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Abstract

Dynamic pricing papers (including the source material’s Q-learning
simulation for retail pricing) typically optimize profit under a fixed
demand model and do not address the 2026 deployment bottleneck:
pricing systems must remain compliant under demand drift, regula-
tory price caps, and stability /anti-gouging rules. We propose a clean,
tractable framework for deployable dynamic pricing: (i) offline pre-
training from historical logs, (ii) online change-point detection for
piecewise-stationary demand shifts, and (iii) a hard-constraint learning
policy that enforces price floors/ceilings and bounded price changes at
every period (auditable ‘no-violation’ guarantees). In a single-product
setting with contextual demand and sub-Gaussian noise, we provide
a high-probability regret bound that decomposes into within-regime
learning error plus change-point detection/reset cost, scaling with the
number and magnitude of regime shifts rather than horizon length. For
linear (elasticity-style) demand, we additionally give closed-form char-
acterizations of the constrained profit-maximizing price and the opti-
mal adjustment path under stability constraints. Empirically, we out-
line an offline-to-online evaluation protocol on retailer logs and stress
tests with synthetic regime shifts to quantify both revenue gains and
compliance robustness.
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1 Introduction: deployable dynamic pricing in 2026

Dynamic pricing has moved from a specialized operations tool to a general-
purpose decision layer embedded in consumer-facing platforms. In 2026, re-
tailers and marketplaces routinely adjust posted prices in response to traffic,
inventory conditions, competitor moves, and supply shocks; the same logic
appears in delivery fees, ride-hailing multipliers, cloud-compute spot mar-
kets, and subscription upgrades. This ubiquity has changed the engineering
problem. The central question is no longer whether a firm can compute a
revenue-improving price from data, but whether it can do so in a way that
is operationally stable, legally defensible, and robust to the nonstationarity
that is now the rule rather than the exception.

Two empirical facts motivate our modeling choices. First, demand rela-
tionships drift and jump. A promotion by a competitor, a sudden supply
disruption, a viral social-media mention, or a policy change by a platform
can alter the mapping from price to demand within days. Treating demand
as stationary over long horizons can therefore yield policies that look optimal
on historical data yet systematically underperform in deployment. Second,
pricing is governed. Caps, floors, anti-gouging rules, and internal compli-
ance constraints constrain what a pricing system is allowed to post, and
these restrictions are often hard in the sense that violations are unaccept-
able even if rare. In many organizations, the appropriate question is not
“what price maximizes expected profit,” but “what price maximizes expected
profit among those that can be justified and audited.”

Classical operations research provides an important baseline, and also
illustrates the gap. In revenue management and price optimization, one typ-
ically posits a parametric demand model, estimates it offline, and computes
an optimal price (or a policy) under stationarity. These methods deliver
sharp prescriptions when the model is correct and the environment is stable,
and they remain the default in many settings because they are interpretable
and easy to govern. But they struggle when the demand curve changes mid-
stream, because the data used to estimate the model mix multiple regimes.
In such environments, a stationary optimizer is not merely “somewhat sub-
optimal”; it can be directionally wrong, continuing to push prices up when
elasticity has increased, or holding prices down after willingness-to-pay has
shifted upward. A deployable system must therefore learn online and also
decide when what it has learned is no longer applicable.

At the other extreme, the reinforcement learning literature has made
dynamic pricing a canonical example of sequential decision-making under
uncertainty. In its most general form, the retailer is modeled as an agent
interacting with an environment, receiving rewards (profits) and updating
a value function. In particular, Q-learning and related temporal-difference
methods have been used to learn pricing policies without specifying a de-
mand model. This perspective is attractive: it promises to absorb rich state



variables and complex dynamics, and it aligns with the modern software
stack in which pricing is one component of a broader decision system. Yet
the same generality creates friction with governance. Standard RL relies on
exploration that can be hard to justify ex ante, and its constraint handling
is often indirect (e.g., adding penalties to rewards), which is poorly aligned
with settings where regulators, platforms, or internal risk committees re-
quire zero violations of explicit price bounds or volatility limits. Moreover,
generic RL methods are typically analyzed under stationarity assumptions;
when the environment changes, they can become slow to adapt unless one
adds additional machinery for resetting, discounting, or change detection.
Our objective is to articulate a middle ground: a model that is rich
enough to capture the two facts above—nonstationarity and governance—
while remaining structured enough to yield clear performance guarantees
and an implementable algorithm. The central economic tradeoff is straight-
forward. The retailer wants to respond quickly when the demand regime
changes, but must do so through a policy that is stable and defensible.
Rapid adjustment creates customer and regulatory scrutiny; sluggish ad-
justment leaves profit on the table and can also generate distortions (e.g.,
stockouts or persistent mispricing). The model we develop makes this ten-
sion explicit by placing hard constraints directly on posted prices and by
allowing demand to be piecewise stationary, so that learning is meaningful
within regimes but must restart (or be discounted) across regime changes.
A key modeling decision is how to represent nonstationarity without los-
ing analytical traction. Fully adversarial drift is a useful worst-case bench-
mark, but it is often too pessimistic for the environments we have in mind,
where demand is stable for stretches and then shifts due to identifiable events.
Conversely, assuming gradual drift only can miss the operational reality of
sudden shocks. Piecewise stationarity captures a pragmatic middle: within
each segment, the demand function is stable enough that the data are in-
formative, while across segments, the system must detect that the mapping
from price to demand has changed. This abstraction aligns with how practi-
tioners talk about pricing systems: there are “normal times” punctuated by
“event weeks” and “post-change” periods, each requiring distinct calibration.
Equally important is how we treat constraints. In deployment, the rele-
vant constraints are typically written as simple, auditable rules: a price must
lie between a context-dependent floor and cap; and it must not change by
more than a prescribed increment from one period to the next. These rules
can be motivated by regulation (anti-gouging statutes, sector-specific price
controls), by platform governance (marketplace policies that restrict sud-
den price spikes), or by internal policy (brand protection, customer trust,
and call-center load). Such constraints do not disappear when the model is
uncertain; if anything, uncertainty strengthens the case for enforcing them
mechanically. This is why we place them as primitives rather than as soft
penalties: the algorithm must respect them period by period, not merely on



average.

With these primitives in place, we evaluate performance through dynamic
regret relative to a natural benchmark: the best feasible stationary pricing
rule within each regime. This benchmark is deliberately modest. It does
not assume an oracle that can anticipate regime changes, nor does it allow
instantaneous jumps that would themselves violate stability constraints. In-
stead, it asks whether an online system can track, with bounded loss, the
best policy one could have run if one had known the regime in advance and
had to obey the same governance rules. This framing makes the economics
transparent: the unavoidable losses come from two sources, learning within
a regime and paying a boundary cost around change points when the past
stops being predictive. In turn, it makes clear what a deployable algorithm
must do: learn quickly when the world is stable, and reset quickly (but not
too often) when the world changes.

Our approach also clarifies what we do not attempt. We do not model
strategic consumer behavior, collusion concerns among competing algorithms,
or the full generality of multi-product substitution; these are important, but
they complicate the inference and the constraint interface in ways that ob-
scure the basic governance-adaptation tradeoff. We also do not claim that
piecewise stationarity is the only relevant form of nonstationarity; gradual
drift and seasonal cycling can be incorporated through context variables and
alternative detection rules, but the core lesson remains: deployment requires
separating “learning the demand curve” from “deciding whether the curve
has changed.”

The contribution of the framework is therefore conceptual as much as
technical. By treating institutional constraints as hard primitives and non-
stationarity as structured, we obtain an online pricing problem that is simul-
taneously realistic and analyzable. The rest of the paper builds this logic
systematically: we formalize the governance constraints in a way that is au-
ditable and implementable, we specify a learning-and-detection architecture
that respects these constraints by construction, and we derive regret bounds
that scale with the frequency and detectability of regime shifts rather than
mechanically with the horizon. In doing so, we aim to illuminate how modern
dynamic pricing systems can be both adaptive and governable—a require-
ment that, in 2026, is increasingly the difference between an algorithm that
is profitable in simulation and one that can be safely deployed.

2 Institutional constraints as primitives: govern-
able prices before optimal prices
In practice, a pricing system is rarely judged solely by the expected profit

it delivers in a clean backtest. It is judged by whether it produces defensi-
ble and operationally safe prices period by period. This distinction matters



because many of the constraints that shape deployment are not naturally
represented as statistical regularizers or “soft” preferences. They are written
as rules, monitored by compliance teams, and enforced by platforms and reg-
ulators with little tolerance for exceptions. Our modeling choice in this paper
is therefore to treat these institutional constraints as primitives of the pric-
ing problem rather than as after-the-fact modifications to an unconstrained
learning objective.

