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Abstract

Dynamic retail pricing work (including Q-learning approaches such
as the source paper) commonly evaluates policies in simulated environ-
ments or from historical logs as if demand were conditionally identified
given observed features. In modern 2026 retail stacks, price is chosen
jointly with marketing, ranking, inventory throttles, and targeting,
creating hidden confounding; logs also exhibit limited price support
because production systems avoid ‘bad’ prices. This paper formalizes
a clean negative result: without overlap or a valid source of randomiza-
tion, offline evaluation of a new pricing policy is not point-identified,
and no estimator can guarantee accurate policy-value estimation. We
then provide a constructive remedy that is operationally minimal: in-
troduce a small, carefully designed randomized price perturbation on
a subset of traffic, which acts as an instrument. Under tractable as-
sumptions, this restores identifiability and yields tight, implementable
finite-sample confidence intervals for policy value (and for constraint
metrics such as groupwise price fairness). We give partial-identification
bounds under bounded-confounding sensitivity models, minimax lower
bounds showing when failure is unavoidable, and an exploration design
that optimizes information gain subject to a revenue-loss cap. Empir-
ical illustrations use semi-synthetic retail environments with injected
confounders to mimic production pricing systems.
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1 Introduction

Dynamic pricing systems sit at an uneasy intersection of operations research,
econometrics, and modern machine learning. On the one hand, retailers now
have the engineering capacity to deploy rich contextual policies that map
high-dimensional signals—traffic, competitor prices, inventory risk, user seg-
ments, and channel conditions—into a posted price in near real time. On
the other hand, the economic object we ultimately care about is not pre-
dictive accuracy but counterfactual profit: what would revenue and margin
have been had we followed a new pricing rule rather than the incumbent
one? This gap between what we can optimize in silico and what we can
justify in deployment has become the central bottleneck for dynamic pricing
in 2026, especially as firms attempt to move from carefully tuned rule-based
price ladders to bandit and reinforcement learning (RL) pipelines that adapt
endogenously to market feedback.

A practical reason for the bottleneck is that offline logs are not experi-
mental data. The historical prices we observe are typically produced by a
production stack that reacts to information not recorded in the evaluation
table: merchandising pushes, search ranking boosts, inventory throttling,
quality-of-traffic shocks, and latent demand news that a human merchant
sees before it reaches the feature store. Even when analysts control for a
rich X, the realized price may still load on an unobserved state that simulta-
neously shifts demand. In such environments, a naive regression of demand
on price, or a standard inverse-propensity reweighting that treats the log-
ging propensities as functions of observables alone, can deliver precisely the
wrong lesson: the algorithm appears to “learn” a demand curve that is partly
a story about selection. The consequence is not a small-sample nuisance but
a conceptual one: there need not exist a unique mapping from the joint dis-
tribution of logged observables to the policy value of a counterfactual pricing
rule.

A second, and equally pervasive, obstacle is limited support. Modern
pricing stacks implement guardrails for brand and margin, enforce discrete
ladders, and often couple price changes to calendar and inventory regimes.
As a result, conditional on a given context, many prices are never shown.
This lack of overlap is particularly acute for the policies we most want to
evaluate: policies that would deliberately shift mass to rarely used prices
(e.g., to test higher prices on low-elasticity segments) or that would smooth
prices across regimes where the incumbent system behaves discontinuously.
From the standpoint of offline evaluation, this creates a knife-edge problem: a
counterfactual policy can place positive probability on actions that have zero
empirical support in precisely those contexts that matter for profit. Without
additional structure, the data cannot speak about those counterfactuals, and
any algorithm that reports a single “best estimate” of profit is implicitly
making untestable extrapolations.



These two features—hidden confounding and limited support—explain
why the celebrated promise of RL for pricing has been slower to materialize
than the algorithmic literature might suggest. RL is well suited to sequential
decision problems when exploration is possible and reward feedback is infor-
mative. Yet the deployment reality of pricing is that exploration is costly,
and most organizations insist on strong guardrails precisely because early
mistakes are visible in revenue. This produces a paradox: the less the firm
is willing to explore, the less it can reliably evaluate or improve its policy;
but the less it can evaluate, the harder it is to justify exploration. Our goal
is to make this tradeoff explicit, and to provide a set of tools that are honest
about what can be learned from logs, while still offering an actionable path
toward credible evaluation with minimal disruption.

We make three contributions. First, we formalize the sense in which off-
policy evaluation in pricing can fail sharply. In a stylized but economically
meaningful setting, we show that when the incumbent system selects prices
based on an unobserved state and fails to provide overlap, the value of a
target policy is not point-identified: multiple demand worlds fit the same log
distribution yet imply very different profits under the counterfactual policy.
This non-identification is not merely philosophical; it yields minimax lower
bounds indicating that no estimator can guarantee small error uniformly over
plausible environments. The implication for practice is immediate: “offline
A /B tests” computed from observational logs can be arbitrarily misleading,
even with massive datasets, when the missing variation is structural rather
than statistical.

Second, we develop a partial-identification approach that replaces point
estimates with economically interpretable bounds. Rather than assuming
away the unobserved state, we allow it but restrict how strongly it can tilt
price selection through a sensitivity parameter that bounds the degree of
confounding. This delivers an identified interval for the counterfactual value,
trading sharpness for transparency. In settings where leadership is unwilling
to randomize prices broadly, such robustness analysis provides a disciplined
way to ask: how large would hidden selection need to be to overturn the
apparent profitability of a proposed policy? We emphasize that these bounds
are not a substitute for experimentation; they are a diagnostic that quantifies
how much of the conclusion is driven by unverifiable assumptions.

Third, and most importantly for deployment, we show how a small
amount of designed randomization can restore identifiability. We study an
“exploration slice” in which a fraction of traffic is assigned prices according
to a known, context-dependent randomization distribution. This is concep-
tually modest—it need not replace the incumbent system, and it can respect
operational guardrails through careful choice of support—but it is economi-
cally powerful because it breaks the link between price and the unobserved
state on the randomized slice. We then provide an implementable estimator
that uses this slice to recover causal demand and yields finite-sample confi-



dence intervals whose width scales with the effective randomized sample size.
The operational message is that credible offline evaluation is not a purely
statistical problem; it is a systems-design problem, and a well-engineered
instrument can convert an intractable identification problem into a standard
one.

Our analysis also connects to emerging concerns beyond average profit.
Pricing policies are increasingly audited for distributional impacts across
groups and channels, and regulators as well as internal risk teams ask for
evidence that algorithmic price changes do not induce unjustified dispari-
ties. The same obstacles that hinder profit evaluation—confounding and
lack of overlap—also hinder credible auditing. A virtue of the minimal-
randomization approach is that it produces a clean basis for both value
estimation and policy diagnostics on the same experimental slice, albeit at
the cost of deliberate exploration.

The paper proceeds as follows. Section 2 situates our contribution within
the dynamic pricing, bandit/RL, off-policy evaluation, and causal inference
literatures. We then introduce the model primitives and the offline evaluation
target, highlighting where production systems generate hidden confounding
and support restrictions. Next, we establish sharp non-identification and
minimax impossibility results that clarify the limits of purely observational
evaluation. We then present bounded-confounding identification regions and
discuss their interpretation as sensitivity analyses. Finally, we turn to the de-
sign and analysis of minimal randomization, deriving identification, propos-
ing estimators, and providing finite-sample inference guarantees. We close
by discussing implementation considerations—guardrails, exploration bud-
geting, and monitoring—and by acknowledging limitations, including the
assumptions required for the instrument to be valid and the organizational
constraints that shape feasible experimentation.

2 Related Literature

Our setting sits at the boundary of several literatures that have largely pro-
gressed in parallel: (i) classical dynamic pricing in operations research and
revenue management, (ii) learning-based pricing via bandits and reinforce-
ment learning, (iii) off-policy evaluation and causal inference with observa-
tional logs, (iv) partial identification and sensitivity analysis under hidden
confounding, and (v) algorithmic auditing, including distributional and fair-
ness diagnostics for deployed decision rules. We briefly position our contri-
bution relative to each.

