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Abstract

Dynamic pricing work in the source material optimizes a single-
objective profit reward using Q-learning under a static elasticity-based
demand model. In modern 2026 retail, pricing decisions also shape
operational and regulatory outcomes: return flows strain reverse lo-
gistics, shipping congestion raises fulfillment costs, and carbon pricing
(explicit or contractual) makes emissions a priced input. We propose
a clean constrained Markov decision process (CMDP) that augments
the pricing state with a one-dimensional delayed-return pipeline and in-
cludes platform constraints (price ladders, floors/ceilings) and stability
constraints (bounded price moves). Our main theoretical contribution
is a frontier result: under mild convexity/concavity conditions, the
set of Pareto-efficient tradeoffs among discounted profit, long-run re-
turn volume, and long-run emissions is low-dimensional and can be
parameterized by two Lagrange multipliers. In a tractable linear-
demand/affine-return specification, the optimal policy reduces to a
projected affine (threshold-like) pricing rule, providing interpretable
prescriptions: constraints enter as shadow prices that raise effective
marginal costs of shipment and returns. Empirically, we outline es-
timation of return propensity as a function of price and context and
demonstrate (numerically) that constrained policies can outperform
profit-only baselines out-of-sample by reducing return and carbon costs
while preserving most margin.
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1 Introduction and motivation

In 2026, pricing is no longer a single-instrument lever for extracting short-
run margin from a demand curve; it is an operational control that reshapes
downstream flows in fulfillment networks, reverse logistics, and emissions
accounting. Retailers that treat price as “just revenue” often discover that
the true unit economics are determined after the sale: by the fraction of
orders that return, by when those returns arrive relative to staffing and car-
rier capacity, and by the shadow cost of carbon embedded in outbound and
reverse shipments. We therefore begin from a simple premise: a modern pric-
ing policy must internalize (i) delayed returns, (ii) congestion and handling
costs that are convex in volume, and (iii) carbon charges or internal carbon
transfer prices that scale with shipping activity. The model we develop is
intentionally minimalist—price is the primary action—but it is designed to
illuminate the tradeoffs practitioners now face when optimizing across profit,
return load, and emissions exposure.

The business motivation is straightforward. First, returns have grown
from a nuisance parameter into a strategic determinant of profitability. A
high posted price may reduce demand, but it can also screen into (or out of)
consumers and use cases with different return propensities; conversely, ag-
gressive promotions can pull forward volume that later reappears as reverse-
logistics congestion. Second, fulfillment is increasingly capacity-constrained
and surcharge-driven. When warehouses and carriers operate near peak uti-
lization, the marginal cost of shipping an additional unit is not constant: it
rises due to labor overtime, cut-off misses, dimensional weight penalties, and
carrier peak fees. That nonlinearity is precisely what convex congestion costs
are meant to capture, and it converts what would be a static markup problem
into an intertemporal control problem: today’s price affects not only today’s
volume, but also tomorrow’s operating regime through the return pipeline
and through the persistence of capacity stress. Third, carbon accounting
has moved from corporate reporting into priced constraints. Whether via
explicit taxes, sectoral fees, cap-and-trade pass-through, or internal shadow
pricing used for capital allocation, emissions now enter the objective func-
tion in a way that is operationally similar to a per-unit cost—except that
the relevant “tax” can itself be policy-driven and binding at the firm level.

These realities sit uneasily with the canonical dynamic pricing frame-
work taught in operations and economics. In the baseline textbook model,
the retailer chooses a price to balance marginal revenue against a constant
marginal cost, perhaps under inventory dynamics or demand learning. Even
when such models are extended to a dynamic setting with covariates and
state dependence, the state is often a forward operational object (inventory,
capacity, or belief about demand), while the backward object—the return
pipeline—is either ignored or treated as contemporaneous shrinkage. Yet re-
turns are delayed and clustered: they generate a lag between the sale and its
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true net revenue, and they impose real costs (inspection, restocking, disposal,
customer service) whose timing matters for staffing and facility utilization.
A pricing policy that does not “see” this lag may look optimal in-sample
and still be systematically fragile out-of-sample, particularly around seasonal
peaks when return windows overlap.

Our goal is to keep the model close enough to practice that its policy im-
plications are interpretable, while remaining structured enough to yield clear
theoretical lessons. We therefore build around three design choices. The first
is a parsimonious representation of delayed returns. Rather than tracking the
full age distribution of past sales eligible to return, we use a one-dimensional
pipeline state that summarizes the expected mass of pending returns. This
is not merely a mathematical convenience; it corresponds to a managerial
object (“how much return exposure is in the system?”) and is empirically
estimable from aggregate return-window data. The second choice is to model
the operational cost of volume via a convex congestion term. This captures
the idea that marginal fulfillment cost rises with throughput, even absent
binding inventory constraints, and it provides a disciplined way to repre-
sent carrier surcharges and warehouse crowding without hard-to-calibrate
discontinuities. The third choice is to treat carbon as an explicit component
of per-period payoffs and constraints, allowing us to study both price-based
regulation (a carbon fee) and quantity-based regulation (an emissions cap)
within a unified framework.

These modeling choices also speak directly to the current methodologi-
cal trend of using reinforcement learning (RL) for pricing. Many deployed
systems amount to profit-only learning: a Q-learning or actor–critic agent
observes a context vector, chooses a price, receives a scalar reward equal to
contemporaneous profit, and updates parameters to improve expected dis-
counted reward. This approach has two well-known failure modes in our
setting. First, if the reward is measured at shipment time while returns ar-
rive later, the agent faces a delayed and partially observed penalty; naive
Q-learning can then overvalue actions that generate immediate revenue but
large future return costs. Second, profit-only rewards do not encode car-
bon or operational constraints, so the learned policy may be infeasible under
emissions budgets or return-handling capacity, even if it performs well on
the historical objective. In practice, teams patch these issues with ad hoc
penalties, post-processing, or separate “guardrail” rules; our aim is to pro-
vide an economic structure that clarifies what those penalties should be, and
when they can be represented by a small number of shadow prices.

A central theme of the paper is that constraints on returns and emis-
sions are not merely compliance add-ons; they are scarcity constraints that
induce implicit prices. When return-processing capacity is limited, an addi-
tional expected return has an opportunity cost: it displaces other returns,
increases cycle time, or forces outsourcing at higher cost. When emissions
are capped or priced, each outbound or reverse shipment consumes a scarce
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resource. The correct way to incorporate these scarcities is through La-
grange multipliers (shadow costs) that enter the pricing decision exactly
like additive marginal costs. This yields a constructive interpretation: we
can view “sustainability” and “reverse-logistics” requirements as converting
a single-objective pricing problem into a multi-objective problem whose ef-
ficient frontier can be explored by tuning a low-dimensional vector of multi-
pliers. For practitioners, this is useful because it suggests that a wide range
of corporate policies (a carbon internal price, a return-capacity budget, a
service-level target) can be translated into a small set of numbers that a
pricing system can ingest and act upon consistently.

We also emphasize implementability. Real platforms rarely allow contin-
uous, unconstrained prices. Retailers face discrete price ladders, floors and
ceilings, parity rules across channels, and stability constraints that limit how
quickly posted prices may change. These frictions matter for both economics
and learning: they induce kinks and projections that can defeat smooth first-
order conditions, and they can create persistence in prices that is mistaken
for consumer reference effects. Rather than abstracting them away, we in-
corporate platform feasibility and price-stability constraints as part of the
action set, so that the optimal policy is explicitly a projected rule: choose the
economically preferred price, then map it to the nearest feasible price consis-
tent with platform and stability requirements. This perspective helps bridge
theory and deployment, because it separates the core economic logic (the
unconstrained “target” price) from the institutional mapping (the feasible
posted price).