The most common constraints take the form of simple inequalities. A
posted price must lie within a permissible range, and it must not move too
abruptly. These restrictions appear across sectors: consumer staples during
emergencies, marketplace listings subject to “price gouging” policies, and
subscription products with internal brand-protection guidelines. The form is
similar even when the motivation differs. A regulator may interpret extreme
increases as exploitative; a platform may interpret them as harmful to user
trust; a retailer may interpret them as generating call-center load, churn,
or reputational damage. The common feature is that the organization can
articulate the constraint ex ante and can audit it ex post.

Caps and floors as context-dependent rules. Price caps and floors are
often state contingent. For instance, a grocery retailer may cap prices during
a declared emergency, while allowing wider latitude in normal periods; a
marketplace may impose tighter caps in categories with a history of abuse;
or an internal policy may require a minimum margin, effectively imposing
a floor tied to marginal cost. These practices motivate representing the
allowable interval as functions of observed context,

p € [p(x), ()],

where x collects the variables that compliance teams can point to when
justifying why a particular restriction applied (location, category, emergency
flags, procurement conditions, or policy regime indicators supplied by the
platform). Importantly, we do not assume these bounds are “economically
optimal”; rather, they are institutional objects: they summarize what is
permissible, not what is best.

This perspective also clarifies how cost enters governance. Many anti-
gouging statutes and internal rules are written in terms of markups. A
simplified representation is

p < c(@)(1+m(z)),

for some permitted markup m(z). This is still a cap, but one that shifts
with observed costs. Modeling caps and floors as functions of context allows
us to incorporate such cost-based policies without endogenizing the policy
itself.



Anti-gouging as a hard constraint rather than a moral preference.
Anti-gouging is often discussed as a fairness or welfare issue, but in deploy-
ment it functions as a compliance constraint whose violation is catastrophic.
From an algorithm-design standpoint, this pushes us away from penalty-
based approaches. A soft penalty of the form “subtract A - 1{p too high}”
does not guarantee compliance under exploration noise, estimation error, or
distribution shift. By contrast, a hard cap does: it mechanically excludes
the forbidden region from the action space.

Moreover, anti-gouging policies are frequently defined relative to a refer-
ence price (e.g., “no more than g% above the pre-emergency price”). One can
encode this in several equivalent ways. If pref(x) denotes a context-dependent
reference, then a rule like

pe < (1+g)p™ ()

is simply a particular choice of p(x;). Alternatively, if the rule is operational-
ized as “do not raise prices faster than a certain rate during emergencies,”
it can be expressed through a stability constraint (discussed next). The key
modeling point is that these are not nuances to be handled by an objective
function; they are constraints that define what actions are admissible.

Bounded price volatility as a stability and auditability require-
ment. Even when caps and floors are generous, organizations often impose
limits on how quickly posted prices can change. The economic motivations
are varied: customers perceive volatile prices as unfair; sudden jumps attract
scrutiny; and rapid reversals create operational chaos (e.g., price-matching
disputes, returns, and manual overrides). Technically, bounded volatility
is also a way to ensure that exploration remains controlled and that any
misestimation does not translate into extreme realized outcomes.

We represent such requirements in a particularly auditable form: a bound
on per-period movement,

Ipt — pe—1| < A

This rule is attractive precisely because it is simple: it does not require spec-
ifying a demand model or estimating consumer surplus to decide whether a
price is “reasonable.” It only requires comparing today’s price to yesterday’s,
which makes it easy to implement and to monitor. In many organizations,
this simplicity is not a weakness; it is the reason the rule survives legal review
and cross-functional governance.

Stability constraints also interact with anti-gouging in a natural way.
When an emergency begins, a cap may suddenly tighten; when it ends, it may
relax. A stability rule ensures that the transition into the new permissible
region occurs gradually, which reduces the risk that the algorithm whipsaws
prices in response to noisy demand signals or misclassified contexts. In other



words, stability is not only a consumer-facing policy; it is a control-theoretic
safety device.

Optional groupwise constraints and their operational meaning. A
third family of restrictions arises from concerns about discrimination, fair-
ness, or parity across segments. Even in single-product settings, firms may
constrain prices across geography, user type, or acquisition channel. Some-
times the rule is strict parity (“the same posted price for all customers”),
but more commonly it is a bounded disparity (“prices may differ, but not by
more than 7 across protected groups”), or a constraint on the mapping from
observable contexts to prices (e.g., “do not use certain sensitive attributes
directly”).

In a single-price-per-period environment, many groupwise constraints can
be represented by controlling what information enters x and by specifying
segment-dependent bounds. For example, if x includes a group label g, then
a parity requirement can be encoded by forcing p(x) and p(x) to coincide
across values of g, effectively removing group-conditional variation from the
feasible set. More complex parity requirements couple decisions across con-
texts (e.g., a constraint that two segments’ prices must remain within 7 of
each other at the same time). Such coupled constraints quickly move beyond
the interval action sets we focus on here, and they become closer to multi-
action feasibility problems. We view them as important extensions, but we
keep the core model centered on constraints that can be audited period by
period from a single posted price.

Hard versus soft constraints: why we insist on mechanical feasi-
bility. It is tempting to treat governance requirements as additional terms
in the objective, because doing so preserves the form of a standard learn-
ing problem. But this move conflates two distinct questions: (i) what the
organization prefers, and (ii) what the organization is allowed to do. Pref-
erences can be balanced; permissions cannot. A “soft” anti-gouging penalty
can be outweighed by an estimated profit gain in a regime where the model
(wrongly) believes demand is inelastic. A hard cap cannot.

For this reason, we distinguish sharply between hard constraints that
must hold pathwise (every t) and soft considerations that can be traded
off in expectation. In our framework, caps, floors, and stability limits are
hard. They define the feasible set of actions, and any learning algorithm
must output a price inside that set. Soft considerations—such as preferring
smoother prices than the maximum allowed, or preferring prices that are
“close” to a reference level even when not required—can still be incorporated,
but they should appear as secondary design choices (e.g., in the selection of a
candidate price before enforcing feasibility), not as substitutes for feasibility
itself.



What this buys us, and what it costs. Treating institutional con-
straints as primitives yields two benefits. First, it separates compliance from
inference: the system can explore and learn about demand without risking
forbidden outputs, because feasibility is enforced mechanically. Second, it
makes guarantees meaningful: a regret bound is only operationally relevant
if the algorithm it describes can actually be deployed under the same rules
that govern human pricing.

The cost is that hard constraints can be conservative. They may preclude
profitable responses to genuine shocks, especially when caps are tight or
when A is small. From an economic perspective, this conservatism is not a
bug but a feature: it is the model’s way of representing the shadow cost of
governance. In the next section, we formalize these constraints as an induced
feasible action set that depends on context and on last period’s price, and we
evaluate learning performance relative to a benchmark that is itself subject
to the same institutional limits. This keeps the comparison honest: we do
not credit an algorithm for profits that could only be attained by violating
the rules under which it must operate.

3 Model: piecewise-stationary contextual demand
under hard feasibility

We now formalize the pricing environment implied by the institutional prim-
itives described above. The central modeling choice is that learning takes
place inside an action space defined by auditable constraints, and nonsta-
tionarity enters through discrete, unobserved shifts in the demand law. This
lets us separate three objects that are often conflated in practice: (i) what is
permitted (caps, floors, and stability), (i) what is known (marginal cost and
observed context), and (iii) what must be learned and tracked (the demand
response, which can change over time).

Horizon, observables, and timing. Time is indexed by ¢t € {1,...,T}.
At the start of each period, the retailer observes a context vector x; € X
summarizing cost shifters and demand-relevant state (seasonality, traffic,
procurement conditions, policy flags, etc.). After observing z;, the retailer
posts a single price p;. Demand then realizes as a scalar quantity y; (units
sold), and profit is computed. Formally, the within-period timing is:

1. observe x,
2. choose py,
3. observe y;,

4. receive profit m; and update the pricing rule.



The retailer observes the history (zs,ps,ys)s<t but does not observe the
latent demand regime or its parameters.

