
be revisited under a formal change-management process: before increasing
precision or adding new statistics, the platform should run an “information
impact assessment” that stress-tests candidate disclosures in simulation and,
when feasible, in small-scale randomized experiments with predefined stop-
ping rules. A practical guardrail is to require that any change that materially
increases the informativeness of m; (hence plausibly increases ¢(x)) be paired
with compensating reductions in identifiability or timeliness, keeping the sys-
tem on the learning-improving side of the tradeoff rather than crossing into
the collusion-feasible region.

8.2 Limitations and extensions: heterogeneity, entry, multi-
slot environments, and privacy constraints

Our framework is deliberately stylized in order to isolate a single economic
mechanism: disclosure precision « simultaneously improves individual learn-
ing (pushing behavior toward the competitive benchmark) and improves
public monitoring (making coordinated punishments feasible). The simplic-
ity that yields clear comparative statics also creates limitations that matter
for interpretation and for policy translation. We view these limitations not
as defects, but as a map of where the tradeoff is likely to become sharper,
and where it may be attenuated by additional forces.

Richer bidder heterogeneity. The baseline assumes i.i.d. values v;; ~
Unif[0, #] and (in the benchmark) nonbinding budgets, which together deliver
a convenient scalar sufficient statistic for competitive shading, a* = (N —
1)/N. Real ad markets exhibit heterogeneity in at least four dimensions:
(i) value distributions (different conversion rates and margins), (ii) budget
processes (daily pacing constraints and seasonality), (iii) objectives (e.g.,
value maximization versus target CPA), and (iv) algorithmic sophistication
(different learning rates and exploration policies). Each dimension changes
the relative strength of our two channels.

On the learning side, heterogeneity can increase the value of informative
signals by reducing the portability of one’s own experience: with asymmetric
types, a bidder’s own win/loss feedback may be a poor guide to the compet-
itive pressure it faces in states where its value distribution has little overlap
with rivals’. On the collusion side, asymmetry tends to destabilize simple
rotation or bid-suppression schemes because the temptation to deviate is
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larger for high-value or deep-pocket bidders. A promising extension is there-
fore to endogenize ud®¥ —u®! and V! — VPN 55 functions of type dispersion,
rather than treating them as reduced-form constants in the incentive con-
straint. Likewise, when budgets bind, the monitoring statistic m; may reveal
budget exhaustion and thereby enable more sophisticated intertemporal co-
ordination (e.g., “let rival j spend out today, punish tomorrow”); conversely,
rapidly fluctuating budgets can break the predictability needed for targeted
punishment. Understanding when binding budgets amplify versus dampen
the collusion channel is, in our view, a first-order open question.

Endogenous entry and participation dynamics. We take N as fixed,
but in many settings participation is itself a dynamic decision: advertisers
enter and exit based on realized performance, and platforms may throt-
tle participation through quality scores, targeting constraints, or minimum
spend requirements. Endogenous entry can interact with disclosure in two
opposing ways. More informative signals about 6 (or about competition)
can attract entry by reducing uncertainty, potentially raising revenue even
if incumbent bidders coordinate. At the same time, transparency that im-
proves monitoring among incumbents can deter entry if entrants anticipate
that deviations will be punished or that market division will prevent them
from gaining scale.

A natural extension is a two-stage dynamic model: each period begins
with a participation decision (or a stochastic arrival process) followed by the
auction. In such an environment, k affects not only per-period bidding but
also the evolution of the effective N, and, therefore, the long-run competi-
tiveness of the marketplace. This extension would also allow one to study
whether the platform can use disclosure as a screening device, encouraging
entry by small bidders while limiting the common knowledge needed for
incumbent coordination.

Multi-slot auctions and externalities across positions. We study a
single-slot first-price auction, whereas display and search settings are typ-
ically multi-slot with position effects, and many platforms run variants of
generalized second price (GSP) or hybrid pay-as-bid mechanisms. Multi-
slot environments introduce two additional features that can strengthen the
monitoring channel. First, there are more margins on which to coordinate:
bidders may rotate not only winning but rank positions, using the vector
of allocations as a richer public signal. Second, multi-slot auctions generate
externalities in learning: a bidder’s observed return from a given multi-
plier depends on the entire distribution of rival multipliers and on position-
dependent click-through rates, making the mapping from outcomes to best
responses more complex and potentially increasing the value of public infor-
mation.
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At the same time, multi-slot settings can destabilize coordination be-
cause the deviation set is larger and misreports are harder to detect when
many reallocations are consistent with noise. Extending our detection ob-
ject ¢(k) to multi-dimensional monitoring (e.g., noisy rank vectors, noisy
per-position prices) would clarify when additional disclosed statistics act as
“coordination focal points” versus “confounding noise.” More broadly, multi-
slot models raise welfare questions that are muted in the single-slot case:
collusion can distort not only who wins, but also which advertisers occupy
marginal positions where incremental welfare may be low or negative once
user experience is considered.

Privacy, confidentiality, and regulatory constraints on disclosure.
We treat the platform as choosing a precision parameter x and a statis-
tic my, but in practice disclosure is constrained by privacy law, contractual
confidentiality, and the platform’s own commitments to protect proprietary
information. These constraints can be incorporated formally as a feasible set
of information structures, for example by requiring that the release mech-
anism satisfy a differential privacy constraint or a mutual-information cap.
Doing so changes the design problem from choosing “how transparent” to
choosing which features of the state and actions may be safely revealed.

A key conceptual point is that privacy protections can cut both ways with
respect to competition. Strong privacy can reduce ¢(x) by limiting identifi-
ability and thereby deter collusion, but it can also reduce m(x) by limiting
bidders’ ability to infer fundamentals, potentially depressing bids through
persistent uncertainty. This suggests an open design problem: identify dis-
closure mechanisms that are privacy-preserving yet competition-promoting,
such as statistics that reveal market-scale information about 6 while prov-
ably obfuscating any single bidder’s action in a way that prevents stable
attribution.

Algorithmic learning dynamics and equilibrium selection. We model
learning through an average multiplier &(x) and capture coordination through
the existence of low-revenue perfect public equilibria. A deeper treatment

would explicitly model the learning algorithm (e.g., multiplicative weights,

UCB, policy-gradient updates) and study which equilibria are selected under

realistic adaptation. This matters because algorithmic bidders may coordi-

nate without explicit “strategies” in the repeated-game sense: public feedback

can synchronize updates, creating emergent collusion even when bidders are

individually optimizing against stationary assumptions. Characterizing the

mapping from disclosure to long-run outcomes in such adaptive systems re-

mains largely open, especially when the learning process itself depends on

the platform’s reporting API, logging granularity, and delays.
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Empirical identification and open problems. Finally, while our the-
ory motivates measuring objects like m(k) and ¢(k), identifying them in
field data is nontrivial because both channels affect revenue in the same
direction over some ranges of k. A central open problem is to design em-
pirical tests that can separately recover learning improvements versus coor-
dination facilitation, ideally using quasi-experimental variation in disclosure
regimes. Another open question is normative: when the platform’s objective
is J(k) = AR(k) + (1 — \)W(k), what disclosure is optimal once we account
for downstream product-market effects, user experience externalities, and the
possibility that transparency changes entry and innovation among bidders?
Addressing these questions requires combining information design, dynamic
mechanism design, and the economics of algorithmic interaction—precisely
the intersection where we expect future work to be most valuable.
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