The resulting framework complements, rather than replaces, standard
dynamic pricing and RL formulations. It retains the flexibility of context-
dependent demand, allows for stochastic dynamics in demand covariates,
and is compatible with model-based estimation or model-free learning. At
the same time, it forces us to confront the intertemporal nature of returns
and the policy nature of carbon. The contribution is therefore not a new
forecasting trick, but a disciplined control view: price influences a forward
sales flow and a delayed reverse flow, both of which carry congestion and
emissions externalities that can be internalized through shadow costs. We
will be candid about what this does not accomplish. We do not claim that
a single scalar pipeline state captures all nuances of heterogeneous return
windows, item conditions, or fraud dynamics; nor do we claim that carbon
is perfectly proportional to units shipped. Our point is that even a stylized
representation is enough to change the qualitative prescription for optimal
pricing and to clarify how constraint-aware learning and planning should be
structured.

Finally, we highlight the practical question that motivates the rest of
the paper: if a retailer must meet a return-volume budget and an emis-
sions budget while operating under platform pricing rules, what does an
optimal pricing policy look like, and how can we compute it in a way that
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is transparent and tunable? The sections that follow introduce the institu-
tional constraints that make the problem nontrivial, formalize the dynamic
program with a delayed-return state, and show how a low-dimensional mul-
tiplier parameterization recovers the Pareto-efficient tradeoff between profit,
returns, and emissions.

2 Institutional background and constraints

Before formalizing primitives, it is useful to be explicit about the institutional
frictions that make “optimal pricing” in retail look less like a frictionless
markup rule and more like a constrained control problem. In many cate-
gories, retailers do not choose a real-valued price each period; they choose a
posted price within a menu shaped by platform rules, consumer-protection
policies, and operational guardrails. Those rules are often motivated by trust
and fairness concerns, but they have immediate economic implications: they
create nonconvexities (discrete ladders), inertia (stability constraints), and
sometimes cross-product coupling (parity and promotional mechanics). Our
modeling choice to embed an admissible set and a hard stability bound is
therefore not a technical add-on; it mirrors the environment in which algo-
rithmic pricing systems are deployed.

Platform admissibility: floors, ceilings, parity, and ladders. Most
large marketplaces and retail channels impose some combination of (i) price
floors (e.g., MAP agreements, “no-loss” rules tied to wholesale cost, or min-
imum advertised price policies), (ii) price ceilings (e.g., anti–price-gouging
restrictions during emergencies, “fair pricing” policies, or category-level caps
to prevent extreme outliers), and (iii) parity constraints across channels (e.g.,
the requirement that an on-platform price not exceed the seller’s own DTC
price, or the platform’s use of automatic delisting/suppression when an item
is cheaper elsewhere). In addition, posted prices are typically restricted to a
discrete ladder : currency rounding (e.g., cents), psychological endings (e.g.,
$19.99), or platform-defined increments that vary by price range. When pro-
motions are present, the relevant “price” can also be an effective price net
of coupons, subscription discounts, or shipping credits; the platform may
restrict which combinations are allowed, creating an additional layer of fea-
sibility constraints even if the nominal list price is continuous.

For our purposes, these considerations motivate representing the retailer’s
action as a choice pt from an admissible set P ⊂ R+, interpreted broadly
to include floors, ceilings, and ladder points. This representation is delib-
erately agnostic about why a given point is admissible; what matters for
the economics is that the retailer cannot freely implement the unconstrained
optimizer. In particular, discreteness implies that first-order conditions are
at best heuristic: the economically preferred price must be mapped to the
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nearest feasible posted price, and small changes in context can induce kinks
in the policy when the nearest ladder point switches.

Stability constraints and “price change friction” as policy. A second
pervasive constraint is price stability. Platforms often limit how frequently
a seller may change the posted price, or how large a period-to-period change
may be, for reasons ranging from consumer trust (avoiding “yo-yo” pricing)
to compliance with reference-price rules (preventing artificial list prices that
enable perpetual markdown claims). Retailers themselves also impose sta-
bility to reduce operational complexity: frequent price changes interact with
ad spend, merchandising, call-center scripts, and price-matching commit-
ments. Even when no explicit cap exists, there is frequently an implicit one:
large swings can trigger customer-service incidents, social-media backlash,
or platform monitoring.

Operationally, stability is often implemented as a hard guardrail: “do not
move more than X% per day” or “do not change price more than once every
k days.” Our baseline captures the first form as a hard bound

|pt − pt−1| ≤ ∆,

intersected with P. This makes the pricing problem inherently dynamic even
absent inventories or learning: today’s action becomes tomorrow’s feasible
set. The economic implication is subtle but important. Stability constraints
create state dependence through the previous price pt−1, which can be mis-
takenly attributed to consumer reference effects if one does not model the
institutional restriction. They also create asymmetry during shocks: when
demand covariates move quickly (e.g., sudden traffic spikes), the price cannot
jump immediately to the new unconstrained target, so the retailer experi-
ences transient periods of “mispricing” that spill into fulfillment load and, in
our setting, into the return pipeline and emissions.

Operational reality of returns: delays, clustering, and capacity.
Returns are not contemporaneous with sales. In many categories, the delay
distribution is governed by a return window (e.g., 30 days from delivery),
shipment lead times, consumer usage/try-on behavior, and carrier pickup or
drop-off patterns. As a result, return arrivals are typically clustered : peak-
season sales can generate an extended reverse-logistics wave weeks later, and
that wave interacts with warehouse labor and carrier capacity in ways that
are not well approximated by a constant per-unit cost applied at shipment
time. Moreover, return rates are not purely exogenous. They vary with
product attributes, fit/size uncertainty, marketing channel, and (crucially
for pricing) with the type of customer and intended use that a given price
point attracts. In practice, teams often observe that deep discounts can
increase return propensity (impulse purchases, “bracketing” behavior), while
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higher prices can either reduce returns (more deliberation) or increase them
(higher expectations and dissatisfaction), depending on category.

These realities motivate two modeling choices. First, we treat return
propensity as context- and price-dependent, ρ(p, x) ∈ [0, 1], so that price in-
fluences not only demand but also the expected fraction of sold units that will
eventually return. Second, we represent delayed arrivals through a pipeline
state rather than as immediate shrinkage. This aligns with managerial prac-
tice: fulfillment teams monitor outstanding “return exposure” (units that
could still come back) and staff accordingly. It also aligns with the needs of
algorithmic pricing systems: a pricing policy that ignores pipeline exposure
will tend to overvalue actions that generate immediate revenue and postpone
costs.

Why a geometric delay is a useful approximation (and when it
is not). Real return delays are not literally geometric; hazard rates of-
ten change over time (e.g., consumers return shortly after delivery if at all,
with a spike near the end of the window). We nonetheless emphasize the
geometric specification because it yields a tractable sufficient statistic: a one-
dimensional mass of pending returns. Interpreting δ ∈ (0, 1] as an arrival
hazard is often reasonable as an approximation when we aggregate across
heterogeneous consumers, shipping speeds, and return channels: mixtures of
many idiosyncratic delays can produce an effectively memoryless aggregate
in coarse time buckets (e.g., weekly). The approximation is also pragmatic.
In deployed systems, the goal is often not to perfectly forecast the age profile
of returns, but to incorporate a stable measure of expected near-term return
arrivals into pricing and capacity planning.

We will be explicit about the limitation: if the hazard is strongly duration-
dependent (e.g., almost no returns until day 25, then a cliff), a scalar pipeline
can be insufficient for accurate control, and richer state representations (age
bins) become necessary. We return to this point when discussing extensions
and the conditions under which closed-form pricing rules cease to be reliable.