The revenue-management tradition studies pricing as a control problem
under a demand model, often with explicit inventory, capacity, and time
dynamics ?7. A central methodological move in this literature is to impose
structure—parametric demand curves, monotonicity, concavity, or bounded



elasticities—that turns pricing into a tractable optimization problem and
yields policy insights (e.g., bid prices and protection levels). In modern
marketplace implementations, these models are frequently operationalized
through context-enriched demand forecasts and guardrails (price ladders,
brand constraints, and margin rules). Our focus is complementary: we take
the production reality of complex contextual pricing as given and ask what
can be inferred about the profit of a counterfactual policy from logs that
are neither randomized nor guaranteed to exhibit overlap. This perspective
is closer in spirit to econometrics than to classical RM optimization: the
primary bottleneck is not solving the retailer’s dynamic program conditional
on a known demand system, but rather identifying the relevant demand
object in the first place when the historical policy responds to information
not captured in the evaluation table.

A second strand emphasizes learning demand while simultaneously pric-
ing. Multi-armed bandit and reinforcement-learning formulations treat prices
as actions and sales as rewards, aiming for low regret relative to an optimal
policy 7?7?7. The technical success of this literature relies on exploration: the
algorithm deliberately perturbs prices to learn the demand response, and re-
gret analyses quantify the cost of experimentation. In contrast, the empirical
deployments we have in mind typically begin with an incumbent policy that
was never designed as an exploration mechanism, and the organization of-
ten seeks “offline validation” before permitting meaningful experimentation.
This institutional sequencing reverses the usual bandit logic and creates the
paradox highlighted in the introduction: without exploration, offline evalua-
tion is fragile; yet without credible evaluation, exploration is hard to justify.
Our minimal-randomization instrument can be read as a practical bridge be-
tween these worlds: it injects a small, auditable amount of exploration into
an otherwise production-grade system, making causal learning and evalua-
tion feasible while preserving operational guardrails.

The methodological core of our paper connects most directly to the off-
policy evaluation (OPE) literature in machine learning and to semiparamet-
ric causal inference. When propensities are known (or estimable) and over-
lap holds, inverse propensity scoring, direct regression, and doubly robust
estimators provide consistent value estimates of a target policy ??7. Recent
work strengthens these tools through cross-fitting, orthogonalization, and
finite-sample concentration for bounded rewards, yielding practical estima-
tors with uncertainty quantification ??7. Our contribution highlights a failure
mode that is especially salient in pricing: the historical policy may depend
on unobservables U that also shift demand, so the “propensity” relevant for
identification is uo(p | x,u), not puo(p | ). In that case, standard OPE
estimators can be inconsistent even with infinite data, and when support
is limited the problem can be worse: there may be no data at all for the
actions the target policy would choose in important contexts. We formalize
these points as non-identification and minimax impossibility results, not as



critiques of OPE per se, but as a reminder that OPE is ultimately a design
problem: identification requires either credible ignorability or an instrument
that restores it.

A natural response to hidden confounding is to relax point identification
and instead report bounds. This approach has deep roots in econometrics
through partial identification ? and in causal inference through sensitiv-
ity analysis 7. In pricing applications, bounds are appealing because they
translate unverifiable assumptions into explicit economic tradeoffs: one asks
how strong selection on unobservables must be to overturn a profitability
claim. Our bounded-confounding analysis follows this logic by indexing the
identified set for V(7) with a sensitivity parameter I' that limits how much
unobserved states can tilt assignment odds. Related ideas appear in robust
policy learning and distributionally robust OPE, where uncertainty sets are
placed on propensities or outcome models to obtain worst-case guarantees 7.
We view such robustness tools as complementary to experimentation: they
are most useful as diagnostics when leadership constrains exploration, and
as a way to communicate the fragility of purely observational conclusions.

Our emphasis on a small randomized “exploration slice” also connects
to the econometric literature on instrumental variables and encouragement
designs, as well as to modern “interleaving” and switchback experiments in
marketplaces. In many online systems, fully randomized experimentation is
infeasible because treatments interact through congestion, ranking, or inven-
tory; nonetheless, carefully scoped randomization can identify local causal
effects under exclusion restrictions and stability assumptions 7. In pricing,
the relevant exclusion restriction is that the instrument Z affects demand
only through the posted price, and the key operational requirement is that
the randomized prices respect guardrails so that the experiment is ethically
and commercially acceptable. Our model abstracts from interference across
units, but the deployment message aligns with marketplace practice: even
limited, well-instrumented randomization can be more informative than mas-
sive observational logs when the missing variation is structural.

Finally, our discussion of constraint metrics, including group-level price
and profit disparities, relates to a growing literature on algorithmic auditing
and fairness in decision systems ??7. Most formal fairness criteria were de-
veloped for classification and risk scoring, but pricing raises distinct issues:
the action is continuous (or high-cardinality discrete), payoffs are monetary,
and protected attributes may enter both demand and cost. Moreover, the
same confounding and overlap problems that plague value estimation also
plague auditing: if certain prices are never shown to certain groups (or only
shown under unobserved promotional states), disparity estimates computed
from logs can be artifacts of selection. Our framework treats these diagnos-
tics as functionals of counterfactual demand under a policy, making clear
when they are identified, when they are only partially identified, and when
minimal randomization can ground auditing in experimental variation.



Taken together, the literatures above motivate our central thesis: credible
evaluation of pricing policies is not guaranteed by scale or sophistication of
the learning algorithm; it hinges on identification, which in turn hinges on
overlap and on the relationship between the deployed policy and unobserved
drivers of demand. The next section formalizes the baseline model, the
value functional V'(7), and the additional constraint metrics that we use to
evaluate policies beyond average profit.

3 Baseline Model and Estimands

We evaluate pricing policies in a setting where the retailer observes rich
contextual signals but only a narrow and potentially selection-distorted slice
of the price-demand relationship in historical logs. The unit of analysis is
a single pricing “interaction” (e.g., a page view, session, or decision window
for a SKU), indexed by t online and by ¢ = 1,...,n in offline data. In each
interaction the environment draws observable context X (product attributes,
calendar effects, traffic conditions, user segment, channel) and an unobserved
state U that captures latent demand shocks and operational factors that
are rarely logged cleanly (marketing intensity, ranking boosts, throttling, or
inventory pressure). The retailer posts a price P € P and then demand Y
realizes (units sold, or a purchase indicator). We also observe unit cost C,
which may depend on X and time.
Formally, the historical dataset is

Dn - {(Xl;PMY;?C’L) ?:17

generated by a logging policy pg that may depend on both observed and
unobserved states:

The key feature is that U can simultaneously influence the chosen price
and realized demand, so that P/ U | X and Y J/ U | (X, P). This is not a
modeling nuisance; it is a faithful abstraction of production systems in which
pricing responds to information outside the evaluation table. Importantly,
our baseline model does not assume overlap: for some contexts x, the realized
support of P | X =z can be a strict subset of P (e.g., a price ladder where
only a few rungs were ever deployed for a given segment).

To define what we want to evaluate, we adopt the potential-outcomes
representation. For each interaction and each feasible price p € P, let Y (p)
denote the demand that would realize if price p were posted. We impose the
usual consistency requirement, ¥ = Y (P), which states that the observed
outcome equals the potential outcome under the posted price. We do not
require any form of ignorability; in fact, the possibility that Y (p) is correlated



with the realized price via U is the central empirical difficulty. Nonetheless,
the counterfactual object Y (p) provides a clean language for estimands: it
separates what a policy would do (choose prices) from how the environment
would respond (generate demand).

