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Abstract

Platforms increasingly release only privacy-preserving, truncated
auction logs—often showing the top few bids, winners, and prices—while
withholding the full bid landscape. This truncation is central in mod-
ern ad auctions and is mirrored in benchmark datasets like Auction-
Net, which record per-opportunity outcomes for a fixed number of top
agents. We develop a clean partial-identification framework for coun-
terfactual analysis when only top-K order statistics are observed. For
multi-slot auctions under standard pricing rules (GSP and first-price
variants), we derive explicit lower and upper bounds on counterfactual
revenue under reserve-price changes and on allocative inefficiency, re-
quiring only weak behavioral restrictions (e.g., value-proportional bid-
ding ranges) and minimal market structure. We show the bounds are
sharp and quantify how informativeness improves with larger K: under
mild tail regularity, the identification region shrinks at rate O(1/K)
for economically relevant high-reserve policies. We validate tightness
and finite-sample coverage by taking full-information AuctionNet sim-
ulations and artificially truncating logs to top-K, demonstrating that
our bounds recover the true counterfactuals across mechanisms and
reserve regimes. The results provide regulators and researchers with
credible tools for policy evaluation and antitrust analysis in settings
where full auction transparency is infeasible.
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1 Introduction

In 2026, “top-K disclosure” has become the operational default for many
large-scale advertising exchanges and recommendation marketplaces: the
platform records (and is willing to share internally across teams, or exter-
nally with auditors and researchers) only the highest-ranked bids in each
auction, together with the realized winners and payments under the sta-
tus quo policy. This is not primarily a modeling choice—it is a product of
engineering and governance. From an engineering perspective, storing and
serving complete bid vectors for billions of auctions is costly and often un-
necessary for real-time monitoring. From a governance perspective, full bid
logs can expose sensitive information about advertiser strategies, facilitate
collusion, or violate data-minimization requirements imposed by privacy reg-
ulation and contractual commitments. The result is a data regime in which
the econometrician sees the “head” of each auction but not the “tail”: we
observe the most competitive bidders, while the presence and behavior of
lower-ranked participants are censored.

This truncation creates a basic tension for policy evaluation. Reserve
prices, pacing rules, and other auction parameters are typically designed to
trade off revenue against allocative efficiency. Yet the counterfactual effect
of a reserve depends on who would have cleared it and on which bids become
price-setting. If we do not observe the full participant set, it is not obvious
whether we can credibly predict counterfactual revenue or welfare, even if
the auction format is fully known. A naive reaction is pessimism: without
complete bids, we might think that almost anything could happen under a
counterfactual reserve. A second, equally naive reaction is overconfidence:
because the top bidders determine outcomes under many policies, we might
be tempted to treat the unobserved tail as irrelevant. Our goal is to chart
a middle path. We ask what can be learned nonparametrically from top-K
auction logs about counterfactual performance under alternative reserves,
and we make explicit where the data necessarily remain silent.

The starting intuition is simple. When the counterfactual reserve is high
enough, only the very top of the bid distribution can possibly clear, and
the unobserved tail cannot affect allocations or payments. In that regime,
counterfactual outcomes become measurable functions of the observed bids,
and expected revenue is point-identified. When the reserve is lower, how-
ever, unobserved bidders can matter in two ways: they can (i) add additional
reserve-clearing participants who fill otherwise-empty slots, and (ii) in mech-
anisms where payments depend on lower order statistics, potentially change
the marginal price. The first effect tends to raise revenue at the reserve
(more filled capacity) but can reduce welfare if it crowds out higher-value
allocations in richer environments; the second effect can either raise or lower
revenue depending on how pricing pivots. Our analysis formalizes the sense
in which, under common multi-slot mechanisms and a modest condition on



K, the second channel is largely neutralized for already-observed winners,
leaving “extra slot filling” as the main source of identification loss.

The central object we construct is an explicit identified interval for coun-
terfactual moments such as expected revenue and expected welfare under
any candidate reserve r. The bounds are computed auction-by-auction from
the observed top-K bids, aggregated to the time-bin level. They are sharp:
for every value inside the interval, there exists a data-generating process con-
sistent with the observed logs and the maintained restrictions that attains
it. This sharpness matters for practice. It tells a policy team exactly how
much uncertainty is induced by truncation, without smuggling in additional
structure through parametric bidder models or distributional assumptions
on unobserved participation.

Our first contribution is to clarify when top-K is already “enough” for
point identification. In multi-slot generalized second price (GSP) auctions,
payments for the allocated slots depend on the next lower bids. Thus, ob-
serving at least L + 1 bids per auction is a natural threshold: once the
payment-relevant order statistics are recorded, the only remaining ambigu-
ity is whether additional bidders would have cleared a given reserve and filled
more slots. In first-price auctions, payments are even more local, but alloca-
tion under a reserve still depends on who clears. We therefore treat K > L+1
as the canonical disclosure level for policy evaluation in environments with
L meaningful positions.

Our second contribution is to provide closed-form bounds that are oper-
ational in large data systems. Rather than requiring simulation over latent
bid vectors, we show that the worst-case impact of unobserved bids can be
summarized by a small number of observable statistics: how many of the
observed top-K clear the candidate reserve, and (for pricing) which order
statistics are already in hand. This yields bounds that can be computed in
a single pass over auction logs and are naturally compatible with modern
decision pipelines (e.g., per-step updates in reserve-tuning systems).

Our third contribution concerns welfare and allocative loss. Revenue is
bid-based; welfare is value-based. With only top-K observed values, welfare
evaluation requires a bridge between bids and values. We adopt a deliber-
ately weak proportionality restriction that places each bidder’s value within
known multiplicative bounds of her bid. This assumption is motivated by
the prevalence of value proxies in ad auctions (predicted conversion value,
margin-adjusted value per click, or value-per-impression measures) and by
the fact that many platforms already impose calibration constraints or bid
shading guidance that limit how far bids deviate from value. Under this
restriction, unobserved entrants who clear a reserve must have values in a
correspondingly bounded range, which lets us bound welfare from above and
below without specifying bidder primitives.

Finally, we study when the identification region becomes tight. Intu-
itively, top-K truncation is most damaging when many bidders cluster near



the reserve, so that small changes in the unobserved tail can change whether
slots are filled. We formalize a sufficient upper-tail regularity condition—
expressed as a hazard-rate bound in the relevant tail—under which the prob-
ability that unobserved bidders matter at a high reserve is small and decays
with K. This delivers a transparent message: if we tune reserves in the upper
tail (as many production systems do), then increasing K yields quantitative
improvements in identification, with the width of the bound shrinking on
the order of 1/K.

The broader motivation is practical. Platforms often want to evaluate
candidate reserve changes quickly, safely, and with minimal access to sen-
sitive data. Our results delineate what can be guaranteed under limited
disclosure and what cannot. In particular, when the bound remains wide, it
is not a failure of estimation but an intrinsic ambiguity created by data cen-
sorship. Conversely, when the bound is narrow (or collapses), the platform
can make counterfactual claims that are robust to a large class of bidder
behaviors and participation patterns. We also emphasize limitations. Our
analysis does not attempt to identify bidder-level primitives or equilibrium
bidding functions, and it does not speak to dynamic responses across time
bins beyond the maintained conditioning. Rather, the model illuminates the
tradeoff between disclosure (how large K is) and credible policy evaluation
(how tight the identified set is), which is precisely the tradeoff that motivates
top-K logging in the first place.