Carbon pricing mechanisms in commerce logistics. Carbon enters
retail decision-making through a mix of external regulation and internal gov-
ernance. On the external side, firms may face explicit carbon taxes, cap-and-
trade pass-through embedded in carrier rates, or sector-specific fees and fuel
surcharges. On the internal side, many firms adopt an internal carbon price
used for budgeting, vendor selection, and performance measurement; impor-
tantly, this internal price can be binding even when external regulation is
not, because it is tied to corporate emissions targets. In both cases, logistics
is a natural locus for carbon accounting: outbound shipments and return
shipments are measurable events that can be mapped (imperfectly but con-
sistently) to emissions factors, often differentiated by mode (ground vs. air),
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packaging, distance, and consolidation.
For the purpose of pricing control, what matters is that carbon mech-

anisms behave like either (i) an additive per-unit charge proportional to
emissions, τEt, or (ii) a quantity constraint (an emissions budget) enforced
over a horizon. The former is an explicit “tax” in the objective; the latter
is a scarcity constraint that induces a shadow price. In practice, both co-
exist: a firm may face an internal transfer price τ and a corporate cap Ē
that triggers escalation when exceeded. Our formulation accommodates this
by including direct carbon charges in per-period payoff while also allowing a
long-run average emissions constraint.

From institutional detail to model-ready constraints. The common
thread across these institutional features is that they convert pricing into a
constrained dynamic problem with delayed consequences. Platform feasibil-
ity and stability constraints restrict the action set each period and create
dependence on the previous posted price. Return delays transform what
would be a static “net revenue” adjustment into an intertemporal pipeline
that affects future costs, congestion, and (through reverse shipments) emis-
sions. Carbon pricing and carbon budgets convert shipping activity into
an explicitly priced (or capped) resource. Taken together, these constraints
motivate the state variables and feasibility sets we introduce next, and they
clarify why Lagrange multipliers are not merely mathematical artifacts: in
practice, they correspond to interpretable shadow costs arising from return-
handling capacity and emissions budgets. In the next section, we translate
the above institutional elements into primitives—D(p, x), ρ(p, x), a pipeline
state s, congestion costs G(·), emissions accounting, and the admissible set P
with stability bound ∆—and we state the retailer’s objective as discounted
profit subject to long-run constraints on returns and emissions.

3 Model primitives and objective

We now translate the institutional constraints described above into a set of
primitives that can be used directly in a dynamic control problem. The goal
is not to encode every operational detail of retail logistics, but to isolate the
economic channels that matter for pricing: (i) a demand response to posted
prices and observable covariates; (ii) delayed, price-dependent returns; (iii)
congestion and processing costs that are increasing in shipped and returned
volume; (iv) carbon accounting that attaches (possibly regulated) charges or
budgets to logistics flows; and (v) feasibility constraints on the posted price
reflecting platform admissibility and price stability. Throughout we work
in discrete time t = 0, 1, 2, . . ., interpret periods at whatever aggregation
is operationally relevant (e.g., day or week), and let β ∈ (0, 1) denote the
discount factor.
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Demand and context. At the start of each period the retailer observes
a vector of demand and operations covariates xt ∈ X . This state collects
factors such as seasonality, traffic, ad exposure, product attributes, shipping
conditions, and any other exogenous shifters of demand or fulfillment per-
formance that are observable at the time the price is chosen. Conditional on
(pt, xt), expected sales (or outbound shipments) in period t are

qt = D(pt, xt),

where D : R+ × X → R+ is assumed to be decreasing in p and sufficiently
smooth to support the comparative statics we derive later. We will often
impose concavity of p 7→ D(p, x) or, more directly, concavity of the induced
one-period profit in price, but at the primitive level we only require D to be
measurable and well-behaved (e.g., bounded on the admissible price range).
To keep attention on intertemporal return and emissions effects, we treat xt
as exogenous and evolving according to a Markov kernel xt+1 ∼ P (· | xt),
which captures persistent seasonality and business-cycle variation without
introducing strategic interactions.

Returns: propensity and delayed arrival. Each sold unit may even-
tually return, and returns arrive with a delay. We represent the expected
fraction of newly sold units that will eventually return by a return propensity
function

ρ(p, x) ∈ [0, 1],

allowing price to influence not only the level of demand but also the com-
position of customers and therefore the expected return rate. Separating ρ
from D is useful empirically (the forces that move conversion and the forces
that move returns often differ) and economically (pricing can trade off gross
margin against downstream reverse-logistics load).

To model delays parsimoniously we assume that, conditional on return-
ing, the return time is geometric with arrival hazard δ ∈ (0, 1]. Rather than
tracking an age distribution of past sales, we summarize the “return expo-
sure” by a single pipeline state st ≥ 0, interpreted as the expected mass of
past sales that are still within the return window and have not yet arrived
as returns. After choosing pt and realizing expected sales qt = D(pt, xt), the
pipeline updates according to

st+1 = (1− δ)st + ρ(pt, xt)D(pt, xt),

and expected return arrivals in period t are

yt = δst.

This formulation makes the economic timing explicit: new sales increase
future return exposure, while outstanding exposure decays as returns arrive.
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The geometric specification is chosen for tractability and transparency; the
next section shows formally why it yields a one-dimensional sufficient statistic
and discusses when richer pipeline representations become necessary.

Costs: production, fulfillment, congestion, and return processing.
Let c denote the per-unit production or wholesale cost incurred on shipped
units, and let f denote the per-unit outbound fulfillment cost (picking, pack-
ing, baseline shipping). Returns generate additional operational costs, sum-
marized by a per-unit return processing cost h applied to return arrivals yt.
These terms reflect the accounting reality that many expenses scale approx-
imately linearly with volume, at least locally.

To capture nonlinear capacity pressure we add a congestion cost G(q),
where G : R+ → R+ is convex and increasing. This term can represent
warehouse overtime, carrier surcharges, or service-level penalties that es-
calate when outbound volume is high. Convexity is economically natural
(marginal congestion costs rise with load) and technically convenient (it sup-
ports concavity of the one-period objective in price under standard demand
shapes). While we index congestion by outbound shipments qt for simplicity,
the same approach can be extended to congestion in reverse logistics or to
coupled congestion across products; doing so will matter for the numerical
extensions we discuss later.

Carbon accounting and carbon charges. Outbound and return ship-
ments generate emissions. We translate these physical flows into a period-t
emissions measure

Et = κSqt + κRyt,

where κS and κR are emissions factors (e.g., kg CO2e per outbound unit and
per returned unit). These factors may embed average distances, packaging,
and mode choice; the point of this reduced form is to make the carbon
implication of demand and returns operationally interpretable and directly
connected to pricing decisions.

We allow carbon to enter the objective through a per-unit emissions price
τ ≥ 0, so that carbon charges in period t equal τEt. This can be interpreted
as an external tax, a carrier pass-through, or an internal transfer price used
for planning. Importantly, we will also consider a separate long-run emissions
cap; in practice a firm may face both a per-unit charge and a budget that
becomes binding over longer horizons.

Feasibility: platform admissibility and stability. The retailer does
not choose an arbitrary real-valued price. Let P ⊂ R+ denote the admis-
sible set induced by platform rules (floors, ceilings, parity constraints, and
ladders). In addition, posted prices are subject to a hard stability constraint:

|pt − pt−1| ≤ ∆,
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where ∆ ≥ 0 is a maximum step size. We treat the previous period price
pt−1 as a state variable p− because it determines the current feasible set.
Thus the set of feasible actions in state (xt, st, pt−1) is

pt ∈ P ∩ [pt−1 −∆, pt−1 +∆].

This intersection captures both discrete admissibility (through P) and dy-
namic inertia (through the stability interval). The latter is what makes
pricing dynamic even absent inventories: today’s action restricts tomorrow’s
feasible set, which in turn shapes the path of sales, returns, and emissions.