A (possibly stochastic) target pricing policy is a conditional distribution
m(p | x) over P. Stochasticity is useful both conceptually (it nests ran-
domized or softened policies) and practically (modern systems often sample
among a set of candidate prices). Given 7, we define per-interaction profit
as

R(X,PY,C)=(P-0C)Y,

and the target policy value (expected profit) as the counterfactual functional

V(r)=E[(P-C)Y|P~nx(|X)] (1)
=E|) wp|X)(p-C)Y(p)|, (discrete P). (2)
peEP

When P is continuous, the summation is replaced by an integral. Equation
highlights the two primitive ingredients needed to evaluate a counterfac-
tual pricing rule: the policy itself, and the conditional causal demand curve
m(p,z) = E[Y(p) | X = ] (together with the cost process). In many appli-
cations one may posit a structural or working demand model D(p, ) (e.g.,
log-linear or isoelastic) to regularize estimation; we treat such structure as
optional and, when used, as a maintained assumption whose credibility must
be judged in light of the support and confounding issues above.

Beyond average profit, organizations typically impose constraints and di-
agnostic metrics that are also counterfactual functionals of the same objects.
We group these into two broad classes. The first are stability and opera-
tional metrics, motivated by guardrails that prevent disruptive price paths
or excessive dispersion. Examples include the average posted price under
the target policy,

E[P|=E|> =(p| X)p|,
peP

and context-conditional dispersion (useful for detecting policies that ran-
domize too aggressively in sensitive regions),

Srw | X)p (D | X)p)2] :

p p

E[Var,(P | X)] = E

In settings where interactions are temporally linked (e.g., a SKU-day panel),
one may also care about intertemporal stability such as E[|P, — P,_1]]; our
analysis is written at the interaction level, but these pathwise metrics can be



handled by defining X to include lagged state and by treating the resulting
functionals as part of the evaluation target.

The second class are distributional and fairness metrics, which ask how
a policy allocates prices and profits across groups. Let G € {0,1} be a
group label included in X (e.g., region, platform, or a protected attribute
when legally and ethically appropriate). Two simple diagnostics are a price
disparity and a profit disparity:

Aprice(m) =E[P | G =1,7]-E[P | G =0, 7], Aproit(m) =V (r | G=1)-V(r | G =0),

where V(7 | G = g) is defined as in (1) but with the outer expectation taken
conditional on G = g. More granular metrics can compare quantiles of the
induced price distribution, or impose constraints such as E[P | G = 1,7] <
E[P | G = 0,7] 4+ & for a tolerance x. The common structure is that these
are all functionals of (7, m(+,-)) and therefore inherit whatever identification
(or non-identification) properties hold for the causal demand curve.

This section’s role is to separate what we want to know from what the
logs can reveal. The estimands above are well-defined under minimal causal
consistency, even when the observed data are generated by a confounded
and support-limited policy pg. The next step is to confront the gap between
definition and identification: when the historical system chooses prices us-
ing unobserved information and fails to explore parts of P, the mapping
from the distribution of observables (X, P, Y, C) to the counterfactual objects
m(p, z)—and hence to V() and the associated constraint metrics—can be
fundamentally many-to-one. The following section makes this failure precise
through sharp examples and minimax lower bounds.

4 Non-identification and minimax impossibility

The estimands in Section [3] are meaningful without strong assumptions, but
they need not be learnable from logged data. The core difficulty is that the
mapping from the distribution of observables (X, P, Y, C) to the counterfac-
tual demand curve m(p,z) = E[Y(p) | X = z] can be many-to-one when
(i) the logging system does not explore the prices a target policy would use
(lack of overlap) and /or (ii) the price is chosen using unobserved signals that
also shift demand (hidden confounding). In this section we make this pre-
cise through sharp binary-price examples and a minimax lower bound. The
point is not that every production system is adversarial, but that without
additional design or structure, the logs alone cannot rule out adversarially
different counterfactual worlds.
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4.1 A sharp binary-price example: confounding can destroy
point identification even when both prices are observed

To isolate the role of unobserved confounding, consider P = {pr,py} with
pH > pr, suppress cost (or treat C' as fixed), and fix a context value X = a:E|
Suppose there is a binary unobserved state U € {0,1} that the production
system observes and uses for pricing, but the evaluator does not observe.
A stylized but empirically plausible situation is that U represents a latent
demand /operational signal (e.g., a marketing surge, a ranking boost, or in-
ventory throttling) that simultaneously affects both (a) the chosen price and
(b) the propensity to buy.
Assume that the logging system is fully driven by U:

U =1, .
p=1{P (almost surely given X = z).
pr, U=0,

Thus, the marginal log contains both prices whenever P(U =1 | X = x) €
(0,1), but the realized support is stratified: the log never shows py in the
U = 0 state and never shows pr, in the U = 1 state. Now place only weak
restrictions on potential outcomes: for each p € {pr,pr}, Y(p) € [0,3], and
we maintain consistency Y = Y (P). We do not assume ignorability, so Y (p)
may depend on U.

Consider any target policy 7 that randomizes between the two prices
with positive probability at z, i.e., 7(pr, | z) € (0,1). Its value at x depends
on the mixture

E(P-C)Y X =2, Prr(- )= 3. (p|a)(p-C)E[Y(p) | X = al.
pe{pL.pH}

The log identifies E[Y | X = z,P = pr] and E[Y | X = 2, P = ppy]l, but
under the assignment rule above these are

EY | X=2z,P=p|=E]Y(pr) | X =2,U =0], EY | X =xz,P=pg]|=E[Y(pg) | X ==2,U -

Crucially, the counterfactual terms E[Y (py) | X = 2,U = 0] and E[Y (pz) |
X = z,U = 1] never appear in the observables, because those (U, P) pairs
never occur. Consequently, many distinct causal demand models induce the
same distribution of (P,Y") in the log but imply different values under .

We can make the non-identification sharp by constructing two data-
generating processes that agree on the joint distribution of observables but
disagree on the missing counterfactuals. Fix any distribution of (U, Y") under
the realized pairs (U = 0, P = pr) and (U = 1, P = pg) so that the observed
conditional means match the log. Then define two worlds:

! Allowing X to vary only strengthens the conclusion: one can apply the argument
pointwise in x and then average over X.

11



e World A sets the unobserved counterfactuals to be low: Y (py) = 0
when U =0, and Y (pr) = 0 when U = 1.

e World B sets them to be high: Y (py) =g when U =0, and Y (pr) =¥
when U = 1.

Both worlds reproduce the same (X, P,Y) distribution under the logging
policy, because the only potential outcomes that affect observed Y are Y (pr,)
for U =0 and Y (pg) for U = 1. Yet, under a policy 7 that sometimes posts
the “off-stratum” price, the expected profit differs. In particular, whenever
7 posts py in the U = 0 stratum (which happens with probability 7(pg |
z)P(U=0]| X = x)), the two worlds disagree by as much as (pg —pr)y per
interaction up to cost normalization. Aggregating, the identified set for V()
contains an interval whose length is bounded below by a term proportional
to the mass of the unobserved stratum and the price gap, e.g.,

length(Z(7)) = P(U=1|X =) (pg — p1) ¥

~

and in the extreme can be as wide as (pg — pL)yH Intuitively, without data
that mix prices within the latent state, we cannot disentangle whether high
observed demand at pg is due to the price or due to U = 1.

Two remarks help interpret this example. First, the failure is not driven
by limited sample size: even with infinite data, the missing counterfactuals
remain unlearned because they are never revealed. Second, note that the log
exhibits marginal support for both prices, so a naive overlap check based on
P(P = p) > 0 would pass; what fails is overlap in the relevant causal sense,
namely that within the latent confounding strata the system does not vary
price.

4.2 Minimax lower bounds: without overlap, no estimator
can be uniformly accurate

We next formalize an even starker impossibility: if the target policy assigns
positive probability to prices that are never observed in some contexts, then
no estimator—regardless of functional form, machine learning sophistication,
or clever reweighting—can guarantee small error uniformly over a reasonable
model class.