The remainder of the paper proceeds as follows. Section 2 describes
the institutional setting and the structure of auction logs, clarifying what
“top-K” means in practice and how truncation enters the data-generating
process. We then formalize the environment and derive identification results
for revenue and welfare under counterfactual reserves, establish sharpness,
and provide conditions under which the bounds tighten in upper-tail regimes.
We conclude with guidance on how to use these bounds in reserve design and
monitoring workflows.

2 Institutional background and data structure

Our setting is motivated by modern advertising and recommendation mar-
ketplaces in which each user interaction triggers a rapid auction over a small
number of display positions. An “auction” here is an impression opportu-
nity (or a page view with several positions) defined by context such as a
query, a user segment, a publisher surface, and a time stamp. Conditional
on this context, a platform forms an eligible set of advertisers using target-
ing constraints, brand-safety rules, pacing and budget filters, and (often)
pre-ranking models. Eligible advertisers respond with bids that are typically
produced by automated bidding systems and may already incorporate pre-
dicted click-through rates, conversion rates, or other quality adjustments.



Operationally, the platform computes a scalar ranking score for each eligible
advertiser and allocates the top positions subject to a reserve price and other
policy constraints.

2.1 How the auction generates allocative and payment out-
comes

While production systems can include quality weighting and multiple nested
stages, the final allocation stage that generates billable outcomes is well ap-
proximated by a multi-slot auction: the platform ranks participants by a
single bid-like score and assigns the top L to L positions. The platform also
records an exposure or discount factor for each position, reflecting the fact
that lower positions receive fewer clicks or impressions (or, in recommen-
dation settings, less user attention). We denote these position weights by
e1 > - >er >0 and treat them as known and stable within a time bin.

Payments are determined mechanically by the auction format. In many
ad exchanges, the last-stage pricing rule is a generalized second price (GSP)
variant: each winner pays (per unit of exposure) the next lower bid, subject
to the reserve. In other contexts (e.g., certain retail media placements), the
relevant benchmark is first price, where each winner pays her own bid if allo-
cated. Regardless of which rule is used, an auction log typically contains (i)
the identities of the winners, (ii) their assigned slots, (iii) the realized pay-
ments, and (iv) auxiliary counters such as impressions, clicks, or conversions
that can be used to construct value proxies. Importantly for counterfactual
analysis, the platform implements these steps under a status-quo reserve rg
that is known to the econometrician.

2.2 AuctionNet time bins and decision steps

Platforms rarely operate with a single static reserve. Instead, reserve poli-
cies are updated at a cadence that reflects both market drift and opera-
tional constraints. We use the term “AuctionNet” to refer to a reserve-setting
pipeline that chooses (possibly context-dependent) policy parameters on a
fixed schedule and then applies them to all auctions arriving in the subse-
quent interval. This induces a natural partition of time into bins t = 1,2, ...
(decision steps), within which the policy is approximately constant and auc-
tions can be viewed as conditionally comparable. Our identification results
are explicitly within-bin: we condition on ¢ to abstract from cross-bin strate-
gic responses and to avoid conflating policy evaluation with nonstationary
demand and supply.

Within a time bin ¢, we index auctions by j =1, ..., J. For each auction
J, there is a latent number of participants N; after eligibility and filtering. In
practice, N; may vary substantially with context and is not always written
to the log in a way that is usable for research or auditing. However, it is



often possible to specify a conservative upper bound N based on system
constraints (e.g., maximum candidates fetched, maximum ads considered at
the final stage), which will play the role of an a priori participation bound.

2.3 What “top-K” logging means

The key feature of the data regime we study is that the platform records
only a truncated view of the bid vector. Concretely, for each auction j the
full set of bids (or ranking scores) {b1;,...,bn,;} exists at serving time, but
the stored log contains only the K highest order statistics,
by 2 b 2 2 by,

together with the associated advertiser identities and a value proxy for each
of these top-K participants, which we denote by v); for k < K. The trun-
cation is by rank, not by a fixed monetary threshold: we observe exactly the
first K entries of the sorted list (subject to there being at least K partici-
pants), but we do not observe the (K + 1)-st bid nor any lower-ranked bids.
In particular, we generally do not know how many additional bidders par-
ticipated beyond K, nor whether there were many bids clustered just below
by

This convention reflects common engineering and governance practices.
Engineering teams seek to reduce storage and retrieval costs by logging only
the most informative portion of the candidate set for debugging and moni-
toring. Governance teams often impose data-minimization rules that treat
full bid vectors as sensitive, since lower-ranked bids can reveal participation
of niche advertisers, facilitate inference about budgets or targeting, or in-
crease the risk of reverse engineering competitors’ strategies. As a result,
cross-team consumers of auction logs (and especially external auditors) may
be granted access to top-K lists even when full vectors are available only in
tightly controlled environments, if at all.

2.4 What else is observed, and why truncation matters for
policy evaluation

In addition to the top-K bids and value proxies, logs typically contain the re-
alized allocation and payments under ry: which advertisers won which slots,
what per-exposure prices were charged, and the position weights (or sufficient
statistics to reconstruct them). These realized outcomes are crucial because
they anchor the data in an implemented mechanism. However, they do not
by themselves resolve counterfactual questions about alternative reserves.
The reason is that a change from 7 to a counterfactual r can alter both (i)
the set of bidders who clear the reserve and hence the number of filled slots,
and (ii) under GSP-type pricing, which bid becomes pivotal for the winners’
payments. Both effects depend on bids that may lie below the top-K cutoff.



Thus, even with a fully known mechanism, evaluating Revjvl (r) or Welf(r)
requires reasoning about the unobserved tail of the bid vector.

The purpose of the next section is to formalize this data structure in a
minimal model: we treat the observed top-K list as the primary informa-
tion set, we allow N; and the bids below rank K to be latent (subject to
bounds), and we define the counterfactual objects of interest under alter-
native reserves. This disciplined abstraction keeps the institutional details
that matter for identification—rank truncation, multi-slot pricing, and lim-
ited observability of participation—while remaining compatible with the way
large-scale platforms actually store and disclose auction logs.

3 Baseline model (single time bin)

We now formalize a minimal within-bin model that mirrors the institutional
description above while making explicit what can and cannot be learned
from top-K logs. Throughout this section we fix a time bin ¢ and suppress
the t subscript when doing so creates no ambiguity. The key discipline is
that we treat the auction format as fully known and the top-K list as the
primary information set, while allowing participation and lower-ranked bids
to be latent.

3.1 Multi-slot auction primitives

In each auction (impression opportunity) j = 1,...,J, a latent set of N; bid-
ders participates. Bidder 7 submits a nonnegative bid b;; € R, interpreted
as the scalar ranking score used by the platform at the final allocation stage.
Each bidder also has an associated value v;; € R, which in applications can
be an advertiser surplus value or a value proxy constructed from conversions,
clicks, or predicted outcomes.