Hard constraints induce a state-dependent feasible set. Institu-
tional restrictions enter as hard constraints on posted prices. We allow both
(i) a context-dependent permissible interval [p(z;),p(x:)] and (ii) a stability
constraint limiting per-period movement. Given last period’s posted price
pt—1 and current context x;, the feasible action set is the closed interval

Ai(xe, pr—1) = [max{g(wt), pi—1 — A}, min{p(zy), pr—1 + A},

where A > 0 is a fixed stability parameter and pg is given. Two properties
are worth emphasizing. First, feasibility is path dependent: the stability
constraint couples decisions across time, so the set of admissible prices today
depends on what we posted yesterday. Second, feasibility is auditable: p(-),
p(+), and A are known objects, so whether a price violated policy can be
verified without reference to any demand model.

In implementation, we will often describe an algorithm as proposing a
candidate price p; € R (e.g., an optimistic or greedy estimate) and then
mechanically enforcing compliance via projection,

bt = HAt(xmpt—l)(ﬁt)'

This creates a clean separation between statistical learning (which may err)
and compliance (which must not).

Demand with latent regimes and contextual dependence. Demand
responds to price and context but may shift over time in a way that is
not directly observed. We model this through a piecewise-stationary regime
index r, € {1,..., R} with change points

l=m<m<-- <7 <T, re=r fort € Z, .= [1p, 741 — 1],

where 7r11 = T + 1 and regime length is L, := 741 — 7. In regime r,
expected demand is given by an unknown function D, (p, z):

Ely: | pe, ze,me = 7] = Dr(pr, z1).

To allow high-probability learning guarantees while remaining agnostic about
the exact noise law, we assume the demand shock is conditionally o-sub-
Gaussian. Equivalently, we can write

Yyt = Dy, (pr, ) + €1, Elet | Fie1, 24, 4] = 0,
and for all A € R,

E[exp(Xer) | Feo1, 24, pt] < exp (#)7

10



where F;_1 denotes the sigma-field generated by past observations. This
assumption is standard in bandit-style analyses: it is strong enough to ob-
tain concentration yet weak enough to include many bounded or light-tailed
demand disturbances.

Costs and profits. We treat marginal cost as known given context, c(x;).
This captures the practical reality that many retailers can observe (or at
least forecast with low error) procurement costs and fees, whereas demand
is the harder object to infer. Profit is realized as

me = (pt — c(z)) yt,

and the regime-r conditional expected profit at context x and price p is

gr(p, ) := Elm | pr = p, 2 = w,re = v = (p — c(x)) Dr(p; ).

We do not impose a particular functional form on D, in the general model;
the tractable linear specification appears in the next section.

What we compete against: an honest constrained benchmark. Be-
cause feasibility restrictions are non-negotiable, the relevant notion of per-
formance is regret relative to the best policy that also respects the same
hard constraints. We adopt a regime-wise benchmark that is stationary
within each regime in the sense of using a time-invariant pricing rule for
that regime, but still respects the path constraint induced by A.

Concretely, fix a regime . Consider a benchmark that knows D, (but not
future regimes) and, within Z,, selects each period a feasible price maximiz-
ing expected profit subject to the same caps/floors and stability constraint
along its own path. Let p; ; denote the benchmark’s previous price. The
benchmark’s one-step optimal expected profit is

T (r) = max (p — c(@t)) Dr(p, 21).
PEA(xe,p}_4)
This definition is intentionally “institutional”: it allows the benchmark to
fully exploit regime-r demand knowledge, but it forbids it from making an
infeasible jump or posting an impermissible price. In particular, when A is
small, even an informed benchmark may need several periods to move toward
its preferred level, so it is inappropriate to compare an online algorithm to
an unconstrained clairvoyant that can jump instantly.

Dynamic regret under piecewise stationarity. We measure learning-
and-tracking performance through dynamic regret relative to the regime-wise
benchmark:

Regy = XT: (Bl (ro)] - Elm))-

t=1

11



Two aspects are doing work here. First, the comparator is dynamic because
the regime index 74 changes over time; we do not ask the learner to compete
with a single stationary policy over t = 1,...,T when the environment itself
is changing. Second, the comparator is feasible because it internalizes the
same action constraints as the learner. This keeps the comparison aligned
with deployment: the regret quantity answers the operational question of
how much profit is lost due to learning and delayed adaptation, holding fixed
the organization’s governance rules.

Our objective in the remainder of the paper is to exhibit a pricing al-
gorithm that (i) satisfies p; € A¢(x¢, pi—1) for all ¢ by construction, and (ii)
achieves regret that scales with the difficulty of learning within regimes and
with the frequency and detectability of regime changes, rather than scaling
linearly with 7. The next section illustrates these ideas in a tractable base-
line where D, is linear in price, making the constrained optimum and the
stability-constrained adjustment path fully explicit.

4 A tractable baseline: linear and elasticity de-
mand with explicit constrained optima

To build intuition for both the benchmarking notion and the algorithmic
design that follows, it is useful to study a demand class in which (i) the
profit maximizer has a closed form and (ii) the effect of hard constraints is
transparent. The point is not that real demand is literally linear, but that
the linear and constant-elasticity specifications deliver interpretable “targets”
and make clear how caps/floors and stability constraints transform a static
pricing problem into a path problem.

Linear demand within a regime. Fix a regime r and consider the spec-
ification

Dr(p; .%') = CLT(.%') - bT(m) b, br(x) > 0,

with the understood truncation D, (p,z) := max{0, a,(x) — b,(x)p} when
we want to rule out negative quantities. Here a,(x) is a context-dependent
intercept (baseline demand) and b,(x) is a context-dependent slope (price
sensitivity). When x includes seasonality and marketing variables, allowing
ar(z) and b, (z) to vary with = captures the practical reality that both market
size and willingness-to-pay shift predictably with observed conditions, even
absent a regime change.

Given known cost c¢(z), the regime-r conditional expected profit is the
quadratic

9:(p,2) = (p—c(@)) (ar(2)~br(@)p) = by (@)p*+(ar (2)+br (@)e() Jp—ar (@) (),

12



ignoring truncation for the moment. Concavity is immediate: for each fixed
(r,z) we have Oppgr(p, x) = —2b,(x) < 0. This strict curvature will be the
key reason constraints “clip” rather than create multiple local optima.

Unconstrained optimum and its economic meaning. Differentiating
and setting the first-order condition to zero gives

Opgr(p, ) = ar(x) — 2b,(z)p + by (x)c(x) = 0,

so the unique unconstrained maximizer is

PH(z) = ar(x) + bp(z)e(x) 1 (aT(ac) N c(:v))

2b, () 2\ b (2)

The decomposition is instructive: Z:g)) is the choke price (the price at which

the untruncated linear demand would hit zero), and the optimal uncon-
strained price is the midpoint between the choke price and marginal cost.
When the demand intercept rises (higher a,(x)), the choke price increases
and so does pr(z). When the slope rises (higher b,(z), more price sensitiv-
ity), both the choke price and the markup component shrink, pushing the
optimal price down.

If we impose truncation explicitly, then posting p > a,(z)/b.(x) yields
zero expected quantity, so such prices are weakly dominated by any feasi-
ble price that generates strictly positive demand. Operationally, truncation
can therefore be viewed as an endogenous cap on revenue-relevant prices; in
constrained problems it is convenient to treat a,(x)/b.(x) as an additional
(soft) upper bound that the optimal policy will not want to cross.

Caps and floors: constrained optimum as clipping. Now impose only
the context-dependent cap/floor constraint p € [p(z),p(z)], abstracting from
stability for a moment. Because g, (-, ) is concave, the constrained maxi-
mizer is obtained by Euclidean projection (“clipping”) of the unconstrained

optimizer onto the interval:

P (@) = min {p(x), max{p(e). p} (@)} .

With truncation, one may further clip at the choke price, replacing p(z)
by min{p(z), ar(z)/b,(x)}, but in many applications the institutional cap is
already below any economically relevant choke price. The key point is that
the policy objects p(-) and p(-) enter mechanically: once (a,,b,) are known,
the constrained optimum is immediate and auditable.

Stability transforms a static target into a path problem. The sta-
bility constraint |p; — ps—1| < A matters even if (r,x) are fixed, because

13



it prevents instantaneous movement to p,cahp(:b). In the simplest stationary

case—a fixed regime r and constant context x; = x—the retailer faces the
problem of choosing a feasible price path to maximize ), g.(p:, z) subject
to the per-period movement constraint and the cap/floor bounds.