Suppose there exists a set of contexts Xy with P(X € Ap) > 0 and a price
p* such that

m(p*|x) >0 but P(P=p"|X=2)=0  Vxe .

Then the log contains no information about the demand response at p* on Xj.
Consider two environments P; and Py that coincide on the full distribution

2The exact expression depends on whether the target policy places mass on both prices
at x and on which stratum is “missing” for which price, but the economic content is
invariant: the gap scales with the price difference and the range of feasible demand.

12



of observables (X, P,Y,C) under the logging policy (hence are statistically
indistinguishable from D,,), but differ in the counterfactual mean E[Y (p*) |
X = z] on Xy by a fixed amount. Because 7 puts positive mass on p* in
those contexts, the policy values Vi (7) and Va () differ by some e > 0, while
no estimator can tell which world generated the data.

This yields a standard minimax conclusion: there exists ¢ > 0 such that
for any estimator V based on D,

1

inf sup P(|V-V(m)|=e) > 1.

vV PeM
for an appropriate model class M that permits arbitrary (but bounded)
counterfactual outcomes off support. The proof is a two-point argument
(Le Cam): since P; and Py induce the same distribution over the data, any
estimator must incur nontrivial error on at least one of them. From a prac-
titioner’s perspective, this is a “no free lunch” theorem for off-policy pricing
evaluation: if the historical system never tried the prices a new policy wants
to use in certain segments, then the profit consequences in those segments
are not merely hard to estimate—they are not determined by the log at all.

Taken together, the binary confounding example and the overlap-based
minimax bound clarify the tradeoff we face. Without either credible struc-
ture on demand or deliberate exploration, logs can be consistent with sharply
different causal price—demand relationships. The natural response is not to
abandon offline evaluation, but to complement it with either (i) transparent
sensitivity models that quantify how much confounding would be required
to overturn conclusions, or (ii) small, carefully designed randomization that
restores identification. The next section develops the former in a tractable
way.

4.3 Partial identification under bounded confounding: a sen-
sitivity model

A pragmatic middle ground between (i) assuming away hidden confounding
and (ii) giving up on learning from logs is to ask how large the confounding
would need to be to change our conclusions. We formalize this through a
sensitivity model that restricts the extent to which an unobserved state U can
tilt the logged price assignment, and then compute the induced identified set
for the policy value V(7). When the sensitivity restriction is tight we obtain
informative bounds; when it is loose the bounds revert to the impossibility
discussed above.

Sensitivity parameter and feasible reweightings. For expository clar-
ity we present the binary-price case P = {pr,pg} and write T = 1{P = py }.
Let the (observable) marginal propensity be e(z) =P(T'=1| X = z). Hid-
den confounding means that the true propensity may depend on U, i.e.,

13



e(r,u) =P(T'=1| X =2z,U = u). A standard restriction is an odds-ratio
bound (Rosenbaum-type):

o ))/L=el@v) o n1py vy, v, (3)
e(z,u)/(1 —e(x,u))
for some I' > 1. Intuitively, I' = 1 corresponds to no hidden confounding
(conditional randomization given X), while larger I" permits the logging
system to use U more aggressively in setting prices.
A convenient implication of such bounds is that they restrict the range
of importance weights that would debias the treated or control slice if e(x, u)
were observed. In particular, define the treated weight

1 —e(x)

Wl(l‘,u) == and W[)(ﬂf,u) == m

Under , both Wi (z,u) and Wy(x,u) are bounded within multiplicative
factors controlled by I' (the exact bounds depend on e(x), but are explicit).
Moreover, these weights satisfy a normalization moment:

EWy(X,U) | X =2,T=1=1, EWy(X,U)|X=2,T=0=1,

which expresses that they are Radon—Nikodym derivatives of a feasible reweight-
ing rather than arbitrary scalars.

This motivates the following partial-identification program: for each price
p and context x, we allow the conditional distribution of outcomes observed
under P = p to be tilted by a weight function w(y) that (i) lies in a I'-
dependent interval and (ii) integrates to one. The upper and lower bounds
on the counterfactual mean demand m(p,z) = E[Y (p) | X = z] are then the
solutions to

mr(p,x) =sup Bw(Y)Y [ X =z, P=p],  mp(p,z) =if Ew(y)Y | X =2, P =p],
(4)

subject to w(Y) € [wp(z,p),wr(x,p)] almost surely and E[w(Y) | X =
xz,P = p] = 1. The bounds wp,wr are directly induced by (or, more
conservatively, can be set to [1/T",T'] as a marginal sensitivity envelope).

Closed-form bounds in the binary-price case. In the binary setting,
admits a simple closed form because the objective is linear and the feasible
set is a box intersected with a single mean constraint. Since Y is bounded,
the extremum is achieved by assigning the largest feasible weights to the
largest outcomes (to maximize) and vice versa (to minimize). Concretely,
write W = wr(z,p) and w = wp(x,p). To maximize E[w(Y)Y] subject to
w < w(Y) < wand Elw(Y)] = 1, we place weight w on an upper tail of
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Y and weight w on the remainder, with the tail mass chosen to satisfy the
mean constraint. Let ar(z,p) € (0,1) solve

ar(z,p)w + (1 —ar(z,p)w = 1,

and let ¢r(z,p) be a corresponding (1 — ar(z, p))-quantile of Y under (X =
x, P = p). Then one sharp representation is

mr(p,z) =w E[Y {Y > gr(z,p)} | X =2, P =p] + wE[Y I{Y <qr(z,p)} | X =z, P =],
mF(pwr) :EE[Y 1{Y < df‘(xap)} | X :w’P:p] + ME[Y]'{Y > q~F(£7p)} | X :ZL‘,P:p],

with gr(z,p) chosen analogously for the lower-tail allocationﬁ
Given these bounds on m(pr, ) and m(pg, z), the induced policy value
bounds are simply

V(M) =E| > 7| X)(p-C)mepX)|, Vol@)=E| >  =p|X)@p-C)mr(p,?
pe{pr.pu} pe{pr.pu}

These intervals are monotone in I' and collapse to the standard plug-in es-
timand at I' = 1. Economically, increasing I" allows the latent state U to
more strongly select into the observed price, which in turn permits more
aggressive “adversarial” tilting of the outcome distribution within each price
slice.

Alternative: additive bias bounds. Some organizations find it easier
to reason about outcome-scale distortions than assignment odds ratios. A
simple alternative postulates an additive deviation

EY(p) | X =2] —E[Y | X ==, P =p]| < b(z,p),

leading immediately to m(p,z) € [E[Y | X =z, P =p| — b(z,p), E[Y | X =
x, P = p|] + b(z,p)] (clipped to [0,7]), and hence linear bounds on V().
This specification is typically less sharp than odds-ratio models but can be
more interpretable when business stakeholders can articulate “residual uplift”
magnitudes.

Extension to multiple prices via linear programming. When P con-
tains multiple price points, the same logic applies but the sharp identified
set is most conveniently computed via optimization. For each p € P and
context cell (or learned representation) z, we treat m(p,z) as an unknown
decision variable. The sensitivity model induces linear constraints linking
(m(p, z))pep to observed conditional moments E[Y | X = x, P = p| through

3When Y has atoms at the threshold, one can randomize weights within the atom to
satisfy E[w(Y)] = 1 exactly; the resulting bounds remain sharp.
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feasible reweightings (bounded by I' and normalized within each (z, p) slice).
The target policy value is linear in these means:

V(m)=E|> =(p| X)(p—C)m(p, X)
peEP

Thus, V(r) and Vp(mw) are the solutions to a pair of linear programs
(or convex programs, depending on how X is handled) obtained by min-
imizing/maximizing the above objective over the I'-feasible set. Practi-
cally, this delivers a scalable procedure: we can report a sensitivity curve
I +— [Vp(7),Vp(n)] and assess whether any decision-relevant comparisons
between candidate pricing policies survive moderate levels of hidden con-
founding.