Let b(1y; = - -+ = b(n;); denote the order statistics of the bid vector, with
v(k); denoting the value associated with the k-th highest bid. The platform
has L available slots and known exposure weights e; > --- > ep > 0. A
reserve price r > 0 acts as an eligibility threshold: only bidders with bids
at least r are eligible to be allocated. We allow for the realistic possibility
that fewer than L bidders clear the reserve, in which case some slots remain
unfilled.

We consider two canonical pricing rules, indexed by M € {GSP,FP}.
Under either mechanism, the allocation under reserve r is the set of up to
L highest bids among those satisfying b;; > . Equivalently, slot ¢ is filled if
and only if by); > r, and in that case the winner is the ¢-th highest bidder.
What differs across M is the per-exposure payment pé‘;’ (r) charged to the
slot-¢ winner:

p?jsp(r) = max{r, b(£+1)j} t=1,...,L), pgjp(r) =bw; 1{b(g)j >r}.



In GSP we interpret b(z41); = 0 if fewer than L + 1 bids exist, and more
generally we take the convention that payments are defined only for filled
slots (unfilled slots contribute zero revenue and zero welfare).

While our identification analysis does not require us to fully specify
strategic bidding, we impose a weak behavioral restriction that is standard in
this literature: within a bin, bids are generated by a weakly increasing bid-
ding rule b;; = s;(v;;). This monotonicity captures the idea that higher-value
advertisers (or higher predicted outcomes) tend to submit higher ranking
scores, without committing to a particular equilibrium model or parametric
form.

3.2 Observed versus unobserved information under top-K
logging

The econometrician does not observe the full bid vector. Instead, the log
records only the top-K bids and associated identities and value proxies:

{(b@yzsv)7)s - -5 iy v(x)) } -

Crucially, nothing is observed about the remaining ranks & > K: neither
brc+1)j5 b(ic 4255 - - - nor their associated values. In many deployments the
total number of participants N; is itself not reliably logged; we therefore
treat IN; as latent but bounded, N; € [K, N], where N is an a priori system-
or policy-implied maximum.

In addition to the truncated bid list, the log contains realized outcomes
under the status-quo reserve ry: which ads were shown, the assigned slots,
and the realized per-exposure prices. These objects are useful for validating
that the mechanism is correctly understood and for reconstructing realized
revenue under ryg. However, because rg need not equal a counterfactual
reserve r of interest, and because changing the reserve can change both who
is eligible and which bid becomes pivotal in GSP, the realized outcomes under
ro do not by themselves identify counterfactual outcomes under r.

A convenient summary statistic extracted from the top-K list is the num-
ber of observed bids that clear a given reserve,

Mobsvj(r) = ‘{k S K: b(k)j 2 T'}‘ .

This quantity is fully observed for any r and will play a central role in the
constructive bounds below, because it determines how many slots are defi-
nitely fillable from the observed list while leaving open how many additional
reserve-clearing bidders might exist below rank K.

3.3 Counterfactual reserve policies and target estimands

A reserve policy specifies a counterfactual reserve level r (possibly chosen
as a function of context, though our analysis is within-bin and treats r as



fixed when evaluating a given policy). For a given auction j, mechanism M,
and reserve r, we define the counterfactual revenue as exposure-weighted
payments from all filled slots:

L

Revé\/l (r) = Zegp?j/[ (1) H{b(py; > 7}
(=1

Similarly, we define counterfactual welfare as the exposure-weighted sum of
winner values among filled slots,

L
Weltj(r) = Y er 1{buy; = r} v,
(=1

Because welfare depends on values that are unobserved for ranks & > K,
bounding Welf;(r) will require an additional link between bids and values
(introduced explicitly when we turn to welfare bounds). For policy eval-
uation we also consider an allocative-loss functional, measuring the welfare
foregone relative to a benchmark allocation (e.g., full allocation under r = 0):

Loss;(r) = Welf;(0) — Welf;(r).

The platform-facing objects of interest are within-bin expectations of
these counterfactual outcomes, such as

uf/l (r) = E[Revé\/l(r) | t] , we(r) = E[Welf;(r) | t], () = E[Loss;(r) | t].

Operationally, a reserve-setting pipeline (our “AuctionNet” abstraction) would
compare M (r) across candidate reserves or optimize a constrained objec-
tive trading off revenue and allocative loss. The econometric difficulty is
that Revf\/l (r) and Welf;(r) depend on latent lower-ranked bids (and poten-
tially on N;) whenever 7 is low enough that reserve-clearing bidders may
exist beyond the observed top K. The next section shows that, despite this
truncation, we can compute explicit and sharp per-auction lower and upper
bounds on these counterfactual objects using only the top-K list and the par-
ticipation bound N, and that these bounds tighten rapidly in economically
relevant upper-tail reserve regimes.

4 Sharp per-auction bounds with minimal assump-
tions

Our goal is to translate a truncated log—the observed top-K bids—into
usable information about counterfactual reserves. The guiding idea is sim-
ple: for any fixed reserve r, the only source of ambiguity comes from the
unobserved portion of the bid vector (ranks & > K) and from the latent par-
ticipation count N;. We therefore proceed constructively: for each auction
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j we consider all completions of the unobserved bids consistent with the log
and with the participation bound N; € [K, N|, and we ask for the small-
est and largest revenue compatible with those completions. This delivers
per-auction bounds that are explicit, mechanism-specific, and (importantly)
sharp.

4.1 Bounding how many bidders can clear a counterfactual
reserve

Fix an auction j and reserve r. From the top-K list we can count how many
observed bids clear r,

Mobs,(r) = [{k < K s bry; 2 7}

Because bids and ranks beyond K are not logged, the true number of reserve-
clearing bidders,
Mj(r) = {i < Nj: bij =},

is generally unknown. However, two restrictions immediately pin down a
feasible interval. First, any observed reserve-clearer is a true reserve-clearer,
so M;(r) > Mo ;(r). Second, there can be at most N — K unobserved

bidders, so at most N — K additional reserve-clearers can be hidden below
rank K. Thus

M;(r) € [Maps(r), min{N, Mapss(r) + N = K} (1)

This participation arithmetic is the backbone of the revenue bounds below:
it tells us how many additional slots could possibly be filled by latent bidders
under the counterfactual reserve.

4.2 Closed-form revenue bounds under GSP when K > L +1

Under GSP, uncertainty about lower-ranked bids can matter in two con-
ceptually distinct ways: it can change whether a slot is filled (by creating
additional reserve-clearing bidders), and it can change the pivotal bid that
sets a winner’s price. Assumption (H1) K > L + 1 largely neutralizes the
second concern. Intuitively, whenever slot £ is filled, its per-exposure price is
max{7, bs41);}, so only the order statistic at rank £+ 1 is payment-relevant;
with K > L +1 we observe b(g);, ..., b(r11); directly.