With concave per-period profit and identical primitives over time, there
is a particularly sharp characterization. Let p*® := pﬁhp(:c) denote the (box-
)constrained target price. Then any delay in approaching p*" sacrifices profit
each period without creating offsetting gains later, since there is no intertem-
poral coupling other than the movement constraint itself. Consequently, the
optimal feasible path moves toward p'® as fast as allowed, and stops once
it reaches the target (or the relevant boundary). Formally, starting from py,
the path recursion is

) . o pathy ¢ path
PPN = Ty oy (PP + sn(p™ — pp*1) - min{ A, [p = p1} )

This “move-to-target” rule makes the welfare role of A transparent: smaller
A does not change the long-run target but slows the transition, creating
transient losses after shocks to costs, demand, or policy bounds.

Within-regime variation in context: a sequence of targets. When
x; varies over time within a regime, there is no single stationary target;
instead, each period has its own myopic optimizer p}(z;) and clipped tar-
get p,cnlip(xt). Even then, the linear model still yields a convenient one-step
structure: given a previous posted price p;_1, the per-period constrained
maximizer (holding r fixed) solves

e Af?;f;til)gr(pv 1),
and by concavity this is again obtained by projecting the unconstrained
optimizer p’(z;) onto the state-dependent feasible set Ay(xy,pi—1). Thus,
in the linear case, the stability constraint can be interpreted as forcing a
bounded-speed tracking problem in which the desired level changes with x;
(and, in our larger model, also with r).

Constant-elasticity demand as an alternative benchmark. A sec-
ond workhorse specification replaces linearity with multiplicative scale and
curvature:

Dy(p,x) = Ap(z)p™™ @ A(z) >0, n.(z) >0,

again with profit g.(p,z) = (p — ¢(z))D,(p,x). When n,(x) > 1 and ¢(x)
is locally constant in p, the interior first-order condition D, (p,z) + (p —
c(x))0pDy(p,z) = 0 yields the familiar markup rule

pedn) . L iy = ),

p nr(x)’

nr(z) — 1

14



This representation is attractive in settings where positivity and proportional
responses are important, and it makes explicit that higher elasticity (larger
nr(z)) implies a lower optimal markup. Under caps/floors, the constrained
optimum is again a clipping of p}(z), and under stability one again obtains
a bounded-speed adjustment toward the constrained target whenever per-
period profit is concave in the relevant range. Unlike the linear case, however,
concavity may hold only locally, so we view elasticity demand mainly as a
robustness check on the qualitative lessons rather than as the main vehicle
for closed-form regret analysis.

Why this baseline matters for the algorithm. The linear (and, to
a lesser extent, elasticity) models clarify the separation we exploit in the
next section: statistical learning delivers an estimate (or confidence region)
for primitives such as a,(z) and b,(x), which induces a candidate “target”
price (e.g., pi(z) or an optimistic variant), while compliance is enforced
by projecting that candidate into the hard feasible set. Moreover, because
linear demand is a regression model in price, it naturally supports least-
squares estimation, residual diagnostics, and change-point tests—tools that
will underpin our Offline-to-online Safe Pricing procedure.

5 Algorithm: Offline-to-online Safe Pricing (OSP)

Our objective is to combine two requirements that are often treated sepa-
rately in practice: (i) statistical adaptivity to unknown and shifting demand,
and (ii) mechanical compliance with hard pricing constraints that must hold
period by period. The Offline-to-online Safe Pricing (OSP) procedure is
built as a modular stack. An estimation layer produces a probabilistic de-
scription of demand primitives; a decision layer converts that description
into a candidate (possibly unconstrained) price; a safety layer enforces all
hard constraints by projection; and a monitoring layer runs change-point
detection and triggers resets when the regime appears to have shifted.

Offline initialization: a prior confidence set rather than a point
estimate. We begin with an offline dataset Dy = {(zs,ps, vs)};2; drawn
from historical operation (or a pilot). The role of Dy is not to pin down
the demand function exactly, but to provide a calibrated uncertainty set that
can be carried into the online phase. Concretely, we posit a parametric
demand family {Dy(p,z) : 6§ € ©} within a regime (e.g., linear demand
with @ = (a,b)). We compute an offline estimator fy and an associated
design matrix Vj (e.g., the ridge-regularized Gram matrix). From standard

self-normalized concentration, we can form an elliptical confidence region

Co(6) = {0 € ©: 19— dollvy < o(d) .
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chosen so that 6 lies in Cp(d) with probability at least 1 —§ under the offline
data-generating process. Two implementation details matter. First, we treat
Co(0) as an input object that may be produced by any compliant estimation
pipeline (including covariate selection and robust regression), as long as it
yields a valid high-probability region. Second, because the online algorithm
will occasionally reset, Cy(d) functions as a reusable “prior” that prevents
each post-reset learning phase from starting from scratch.

Online learning within a regime: optimistic targets with optional
conservatism. During a regime segment, OSP maintains an online confi-
dence set C¢(d) updated from the data observed since the most recent reset
(optionally combined with the offline prior through regularization). The
decision layer then assigns each feasible price a plausible profit level by opti-
mizing over demand parameters consistent with the data. A canonical choice
is an optimistic (UCB-style) criterion:
Ui(p) == max (p—c(xt)) Do(p, x1), pr € argmax Uy(p),
0€eCy(9) pER

where p; is a candidate price that need not respect caps, floors, or stability.
In the linear-demand case, U;(p) is typically a concave quadratic envelope
in p (after optimizing over € in the ellipsoid), so p; can be computed quickly
and deterministically.

In applications where managers or regulators prefer a more conservative
posture, we can temper optimism by mixing in a lower-confidence proxy. For
example, define a pessimistic (LCB-style) value

Ly(p) = o (p — (1)) Do(p, ),
and choose p; to maximize a convex combination AU;(p) + (1 — ) Ly(p) with
A € [0,1], or impose explicit guardrails such as (p — c(:nt))ﬁt(p,xt) >0 to
avoid intentionally pricing into predicted negative margins when forecasts are
unreliableﬂ The key separation is that the statistical criterion generates only
a recommendation; the constraint system remains binding at implementation
time.

Safety layer: projection as an auditable compliance mechanism.
Given x; and the last posted price p;_1, the feasible action set is the interval

Ai(2g,pe—1) = | max{p(z¢), pr—1 — A}, min{p(z¢), pr—1 + A}]
OSP always implements the projected action

pt = H.At(mt,ptfl) (ﬁt)

!These optional conservatism features change constants and may affect regret rates,
but they do not affect the mechanical safety guarantees that follow from projection.
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This step is deliberately “dumb”: it does not depend on demand estimates,

on whether the learning model is misspecified, or on whether the change-

point detector is behaving well. In operational terms, projection is an easily

logged and audited transformation from a candidate price to a compliant

price, yielding a clean separation between (i) a potentially complex rec-

ommendation engine and (ii) a simple compliance wrapper that guarantees
pi € [p(at),D(2¢)] and |p; — p—1]| < A deterministically.

Online updates: regression-style estimation and residual tracking.
After posting p;, we observe y; and update the estimator and confidence set.
In the linear case, with features ¢y = & (pt, x¢) (e.g., ¢ = (1, —p¢) possibly
interacted with z;), we maintain regularized least squares

Qt—argmlnz ) + )92, Vi= A+ Z%Qﬂ—a

SES: SES:

where S; indexes observations since the last reset (and optionally includes
offline pseudo-observations encoding Cp). The associated confidence radius
B¢(6) is updated using the usual o-sub-Gaussian bounds. For monitoring,
we also compute a one-step residual

€t ==Yt — ﬁt(l)t,xt),

and (when needed) a standardized residual z; = e;/, /1 + ||#¢]|? ., which
t

stabilizes variance across prices and contexts.

Change-point detection: residual-based alarms and safe resets.
Nonstationarity enters through regime changes, so OSP continuously tests
whether recent data remain consistent with the current within-regime model.
A simple and effective choice is a windowed CUSUM /GLR-style detector ap-
plied to residuals or parameter estimates. For instance, for a window length
w, define a statistic

t

> -

s=k+1

Sy = max
ke{t—w,....t—1}

)

and trigger an alarm if S; > v(w, d) for a threshold v calibrated to control
false alarms under the no- change null. More structured alternatives compare
pre- and post-split estimates 6, and 6 via a norm \|ekt — 0k|| which is
natural when the primary shifts are in demand primitives rather than in
noise.