4.4 Minimal randomization as an instrument: a small explo-
ration policy

Sensitivity bounds are useful when an organization is unwilling or unable to
intervene in pricing, but they do not by themselves create new information:
when the logged policy is highly endogenous, the identified set can remain
wide even for moderate values of the sensitivity parameter. A complementary
approach is to introduce minimal online randomization that is operationally
acceptable yet sufficient to break the link between hidden state and price.
Conceptually, we treat this randomization as an instrument that induces
exogenous price variation while leaving the rest of the system unchanged.

Design: a Bernoulli exploration switch. We augment the production
policy with a randomized switch Z € {0,1}. On each interaction (e.g., a
page view, session, or pricing decision window), the system draws

Z ~ Bernoulli(p),

possibly as a function of coarse observables (traffic tier, region) but, critically,
independent of latent drivers of demand once we condition on X. When
Z = 0 we serve the incumbent price generated by the existing logging policy,
which may depend on unobserved factors:

Pl (X.U,Z=0) ~ pol|X,0).

When Z =1 we override the incumbent decision and sample a price from a
known exploration distribution:

P‘(X,U,Z:D ~ g(-’X),

where ¢ is chosen by the practitioner and logged by construction. The ex-
ploration rate p can be small—often well below a few percent—so that the
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system remains primarily governed by the baseline policy, yet the exploration
slice provides a source of randomized variation.

Two design principles matter. First, g must have support on the prices
that the target policy m might choose:

supp(m(- | z)) C supp(g(- | )) for all relevant x.

Second, the assignment Z must be implemented in a way that is insulated
from endogenous operational triggers (e.g., do not set Z = 1 only when
inventory is high if inventory shocks are partly latent in U). In practice, we
recommend generating Z from stable identifiers (user hash, request hash)
and conditioning only on clearly observed strata included in X.

Identification: the exploration slice as a contextual experiment.
The key causal insight is that, on Z = 1, price is randomized conditional on
X, so it is independent of the unobserved confounder:

PLU|(X,Z=1).

Under an exclusion /consistency condition stating that Z affects demand only
through the posted price (no “experiment flag” effects, no change in ranking,
shipping promises, or marketing exposure triggered by exploration), we can
interpret the conditional mean outcome on the exploration slice as a causal
estimand:

m(p,x) = EY(p) | X =2] = EY | X =2, P=p,Z=1],

for all (p,z) with g(p | ) > 0. This delivers point identification of the value
of any target policy whose price support is covered by g:

V(ir) = E|Y x| X)(p-C)mp,X)|,
pEP

with the integral form replacing the sum when prices are continuous. Eco-
nomically, the exploration traffic creates a small, repeated randomized ex-
periment embedded in production, converting an otherwise observational
pricing system into one with a credible source of exogenous variation.

Local perturbations and guardrails. Operationally, organizations rarely
permit arbitrary price randomization. More common is local exploration
around a baseline price po(X) (often the incumbent recommendation), sub-
ject to guardrails such as minimum margin, price floors/ceilings, and channel-
specific constraints. A convenient specification is a discrete perturbation set

Ploc(x) = {po(.ﬁl?)+A1,...,p0((li)+AK}mP,
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with g(- | x) supported on Pioe(x). This design can be made “safe” by
choosing small perturbations and enforcing hard constraints deterministi-
cally (e.g., if a sampled price violates a compliance rule, resample within
the feasible set). The tradeoff is conceptual rather than technical: local ex-
ploration identifies m(p, x) only for those prices that are actually explored.
Consequently, we can point-identify V(m) only for target policies 7 that
do not leave this explored neighborhood; evaluating more aggressive policy
shifts then requires either (i) expanding the perturbation set over time, or (ii)
invoking a structural or smoothness model to extrapolate beyond explored
prices, which reintroduces modeling risk.

A further practical complication is noncompliance: downstream systems
may override the randomized price due to last-minute constraints (stockouts,
legal rules, competitor-matching). When this happens, Z is better inter-
preted as an encouragement rather than an assignment. The reduced-form
randomization remains useful, but identification may shift from “intention-to-
treat” effects to instrumental-variables estimands. In many pricing settings,
however, it is feasible to engineer exploration so that compliance is near-
perfect within well-chosen strata (e.g., only explore when inventory is ample
and the price ladder is unconstrained), restoring the simpler identification
above.

Operational feasibility and failure modes. Minimal randomization is
often feasible because it can be implemented as a thin wrapper around the
existing policy: sample Z, optionally sample an exploratory price, log (Z, g),
and monitor. The principal cost is not computational but organizational:
stakeholders must accept a controlled degree of short-run revenue risk in
exchange for long-run learning. This is precisely why the parameter p is
valuable: it gives a direct lever on how much traffic is exposed to experimen-
tal prices.

The main threats to validity are engineering and system interactions.
First, the exclusion restriction can fail if setting Z = 1 changes more than
price (e.g., the UI displays a “special offer” badge, the ranking algorithm re-
sponds to the price change in ways not attributable to the price itself, or mar-
keting systems treat experimental sessions differently). Second, interference
across units can arise if competitors react to exploratory prices, or if cus-
tomers observe multiple prices over time and strategically delay purchases;
such dynamics can be mitigated by randomizing at appropriate temporal or
user-level clusters and by defining the outcome window to limit carryover.
Third, randomization must be logged faithfully: without reliable records of
Z and g(p | X), the exploration slice loses its principal advantage—known
propensities.

In sum, a small randomized exploration policy serves as an instrument
that restores identifiability of counterfactual demand at explored prices,
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while remaining compatible with real-world guardrails. The remaining ques-
tion is statistical and operational: given an exploration budget (or a revenue-
loss cap), how should we estimate V'(m) efficiently and attach confidence
intervals that reflect the fact that only a p fraction of the data are truly
randomized. This is the focus of the next section.

4.5 Estimation and inference under known exploration propen-
sities
Once we have engineered a slice of traffic in which the pricing propensities are
known by design, the remaining difficulty is no longer causal identification
but statistical efficiency and credible uncertainty quantification. The central
object is the conditional mean demand surface identified on the exploration
slice,
m(p,x) = ElY | X =2, P=p,Z =1],

which delivers the value functional

V(ir) = E|> #(p| X)(p—C)m(p, X)

peEP

In this section we describe estimators that (i) exploit the fact that g(p | x)
is known, (ii) remain valid under flexible outcome models, and (iii) admit
finite-sample confidence intervals whose width makes the dependence on p
operational.

Baseline estimators: inverse weighting and plug-in regression. A
first approach is to use only the randomized observations and reweight them
to match the target policy. Let R; := (P; — C;)Y; denote profit and let ny :=
> 1{Z; = 1} be the number of exploration observations. For discrete P,
the exploration propensity satisfies P(P =p | X, Z =1) = g(p | X), so an
unbiased inverse-propensity estimator is
1 n
Vipw () = - Z 1{Z; =1}

=1

(P | X;) R
g(Pi| X5) "
with the obvious integral/density-ratio form when P is continuous. Intu-
itively, we “keep” only randomized interactions and upweight those whose
realized price is likely under 7 but rare under g.

A complementary approach is to estimate m(p, x) on the exploration slice
and then plug it into the g-formula:

Tana(m) = 0 S wlp | Xo) (p— Co) lp, X0,

i=1 peP
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where m may be obtained from any supervised learner trained on {(X;, P;,Y;) :
Z; = 1}. This estimator uses the full sample to average over the marginal
distribution of (X, C), but it inherits model bias if m is misspecified.