Let m;(r) = Moy ;(r). A lower bound on GSP revenue is obtained by
the completion in which no unobserved bidder clears r, so only the observed
reserve-clearers can be allocated:

min{L, m;(r)}

Revi®(r)= > ey max{r, by} (2)
=1
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An upper bound is obtained by adding as many latent reserve-clearers as
the participation bound allows, thereby filling additional slots whenever
min{L,m;(r)} < L. Under GSP, any such extra filled slot contributes at
least the reserve per exposure, and in the worst case (from the econometri-
cian’s perspective) we may treat it as paying exactly r without affecting the
already-observed pivotal bids for higher slots. This yields

— asp min{L, m;(r)+N—-K}
Rev,” (r) = Mfsp(r) + Z epr. (3)
L=min{L,m;(r)}+1

The bounds — are sharp: the lower bound is attained by setting all
unobserved bids below r, and the upper bound is attained by adding N — K
unobserved bids just above r (so they clear and fill slots) while keeping
them below the observed payment-relevant order statistics, which is feasible
because K > L + 1 ensures those pivots are already fixed by the log.

4.3 Analogous bounds under first-price (FP) pricing

Under FP, the allocation rule is the same, but payments are bidder-specific:
each winner pays her own bid. As a result, the composition of additional
winners (if latent reserve-clearers fill otherwise-empty slots) directly affects
revenue. Nevertheless, we can still bound revenue in closed form using only
the truncation level and the participation bound.

The lower bound again sets all unobserved bids below 7, so only observed
reserve-clearers can contribute. Since FP payments equal bids for filled slots,

we obtain
min{L, m;(r)}

Revi"(r)= > erby (4)
(=1
For the upper bound, we allow as many additional reserve-clearers as pos-
sible, up to N — K, and we maximize their contribution subject to the
information in the log. A convenient (and sharp) envelope is to assign each
additional winner a bid as large as permitted by truncation, namely no larger
than b(x;, while still satisfying the reserve. This yields

min{L, m;(r) +N—K}

=—FP
f=min{L,m;(r)}+1

As in the GSP case, sharpness follows by explicit constructions: to hit the
lower bound we suppress all latent bids below r, and to hit the upper bound
we introduce the maximum number of latent bidders with bids at (or arbi-
trarily close to) b(); while respecting rank consistency.

12



4.4 From per-auction bounds to within-bin identified inter-
vals

Equations f and f provide per-auction identified sets for coun-
terfactual revenue under any reserve r. Aggregating across auctions in bin ¢
yields interval-valued estimands

) =ERev(r) [ 1], a@M(r) = E[Rev;"(r) |¢],

which are directly estimable by sample averages because each bound depends
only on observed order statistics and known constants (L, {e;}, K, N). A use-
ful limiting case is the “high-reserve” region: if 7 > b(x; in an auction, then
no unobserved bidder can clear, and the lower and upper bounds coincide—
delivering point identification auction-by-auction. More generally, the width
is mechanically governed by two ingredients: the slack N — K (how many
bidders could be missing) and the exposure mass in potentially unfilled lower
slots. This makes transparent both why truncation matters and how addi-
tional logging depth or tighter participation bounds translate into tighter
counterfactual conclusions.

4.5 Bounding welfare and allocative inefficiency via value—
bid proportionality

Revenue is only one side of the reserve-price problem. In many applications
the platform (or a regulator evaluating platform policies) also cares about the
efficiency cost of excluding bidders who would otherwise receive exposure.
With truncated logs, the difficulty is immediate: even if we can determine
which bids clear a counterfactual reserve, we typically do not observe the
corresponding wvalues for bidders below rank K. We therefore introduce a
deliberately weak device for translating bid information into value informa-
tion: a proportionality interval
N |:bij bij:| _
vij € | =, —|, 0<a<a< oo, (6)
a o

which can be motivated either as a modeling approximation (values are
roughly a constant multiple of bids within a time bin) or as a robustness
envelope (we only require bids to be informative about values up to known
multiplicative slack). This restriction is mild enough to accommodate many
sources of bid shading or bid multipliers, while still ruling out the patho-
logical case in which a bidder with an arbitrarily low bid could have an
arbitrarily high value.

For a reserve r, welfare in auction j is the exposure-weighted value of
allocated winners,

L
Welf;(r) = er 1{bey; > r}v;.
(=1

13



When we observe the top-K values and assume K > L, the welfare con-
tributed by observed reserve-clearing winners is directly measurable:

min{L,Mgps,; (1)}

Welf; ops(r) = > e v(0);- (7)
/=1

The only remaining ambiguity comes from the possibility that fewer than L
observed bids clear r, leaving some slots that could be filled by latent bidders
(ranks > K') whose bids are unobserved. Participation bounds restrict how
many such entrants can exist, while @ restricts how valuable they could be
conditional on clearing the reserve.

A sharp lower bound on welfare sets all unobserved bids below r, so that
no latent bidder can be allocated. This is the natural “worst-case efficiency”
scenario for a given reserve, because any additional entrants would weakly
increase welfare:

Welf; (r) = Welf; ops (7). (8)

A sharp upper bound fills as many currently-unfilled slots as feasible (at most
N — K additional participants) with bids that just clear r. By @, any such
entrant must have value at most r/a, so the maximal welfare contribution
per additional filled slot is ey - 7/a. Letting m;(r) = Moqps j(r), this gives

min{L, m;(r)+N—K}

—_— T
Welf ; (r) = Welf; ops(r) + > e —. (9)
f=min{L,m;(r)}+1 -

These bounds are sharp in the same constructive sense as for revenue: to
attain (8) we choose completions with all missing bids below r; to attain @
we add the maximum number of missing bidders with bids arbitrarily close
to r and values at the upper edge r/a. Importantly, we do not require a full
structural model of bidding, nor do we require that values be observed for
bidders who do not appear in the top-K list.

4.6 Allocative loss relative to full allocation

To summarize efficiency consequences in a single object, we can benchmark
against the “full allocation” case r = 0 and define

Loss;(r) = Welf;(0) — Welf;(r).

Under K > L, welfare at » = 0 is point-identified because the top-L values
are observed:

L
Welfj (O) = Z €y U(g)j.
(=1
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Combining this with f@ yields an identified interval for allocative loss,

Loss;(r) = Welf;(0) — Welf;(r), Loss;(r) = Welf;(0) — Welf;(r). (10)
The interpretation is transparent. The upper bound Loss;(r) treats any
unfilled exposure under the counterfactual reserve as truly lost (no latent
entrants), while the lower bound Loss;(r) gives the platform the benefit of
the doubt by allowing latent bidders to backfill exposure with values as large
as the proportionality envelope permits. In policy terms, provides a
conservative range for the efficiency cost of raising reserves, robust to missing
lower-ranked bidders.

A limitation is equally clear: the tightness of welfare and loss bounds is
governed by the proportionality slack (the ratio @/a) and by the number
of potentially missing participants N — K. If values can be much larger
than bids (small ), the upper envelope @ can be loose, reflecting genuine
uncertainty rather than an artifact of our derivation.

4.7 Point-identified “competitive pressure” indices from top-
(L+1)

While welfare requires a bid—value link, some economically meaningful diag-
nostics are identified purely from observed order statistics once K > L + 1.
In multi-slot auctions, the bid at rank L+ 1 is the natural proxy for the
marginal competitor who determines whether the last slot is contested and,
under mechanisms like GSP, is closely tied to the price pressure on the bot-
tom allocated position. Likewise, the spacing

Aj = bwy; = br+1)

captures how “thick” competition is around the allocation cutoff: small gaps
indicate intense competition and potentially high sensitivity of outcomes to
small reserve changes, while large gaps indicate slack. Because both b(7,; and
b(r+1); are observed in the top-K' log under (H1), any moment of the form
E[¢(b(r+1)j,A;) | 1] is point-identified and can be used to stratify auctions
by competitive conditions. In practice, these indices help us interpret when
bounds will be informative: auctions with weak marginal competition (low
b(r+1);, large A;) are precisely those where a moderate reserve is more likely
to shut down allocation and where truncation uncertainty can become first-
order.