One-period profit. We model refunds in a reduced form by treating rev-
enue as accruing only on net non-returned units in the period of return
arrival. Given the expected return arrivals yt = δst, period-t expected net
profit from choosing pt in state (xt, st) is

πt(pt;xt, st) = pt (qt − yt) − c qt − f qt − h yt − τEt − G(qt), (1)
qt = D(pt, xt), yt = δst, Et = κSqt + κRyt.

This expression makes the intertemporal channel explicit. Current price
affects contemporaneous shipments qt, which affects contemporaneous con-
gestion and outbound emissions, and it affects future outcomes by pushing
new mass into the return pipeline st+1. Meanwhile, the inherited pipeline
st creates a current “headwind” through return arrivals yt, which reduce net
revenue and generate processing and carbon costs. Alternative accounting
choices—for example, booking refunds at sale rather than at return arrival—
can be incorporated by re-indexing the timing of cash flows without changing
the underlying state dynamics.

Objectives: profit maximization with long-run constraints. Let µ
denote a stationary Markov pricing policy mapping the observable state to
a feasible price, pt = µ(xt, st, pt−1). Our baseline objective is to maximize
discounted expected profit subject to long-run average constraints on returns
and emissions:

max
µ

Eµ

∑
t≥0

βt πt

 (2)

s.t. lim sup
T→∞

1

T
Eµ

[
T−1∑
t=0

yt

]
≤ R̄, lim sup

T→∞

1

T
Eµ

[
T−1∑
t=0

Et

]
≤ Ē, (3)

pt ∈ P ∩ [pt−1 −∆, pt−1 +∆] ∀t.

We interpret R̄ as a return-handling capacity (or a service-level guardrail
on reverse logistics) and Ē as an emissions budget (external or internal).
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Equivalently, one may view the problem as a multi-objective trade-off among
(expected) profit, returns, and emissions; the constrained formulation em-
phasizes that in many organizations the latter two are set as targets or
budgets rather than as objectives chosen endogenously by a profit center.
In the sections that follow we will rely on a Lagrangian relaxation of (3)
to describe the Pareto frontier with a small number of shadow prices, but
the primitives above are the foundation: a demand system, a delayed-return
pipeline, convex operating costs, carbon accounting, and platform/stability
feasibility.

4 Markov reduction for delayed returns

Delayed returns create an immediate modeling tension. On the one hand,
the economics are inherently intertemporal: today’s price influences not only
today’s shipments but also the timing and volume of future return arrivals.
On the other hand, standard dynamic programming techniques rely on a
low-dimensional state that is Markov, i.e., summarizes all payoff-relevant
information from the past. If return arrivals depended on the entire history
of sales with rich duration dependence, then the retailer would, in principle,
need to carry forward an ever-growing record of past cohorts in order to
forecast future reverse-logistics load. The purpose of our geometric-delay
assumption is to show that this complexity is not inevitable: with constant
return hazard, delayed returns admit a one-dimensional sufficient statistic.

From cohort dynamics to a pipeline state. To see the issue transpar-
ently, imagine indexing sales cohorts by their sale date. Let

rt ≡ ρ(pt, xt)D(pt, xt)

denote the expected number of units sold at time t that will eventually
return (not necessarily immediately). Under geometric delays with hazard
δ, each unit in this “eventual-return” cohort returns in the next period with
probability δ, and otherwise remains pending with probability 1− δ. Hence,
conditional on rt, the expected return arrivals in period t + k generated by
cohort t are

E[ arrivals at t+ k from cohort t | rt ] = δ(1− δ)k−1 rt, k = 1, 2, . . .

This expression highlights the source of tractability: the entire path of ex-
pected future arrivals from a cohort is a geometric tail with a single param-
eter δ.

Define the (expected) return pipeline at time t as the discounted sum of
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past eventual-return cohorts that have not yet arrived:

st ≡
∞∑
j=0

(1− δ)j rt−1−j =
∞∑
j=0

(1− δ)j ρ(pt−1−j , xt−1−j)D(pt−1−j , xt−1−j).

(4)
Interpreted literally, st is the expected mass of units sold in the past that
are still “at risk” of returning as of period t: recent cohorts enter the pipeline
with weight 1, older cohorts persist with survival weight (1− δ)j .

Proposition 1 (one-dimensional sufficient statistic). Under the geometric-
delay assumption, the scalar st is sufficient to forecast expected return ar-
rivals and to update future return exposure. In particular,

yt = δst, (5)

and
st+1 = (1− δ)st + ρ(pt, xt)D(pt, xt). (6)

Proof sketch. Start from (4). Return arrivals at time t are the haz-
ard δ applied to the mass currently pending, which yields (5). For the
recursion, observe that between t and t + 1, the pipeline shrinks by the
survival factor (1 − δ) and then receives the new eventual-return cohort
rt = ρ(pt, xt)D(pt, xt). Formally,

st+1 =
∞∑
j=0

(1− δ)jrt−j = rt + (1− δ)
∞∑
j=0

(1− δ)jrt−1−j = rt + (1− δ)st,

which is exactly (6). □

Markov property and economic interpretation. The recursion (6) is
the key to the Markov reduction. It implies that, for purposes of expected
profits and constraints, the retailer need not track the entire sales history:
all payoff-relevant implications of past pricing for future return arrivals are
summarized by the single number st. Combined with the Markov evolution
of covariates xt+1 ∼ P (· | xt) and the stability constraint that makes pt−1

payoff-relevant via feasibility, the augmented state

(xt, st, pt−1)

is Markov. Economically, this state has a clean operational meaning: xt
captures contemporaneous demand and fulfillment conditions, pt−1 captures
platform-induced inertia, and st captures the inherited “return headwind”
that will translate into near-term refund/processing/emissions burden through
yt = δst.
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The memorylessness embedded in the geometric hazard is doing all of
the work. It says that, among units still pending return, the probability of
arriving next period is independent of their age. This can be viewed as a
reduced-form approximation to settings where returns are processed with a
roughly constant weekly rate, or where shipment/processing delays are the
dominant source of variation rather than consumer deadline behavior. It is
also the natural discrete-time analog of exponential waiting times.

When one dimension is not enough. The one-dimensional pipeline is
not a universal truth; it is a disciplined consequence of the constant-hazard
assumption. In many retail categories, return behavior exhibits strong du-
ration dependence: return rates may spike near the end of a posted return
window, or may be front-loaded due to rapid try-on and immediate dissatis-
faction. More generally, suppose the conditional probability that a pending
unit returns next period depends on its age k (periods since sale), with haz-
ards δk that are not constant. Then two histories that generate the same
scalar

∑
j wjrt−1−j can nevertheless imply different future arrival paths be-

cause the age composition differs. In such cases, st is no longer sufficient:
the retailer must track an age distribution of pending returns.

A convenient way to represent this is to maintain an age-binned vector
state. For instance, if returns can occur only within a finite window of length
L, one can define s(k)t as the expected mass of eventual-return units that are
currently age k ∈ {1, . . . , L} and have not yet arrived. The pipeline update
becomes a deterministic “shift” plus inflow from new sales, and expected
arrivals are a weighted sum of the bins:

yt =
L∑

k=1

δk s
(k)
t , s

(1)
t+1 = rt, s

(k+1)
t+1 = (1− δk)s

(k)
t (k = 1, . . . , L−1).

The state dimension is then L rather than 1. This is still Markov, but it is
computationally more demanding, and it blurs the transparent interpretation
of a single return-exposure index.

A related failure of the scalar reduction occurs if the return propensity
itself depends on cohort attributes that are not adequately summarized by
(xt, pt) at the time of sale. For example, if promotions attract systemati-
cally different consumers whose return timing differs (not just their eventual-
return probability), then the pipeline needs to distinguish cohorts by those
latent types. In practice one may address this by enriching the observed
context xt, but when heterogeneity is unobserved the pipeline state must
absorb it, again raising dimensionality.