When an alarm fires, we reset the learning state: we start a new seg-
ment, discard (or downweight) pre-change online data, and reinitialize the
confidence set to the offline prior Cy(d) (or to a combination of Cy(d) and
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a short post-alarm warm start). Importantly, a reset does not override the
posted price history. The next period still uses the actual p; as the anchor for
the stability constraint, and projection continues to enforce |pi+1 — pi| < A.
Thus, even if the post-reset “target” price implied by the new estimates jumps
sharply, the implemented prices adjust only at the permitted speed.

Summary and interface to the safety theory. OSP can be read as a
disciplined workflow: offline data yield a calibrated uncertainty set; online
learning converts uncertainty into an optimistic (or tempered) candidate;
projection enforces hard constraints exactly; and a residual-based detec-
tor limits the damage from regime changes by triggering safe resets. The
next section formalizes the resulting safety guarantee: constraint satisfac-
tion holds for all £ by construction, and the same projection wrapper extends
immediately to additional hard constraints that can be encoded as a closed
feasible set.

6 Theory I (Safety): Hard Constraint Satisfaction
for All Periods

The central design choice in OSP is that safety is enforced at the action in-
terface, not in the statistical model. Concretely, the learning and detection
components are allowed to be wrong (misspecification), slow (detection de-
lay), or even adversarially perturbed (software bugs), yet the implemented
price sequence must remain compliant period by period. This requirement
is naturally pathwise: unlike statistical guarantees, a single violation may
be unacceptable in regulated or reputationally sensitive settings. Our safety
theory therefore treats the candidate price p; as an arbitrary real number
and shows that the projection wrapper deterministically enforces all hard
constraints.

Nonempty feasibility as an operational consistency condition. Be-
cause caps/floors and stability are imposed simultaneously, we require that
the induced feasible action set is nonempty at each t:

Az, pr—1) = [max{g(wt), pr—1 — A}, min{p(xy), pr—1 + A}} £ .

A sufficient condition is p(z) < p(x) for all  and that the platform does not
tighten bounds so abruptly that the previous compliant price p;—1 becomes
infeasible and cannot be moved into feasibility within step size A. In prac-
tice, when such conflicts can occur (e.g., context-dependent caps that change
sharply with x;), one typically specifies a priority rule (caps/floors override
stability, or vice versa). Our analysis accommodates this by defining A; as
the set of actions permitted by the chosen priority rule; the results below
then apply verbatim.
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Safety by projection. Given any closed interval I = [¢,u] with ¢ < w,
the Euclidean projection map is

II;(2) := arg mi}l(p — 2)? = min{u, max{¢, z}}.
pE

OSP implements
pt - H.At(xt,pt_l)(ﬁt)7

where p; is produced by the decision layer. The next proposition formalizes
the pathwise compliance guarantee.

Proposition (hard-constraint safety by design). Fix any sequence of
contexts (;)]_; and any sequence of candidate prices (;)._; in R. Suppose
Ai(zt,pt—1) is nonempty for each t and set p; = Il 4, y(Pt). Then for
all ¢,

Tt,Pt—1
pe € [p(@e), p(wt)] and It — pi—1] < A.

Proof (direct). By construction, Ai(z¢,pi—1) is the intersection of the
cap/floor interval and the stability interval around p;_1:

Ai(zs,pi-1) = [p(xe), D(2)] N [Pe—1 — A, pr—1 + Al

Projection maps any real number into the set onto which we project, hence
Pt € Ai(2¢, pr—1). Membership in the intersection implies both p; € [p(y), p(w4)]

and p; € [pi—1 — A, pi—1 + A], the latter being equivalent to |p; — pi—1| < A.
O

Interpretation: decoupling model risk from compliance risk. The
proposition is intentionally stronger than an in-expectation statement: it
holds for every realized path of (x¢,p;) and therefore for every realization
of the stochastic demand process, every update of the estimator, and every
behavior of the change-point detector. In operational terms, this decoupling
is valuable because it converts compliance into a simple, loggable transfor-
mation. An auditor can reconstruct A; from (z,p;—1) and verify that the
posted p; equals I 4, (p¢), without inspecting the learning code or the demand
model.

Extension 1: additional hard constraints as closed feasible sets.
The same logic extends immediately beyond cap/floor and one-step stability.
Let F; be any (possibly context- and history-dependent) hard feasibility set
such that the platform requires p; € F; deterministically. If 7 C R is closed
and nonempty, we can define the implemented action by

pe € r,(By) € arg min(p — p;)”.
pEF:
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When F; is a closed interval, Iz, reduces to clipping; when F; is a finite
set (e.g., prices must be in $0.05 increments), IIx, is the nearest feasible
price (ties can be broken deterministically). In all cases, the safety claim is
tautological: p; € F; holds by construction. Convexity is not required for
feasibility, only for uniqueness and computational convenience.

Examples. (i) Percentage-change stability: replace |p; — pi—1| < A with
pe € (L =n)pi—1, (1 +1)ps—1] for n € (0,1) and intersect with [p(z¢),p(x¢)].
This again yields a closed interval and clipping enforces compliance.

(ii) Margin guardrails: enforce py > ¢(x¢) + Mmin for a required minimum
unit margin mmpyi, > 0 (or, more generally, p; € [¢(2¢) + Mmin, ¢(21) + Mmax])-
This is another cap/floor with context-dependent bounds.

(iii) Forbidden regions: prohibit prices in an interval (phad, psad) (e.g.,
regulatory “no-go” bands). The feasible set becomes a union of closed in-
tervals. Projection is still well defined as nearest-point selection and yields
deterministic feasibility, though the selected price may jump between com-
ponents; if jumps are also constrained, one encodes stability directly in F;.

Extension 2: multi-product pricing and general constraints. If the
action is a price vector p; € R (multiple products or zones), hard con-
straints often include componentwise bounds, cross-product parity rules, and
stability constraints of the form ||p; — pi—1|| < A under a chosen norm. Let
Fi: € R™ denote the resulting feasible polytope (or more general closed set).
Implementing

. - 12
E —_
pr € arg min P — pell5

again yields zero violations. When F; is convex, the projection is unique and
computable via a quadratic program, which is precisely the type of routine
that platforms can harden and audit.

Limitations: what safety does not guarantee. Projection ensures
compliance with encoded constraints, but it does not ensure that those con-
straints are themselves well chosen. For example, a tight stability bound A
can mechanically prevent rapid adjustment after a regime change; conversely,
a loose A may satisfy policy but raise anti-gouging concerns. Likewise, fea-
sibility conflicts must be resolved by design (via nonempty A; or an explicit
priority rule). These are not statistical issues but governance choices. The
role of the safety layer is narrower: given a set of hard requirements, it guar-
antees that the algorithm never violates them, independent of how demand
is learned or how regimes are detected.
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7 Theory II (Performance): Regret Under Piece-
wise Stationarity

Having separated compliance from the statistical layer, we now ask a dif-
ferent question: how costly is learning when demand shifts over time? Our
performance objective is dynamic regret against a benchmark that is delib-
erately modest but operationally meaningful: in each regime, compare to
the best feasible stationary pricing rule for that regime, recognizing that the
benchmark itself must obey the same cap/floor and step-size constraints.
This choice avoids an unrealistic comparator that can instantaneously jump
to the new optimum after a change point, which would overstate what is
achievable under stability constraints.

Benchmark and regret. Let Z, = [7., 741 — 1] denote regime r and
write r; = r for t € Z,.. For each regime, define the regime-wise best feasible
stationary policy (informally: the best “target price” consistent with the hard
bounds, coupled with the fastest feasible approach under |p; — pi—1] < A).
The dynamic regret is

T
Regr = (Elm ()] —Elm]), = (pe — c(z)ys

where 7/ (r;) denotes the benchmark profit in the current regime and ex-
pectations integrate over demand noise and any algorithmic randomness. In
contrast to static regret, Regr is permitted to depend on the number of
regimes R; the goal is to ensure that the dependence is on change frequency
and detectability, rather than linearly on T'.

Decomposing performance losses: learning vs. nonstationarity. The
structure of the problem suggests a natural accounting identity. Fix any

change-point procedure that triggers a reset at (possibly random) times.

Between resets, the algorithm behaves like a stationary learner, so its loss

is governed by standard exploration—exploitation tradeoffs. Near change

points, however, two additional costs appear: (i) detection delay, during

which the algorithm keeps using a stale model, and (ii) false alarms, which

needlessly discard information and restart learning. We summarize both by

a detection/reset cost term dge, measured in periods.