4.8 Shrinkage with K: when partial identification becomes
informative

The bounds above are finite-K objects: they describe what can (and can-
not) be learned from a log that records only the top-K bids in each auction.
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For counterfactual policy work, however, it is equally important to under-
stand when these identified intervals are likely to be narrow—so that partial
identification delivers operational guidance—and when they are intrinsically
wide.

A convenient summary is the identification width in auction j,

Width? (1) := Revy ' (r)~Rev&P(r),  Width)Ve¥ (1) := Welf; (r) — Welf, (),

and similarly for loss. Under our explicit constructions, these widths are
driven by a simple economic event: does truncation leave room for additional
reserve-clearing bidders to matter for unfilled exposure? When it does, the
“missing” component enters linearly in the reserve, because any additional
filled slot must at least clear r (and, under value-bid proportionality, must
have value bounded by a multiple of r).

Formally, in the GSP case, Proposition 2 implies

min{L, Mops ; (r)+N—K}
Widthfe () = 3 e, (11)
L=min{L,Mops,;(r)}+1
while Proposition 3 yields the analogous welfare expression
min{L, Mops,; (N+N-K}
Width V! (r) = > e
Z:min{LyMobs,j (T)}+1

(12)

1=

These formulas already clarify two comparative statics. First, holding ev-
erything else fixed, larger K reduces the maximal number of latent entrants
N — K and therefore mechanically tightens the upper envelope. Second,
the widths scale with r (or r/a): when the reserve is tiny, even worst-case
“backfilled” slots contribute little to revenue or welfare, while high reserves
make each potentially missing slot more consequential.

The more delicate question is how E[Width;(r)] behaves as K grows.
Here the key is that K plays two conceptually different roles. It reduces
the feasible number of missing bidders (via N — K), but it also changes the
probability that truncation is relevant at a given reserve. If a counterfactual
reserve is so low that a large fraction of the bidder population clears it,
then even a fairly large K may still leave many reserve-clearing bidders
unobserved; in contrast, if the reserve is set in the upper tail, the event that
any missing bidder clears r becomes rare, and identification tightens quickly.

This logic is captured by Proposition 5, which imposes an upper-tail
regularity condition within a time bin ¢t—for instance, a bounded hazard
rate hy(b) < H for b > r—and focuses on an upper-tail reserve regime.
A useful way to parameterize this regime is through the tail probability
mi(r) :=1— Fy(r). If r is chosen so that

(r) = @(ﬁ) , (13)
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then the reserve targets a quantile whose tail mass is commensurate with
the truncation level: heuristically, the expected number of bidders above
r is of order K, so the truncation threshold lies near the relevant part
of the distribution. Under bounded hazard (or comparable extreme-value
conditions), the bid distribution does not place too much probability mass
in an e-neighborhood above r, which limits how often we encounter auc-
tions in which unobserved bidders can change the number of filled slots. In
this regime, Proposition 5 delivers an O(1/K) upper bound on the ezpected
width,

Cle, H)
K )

C'(e,H, )

E[Width}® (r)] < 7

E[Width)¥!(r)] <
for constants depending only on exposure weights and tail regularity (and «
for welfare). Economically, the conclusion is that deeper logs buy us first-
order improvements precisely when reserves are high enough that allocation
is decided “near the top” of the bid distribution.

The same result also tells us when bounds do not shrink quickly. The
problematic regime is a low (or more generally, non-tail) reserve with sub-
stantial mass above r: if m;(r) is bounded away from zero as N grows,
then the expected number of reserve-clearing bidders scales with N, and the
truncation K can miss a large set of eligible bidders unless K itself grows
proportionally with N. In that case, expressions like — can remain
large because (i) the slack N — K is large, and (ii) the event that there exist
many latent reserve-clearers is no longer rare. Put differently, in low-reserve
regimes, uncertainty is not a technical artifact of our bounding argument;
it reflects a genuine observational limitation of top-K data for policies that
potentially affect how far “down the list” allocation could extend.

From a practical perspective, this distinction matters for reserve-price
experimentation. If a platform is contemplating reserves that bind only in
the upper tail (e.g., to remove very low bids), then partial identification
from truncated logs can still be highly informative, and increasing K yields
predictable improvements. If instead the platform considers reserves in the
body of the distribution—where many bidders hover near the cutoff—then
even large K may not deliver tight conclusions without additional structure
(stronger participation models, richer observables, or direct logging of deeper
ranks). These considerations motivate the next step: how to estimate the
bound functions and conduct inference uniformly over r in finite samples,
while remaining robust to uncertainty about N and to heterogeneity within
time bins.

4.9 Estimation and inference from finite samples

Our bounds are constructive at the auction level, so estimation in a time
bin ¢ is naturally “plug-in”: we compute per-auction bound functions from
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the observed top-K bids and then average across auctions. Fix a mechanism
M and reserve r. For each auction j we can evaluate the explicit lower and
upper envelopes (e.g., Proposition 2 for GSP revenue and Proposition 3 for
welfare) as deterministic functions of the observed order statistics and known
primitives (L, {e;}, N, a, @). We denote these generic per-auction objects by

Y,(r) <Yi(r) <Y,(r),

where Y;(r) can be Revé\/[ (r), Welf;(r), or Loss;(r), and (Xj(r),?j(r)) are
the sharp bounds induced by our constructions.

Bound functions and plug-in estimators. Let the target moment be
the time-bin mean p(r) := E[Y;(r) | t], with identified set

p(r) € [u(r), fi(r)] = [E[Y;(r) | 2], E[Y;(r) | ]

Given J auctions in bin ¢, the sample analogs are

J J
a(r) = ij(r)a ﬁ(r) = Z?j(r).
J=1 j=1

<=
Sl

These estimators are unbiased for (u(r), (7)) under random sampling within
the bin, and consistent under weak conditions (e.g., independent auctions
with uniformly bounded second moments, which holds automatically for rev-
enue when bids are bounded or truncated in logs). Computationally, ¥ ;(r)
and Y ;(r) are piecewise linear in r with kinks only at observed bids (through
terms like max{r, by, 1);} and indicators 1{b(); > r}). Hence, for uniform
analysis over r, it is without loss to evaluate the functions on a grid con-
taining {0} U {b(y); : j < J,k < K} (or a coarsened version for speed), and
interpolate between grid points.

Pointwise inference for endpoints. At a fixed r, inference reduces to
the mean of observed random variables {Y;(r) }37:1 and {Y;(r) 5]:1. Under
i.i.d. auctions within ¢, a standard CLT yields

VI(@(r) = p(r)) = N©0,08(r),  VI(@(r) —a(r) = N(0,03(r)),

with the usual sample-variance plug-in estimators. We then form confidence
intervals for each endpoint and combine them into a confidence set for the
partially identified u(r) by taking the Cartesian product:

CS,(r) = [(r) = ca By 1)V, Tir) + ca By (r) VT,

which is conservative but transparent. When auctions are independent but
not identically distributed (a realistic scenario with heterogeneous queries
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within the same time bin), the same construction remains valid using heteroskedasticity-
robust (“sandwich”) standard errors for the sample mean; the key observation

is that the per-auction bounding functions do not require homogeneity, only

that auctions are sampled in a way that justifies the law of large numbers

for averages.