Implications for analysis and the role of numerics. Once the pipeline
becomes high-dimensional, closed-form pricing rules are typically unavail-
able. The fundamental control problem remains a (constrained) Markov
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decision process, but solving it exactly requires dynamic programming over
a larger state space, and the stability constraint |pt − pt−1| ≤ ∆ further
couples decisions over time.

This is the point where numerical methods become essential. Two prag-
matic approaches are especially useful in the present setting. First, one can
approximate non-geometric delays by a small mixture of geometric compo-
nents (a discrete-time analog of phase-type approximations). Concretely, if
the return-time distribution can be well-approximated by a mixture

∑M
m=1 ωmGeom(δm),

then the pipeline can be represented by an M -dimensional vector st =

(s
(1)
t , . . . , s

(M)
t ) with the same linear recursion as (6) applied component-

wise. This retains much of the interpretability of the scalar pipeline while
capturing richer duration patterns. Second, one can directly solve the re-
sulting higher-dimensional problem using approximate dynamic program-
ming or simulation-based methods (e.g., value-function approximation over
(xt, s

(1)
t , . . . , s

(L)
t , pt−1)), which is often feasible in modern retail data envi-

ronments where transitions can be simulated and policies can be evaluated
offline.

Our broader message is therefore twofold. The geometric model is not
merely a mathematical convenience: it isolates a case where delayed returns
admit a parsimonious state, allowing us to transparently connect pricing
incentives to downstream reverse-logistics and carbon costs. At the same
time, when the institutional reality requires richer timing (finite windows,
deadline effects, cohort heterogeneity), the same economic structure carries
through, but the state must expand and numerical tools become the natural
complement to theory. The next step is to express the retailer’s problem as a
constrained MDP and to show how the trade-off among profit, returns, and
emissions can still be organized by a low-dimensional set of shadow prices
even when the underlying dynamics are complex.

5 CMDP formulation and a low-dimensional Pareto
frontier

Having established that delayed returns admit a Markov representation in
the augmented state zt ≡ (xt, st, pt−1), we can now state the retailer’s prob-
lem in the language of a constrained Markov decision process (CMDP). This
step is conceptually useful for two reasons. First, it cleanly separates what
is controllable (the pricing rule) from what is regulated or capacity-limited
(average returns and emissions). Second, it reveals that the trade-off among
profit, reverse-logistics load, and carbon impact can be organized by a small
number of shadow prices—a point that will directly motivate implementable
pricing heuristics in the linear specification that follows.
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Admissible policies and feasibility. At each state z = (x, s, p−), the
platform and stability constraints restrict feasible prices to the correspon-
dence

A(z) ≡ P ∩ [ p− −∆, p− +∆ ].

A (stationary) Markov pricing policy is a measurable mapping

µ : (x, s, p−) 7→ ∆(A(x, s, p−)),

where ∆(·) denotes the set of probability distributions over actions. Allowing
randomization is technically convenient in the CMDP and, economically,
can be interpreted as the retailer mixing among nearby ladder prices when
the platform discretization is coarse. The induced controlled Markov chain
evolves as

xt+1 ∼ P (· | xt), st+1 = (1−δ)st+ρ(pt, xt)D(pt, xt), pt ∼ µ(· | xt, st, pt−1).

Let π(p;x, s) denote the one-period expected net profit (including con-
gestion and carbon charges) evaluated at q = D(p, x) and y = δs. For any
stationary policy µ and initial state z0, define the discounted profit objective

J(µ; z0) ≡ Eµ

[∑
t≥0

βt π(pt;xt, st)
∣∣∣ z0],

and the long-run average resource consumptions

R(µ; z0) ≡ lim sup
T→∞

1

T
Eµ

[ T−1∑
t=0

yt

∣∣∣ z0], E(µ; z0) ≡ lim sup
T→∞

1

T
Eµ

[ T−1∑
t=0

Et

∣∣∣ z0].
We call µ feasible if it respects the per-period action constraints and satisfies
R(µ; z0) ≤ R̄ and E(µ; z0) ≤ Ē. In many applications one works under
standard ergodicity conditions ensuring that R(µ; z0) and E(µ; z0) do not
depend on z0 (or depend only through transient effects); we do not need to
insist on this here, but it clarifies interpretation when the system reaches a
steady operating regime.

The achievable performance set is convex. Consider the set of attain-
able performance vectors

V ≡
{(
J(µ; z0), R(µ; z0), E(µ; z0)

)
: µ stationary Markov

}
⊂ R× R2

+.

A key structural fact is that V is convex once we allow randomized poli-
cies. The economic content is simple: if we can implement two stationary
operating modes, then we can also implement their probabilistic mixture.

Formally, fix two stationary Markov policies µ1, µ2 and let θ ∈ [0, 1].
Construct a mixed policy µθ that draws I ∼ Bernoulli(θ) at time 0 and then
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follows µ1 forever if I = 1 and µ2 forever if I = 0. Because expectations are
linear in this initial randomization,

J(µθ; z0) = θJ(µ1; z0) + (1− θ)J(µ2; z0),

and likewise R(µθ; z0) and E(µθ; z0) are the corresponding convex combina-
tions. Hence V is convex. Under mild boundedness/compactness conditions
(e.g., bounded prices, bounded costs, and continuity of primitives), one also
obtains closedness/compactness of V , which ensures that efficient frontier
problems admit solutions.

This convexity is more than a technicality: it is precisely what justi-
fies interpreting the profit–returns–emissions trade-off as a frontier that can
be traced out by varying shadow prices. Without convexity, scalarization
methods would generally miss efficient points.

Pareto efficiency and scalarization. We say that a vector (J,R,E) ∈ V
is Pareto efficient (with J to be maximized and R,E to be minimized) if
there is no other attainable triple (J ′, R′, E′) ∈ V with J ′ ≥ J , R′ ≤ R,
E′ ≤ E and at least one inequality strict. The constrained optimization
problem,

max
µ

J(µ; z0) s.t. R(µ; z0) ≤ R̄, E(µ; z0) ≤ Ē,

selects a particular efficient point corresponding to the caps (R̄, Ē). More
broadly, the entire efficient set can be recovered via weighted-sum scalariza-
tion. Under Slater-type feasibility (existence of a strictly feasible policy with
slack in both constraints), standard CMDP duality implies that for any effi-
cient point there exists a pair of nonnegative multipliers λ = (λR, λE) ∈ R2

+

that support it.
Concretely, consider the Lagrangian-relaxed objective

L(µ, λ; z0) ≡ J(µ; z0) − λR
(
R(µ; z0)− R̄

)
− λE

(
E(µ; z0)− Ē

)
. (7)

For any fixed λ ≥ 0, maximizing L(µ, λ; z0) over policies µ is an uncon-
strained MDP with a modified per-period reward that subtracts penalties
for return arrivals and emissions (and adds the constants λRR̄+λEĒ, which
do not affect the optimizing policy). In particular, if we write the per-period
λ-penalized payoff as

π̃λ(p;x, s) ≡ π(p;x, s) − λR y − λE E, y = δs, E = κSD(p, x)+κRδs,

then the corresponding Bellman equation takes the standard form

Vλ(x, s, p−) = max
p∈A(x,s,p−)

{
π̃λ(p;x, s) + β E

[
Vλ(x

′, s′, p) | x, s, p
]}
,

with s′ = (1 − δ)s + ρ(p, x)D(p, x) and x′ ∼ P (· | x). The crucial dimen-
sionality observation is that λ is only two-dimensional: regardless of the
complexity of the state dynamics, the frontier is indexed by at most two
scalars because there are only two long-run constraints.
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KKT conditions and the multiplier interpretation. When strong
duality holds (as it does under the convexity/Slater conditions described
above), there exists an optimal constrained policy µ⋆ and multipliers λ⋆ ≥ 0
such that µ⋆ solves the unconstrained λ⋆-penalized MDP, and complemen-
tary slackness holds:

λ⋆R
(
R(µ⋆; z0)− R̄

)
= 0, λ⋆E

(
E(µ⋆; z0)− Ē

)
= 0.