Formally, let dqet,» denote the number of periods after 7. until the first
reset that “catches” the change to regime r (with dget,1 = 0 by convention).
Let 7 be a uniform bound on the per-period profit gap between any two
feasible prices, e.g.,

T>sup  sup |E[(p— c(w)y | poxe ] — B — clz)y | pxe ]|
t<T p,p'€At(xt,pt—1)
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Then the nonstationarity penalty can be controlled by dget 7, because each
period of delay can lose at most 7 relative to the regime-wise benchmark.

Proposition (regret decomposition). Suppose that on each regime in-
terval Z, (excluding a detection window of length dgcs, after 7,.), the algo-
rithm attains within-regime regret at most O(\/E) against the best feasible
stationary policy for that regime. Then

R R
RegT < Z O(\/E) + O( Z ddet,r 7?) .
r=1 r=2

The proof is a partition argument: split time into “well-specified” blocks
where the regime is constant and the algorithm has reset, and “boundary”
blocks whose total length is ), <o dget,. Apply the stationary regret guar-
antee on the first type and the crude worst-case bound 7 on the second

type.

What the bound says (and what it does not). The first term, 3, O(v/L,),
is the cost of learning within regimes; it is sublinear in each regime length and
therefore scales like O(v/T) when R is fixed. The second term is the cost of
tracking changes; it scales approximately linearly in the number of changes,
but crucially through the detection delays dget » rather than through 7'. This

is the sense in which piecewise stationarity is beneficial: if changes are infre-
quent and quickly detectable, the penalty for nonstationarity is small.

This decomposition also clarifies why stability constraints matter for per-
formance even when they are “free” from a compliance standpoint. If A is
small, then the benchmark itself may take multiple periods to reach a new
target price after 7., which reduces T and can soften the boundary cost. At
the same time, a small A can slow down the algorithm’s ability to explore
a range of prices (because the action set effectively contracts around p;_1),
which increases within-regime learning constants. Our regret expression does
not resolve this governance tradeoff; it simply isolates where A enters.

Explicit dependence on noise and drift magnitude. To turn the ab-
stract term dget » into something interpretable, we need a statistical model of
detectability. A canonical special case is linear demand within each regime,

Dy (p, ) = ar(x) — be(x)p,

with unknown (a,,b,) and o-sub-Gaussian demand noise. In such models,
residual-based change-point tests yield detection delays that scale inversely
with the squared jump size. Let k, denote the minimum magnitude of the
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parameter shift at 7, (in the norm relevant for prediction errors on the real-
ized price/context sequence). Standard concentration arguments then give

daor = O(%).

2
K’T

up to logarithmic factors in 7' and 1/4. Intuitively, larger o blurs the signal
and requires more samples to conclude that the old model no longer fits, while
larger k, makes the change statistically obvious and shortens the delay.

Combining this detectability scaling with the decomposition yields a re-
gret bound of the form

Resr < O( S VE) + (30 2).
r=1 r=2 T

where the second term should be read as “nonstationarity cost is approxi-
mately additive across change points, and each change point is cheaper when
it is larger and cleaner.” The explicit appearance of ¢ and k, is important
for practice: it maps directly to engineering choices (smoothing, aggregation,
experimentation) and market conditions (demand volatility, abruptness of
shocks).

Role of the regime count R. In the worst case, 25:1 VL, < VRT, so
the learning term degrades gracefully as regimes become more frequent. The
detection term, however, is essentially linear in the number of change points
(unless the jumps become easier to detect as they become more frequent).
This aligns with economic intuition: each structural break forces a “tax” of
re-estimation and re-optimization, even if the algorithm is otherwise efficient.

Limitations and boundary cases. Two boundary cases deserve empha-
sis. First, if regimes drift gradually so that k, is effectively tiny at each
7, then change points become statistically indistinguishable from noise and
any detector must incur long delays (or many false alarms). In this case,
the second term can dominate and the piecewise-stationary abstraction loses
predictive power. Second, if the demand model class is misspecified (e.g., the
true D, is nonlinear while we fit linear demand), then within-regime regret
should be interpreted as regret relative to the best approximation within the
model class; our decomposition still holds, but the benchmark is no longer
the true profit-maximizing feasible policy.

Taken together, Theory II formalizes the practical promise of OSP: when
the environment is stable most of the time and changes are sufficiently salient
relative to noise, we can achieve near-stationary learning rates within regimes
and pay only a localized, interpretable penalty around regime boundaries.
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8 Practical Evaluation: Off-Policy Evaluation with
Guardrails, Counterfactual Bounds, and Stress
Tests

A regret bound is only valuable if it can be translated into a deployment
protocol that is legible to practitioners: we must be able to (i) evaluate can-
didate policies before exposing customers to them, (ii) quantify the residual
uncertainty in that evaluation, and (iii) demonstrate that compliance con-
straints are satisfied mechanically rather than by good intentions. In our
setting, the central practical difficulty is that pricing is path dependent: the
stability constraint couples decisions across time, so a counterfactual policy
cannot be evaluated by period-by-period substitution alone. Our evalua-
tion design therefore treats pricing as a sequential decision rule with state
(z¢,pt—1), and it separates what must be guaranteed (hard constraints) from
what can only be estimated (revenue and profit impacts).

Logged data requirements and “guardrail-aware” policy definitions.
We assume access to historical logs of (x4, p, y¢) under some behavior policy
(a human rule, a legacy system, or a randomized experiment). Because our
implemented price is always of the form

Pt = H.At(%g,ptfl) (pt)a

any candidate policy can be represented as a candidate generator py = ¢g(hy)
(with history h;) plus the same auditable projection layer. This representa-
tion is not cosmetic: it ensures that every offline evaluation is conducted on
the actual deployed object (the projected action), which eliminates a com-
mon failure mode where offline performance is reported for an unconstrained
policy that will never be implemented. It also makes compliance verifiable
by inspection of code and logs.

Off-policy evaluation (OPE) as sequential replay with feasibility.
Given a candidate policy m (equivalently ¢y plus projection), the most direct
estimate of its revenue is a model-based sequential replay: we take the re-
alized context sequence (1, ...,x) from logs, initialize at the observed py,
generate the counterfactual price path {p]} via the policy and the projec-
tion operator, and then impute counterfactual demand and profit using an
estimated demand model D(p, z) (or regime-indexed D, when change points
are modeled). This produces an estimated counterfactual profit

T
Z xt D(pt 7$t)

t=1
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which is fast to compute and automatically respects the step-size constraint
because the path is generated recursively. The limitation is familiar: model-
based OPE inherits bias from misspecification, especially when the coun-
terfactual prices fall outside the support of historically observed prices for
similar contexts.

When the behavior policy has known randomization (or can be approxi-
mated by a propensity model), we can complement the model-based estimate
with importance-weighted or doubly robust estimators. The stability con-
straint simply enlarges the “context” to include the previous price, so each
period has conditioning variable s; = (x, p;—1) and action a; = p;. In finite-
horizon form, weighted importance sampling uses ratios of action probabil-
ities m(a¢ | s¢)/p(ar | s¢), while doubly robust estimators combine a reward
model with these ratios to reduce bias. In practice, we recommend using
these estimators primarily as diagnostics: their variance can be large when
the candidate policy deviates materially from historical behavior, which is
precisely when one most wants reliable answers. This motivates a conserva-
tive reporting style: we treat any OPE point estimate as suggestive, and we
emphasize uncertainty quantification and lower bounds.

Counterfactual bounds and “safe improvement” gates. To make of-
fline evaluation decision-relevant, we report not only ﬁ(w) but also a conser-
vative lower confidence bound. There are two complementary approaches.
First, under parametric demand models (e.g. linear demand in each
regime), we can propagate a confidence set for parameters through the coun-
terfactual simulation. Concretely, if § denotes demand parameters and ©4(J)

is a high-probability confidence region built from logged data, we compute

T

II(r) = 92%%) tZI(pf — c(z4)) Do (pf, xt),

which yields a worst-case profit consistent with the data at level 1 —§. This
produces an explicit “do-no-harm” gate: we only consider deployment if II(7)
exceeds the estimated profit of the status quo policy by a material margin.
The logic is managerial rather than purely statistical: because pricing affects
customers and may trigger scrutiny, we require evidence of improvement
under plausible demand realizations, not only under the best-fitting model.