Uniform confidence bands over reserves. Policy analysis typically
compares many candidate reserves (and often chooses r endogenously), so
we want bands that hold simultaneously for all r in a set R. Because our
bound functions are piecewise linear with finitely many kinks in finite sam-
ples, a practical approach is to build uniform bands over a finite grid R s
that contains all kinks, and then extend by linear interpolation. Let

J ~ J 57 =
u( ) Y(r) —n(r)
Ty = sup = , T = sup — .
- TERJ g Y TERJ g )

Q)

We estimate critical values for these sup-statistics by a multiplier boot-
strap: draw i.i.d. weights {gj}jzl with mean 0 and variance 1 (Gaussian
or Rademacher), form the bootstrapped processes

. v -i0| & 0 -7
Ty = sup \FZQ 8y() ;I3 = sup \/jny G5 (r)

reRy

and take the (1 —«a) quantiles of (Ty,T5;) (with a Bonferroni split or a joint
maximum) as critical values. This yields uniform bands for (u(-),z(+)), and
therefore a uniform confidence set for z(-) that remains valid after searching
over r to report, for example, the set of reserves that could maximize revenue
within sampling and identification uncertainty.

Robustness to unknown N. Our upper envelopes depend monotonically
on the participation cap N, while the lower envelopes typically do not (they
correspond to “no latent entrants”). In applications, N may be known only
approximately, or may vary across auctions. We therefore recommend treat-
ing N as a sensitivity parameter and reporting bound functions indexed by
N € N, a plausible set informed by platform constraints or auxiliary teleme-
try. A fully robust (though conservative) identified set is then obtained by
taking the union over N:

u(r) e U (w(r; N), 5(r; N)] = [p(r; minN), a(r;maxAN)],
NeN

where the equality uses monotonicity of the upper bound in N. Uniform
confidence bands can be constructed analogously by re-running the bounding
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and bootstrap steps at min NV and max A and taking the outer envelope.
This delivers an explicit, interpretable decomposition of uncertainty into (i)
sampling error, (ii) truncation/partial identification, and (iii) participation-
cap ambiguity.

Mixture heterogeneity within a time bin. Finally, although our tail-
regularity condition is stated within time bins for the shrinkage result, the
basic finite-sample bounding and estimation logic is compatible with sub-
stantial heterogeneity: each auction can have its own latent bid distribution,
as long as the econometrician is willing to interpret u(r) as the average
counterfactual moment over the realized mixture in bin t. When mixture
heterogeneity is a concern for extrapolation across reserves (e.g., if the com-
position of auctions shifts with r in ways not captured by our reduced-form
bounds), we can refine the conditioning set by stratifying auctions on observ-
able covariates (query class, page type, predicted CTR, etc.) and estimating
bounds within strata, or by reweighting to a target mix. These steps do not
eliminate partial identification, but they align the estimand with operational
policy questions and reduce spurious variation that would otherwise widen
bands.

The next section applies these estimators and bands to AuctionNet logs,
using truncation experiments (varying K) and reserve changes to validate
both the sharpness of the bounds and the practical speed at which informa-
tiveness improves with deeper logging.

5 Validation on AuctionNet: truncation and re-
serve experiments

We validate the practical content of our identification results on AuctionNet
logs using two complementary designs. First, we run truncation experiments
in which we take a dataset that is logged at relatively deep depth (large
K) and then re-create the econometrician’s information set by artificially
keeping only the top-K bids for smaller K. This allows us to compare our
predicted identification intervals, computed only from the truncated infor-
mation, to a benchmark “truth” computed from the deeper logs. Second, we
use reserve changes (A/B experiments and operational rollouts) where the
platform actually implements a counterfactual reserve r # rg, so that real-
ized revenue and allocation outcomes provide an external check on whether
our counterfactual bounds are informative at policy-relevant reserves.

Truncation experiments (varying K). For a fixed time bin ¢ and re-
serve level r, we compute per-auction bounds (Y ;(r),Y ;(r)) under the trun-
cated view {b(l)j, -y bxyj}- We then compute the benchmark moment

ijuu(r) using the deepest available logs, which we treat as an approximation
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to observing all bids (or at least all bids that can affect the top-L allocation
and pricing at reserve ). We summarize performance via (i) coverage of the
benchmark by the interval,

J
Cov(r; K) = %Z 1Y, (r) <Y (r) < V5(r),
j=1

and (ii) informativeness measured by the average width J—1 > (Y;(r) —
Y ;(r)) and its scaling with K.

Two patterns are robust across bins and query strata. First, coverage
is close to one whenever the benchmark is computed on logs that are suf-
ficiently deep relative to the reserve being evaluated, consistent with the
sharpness logic: our bounds are designed to contain all outcomes consistent
with the truncated information and the participation cap. Second, infor-
mativeness improves rapidly with deeper logging. In the upper-tail regime
(where a non-negligible fraction of auctions satisfy b(x; > r), the empirical
width declines approximately proportionally to 1/K, mirroring the compar-
ative statics implied by our shrinkage argument. Put differently, increasing
K often converts a material share of auctions from “latent-entrant relevant”
(where unobserved bidders could fill marginal slots) to “effectively point iden-
tified” at the reserve levels that matter for platform policy.

Recovering realized outcomes under reserve changes. Truncation
experiments validate internal consistency, but they do not by themselves
address a more operational question: can we say something useful about
what will happen under a new reserve? To address this, we exploit periods
where AuctionNet either (i) runs randomized reserve experiments, or (ii) im-
plements a reserve update at a known time, allowing pre/post comparisons
within narrowly defined strata. In these designs, we compute the identified
set for u(r) using data logged under the status quo reserve rg (and the asso-
ciated top-K truncation), and compare the resulting interval to the realized
mean outcome under the new reserve.

Because reserve changes can induce behavioral responses (bidders may
adjust bids), a literal comparison of Y (r) under two different bidding regimes
is not an identification claim. Nevertheless, two empirical checks are infor-
mative. First, in short-horizon experiments where bid updates are limited,
realized revenue and fill rates under the new reserve tend to fall within
(or very close to) the predicted envelopes computed from the control arm,
suggesting that the primary channel over the horizon of the test is the me-
chanical effect of excluding low bids and raising price floors. Second, even in
longer-horizon rollouts where bid adaptation is plausible, our bounds typi-
cally remain directionally correct and useful for screening: reserves that our
lower bound predicts will reduce revenue are rarely revenue-improving in the
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realized data, while reserves with uniformly high lower bounds are the most
promising candidates for optimization subject to welfare constraints.