Thus, if the return-volume cap is slack, then λ⋆R = 0 and the retailer behaves
as if returns were unconstrained; if the cap binds, then λ⋆R > 0 and the
optimal policy internalizes an additional per-unit cost of returns. The same
logic applies to emissions. This is the rigorous sense in which multipliers act
like shadow prices of scarce reverse-logistics and emissions capacity, and it is
what allows us to translate regulatory or operational constraints into pricing
incentives.

Practical implication: tracing the frontier by tuning two num-
bers. From an implementation perspective, the multiplier parameteriza-
tion is attractive: rather than solving a family of constrained dynamic pro-
grams directly, we can solve a sequence of unconstrained MDPs indexed by
(λR, λE) and then adjust multipliers until the induced policy meets the de-
sired average caps. In practice, this can be done with simple outer-loop
schemes (e.g., subgradient updates on λ) wrapped around an inner-loop dy-
namic program or simulation-based policy evaluation. The approach is not
without limitations—nonconvexities, poor state aggregation, or binding in-
teger ladder constraints can complicate convergence and may create local
irregularities—but it provides a disciplined organizing device for both com-
putation and economic interpretation.

In the next section we specialize to a linear demand/affine return-propensity
environment. There, the Lagrangian formulation not only certifies that two
multipliers suffice to span the efficient set, but also yields tractable projected
pricing rules that make the shadow-cost logic operational.

6 6. Closed-form/tractable pricing rules in a lin-
ear model: derive the projected affine optimal
pricing rule under linear demand and affine re-
turn propensity; interpret multipliers as shadow
costs of returns and emissions; provide compara-
tive statics.

We now specialize the primitives to a linear-demand, affine-returns environ-
ment in which the Bellman maximization admits a transparent first-order
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condition and, after accounting for platform and stability restrictions, an
implementable projected affine price rule. The point of this exercise is not
that all realistic demand and return mechanisms are linear, but that linearity
isolates the economic forces in a way that can be used as (i) a baseline policy,
(ii) a local approximation around an operating point, or (iii) an interpretable
parametric policy class in richer numerical solutions.

Linear specification and the λ-penalized one-period objective. Fix
a context x and write

D(p, x) = a(x)− bp, b > 0,

and
ρ(p, x) = ρ0(x) + ρ1p,

with the understanding that ρ(·, x) is clipped to [0, 1] in implementation (we
work on the interior region where the clipping does not bind, so derivatives
are well defined). Given pipeline state s, return arrivals are y = δs, and
emissions are E = κS(a − bp) + κRδs. For fixed multipliers λ = (λR, λE),
the per-period term entering the λ-relaxed Bellman operator is

π̃λ(p;x, s) = p
(
D(p, x)− δs

)
− (c+ f)D(p, x)− h δs− (τ + λE)

(
κSD(p, x) + κRδs

)
− λR δs−G(D(p, x)),

up to additive constants λRR̄+λEĒ that do not affect choice. Two features
are worth emphasizing. First, the emissions multiplier λE simply adds to the
prevailing carbon price τ , so outbound shipments behave as if they faced the
augmented carbon price τ + λE . Second, because our reduced-form profit
writes net revenue as p(q − y), a larger outstanding pipeline s increases
the contemporaneous refund exposure term p δs, creating a direct channel
through which the state s shifts the preferred price even before we account
for how p influences future pipeline accumulation.

A closed-form benchmark (ignoring continuation and treating G as
locally linear). To obtain a simple baseline, suppose we approximate the
continuation value as locally flat in p and s and either ignore congestion or
treat G′(q) as approximately constant around the relevant volume range.1

Let q = a− bp. Differentiating π̃λ with respect to p yields

∂π̃λ
∂p

= (q − δs) + p
dq

dp︸ ︷︷ ︸
net revenue margin

+
(
c+ f + (τ + λE)κS

)(
− dq

dp

)
︸ ︷︷ ︸

effective marginal cost

+ G′(q)
(
− dq

dp

)
︸ ︷︷ ︸

congestion pass-through

= (a−δs)−2bp+bc̃S+bG′(q),

1This is a standard “local rule” interpretation: when the value function varies slowly
relative to current profits, or when we use the rule as a one-step lookahead heuristic, the
dominant comparative statics are already visible.
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where c̃S ≡ c+f+(τ+λE)κS is the effective per-unit outbound marginal cost
including carbon charges and the emissions shadow price. Dropping theG′(q)
term (or absorbing a constant approximation into c̃S), the unconstrained
maximizer solves

p̂λ(x, s) =
a(x)− δs

2b
+
c̃S
2
.

This expression is already informative: higher demand intercept a(x) in-
creases the price, greater price sensitivity b compresses markups, a larger
return pipeline s pushes the price down through refund exposure, and a
higher effective carbon cost (τ + λE)κS passes through at rate κS/2 in this
stylized benchmark.

Incorporating congestion and the dynamic pipeline channel. The
previous rule abstracts from the fact that today’s price also affects tomor-
row’s pipeline via

s′ = (1− δ)s+ ρ(p, x)D(p, x).

To see how λR and λE enter beyond the outbound-shipment channel, it is
enough to recognize that (i) an incremental increase in s′ raises expected fu-
ture return arrivals, return-processing costs, and return-shipping emissions,
and (ii) these future burdens are exactly the objects priced by λR and λE . A
tractable approximation is to posit that, in the relevant region, the λ-value
function is approximately affine in the pipeline state,

Vλ(x, s, p−) ≈ V̄λ(x, p−)− ηλ(x, p−) s, ηλ(x, p−) ≥ 0,

so that ηλ is the (state-dependent) shadow value of reducing the pipeline by
one unit. Then the continuation term contributes βVs ∂s′

∂p = −βηλ ∂s′

∂p to the
first-order condition. Under the affine ρ and linear demand,

∂s′

∂p
=

∂

∂p

[
(ρ0(x) + ρ1p)(a(x)− bp)

]
= ρ1a(x)− bρ0(x)− 2bρ1p.

If we additionally take G(q) = g
2q

2 (so G′(q) = gq), the first-order condition
remains linear in p, and we obtain the unconstrained affine rule

p̂λ(x, s) =
a(x)− δs+ bc̃S + bga(x)− βηλ ρ1a(x) + βηλ bρ0(x)

2b+ b2g − 2βηλ bρ1
.

The additional terms have a clean interpretation: when ηλ is large (re-
turns/emissions capacity is scarce in present value), the retailer values lower-
ing ρ(p, x)D(p, x), which is achieved by increasing p; hence λR and λE raise
prices through their effect on ηλ even though they do not directly enter the
myopic margin on new sales.
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Projection onto platform ladders and stability bands. The eco-
nomically preferred price p̂λ(x, s) is only a target: the platform and sta-
bility constraints restrict feasible actions at state z = (x, s, p−) to A(z) =
P ∩ [p− −∆, p− + ∆]. The implementable stationary rule is therefore the
projection

p⋆λ(x, s, p−) = ΠA(x,s,p−)

(
p̂λ(x, s)

)
,

where Π denotes the nearest feasible point (for a continuous interval this is
clipping; for a discrete ladder it is “rounding” to the nearest admissible rung,
with ties broken consistently). This formula makes the role of ∆ operational:
when ∆ is small, the projection binds frequently and the policy behaves like
a smoothed version of the unconstrained target, adjusting only gradually to
shocks in a(x), in the pipeline s, or in shadow costs.