Second, when we do not trust parametric structure, we can report partial-
identification bounds based on overlap and smoothness assumptions. For
example, if we have reliable estimates of demand only on a price interval
Psupp(x) for each context cell, then any counterfactual price pf ¢ Psupp(zt)
is flagged as extrapolation. A simple bound is obtained by clipping eval-
uation to the supported region (a “supported-policy” proxy), while a more
informative bound can be obtained under a Lipschitz condition on D(p,x) in
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p. Either way, the key output is not a single number but a range that makes
explicit how much of the purported uplift is coming from extrapolation.

Stress tests with simulated regime shifts. Because nonstationarity is
the primary operational risk, we recommend a battery of stress tests that
are explicitly adversarial to the learned policy. Starting from a fitted regime-
wise demand model, we generate synthetic sequences with controlled change
points: shifts in intercepts (demand level), slopes (price sensitivity), and con-
text coefficients (seasonality or traffic effects). We then run the full online
algorithm (including the change-point detector and resets) on these synthetic
streams, using the same hard-constraint projection, and we record (i) cumu-
lative profit relative to the regime-wise feasible benchmark, (ii) detection
delay and false-alarm frequency, and (iii) the distribution of realized price
paths (how often the policy sits at caps/floors, how often it is step-limited
by A). Varying jump sizes, noise levels, and change frequencies produces an
empirical “phase diagram” that complements the theory: it shows where the
detector reliably localizes breaks, and where the environment is effectively
drifting and resets become unstable.

A useful design principle is to include policy-induced stress: we simulate
not only exogenous parameter jumps but also situations where the policy
itself changes the realized price distribution (e.g. it tends to price higher,
reducing the data available at low prices). This matters because change-point
tests based on residuals can fail when the policy stops visiting informative
regions of the action space. In practice, we therefore test the detector under
multiple exploration intensities and include “canary” perturbations (small,
temporary price probes within the feasible set) to maintain identifiability.

Reporting: compliance is a metric, but violations are structurally
zero. We report two families of metrics. The first family is compliance:
the number of cap/floor violations and step-size violations is identically zero
by design, but we still log and report audit-friendly statistics that indicate
how binding the constraints are. Examples include the fraction of periods
in which projection is active, the average magnitude of clipping, the fraction
of periods at p(x;) or p(z), and the fraction of periods in which the step
constraint binds (i.e. |p; — p/—1| = A). These quantities are operationally
important because they reveal when the learned policy is “pushing against
governance,” which can signal either genuine profitability opportunities or
model error.

The second family is revenue and profit: average profit per period, gross
revenue, units sold, and decompositions into margin versus volume effects,
all reported with uncertainty intervals. Because profit is the objective but
revenue is often the KPI, we report both and explicitly show how results
depend on cost ¢(z;). For decision-making, we place particular weight on
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conservative estimates (lower bounds) and on robustness across stress sce-
narios, rather than on the single best offline point estimate.

Taken together, these evaluation steps operationalize our central claim:
hard constraints can be enforced deterministically, while performance is as-
sessed probabilistically with explicit uncertainty and robustness checks. This
creates a deployment pathway in which governance is non-negotiable, learn-
ing is incremental, and failures are anticipated through structured stress
rather than discovered in production.

9 Extensions: Multi-SKU Coupling, Inventory /Stockouts,
CVaR Risk Constraints, and Limited Personal-
ization with Groupwise Constraints

Our baseline model isolates a single product and a one-dimensional action
(the posted price). Many revenue-management deployments, however, con-
front coupled decisions: prices interact across products, inventory creates
a hard intertemporal state constraint, managers care about downside risk
rather than expected profit alone, and personalization is permitted only
within explicit groupwise governance rules. We briefly sketch how our frame-
work extends to each of these settings. The common theme is that the
guardrail layer remains conceptually clean—we still implement actions by
projecting a candidate onto an auditable feasible set—but the inner opti-
mization and learning typically become multi-dimensional and, in practice,
require numerical methods.

Multi-SKU pricing with cross-price effects. Let k € {1,..., K} index
SKUs and write the action as a price vector p; € RE. A natural generaliza-
tion of our feasibility constraints is a convex set

A, pie1) = {p € RN : p, (02) < pr < Bil@e) Wk, Ip = proalloe < A},

or, when step-size limits are SKU-specific, ||p — pi—1/lcc < A is replaced by
Ipk — Pt—1,k| < Ag. The implemented action remains

Pt = H.At(l't,ptfl) (ﬁt))

now interpreted as Euclidean projection in R. When the feasible set is a box
with £, step limits, projection decomposes coordinate-wise and remains triv-
ial; when we add coupling constraints (e.g. category margin floors, relative-
price ladders, MAP policies, or platform rules such as p; < p; +1T'), the
projection becomes a small convex program that can still be solved quickly
and logged for audit.
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Demand coupling enters through a vector demand function D, (p,z) €
Rf , with profit

K

mo= > Pk — k@) yeks  Elye | pry e, re] = Doy (pr, w0).
h=1

A tractable special case is linear cross-price demand,

D, (p,z) = ay(x) — Br(z)p,

where B, (x) is a (typically diagonally dominant) matrix of own- and cross-
price sensitivities. Then expected profit is a concave quadratic if B,(z) is
positive semidefinite in the appropriate sense, and computing the myopic
constrained optimum reduces to a quadratic program. The learning prob-
lem becomes a multivariate regression with change points in (a,, B,), and
the main practical distinction from the scalar case is not conceptual but
computational: we require regularization (to control dimensionality and en-
sure stability) and numerical solvers for the per-period optimistic or robust
optimization step.

Inventory dynamics, stockouts, and censored demand. Inventory
introduces a hard state variable that directly couples decisions across time.
Let I; denote on-hand inventory at the start of period ¢ and suppose sales
satisfy y; < I; with inventory dynamics

Iivn = I —yp + g,

where wu; is an exogenous replenishment (possibly zero for a finite-season
problem). Two complications arise. First, the feasible action set may now
depend on inventory via governance rules (e.g. “do not discount below p™i"(x)

when I} is scarce”), creating A (x¢, pr—1, It). Second, the retailer may observe

only censored demand: when I is low, observed sales equal min{ I, latent demand},
so residual-based change-point detection and demand estimation must ex-
plicitly account for censoring.

Conceptually, one can treat (zy,p;—1, I;) as the observed state and inter-
pret pricing as a constrained control problem with unknown transition law
(because the demand model is unknown). The same “candidate plus projec-
tion” architecture applies mechanically, but optimality is no longer myopic:
prices trade off current margin against preserving inventory for higher-value
future periods. In regimes with stable demand, approximate dynamic pro-
gramming or model predictive control can be used: we (i) fit a demand
model, (ii) solve a finite-horizon stochastic program with inventory dynam-
ics to generate a candidate p;, and (iii) project to enforce hard constraints.
In piecewise-stationary environments, the detector-and-reset logic continues
to be useful, but detection statistics should be built from uncensored periods
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(when I is comfortably above realized sales) or from likelihoods that incor-
porate truncation. In practice, these extensions are feasible but are rarely
closed-form; numerical planning is the norm.

Risk-sensitive objectives and CVaR constraints. Managers often care
about downside outcomes (e.g. weekly profit shortfalls) due to budget tar-
gets, reputational concerns, or regulatory scrutiny. A convenient formaliza-
tion is to impose a conditional value-at-risk constraint on a loss functional.
For instance, for an evaluation window of length H, define cumulative profit
S = Zi 17 and loss L = —S. A CVaR constraint takes the form

CVaR, (L) < p,

for confidence level o € (0, 1) and tolerance p. Using the standard variational
representation,

CVaRo(L) = min {n ¥ E[(L— )] } ,
we can incorporate risk either as (i) a constraint enforced via a Lagrangian
primal-dual update or (ii) a penalty added to expected profit. The guardrail
logic remains unchanged for price constraints, but we now add a statistical
guardrail on tail outcomes: offline, we estimate a conservative upper con-
fidence bound for CVaR, (L) under the candidate policy using sequential
replay with demand uncertainty; online, we can maintain a running estimate
of tail losses and tighten exploration when the estimated risk budget is being
consumed.

The key limitation is that CVaR is inherently distributional and thus less
amenable to high-probability guarantees under arbitrary nonstationarity. In
particular, change points can concentrate losses exactly when the policy
is least calibrated. Practically, this makes stress testing (with adversarial
regime shifts) even more central, and it shifts attention from asymptotic
regret constants toward finite-sample tail diagnostics.