Welfare and allocative loss validation. We validate welfare bounds
using the value proxies v(y); available for the observed top-K bidders, to-
gether with calibration of (a, @) that links bids to values (e.g., from historical
conversion-value models and advertiser ROI constraints). In auctions where
deep logs make it feasible to approximate welfare under reserve r by directly
summing exposure-weighted values of winners, we find that our welfare in-
terval is typically much tighter than worst-case reasoning would suggest:
the lower bound is often close to the benchmark because most welfare mass
is concentrated in the top slots, which are observed once K > L. For al-
locative loss, the upper tail is especially important: when 7 is high enough
that it occasionally binds at the margin, the primary welfare effect is slot
non-filling or winner replacement near the cutoff. These are precisely the
cases where unobserved bidders could matter, and the widening of the wel-
fare interval provides an interpretable diagnostic of when welfare assessment
requires deeper logging or stronger structure.

Sensitivity across mechanisms and exposure models. AuctionNet
environments are not static: some traffic uses GSP-style pricing while other
segments use first-price, and the mapping from slot to exposure can be mod-
eled in multiple ways. We therefore re-run the same validation exercises
under both M = GSP and M = FP, and under alternative exposure spec-
ifications. Empirically, the qualitative informativeness patterns are stable:
the dependence on whether K > L 4 1 (pricing pivot observed) and on
how often b(f); exceeds the candidate reserve dominates finer details of the
mechanism. On the exposure side, replacing a fixed position-based vec-
tor (eq,...,er) with query- or page-type-specific exposure curves (estimated
from impression and click telemetry) changes levels but not the logic: be-
cause our per-auction bounding functions remain linear in exposures, un-
certainty decomposes cleanly into (i) economic uncertainty from truncation
and (ii) measurement uncertainty from exposure estimation, which can be
propagated through the same plug-in/bootstrapping machinery.

What these validations do and do not establish. The truncation and
reserve-change evidence supports two claims that matter for practice: (i) the
bounds are computationally and statistically well behaved at scale, and (ii)
their informativeness improves quickly with deeper logging in precisely the
regimes where reserve policy is typically debated. At the same time, we do
not interpret these exercises as proving that bidder behavior is invariant to
reserve changes; rather, they quantify what can be learned about counter-
factual outcomes from truncated logs under minimal behavioral structure,
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and they highlight when additional modeling (or experimental variation) is
necessary. These lessons directly motivate the policy applications we turn
to next, where the goal is to design reserve and disclosure rules that are
simultaneously implementable, privacy-aware, and empirically auditable un-
der top-K observability.

6 Policy applications: reserve-price regulation, trans-
parency dashboards, and competition metrics

Our partial-identification approach is motivated not only by the econometric
problem of truncated observability, but also by a policy problem: many high-
stakes decisions in ad markets (reserve updates, disclosure mandates, merger
review) must be made using auditable evidence that is compatible with pri-
vacy and platform constraints. The core deliverable is therefore not a point
forecast of counterfactual outcomes, but an envelope of outcomes that is (i)
mechanically implied by the auction rules and top-K logs, (ii) sharp under
minimal assumptions, and (iii) computable at scale. This section illustrates
how these envelopes can be used to design reserve policy and transparency
products, and how the same sufficient statistics yield competition-relevant
“competitive pressure” measures that are robust to lower-tail truncation.

Reserve-price regulation as robust policy design. A regulator (or
an internal governance body) often asks whether a proposed reserve r is
revenue-enhancing without imposing excessive allocative harm. Under trun-
cation, this is naturally framed as a robust decision problem. Let HRev(r)
and fig., (r) denote the identified lower and upper bounds on expected rev-
enue at reserve r (constructed by averaging per-auction bounds), and let
By s (1) and Tigoq(r) analogously bound expected allocative loss (or, equiva-
lently, welfare). A conservative but implementable rule is to choose a reserve
that maximizes a lower bound subject to an upper bound on harm, e.g.,

rE€arg quea’]%( HReV(T) s.t. ﬁLoss(r) S T,

for a policy tolerance 7 and a feasible reserve grid R. This rule is inter-
pretable: it selects reserves that are guaranteed to achieve at least HRCV(T)
revenue and are guaranteed not to exceed 7 allocative loss across all data-
generating processes consistent with the truncated logs, the participation
cap, and (for welfare) value proportionality. In settings where policy is ex-
plicitly precautionary (e.g., public-interest constraints, small advertisers), a
similarly transparent alternative is a dominance screen: declare r “admissi-
ble” only if pp (1) = HRrey(r0) and Lpee(r) < 7. Because our bounds are
linear in exposure weights and depend on a small set of order statistics, these
screens can be recomputed frequently as traffic composition changes, and can
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be reported with uncertainty diagnostics (interval widths) that immediately
flag when deeper logging or additional structure is needed.

Transparency dashboards that report what is identified (and what
is not). A recurring failure mode in platform transparency is to report
point estimates that are operationally convenient but epistemically fragile.
Our framework suggests a different product: a “reserve-response dashboard”
that reports, for each time bin and relevant segment, the pair of curves
(g () e () e and (g (1), T (7)) e, together with decom-
position of the width into interpretable sources. Operationally, the most
useful diagnostic is the mass of auctions for which the reserve is in the “high-
reserve regime” where outcomes are effectively determined by the observed
top-K bids (i.e., events of the form r > b(K)j). When this mass is large, the
dashboard can explicitly indicate near point-identification; when it is small,
the width reminds users that lower-tail entrants could change fill and welfare
at the margin. In internal governance settings, this enables a practical sepa-
ration of roles: product teams can experiment with reserves, while audit and
policy teams monitor whether the identified evidence is sufficiently informa-
tive for the contemplated decision, rather than debating model-dependent
counterfactuals.

Antitrust and “competitive pressure” metrics from top-(L + 1).
Merger review and conduct investigations frequently rely on claims about
“competitive intensity” that are difficult to ground in multi-slot auctions.
Proposition 4 highlights a class of metrics that are both economically mean-
ingful and fully identified under K > L + 1: any functional of the marginal
price proxy b(z41); and the spacing A; = b(r); — bz41);. For instance, the
distribution of b(f41); (or its segment-conditioned quantiles) measures how
much competition is present at the allocation margin: when bz y1); is fre-
quently near zero, the last slot is often effectively uncontested; when it is
large, marginal competition is intense. Likewise, small A; indicates “knife-
edge” ranking where small bid changes reshuffle allocation, while large A;
signals a protected top tier. These objects can be tracked over time, com-
pared across seller-side policy regimes, and used to detect structural breaks
(e.g., entry shocks, changes in bidder concentration) without requiring obser-
vation of the lower tail. We emphasize a limitation: these are reduced-form
competition diagnostics, not causal measures of market power, and they
should be interpreted alongside traffic composition and targeting changes
that can mechanically shift the distribution of marginal bids.

Recommended disclosures: maximizing informativeness under pri-
vacy constraints. The same logic yields a concrete disclosure menu. For
auditing reserve effects under GSP with K > L+ 1, the payment-relevant in-

24



formation for already-filled slots is contained in the order statistics {b(1);, - - -, bz41);}»
while the only remaining uncertainty comes from whether additional (unob-
served) reserve-clearing bidders exist to fill otherwise-empty slots, which can
be bounded using the participation cap N and the observed count Moy (7).
This suggests a minimal per-auction disclosure that is far less sensitive than
full bid logs: the top-(L + 1) bids, the exposure vector (or slot-specific ex-
posures realized), and a coarse indicator of tail depth (e.g., whether b(x;
exceeds a small grid of policy-relevant reserves). For welfare auditing, dis-
closure of the top-L value proxies {v(y); }¢<r, suffices given calibrated (a, @),
because additional welfare from latent entrants is bounded by r/a per ex-
posure for any filled slot.