Doubly robust (augmented) estimation on the exploration slice.
To combine the robustness of reweighting with the stability of regression, we
use an augmented inverse-weighting estimator (AIPW), specialized to the
case of known propensities on Z = 1:

Ton(m) = =3 | Snlp| X:) (o~ Co) ialp, X)
i=1 LpeP

A=Y R

(P = i) (vi - m(PZ-,X»)] .

The second term is a mean-zero correction when m is accurate, which reduces
sensitivity to regression error and typically lowers variance relative to pure
IPW. The key practical point is that, because ¢ is known and under our
design is bounded away from zero on the relevant support, the instability that
plagues off-policy evaluation with unknown (and potentially confounded)
propensities is substantially mitigated.

For implementation with high-capacity learners, we recommend cross-
fitting: partition the exploration slice into folds, estimate m(=%) on all but
fold k, and evaluate the score on fold k. This controls overfitting bias while
preserving the simplicity of the estimating equation.

Noncompliance and I'V-style estimators. If exploration assigns a draw
P~ g(- | X) but downstream constraints sometimes replace it with a served
price P, then Z (or P) becomes an encouragement rather than a treat-
ment assignment. In that case the previous estimators remain valid for the
intention-to-treat value of the exploration mechanism (the policy that sets
Z and draws P), but not automatically for the counterfactual value of a
target policy on the served price. A tractable alternative is to impose a local
structural restriction, e.g. a linear-in-price demand model on the exploration
margin,

EY | X, Pl ~ a(X) + B(X) P,

and estimate 5(X) using Z as an instrument for P (or using the randomized
draw P as an instrument). This yields IV-style estimates of marginal price
effects and, in turn, an approximate value calculation for policies that move
prices within the exploration range. We view this as a useful fallback when
perfect compliance is infeasible, but we emphasize the tradeoff: IV restores
a form of identification by adding functional form.
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Finite-sample confidence intervals and the role of p. Because only
a fraction p of interactions are randomized, the effective sample size for
causal learning is ny ~ pn. Under bounded outcomes Y € [0, y], bounded
margins [P — C| < M, and overlap within exploration inf, ,g(p | =) >
gmin > 0, the DR score is bounded in magnitude on Z = 1 by a constant
of order MY/ gmin. Standard concentration tools (e.g. Bernstein or empirical
Bernstein inequalities applied to the cross-fitted score) therefore deliver a
finite-sample interval

Chi_s(m) = o o

Vor(m) £ ¢ My log(l/d)],

up to second-order nuisance-estimation terms that vanish under mild rates.
This expression makes the operational comparative statics transparent: tight-
ening the interval by a factor of two requires roughly four times as much
randomized traffic (or four times the horizon), and poor overlap within g
enters linearly through 1/,/gmin via the weight bound.

Choosing p under a revenue-loss cap. Exploration is ultimately gov-
erned by a budget constraint: stakeholders tolerate only so much short-run
revenue risk. A simple planning rule is to translate that constraint into
an upper bound on p and then check whether the resulting pn suffices for
statistical precision.

Let po(X) be the incumbent (non-exploratory) price, and define the per-
interaction profit loss from serving p instead of po(X) as

((p,X) == (po(X)—C)m(po(X),X) — (p—C)m(p, X).

If we impose a conservative bound £(p, X) < fyax for all p in the exploration
support (obtained from historical margins and a cautious elasticity envelope),
then expected revenue loss per interaction from exploration is at most p £y ax.
Over n interactions, a loss cap B implies

B

1 lrmax

p <

Separately, to achieve a target half-width h at confidence level 1 — 9, the
concentration bound suggests

AM?521og(1/6)
TV gmin h2 .

Feasibility therefore requires the interval [pmin, Pmax] to be nonempty; if it
is empty, the remedy is mechanical: extend the horizon n, improve overlap
by redesigning ¢ (increase gmin), relax h, or negotiate a larger exploration
budget. In practice we often begin with a small p that comfortably satisfies
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the loss cap, use early data to tighten the bound on fy,x (and to diagnose
overlap), and then adjust p upward only if precision demands it. This makes
the exploration rate a transparent policy lever: it directly prices the tradeoff
between short-run revenue protection and long-run learnability.

4.6 Semi-synthetic experiments: stress-testing confounding,
overlap, and exploration

Before committing to an online exploration rate p (and before trusting any
particular estimator), we have found it useful to run semi-synthetic experi-
ments. The goal is not to perfectly emulate consumer behavior, but to create
a controlled environment in which (i) the empirical distribution of contexts X
and costs C' is realistic, (ii) confounding through an unobserved U is present
by construction, and (iii) the “truth” V(x) is known for a range of target
policies. This lets us quantify, in the same units as deployment decisions
(profit), how much bias arises from naive off-policy evaluation (OPE), how
informative bounded-confounding intervals are, and how quickly minimal
randomization corrects the problem as p increases.

Data backbone and injected confounders. We begin from a real log of
contexts and operational signals, {(X;, C;)}!_, where X may include prod-
uct attributes, calendar features, channel, and inventory indicators that are
observable in production. We then inject an unobserved confounder U meant
to represent one of three recurring sources of endogeneity in pricing systems:
(i) marketing shocks (bursts in spend or impressions), (ii) ranking/visibility
changes (algorithmic boosts that simultaneously increase demand and affect
the pricing controller), and (iii) stockout throttles (latent inventory pressure
that pushes price upward while mechanically suppressing sales). Opera-
tionally, we set U; € {0,1} (or a small discrete set) with P(U =1 | X = z)
chosen to match plausible seasonality and segmentation patterns; we then
treat U as hidden at evaluation time.

A structural demand generator with tunable confounding. Given
(X,U) and a posted price P, we generate demand from a bounded model
so that profit remains well-scaled. For example, for purchase indicators one
may use

PY=1|X=z,P=p,U=u) = o(s(x) — np + ku),

where o is the logistic link, 7 > 0 controls price sensitivity, and x controls
the strength of confounding (marketing/visibility shifts). For unit-demand
counts one can instead generate Y € {0,1,...,y} by thinning a Poisson
mean and truncating at y. We emphasize that the exact parametric form is
not the point; what matters is that x and the distribution of U give us an
interpretable dial for how badly P is correlated with latent demand.
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A confounded logging policy with realistic support. To mimic pro-
duction logs, we generate prices from a logging policy that depends on U:

P o~ HO(' ‘ X, U)v

where pg may be a discretized ladder with context-dependent support, re-
flecting guardrails and price floors/ceilings. A simple but revealing design is
a mixture of two controllers: when U = 1 (high latent demand or market-
ing intensity), the system tends to post higher prices, while when U = 0
it posts lower prices; by varying the separation between these mixtures
we can interpolate between mild endogeneity and the near-deterministic,
no-overlap situation highlighted in Proposition 1. Limited support is im-
posed by context-specific allowed sets P(z) C P, so that some prices have
P(P =p| X =) =0 even when a target policy would assign them positive
mass.

Target policies and “policy shift magnitude.” We then define a fam-
ily of target policies that gradually deviate from the logger. A convenient
construction is

m(z) = A =Npo(-|z) + Ax*(-[z),  A€[0,1],

where fi9(- | ) is the observed logging conditional (i.e., o marginalized over
U) and 7* is an aspirational policy (e.g., a margin-maximizing rule or an RL
policy trained offline). The parameter A\ makes “how far we extrapolate from
the logs” explicit; in practice it is a proxy for both overlap stress (mass on
rarely seen prices) and the variance of reweighting-based estimators.

Estimators compared. On each semi-synthetic dataset we compute: (i)
Naive OPE that treats the logs as unconfounded, e.g. IPW/DR using an
estimated propensity fi(p | x) fit from (X, P) alone, or a direct regression
plug-in using m(p, x) fit from all data ignoring U. (ii) Bounded-confounding
intervals [V (), Vr(m)] from Proposition 3, calibrated over a grid of I' (and,
when possible, anchored by domain knowledge about how strongly marketing
or ranking can tilt price selection). (iii) Minimal-randomization estimation
by synthetically adding an exploration slice: we draw Z ~ Bernoulli(p) and,
when Z = 1, resample P ~ ¢(- | X) with known propensities and full support
over the prices needed by m. We then apply the estimator YA/DR(W) defined
previously, using only the Z = 1 slice for causal identification (but averaging
over all contexts).