Shadow-cost interpretation of λR and λE. In the linear rule, λE has
an immediate outbound channel through c̃S = c + f + (τ + λE)κS : rais-
ing λE increases the effective marginal cost of shipments and increases the
target price. The return multiplier λR operates primarily through the con-
tinuation term: by raising the present value cost of adding to the pipeline
via ρ(p, x)D(p, x), it increases ηλ and thereby steepens the incentive to
price away from high-return volume. Symmetrically, the emissions multi-
plier also loads onto the pipeline channel because additional future returns
carry return-shipping emissions κR and thus become more expensive when
λE is high. In this sense, (λR, λE) are precisely the numbers that trans-
late long-run caps into per-unit, forward-looking “capacity prices” on reverse
logistics and carbon.

Comparative statics. The projected-affine structure yields immediate di-
rectional predictions (holding fixed the projection region so that derivatives
are taken with respect to the unconstrained target). In the benchmark rule
p̂λ = a−δs

2b + c̃S
2 , we have

∂p̂λ
∂a

=
1

2b
> 0,

∂p̂λ
∂s

= − δ

2b
< 0,

∂p̂λ
∂τ

=
κS
2
> 0,

∂p̂λ
∂λE

=
κS
2
> 0,

and ∂p̂λ/∂b < 0 in the sense that greater elasticity compresses the intercept
and cost pass-through. In the dynamic expression, the same signs persist,
with two refinements: (i) larger ρ1 (returns more sensitive to price) increases
the marginal benefit of price as a return-management instrument, amplify-
ing the impact of ηλ and thus of (λR, λE); and (ii) larger δ strengthens the
immediate refund channel (more returns arrive now), making s more influ-
ential in current pricing. Finally, the stability bound ∆ does not change the
target p̂λ but increases the frequency of clipping/rounding; in periods with
large shocks to a(x) or large movements in ηλ, tighter ∆ mechanically slows
adjustment and can force temporary violations of the unconstrained frontier

22



direction (e.g., price remaining “too low” when λE rises), which is exactly
why the projection representation is useful for auditing and for anticipating
when constraints will bind.

Learning primitives from operational logs. To take the projected-
affine logic to data, we need estimates of the primitives that govern (i) con-
temporaneous demand, D(p, x), (ii) the return propensity for newly sold
units, ρ(p, x), (iii) the return-delay parameter δ, and (iv) the emissions fac-
tors (κS , κR) (and, if modeled, the congestion function G). The practical
advantage of our Markov reduction is that delayed returns can be learned
without maintaining a full age distribution: for any candidate (ρ, δ), the
pipeline state can be updated online via

st+1 = (1− δ)st + ρ(pt, xt)D(pt, xt),

so estimation can be organized around predicting two observables from logs:
sales qt and realized return arrivals (or return initiations) yt.

For demand, we recommend starting with a model class that is flexible
in x but disciplined in p. In many retail settings a generalized linear model
(e.g., log-link Poisson or negative binomial for units) with a price term and
rich controls captures most variation:

E[qt | pt, xt] = D(pt, xt) = exp{ϕ(xt)− ψ(xt) pt},

or, if one prefers to adhere to the linear benchmark used for intuition,
D(p, x) = a(x) − bp with a(x) estimated by regression or by a supervised
learner mapping x 7→ a(x). The central econometric caveat is price en-
dogeneity: prices are chosen in response to anticipated demand shocks, so
naive regression can bias price sensitivity. In practice, we can mitigate this
in at least three complementary ways: (i) exploit randomized price exper-
iments (even small within-band perturbations are useful under ∆); (ii) use
instrumental variables based on cost, inventory, or platform-driven shocks
that shift pt but are plausibly independent of latent demand; and (iii) fit a
demand model jointly with the pricing policy in a policy-evaluation frame-
work (e.g., doubly robust / orthogonalized estimators) to reduce sensitivity
to policy-induced selection.

For returns, we separate propensity from timing. Given sales qt, we model
the expected number of units from period t that will eventually return as
ρ(pt, xt) qt, with ρ estimated from order-level labels (returned vs. not re-
turned) using logistic regression or a calibrated classifier:

Pr(return | p, x) = ρ(p, x) = σ
(
θ⊤φ(p, x)

)
,

where φ(p, x) includes price and the return-relevant covariates (size/fit sig-
nals, category, customer segment, shipping method). When ρ is allowed to
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depend on p, we again face endogeneity: low prices may attract marginal
customers with different return behavior. The same experimental/IV logic
applies, and, operationally, it is often sufficient to instrument only the price
component while controlling flexibly for x.

For timing, we estimate the geometric hazard δ from observed return
delays (order date to return arrival). If T is the discrete delay in periods,
the geometric model implies Pr(T = k) = (1 − δ)k−1δ; the MLE is δ̂ =
1/T̄ when truncation is negligible. With censoring (units still in-window),
we can use a standard survival likelihood. Although geometric timing is
stylized, it is often a good operational approximation over weekly horizons;
importantly, deviations from geometricity can be detected by goodness-of-fit
diagnostics on delay histograms, at which point Proposition 5 tells us what
state augmentation is required.

Finally, emissions factors κS and κR can be estimated from shipment
telemetry (carrier, zone, distance, weight) mapped through a transportation
emissions model, or taken from life-cycle accounting tables. In implemen-
tation we typically treat them as product–lane averages (SKU × origin ×
destination region), and we carry uncertainty bands because auditing a car-
bon cap requires a conservative accounting stance. The same infrastructure
can produce a realized emissions series Et = κSqt+κRyt consistent with our
per-period objective.

From estimates to a deployable policy: an outer–inner loop design.
With estimated primitives in hand, we implement pricing via a two-level
procedure that mirrors the theory: an inner loop solves the Lagrangian-
relaxed MDP for fixed multipliers λ = (λR, λE), and an outer loop adjusts λ
until the long-run average constraints on returns and emissions are met (up
to a safety buffer). This design is appealing because it cleanly separates (i)
solving a standard discounted-control problem from (ii) enforcing long-run
resource constraints, and it preserves interpretability: λR and λE are the
learned shadow prices of reverse-logistics capacity and carbon capacity.

Concretely, for any candidate λ, the inner-loop problem is an uncon-
strained MDP with state z = (x, s, p−), feasible action set A(z) = P ∩ [p−−
∆, p− +∆], reward π̃λ(p;x, s), and transition

x′ ∼ P (· | x), s′ = (1− δ)s+ ρ(p, x)D(p, x), p′− ≡ p.

We can solve this inner loop by value iteration or policy iteration after dis-
cretizing s and (if needed) coarsening x to a finite state representation. In
settings where the linear specification is a reasonable approximation, we can
instead fit a parametric target rule p̂λ(x, s) (affine in learned features of x and
in s) and deploy the projected policy p = ΠA(z)(p̂λ(x, s)); this yields a fast,
stable controller that naturally respects platform and stability constraints.

The outer loop then updates λ using a primal–dual or stochastic ap-
proximation step based on measured (or simulated) average constraint us-
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age. Let the per-period resource consumptions be gR(z, p) = y = δs and
gE(z, p) = E = κSD(p, x)+κRδs. Given a policy µλ from the inner loop, we
estimate its long-run averages ḡR(λ) and ḡE(λ) (via stationary simulation
under the estimated dynamics, or from online rollouts), and update

λk+1
R =

[
λkR + αk

(
ḡR(λ

k)− R̄
)]

+
, λk+1

E =
[
λkE + αk

(
ḡE(λ

k)− Ē
)]

+
,

with step sizes αk ↓ 0. Intuitively, if a candidate policy exceeds the return
cap, we raise λR so that the next inner-loop solution prices returns more
aggressively; similarly for emissions and λE . In many applications, this outer
loop converges quickly because there are only two multipliers and because
the mapping λ 7→ (ḡR(λ), ḡE(λ)) is typically monotone in the relevant range.