When per-auction disclosure is infeasible, we can move to aggregated
sufficient statistics. Because our bounds are sums of simple functions of
order statistics (e.g., terms like ey max{r, by41);} and eg(y);), a platform
can publish, for each segment and reserve grid point r, aggregated totals
suchas } 0, 1{by1); > r} and 3, max{r, by 1);} (and analogues for values),
optionally with noise for privacy. An external auditor can then reconstruct
the bound curves without ever seeing bidder identities or the lower-tail bid
distribution. The practical recommendation is therefore not “log everything,”
but rather: ensure K > L+ 1 in the logging pipeline (or an equivalent sketch
that preserves the top-(L + 1) order statistics), publish segment-level bound
curves over a policy grid, and accompany them with interval widths as a first-
order diagnostic of when additional measurement or modeling is required.
This architecture is implementable, privacy-aware, and directly aligned with
the decision-relevant objects that reserves and competition policy aim to
govern.

Conclusion and limitations: dynamic budget feedback, equilibrium
vs. behavioral assumptions, and extensions. Our main message is
that truncated auction logs need not force a binary choice between fully
structural counterfactuals and purely descriptive reporting. By exploiting
what the mechanism mechanically implies about order statistics, we can
deliver policy-relevant envelopes for counterfactual reserve outcomes that
are transparent about what is identified and where uncertainty comes from.
At the same time, it is important to be explicit about the boundaries of
this approach, especially when reserves interact with bidder budgets, when
bidding behavior departs from monotone value-based ranking, and when the
platform’s environment changes endogenously in response to policy.

Dynamic budget feedback and pacing. A central limitation of any
within-bin, static counterfactual is that reserves can feed back into future
bids through advertiser budget constraints and platform pacing. In practice,
many advertisers optimize over a horizon: higher reserves may reduce early
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impressions, leaving more remaining budget later in the day; conversely,
higher prices may trigger pacing that throttles participation, changing the
effective bidder set. Such dynamics can alter both the distribution of bids
and the composition of bidders across auctions, breaking a literal interpreta-
tion of a time-bin conditional counterfactual that holds the bid vector fixed
and only changes the reserve.

We view the appropriate interpretation as local and conditional: within
a sufficiently short time bin ¢, we bound the mechanical effect of applying
a reserve r to the realized bid profiles that occur under the prevailing envi-
ronment. This is often the relevant object for auditing and governance (e.g.,
“oiven current traffic and current pacing, what range of outcomes could this
reserve produce?”). For longer-horizon policy evaluation, a natural exten-
sion is to embed our per-bin envelopes inside a dynamic accounting identity.
For example, if budgets evolve slowly relative to auction frequency, one can
treat ¢ as a state index (remaining budgets, pacing multipliers, campaign
mix) and report reserve-response envelopes conditional on these states; pol-
icy then becomes a robust dynamic program where the transition of states
is itself partially identified. Alternatively, if the platform can randomize re-
serves across otherwise comparable traffic, then the induced changes in bid
distributions across bins can be measured directly, and our bounds can be
used to separate the direct mechanical effect (allocation and payment under
a given bid profile) from the indirect behavioral and composition effects (how
bid profiles change). We emphasize that without either state conditioning or
experimental variation, budget feedback remains a first-order channel that
can dominate static reserve effects.

Equilibrium modeling versus behavioral shape restrictions. Our
identification arguments deliberately avoid committing to a fully specified
equilibrium model. The key behavioral restriction we use for ranking-based
arguments is monotonicity of the bid function, b;; = s¢(v;;) with s; weakly
increasing, which ensures that the top bids correspond to the top values (up
to the value-bid proportionality band when bounding welfare). This restric-
tion is compatible with many models—symmetric Bayes—Nash equilibria in
standard auctions, common forms of value shading, and a range of heuris-
tic bidding rules—and it allows us to interpret top-K order statistics as the
relevant sufficient statistics for allocation under reserves.

The cost of this robustness is that we do not claim to identify the full
counterfactual equilibrium response to a reserve change. In particular, if bid-
ders systematically change their bidding strategy as reserves change (e.g., bid
shading intensifies, or bidders “bid to the reserve”), then the bid distribution
under 7 is not the same as under rg, and our bounds no longer capture the
total effect. Put differently, our results are sharp for the class of bid vectors
consistent with the observed top-K and the participation cap, not for a spe-
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cific strategic model. This is a feature for auditability, but it implies that
our envelopes should be interpreted as mechanism-implied uncertainty con-
ditional on observed bidding, rather than as a complete equilibrium forecast.
A promising direction is to combine our bounds with additional, verifiable
behavioral restrictions—for instance, bounds on how much bids can change
with the reserve based on historical experiments, or moment inequalities im-
plied by equilibrium in a parametric family—to tighten intervals without
sacrificing transparency.

Measurement and institutional assumptions. Several assumptions
are institutional rather than purely statistical. The requirement K > L + 1
is essentially a logging design constraint: it ensures that payment-relevant
pivotal bids for filled slots are observed under GSP. When K < L+1, one can
still bound outcomes, but the width can increase sharply because even the
price-setting order statistic may be unobserved. Likewise, the participation
cap N; < N is a modeling commitment that can be justified by platform-
side throttling rules or by empirical maxima over a long window, but it is
not innocuous: if N is set too conservatively, bounds widen; if it is set too
aggressively, bounds may fail to cover. A practical compromise is to report
sensitivity to N alongside the main curves, treating it as a policy-relevant
disclosure parameter.

For welfare, the value-proportionality band v € [b/@, b/q] is a disciplined
way to translate bids into value proxies, but it is only as credible as the cali-
bration of (o, @). In many ad settings, measured “value” is itself a proxy (e.g.,
predicted conversion value) and may be affected by targeting, attribution, or
platform measurement changes. Here the right use of our framework is again
diagnostic: the welfare interval makes explicit how much of the uncertainty
is purely due to truncation versus due to imperfect value measurement, and
it highlights where better calibration or external validation would have the
highest marginal value.

Extensions. Three extensions appear especially fruitful. First, we can en-
rich the mechanism description to include quality scores and reserve variants
(e.g., personalized reserves or bid floors that depend on observable covari-
ates), in which case the relevant objects become order statistics of effective
bids. Second, we can extend beyond a hard top-K log by allowing sketch-
based disclosures (quantile sketches, order-statistic compression) that pre-
serve the top tail needed for our sufficient statistics while further reducing
privacy risk. Third, we can develop uniform inference for the entire reserve-
response curve, producing confidence bands around the identified set that
account for sampling error across auctions and for time variation across bins.

In sum, our framework is best seen as an auditable layer that sits between
raw platform logs and fully structural counterfactual modeling. It makes
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precise what can be guaranteed from limited disclosure, clarifies when those
guarantees become tight (notably in upper-tail reserve regimes), and pro-
vides a modular foundation on which richer dynamic and strategic models
can be added when the application demands them and when the necessary
identifying variation is available.
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