What we typically observe. Across a wide range of calibrations, three
empirical regularities recur. First, naive OPE can be precisely wrong: as
K increases, bias grows roughly linearly while estimated standard errors re-
main misleadingly small, because the estimated propensities fi(p | ) cannot
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account for the latent sorting on U. This is especially stark when the log-
ging rule is nearly deterministic in U, where the estimator may confidently
extrapolate into counterfactual strata with no information.

Second, I'-bounds behave as intended: for small " they can be infor-
mative (and sometimes nearly point-like), while for large I' they expand to
reflect genuine ambiguity. In our experience, plotting interval width against
I" and ) is a useful diagnostic: rapid blow-up as A increases is a concrete sig-
nal that a proposed policy relies on unsupported counterfactuals even under
moderate confounding.

Third, the minimal-randomization estimator corrects bias quickly as soon
as the exploration slice attains nontrivial effective coverage. When gy is not
too small, mean-squared error scales approximately like 1/(pn), matching
the intuition from the finite-sample discussion. Conversely, when gmi, is
tiny (e.g. exploration puts very little mass on prices the policy cares about),
variance dominates and the estimator becomes unstable even though it is,
in principle, unbiased; this mirrors the practical importance of designing g
for overlap rather than for “minimal perturbation” alone.

Sensitivity to overlap and policy shift. The interaction between over-
lap and policy shift is the main lesson for practice. Holding p fixed, increas-
ing A typically worsens performance in two ways: it increases reliance on
high-variance weights 7(P | X)/g(P | X) and, if 7w assigns mass outside
the exploration support, it creates an immediate identification failure. Semi-
synthetic plots of error versus A therefore double as a policy feasibility check:
they reveal whether the policy class under consideration can be evaluated
(and ultimately learned) under the intended exploration design.

Why we view these experiments as an engineering primitive. We
do not claim that a semi-synthetic generator validates a pricing model;
rather, it validates the evaluation pipeline under controlled violations that
resemble production failure modes. The deliverable is a small set of em-
pirically grounded design rules—minimal acceptable p, required gy, and a
safe bound on policy shift A—that can be communicated to stakeholders as
a concrete instrumentation plan. These lessons feed directly into our next
discussion of RL pricing: what cannot be learned from logs alone, and what
minimal standards (randomization, logging, and guardrails) make deploy-
ment scientifically and economically safe.

Implications for RL pricing: what logs can and cannot support.
The semi-synthetic results carry a direct message for RL-style pricing: with-
out either (i) credible overlap or (ii) an instrument that creates an uncon-
founded slice, the data do not determine the counterfactual. This is not
merely an estimator-choice problem. When the logging controller ug adapts
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to latent demand shocks (our U), the apparent “state-action value” learned
from logs conflates price effects with selection. In such settings, offline RL
objectives (e.g. maximizing a learned Q(z, p)) optimize a quantity that is not
causally meaningful; the resulting policy can look strong under retrospective
evaluation yet underperform online. Conversely, when overlap fails—prices
that the learned policy would choose are missing in parts of the context
space—no amount of function approximation resolves the missing counter-
factual support (Proposition 2). We therefore view the primary deliverable
of an offline RL exercise as a set of candidate policies whose value is either
point-identified on a randomized slice or partially identified under explicit
sensitivity parameters, rather than a single “best” policy.

Sequential decision-making does not remove the identification bot-
tleneck. In dynamic pricing, a natural hope is that long horizons and state
augmentation (e.g. including inventory, lagged sales, or competitor features)
render the problem observationally causal. Our framework suggests the op-
posite: adding state can help, but only insofar as it makes the relevant
confounders observed. If unobserved forces remain (marketing bursts, rank-
ing boosts, throttling logic, latent stock pressure), then the Markov decision
process that the RL algorithm assumes is, from the evaluator’s perspective,
a partially observed process. The consequence is that standard off-policy
evaluation identities for contextual bandits or MDPs (importance sampling,
doubly robust temporal-difference estimators) inherit the same fragility: they
require either ignorability (no residual U after conditioning) or an experi-
mental lever that breaks the P-U link. Thus, “RL makes it dynamic” does
not by itself produce causal identification; it simply spreads the confounding
over time.

Recommended instrumentation standards for safe deployment. If
we want RL claims (profit lift, fairness compliance) to be scientifically cred-
ible, we need to treat exploration and logging as first-class product require-
ments. In practice, we recommend an instrumentation bundle with three
elements. First, explicit randomization flags: record Z indicating whether
the served price came from controlled exploration, along with the realized
propensities (the deployed g(p | X), including any guardrail truncation).
This is essential because, absent known propensities, one cannot reliably re-
construct weights, and the purported “randomized” slice becomes ambiguous.
Second, support design: ensure supp(w(- | x)) C supp(g(- | )) at the gran-
ularity at which decisions are made (productxchannelxtime-of-day, etc.).
In pricing systems, silent guardrails (floors/ceilings, out-of-stock overrides,
MAP constraints) often collapse support in precisely the contexts where poli-
cies differ; these must be logged as part of X or treated as regime changes.
Third, outcome alignment: define Y and the decision window so that ex-

25



clusion is plausible, i.e. Z affects Y only through P in that window. If
exploration changes page layout, traffic mix, or latency, exclusion fails and
the experimental slice no longer identifies Y (p).

How much exploration is “enough” for RL? The correct benchmark
is not a philosophical notion of exploration, but the sampling rate needed
to bound decision-relevant error. With bounded outcomes and minimum
propensity gmin, Proposition 5 implies that for a fixed target policy the ef-
fective sample size is pn and the uncertainty scales like 5((pngmin)_1/ 2). For
RL, one typically evaluates many candidate policies (or implicitly searches
a policy class), so the operational requirement is stronger: we must either
(i) allocate sufficient p to control a uniform deviation over the class, or (ii)
restrict policy updates so that each new policy remains close to the support
and weighting regime induced by g. This motivates conservative RL updates
in pricing: impose a trust region constraint such as

ERL(me1 (- [ X) [[g(- | X)) <7,

or an explicit cap on importance ratios 7(P | X)/g(P | X), not as an
optimization convenience but as an identification-and-variance constraint.

Safe policy improvement and robustness reporting. Even with in-
strumentation, we advocate reporting RL results in a form that reflects what
is and is not learned. When identification relies on the randomized slice,
we can provide point estimates and finite-sample confidence intervals for
V(m) and for group metrics such as Aprice(m) or Aprofit(7) using the same
exploration-based estimators (compute group-conditional values on Z = 1).
When only partial identification is available, we recommend publishing sen-
sitivity curves I' + [V (), Vr(7)] and making policy decisions via robust
criteria (e.g. maximize the lower bound, or require V- (7) — Vr(mg) > 0 rela-
tive to a baseline my). This is the pricing analog of safe policy improvement:
we do not deploy because an RL policy looks better on average, but because
it is provably non-worse under transparent confounding budgets.

Extensions to multi-SKU pricing. Moving from a single SKU to a bas-
ket of K products replaces P with a vector P € RX and demand with a
vector Y € RX| with cross-elasticities and substitution. Two difficulties
emerge. First is combinatorial support: even if each SKU has a modest
ladder, P = P; x --- X Pk is enormous, so overlap in the joint space is im-
plausible. Second is multi-dimensional confounding: the same U (visibility,
marketing) can shift the entire price vector and the entire demand system.
The practical response is to instrument structured exploration. Rather than
randomizing full price vectors, we randomize low-dimensional perturbations
with known propensities (e.g. one SKU at a time, or a small set of tagged
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SKUs) while holding others at baseline. Identification then targets marginal
effects that can be composed under modeling assumptions (e.g. sparsity or
low-rank cross-effects). Formally, we can let Z index which coordinate (or
group) is perturbed, and require P; L U | (X, Z = j) for the randomized co-
ordinate; this yields credible causal estimates for partial derivatives or local
treatment effects that can be used inside a constrained optimizer.