Limited personalization with groupwise constraints. Finally, con-
sider limited personalization in which customers are partitioned into observ-
able groups g € {1,...,G} (e.g. geography, loyalty tier, platform channel),
with potentially different demand responses D, 4(p, z). The retailer may post
group-specific prices p; 4, but governance often imposes explicit restrictions
such as bounded dispersion,

Pty — Py | <T Vg,4,

or monotonicity rules (e.g. premium tiers cannot face lower prices than stan-
dard tiers), in addition to caps/floors and step-size limits for each group.
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These are naturally encoded as a convex feasible set in R, so the imple-
mented pricing vector again takes the projected form

pt = H.At(zt,ptfl) (ﬁt)?

where A; includes both per-group and cross-group constraints. This rep-
resentation is operationally attractive: it ensures that any personalization
logic, no matter how complex, cannot violate explicit non-discrimination
guardrails.

From a learning perspective, the main new issue is data sparsity: each
group provides fewer observations, yet the algorithm must detect regime
shifts that may be group-specific. A pragmatic compromise is to adopt a
hierarchical structure (shared components across groups plus group devia-
tions) and to run change-point detection at multiple resolutions: global tests
to detect market-wide shifts and group-level tests to detect localized breaks.
The corresponding optimization step (optimistic, robust, or risk-constrained)
typically becomes a small but nontrivial convex program each period, again
favoring numerical methods with warm starts and strict logging for audit.

Why numerical methods are the rule, not the exception. Across
these extensions, the economics is unchanged: we still face a tradeoff be-
tween adapting to demand and honoring operational constraints that are
non-negotiable. What changes is that the inner problems cease to be one-
dimensional and closed-form. In our view, this is not a weakness of the
framework but a realistic boundary: in deployed systems, transparency and
enforceability come from the projection-based guardrails, while performance
comes from whatever estimation and numerical optimization is credible un-
der the data and governance environment. Our model clarifies where one
can demand certainty (constraint satisfaction) and where one must instead
manage uncertainty (profit, risk, and nonstationarity) through conservative
bounds and stress-tested numerical procedures.

10 Conclusion: Implications for Revenue Manage-
ment, Auditing, and Policy; Limitations and
Next Steps

We have studied dynamic pricing in the environment that practitioners re-
peatedly describe as “the hard part”: demand is uncertain and can shift
abruptly, while the permissible prices are governed by non-negotiable op-
erational and policy constraints. Our main message is that these two fea-
tures can be separated cleanly. Constraint satisfaction is an engineering
requirement that should be guaranteed mechanically (via projection onto an
explicit feasible set), whereas adaptation to demand is a statistical prob-
lem that should be managed with learning and detection tools that come
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with interpretable performance guarantees. The resulting architecture is
conceptually simple: propose a candidate price using any reasonable forecast-
ing/optimization logic, then pass it through an auditable “guardrail layer”
that enforces caps, floors, and step-size limits by construction.

For revenue management, the key implication is that stability constraints
and price bounds need not be treated as afterthoughts that invalidate theory;
rather, they can be incorporated as first-class primitives. The feasible set
A¢(zy, pr—1) is not merely a modeling convenience: it matches how pricing
teams actually operate, with hard limits imposed by brand policy, platform
rules, and compliance. Once we accept these guardrails as binding, the rel-
evant performance benchmark changes as well. The natural comparator is
not the unconstrained static monopoly price, but the best feasible station-
ary policy within each regime—including the fact that even an omniscient
benchmark must obey the same caps, floors, and step-size restrictions. This
shift in benchmark matters operationally: it aligns evaluation with what a
compliance team will accept, and it makes regret (and its decomposition)
a credible diagnostic for how quickly a system adapts following a demand
break.

A second implication is interpretability of “why profits fell” in the pres-
ence of nonstationarity. When demand is piecewise stationary, our dynamic
regret bound decomposes into within-regime learning terms (scaling like
O(v/L,)) plus boundary losses induced by detection and reset. In plain
terms, performance degradation has two sources: estimation error when the
regime is stable, and calibration lag when the regime changes. This decom-
position suggests practical KPIs that mirror the theory: (i) within-regime fit
and exploration diagnostics (residual variance, parameter confidence widths,
effective sample sizes) and (ii) change-point KPIs (average detection delay,
false-alarm rate, and the profit impact in the post-change window). Impor-
tantly, stability constraints interact with these KPIs in a predictable way:
they can modestly reduce short-run responsiveness after a break, yet they
also reduce harmful variance and limit extreme actions when the model is
misspecified.

The auditing implications follow directly from the projection-based de-
sign. Because the implemented price satisfies p; € [p(z¢),P(x¢)] and |p; —
pi—1| < A for all t by construction, compliance can be verified ex post
without debating statistical assumptions about demand. Moreover, the pro-
jection step is itself loggable: for each period one can record the candidate
D, the feasible interval A;(x¢, pi—1), and the final implemented p; = I 4, (py).
This creates a transparent trail that distinguishes “the model wanted to do
X” from “the guardrail allowed only Y,” which is precisely what internal risk
committees and external regulators often demand. In our view, this distinc-
tion is also economically meaningful: it clarifies that the opportunity cost of
governance is not a vague loss of “flexibility,” but the measurable gap between
unconstrained and constrained optima, plus the transitional loss imposed by
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step-size limits.

From a policy perspective, the framework provides a disciplined way to
think about rules such as anti-gouging statutes, platform price caps, and fair-
ness constraints. Such rules are frequently criticized for “distorting prices,”
yet in deployed systems they are unavoidable constraints that can be imple-
mented either opaquely (through ad hoc overrides) or transparently (through
explicit feasible sets). Our approach advocates the latter: encode policy in
p(+), p(-), and A (and, in multi-dimensional settings, in convex coupling
Eonstraints), then quantify the induced welfare or profit loss relative to the
policy-feasible benchmark. This reframing helps avoid a common category
error: comparing outcomes under a governed system to an infeasible coun-
terfactual. It also highlights a constructive design margin for regulators and
platforms: stability bounds and caps can be tuned to achieve compliance
goals while keeping the induced loss small when the objective is locally flat
near the optimum, consistent with second-order “flat-top” logic.

These benefits come with limitations that delimit what our guarantees
do not say. First, piecewise stationarity is an approximation. Real markets
may drift gradually, exhibit seasonality not fully captured by x;, or respond
endogenously to the firm’s own history. In such environments, change-point
detection may be triggered by unmodeled cyclicality, and resets may dis-
card useful information. Second, we have assumed that marginal cost c¢(z)
and the guardrails are known and correctly specified; in practice, costs can
be measured with error and policy constraints can change discretely, which
can look statistically like demand breaks. Third, our regret bounds are de-
rived under specific noise and model classes (e.g. sub-Gaussian shocks, linear
demand in the tractable case). Heavy tails, strategic stockpiling, and unob-
served rationing can all violate these assumptions and degrade both inference
and detection. Finally, we have abstracted from competition and strategic
consumers; in many categories, demand depends on rivals’ prices and on
customers’ expectations, and those feedback effects can invalidate a purely
exogenous demand-regime interpretation.

These limitations point to several next steps. On the modeling side, an
important extension is to integrate competition: demand regimes may be
induced by rivals’ policy changes, entry/exit, or algorithmic responses, and
the “breaks” may be partially predictable from public signals. On the sta-
tistical side, it is natural to replace sharp resets with adaptive forgetting or
model averaging, and to develop robust detection methods that distinguish
parameter shifts from volatility bursts or censoring. On the governance side,
we see a need for formal “auditability metrics” that sit alongside regret: for
example, measures of how often the projection binds, how sensitive outcomes
are to the choice of A, and how frequently groupwise constraints (in limited
personalization) become active. Finally, we expect that practice will increas-
ingly demand stress-tested guarantees—not only average-case regret under
a stochastic model, but also performance under adversarial or worst-case
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sequences that encode crisis periods.

Stepping back, the central tradeoff our model illuminates is not merely
between exploration and exploitation, but between adaptation and enforce-
ability. Revenue-management systems succeed when they can learn quickly
and remain legible to the institutions that must sign off on their actions.
Projection-based guardrails offer a principled way to draw that boundary:
we can demand certainty where it is operationally required (zero constraint
violations), and we can manage uncertainty where it is inevitable (demand es-
timation and nonstationarity) using tools that yield transparent diagnostics
and interpretable regret decompositions. In this sense, the framework is less
a prescription for one specific algorithm than a blueprint for building pricing
systems that are simultaneously performant, governable, and auditable.
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