Competitive settings and interference. In many categories, price changes
affect competitors, and competitor actions feed back into demand. This cre-
ates interference: one unit’s outcome depends on other units’ treatments,
violating the exclusion/consistency conditions needed for Proposition 4 if
exploration changes the market environment. A minimal way to restore
credibility is to randomize at a level where interference is approximately con-
tained (e.g. geo-level experiments, time-block randomization, or customer-
level holdouts with minimal spillovers), and to redefine X to include the
competitive state observed at decision time. Even then, policy evaluation
becomes equilibrium-sensitive: V(7) depends on how rivals respond. For
deployment, we therefore recommend distinguishing short-run causal effects
holding competitors fized (identified by brief, small-p perturbations) from
long-run strategic effects (requiring either longer experiments or structural
modeling). RL systems that ignore this distinction may learn policies that
exploit transient competitor inertia but fail once competitors adapt.

Bottom line for practice. RL pricing is feasible and valuable, but only
when paired with instrumentation that makes causal evaluation routine: ex-
plicit randomization, logged propensities, engineered overlap, and monitor-
ing of guardrail-induced support shifts. Where those conditions are not met,
we can still proceed—but the correct object is a robustness analysis and a
conservative deployment rule, not a single-number claim of profit lift.

5 Conclusion and policy/audit checklist: minimal
requirements for credible claims

Our central conclusion is practical: pricing logs are not, by default, evidence
about counterfactual profit or fairness. When historical prices are chosen in
response to latent forces that also move demand, or when candidate poli-
cies place mass on rarely (or never) observed prices in parts of the context
space, offline evaluation becomes an exercise in extrapolation rather than
measurement. The economic lesson is that the bottleneck is not computa-
tional sophistication but the informational content of the data-generating
process. Credible claims therefore require an explicit “causal contract” be-
tween the product system and the evaluator: what was randomized, with
what probability, and under what outcome definition.
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We summarize this contract as a minimum viable checklist for two classes
of claims: (i) profit lift relative to a baseline policy, and (ii) fairness (price or
profit differences across protected or business-critical groups). The checklist
is intentionally auditable: each item can be verified from logged artifacts and
simple diagnostics rather than from model fit alone.

A. Minimum requirements for a profit-lift claim. A profit-lift claim
is credible only if the evaluation data identify the relevant causal demand
objects at the prices the target policy would use. In deployment terms, this
requires:

Explicit assignment metadata. Every record must indicate whether
the served price came from controlled randomization, and must include
the realized propensity for that price under the randomization protocol
(including any truncation due to floors/ceilings, inventory overrides, or
compliance rules).

Designed support for the intended use. For each context granu-
larity at which decisions are effectively made (e.g. SKU x channel x time
block), the randomized component must place positive probability on
all prices (or price bins) that the target policy may select. If the sys-
tem silently collapses support in certain contexts, the evaluation must
either (i) restrict the policy to the supported region, or (ii) treat those
contexts as outside scope.

Outcome-window integrity. The sales outcome and its time window
must be defined so that the randomization affects demand only through
the posted price in that window. If randomization changes other prim-
itives (ranking, page composition, latency, traffic allocation), then the
evaluation no longer corresponds to a price experiment and must be
reframed accordingly.

Effective sample size accounting. The evaluation report must state
the randomized traffic share and the minimum propensity (or an em-
pirical lower tail) to make clear the variance implications of weighting.
A point estimate without an uncertainty statement is not a lift claim;
it is a hypothesis.

Stability and drift checks. Because pricing systems operate in non-
stationary environments, the report must include a time-split analy-
sis (or rolling window) demonstrating that the estimated effect is not
driven by a transient regime (promotion weeks, supply disruptions,
competitor shocks). When drift is material, the claim should be local-
ized in time and scope.
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A useful internal standard is that the final lift statement be phrased as
an interval (or a lower confidence bound) tied to a clearly specified policy
and population, rather than as a single “expected lift” number. This forces
discipline about what is identified and what is extrapolated.

B. Minimum requirements for a fairness claim. Fairness claims are
stricter than profit claims because they are inherently subgroup claims: they
require identification within groups and are sensitive to sparse support. We
recommend the following additional requirements:

e Group definitional clarity. The group attribute(s) used for auditing
must be defined, versioned, and linked to the decision-time features. If
group labels are inferred or updated asynchronously, the analysis must
document the labeling lag and error.

e Within-group overlap and propensities. For each group (and,
ideally, for major intersections), the randomized component must cover
the prices the evaluated policy would assign in that group. Otherwise,
a fairness estimate is dominated by unsupported counterfactuals.

e Group-conditional uncertainty. Report confidence intervals (or
bounds) for group-conditional values and for the chosen disparity met-
ric (price disparity, profit disparity, or welfare proxies). If many groups
are examined, control familywise error or report multiplicity-adjusted
uncertainty.

e Guardrail heterogeneity audit. Verify that constraints (minimum
advertised price, stockout throttles, eligibility rules) do not differen-
tially bind across groups in a way that mechanically induces price dif-
ferences. When they do, the fairness question should be reframed as a
constraint-design question, not an algorithm-performance question.

In our experience, the most common fairness failure mode is not that a
model “chooses to discriminate,” but that operational constraints and missing
support make subgroup effects unlearnable while still allowing optimistic
aggregate summaries.

C. A practical audit workflow. To make these requirements opera-
tional, we suggest a three-stage evaluation workflow that separates data
adequacy from estimation:

1. Design audit (before learning). Enumerate the target policy class
and verify that the randomization protocol covers its action support in
the relevant context strata; set explicit propensity floors.
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2. Logging audit (during deployment). Monitor realized propensi-
ties, the randomized traffic share, and the frequency of guardrail over-
rides; alert when effective overlap deteriorates.

3. Causal audit (after data collection). Estimate policy value (and
group metrics) using methods that respect the randomization design;
report confidence intervals or, when relying on sensitivity models, re-
port robustness curves indexed by a clearly interpretable confounding
budget.

This workflow has a governance advantage: it yields pass/fail criteria that
product, engineering, and risk teams can jointly own, rather than delegating
credibility to a modeling team ex post.

Limitations. Our framework does not eliminate all ambiguity. First, min-
imal randomization identifies effects for the explored price distribution and
time window; large policy shifts still require either substantial exploration or
additional structure. Second, interference and equilibrium feedback remain
fundamental obstacles in competitive markets; a clean price experiment at
the user level need not identify long-run outcomes once competitors respond.
Third, multi-SKU settings introduce high-dimensional action spaces where
full-support exploration is infeasible; practical identification will often be lo-
cal and modular rather than global. Finally, the approach presumes that the
instrumentation itself is faithfully implemented; mis-logged propensities or
unrecorded overrides can quietly reintroduce confounding.

Future work. Several directions are immediate. On the design side, we
need exploration schemes that target identification efficiency under business
constraints (inventory risk, margin floors), including adaptive designs that
preserve known propensities. On the inference side, extending finite-sample
guarantees to settings with interference, continuous prices, and heavy-tailed
outcomes remains important. On the governance side, we view fairness under
partial identification as underdeveloped: robust decision rules that trade off
profit and disparity under transparent uncertainty budgets are a natural
next step. More broadly, we expect credible RL pricing to converge toward
a hybrid discipline: optimization guided by models, but claims anchored in
explicitly randomized (or explicitly bounded) causal evidence.
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