Operational details: state tracking, exploration, and robustness.
A practical deployment requires real-time tracking of st. Under our recursion
this is straightforward: we maintain st deterministically from past prices and
predicted sales, optionally correcting it with realized return arrivals. One
useful filter is

st+1 ← (1− δ)st + ρ(pt, xt) q̂t with q̂t = D(pt, xt),

and, when realized yt is observed, to apply a small correction so that δst
aligns with yt on average. This keeps the pipeline state consistent even
when demand is misspecified or when operational events (e.g., carrier delays)
perturb return timing.

Learning also benefits from controlled exploration. Because the platform
and stability constraints restrict price movement, we can inject exploration
by randomizing within the admissible band (e.g., ± one rung on P when
feasible) with small probability, while still respecting |pt − pt−1| ≤ ∆. Such
exploration improves identification of both D and ρ and can be scheduled to
low-risk periods or low-volume segments.

Nonstationarity is the norm in return behavior (policy changes, sea-
sonality, product mix). We therefore recommend periodic re-estimation of
(D, ρ, δ) and, crucially, re-solving the outer loop when monitoring detects
drift. Because the multipliers are interpretable, practitioners can often diag-
nose the source of drift: a sustained increase in the learned λR signals that
the system is spending more return capacity per unit of revenue, while a
spike in λE indicates tighter effective carbon conditions (higher τ , higher κ,
or higher volume pressure through D).

Constraint auditing and “safe” operation. Long-run average constraints
are attractive theoretically but must be audited in finite time. We propose
an auditing layer that (i) reports rolling averages of returns and emissions,
(ii) constructs uncertainty intervals accounting for measurement error in Et
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and stochastic variability in yt, and (iii) enforces a conservative buffer. Con-
cretely, we track

R̂T =
1

T

T−1∑
t=0

yt, ÊT =
1

T

T−1∑
t=0

Et,

and compare them to R̄−ϵR and Ē−ϵE , where ϵ reflects desired risk tolerance
and statistical uncertainty. If ÊT approaches Ē (or the upper confidence
bound crosses Ē), we temporarily increase λE and re-solve the inner loop
(or, in the affine approximation, shift the target upward before projection).
This “guardrail” is particularly important because the stability constraint
can slow adjustment: when ∆ is tight, we may need earlier intervention to
avoid overshooting a cap during a demand surge.

Two additional checks are operationally valuable. First, we decompose
emissions into outbound and returns components, ES

t = κSqt and ER
t =

κRyt, to confirm whether exceedances are driven by volume (demand shocks)
or by reverse logistics (changes in ρ or δ). Second, we log the frequency
and magnitude of projection events (how often p̂λ is clipped/rounded) as
an indicator of whether platform constraints are binding enough to impede
constraint satisfaction; persistent binding suggests either (i) revisiting ladder
design, (ii) using additional levers (e.g., shipping/returns policies), or (iii)
tightening the buffer and accepting a lower-profit region of the frontier.

Taken together, estimation from logs, the outer–inner loop controller, and
an explicit auditing layer translate the theoretical CMDP structure into a
deployable pricing system that is both interpretable (via λ as shadow prices)
and verifiably compliant with operational and environmental caps.

Numerical illustration (calibration and semi-synthetic evaluation).
We close the empirical loop by calibrating a stylized environment to op-
erational magnitudes and then simulating long-run performance under (i)
our multiplier-based constrained controller, (ii) a profit-only reinforcement-
learning (RL) baseline that ignores the long-run caps, and (iii) a static
operations-research (OR) baseline that optimizes a one-period objective with
no intertemporal state. The goal of this exercise is not to claim realism of
any single calibration, but to stress-test the mechanisms emphasized by the
theory: (a) delayed returns make the pricing problem genuinely dynamic
through the pipeline state st; (b) emissions and return constraints generate
shadow prices that act like state-dependent marginal costs; and (c) platform
stability constraints force gradual adjustment, so robustness matters when
primitives drift.

Environment and calibration targets. We simulate weekly periods
with state zt = (xt, st, pt−1). The context xt is a compact vector captur-
ing seasonality and demand shifters; operationally, we treat xt as a discrete
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Markov chain with K regimes estimated from data via clustering on co-
variates (e.g., traffic and merchandising intensity) and a transition matrix
P̂ fit from regime sequences. Conditional on x, demand follows a concave,
downward-sloping curve; for transparency we use the linear benchmark

D(p, x) = a(x)− bp,

where a(x) is chosen to match regime-specific mean weekly unit volume at
typical prices, and b is set to match an empirically plausible own-price elastic-
ity around the historical price. Returns are generated by the geometric-delay
pipeline described earlier: for each sold unit, eventual return probability is
ρ(p, x), and conditional on returning, the arrival delay is geometric with
hazard δ. We calibrate δ to match the empirical mean delay (e.g., δ = 1/3
for an average three-week delay), and we fit ρ(p, x) from order-level labels
using a logistic specification with a price term, then clip to [0, 1] in sim-
ulation. Per-unit costs (c, f, h) are chosen so that (i) gross margin before
returns resembles the category’s observed margin and (ii) return processing
is economically meaningful (i.e., h is nontrivial relative to margin). Emis-
sions factors (κS , κR) are set so that outbound emissions dominate per-unit
carbon impact but returns contribute materially through reverse logistics.
Finally, we impose a price ladder P (e.g., $1 rungs) and a stability bound ∆
(e.g., $2 per week), reflecting common platform guardrails.

Policies compared. We compare three controllers, all operating under
the same admissible action set A(z) = P ∩ [pt−1 −∆, pt−1 +∆].

1. Constrained dynamic pricing (ours). We implement the outer–inner
loop described above. For a given λ = (λR, λE), the inner loop solves
the discounted MDP with reward π̃λ = π − λR(y − R̄) − λE(E − Ē),
using value iteration on a discretized grid for s and the finite regimes
for x. The deployed action is the maximizing rung in A(z). The outer
loop updates λ using simulated stationary averages with a small buffer
(ϵR, ϵE) for finite-horizon auditing.

2. Profit-only RL. We train an RL agent on the same simulated environ-
ment but with reward equal to one-period profit πt and no penalties
for returns or emissions. To keep the comparison focused on the eco-
nomic difference (constraints versus no constraints), we use a stable
policy-gradient method with the same state inputs and the same ac-
tion constraints A(z). This baseline captures the common practice
of optimizing revenue/profit subject only to platform constraints, and
then checking externalities ex post.

3. Static OR (myopic) benchmark. Each period, this policy chooses

pt ∈ arg max
p∈A(zt)

π(p;xt, st),
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treating the pipeline st as affecting current refunds and handling only
(through yt = δst), but ignoring how today’s price affects the future
pipeline through ρ(pt, xt)D(pt, xt). This captures a common static
margin-optimization logic and clarifies what is lost when we ignore the
intertemporal link created by delayed returns.

Evaluation protocol and metrics. We evaluate each policy on long roll-
outs (e.g., T = 50,000 periods after burn-in) and report: (i) discounted profit
and long-run average profit; (ii) average return arrivals ȳ = (1/T )

∑
t<T yt;

(iii) average emissions Ē = (1/T )
∑

t<T Et; (iv) the frequency of constraint
violations relative to caps under finite-window audits (rolling windows of
length W ); and (v) the frequency of binding price projections (how often
the chosen action hits pt−1 ± ∆ or the ladder boundary). We emphasize
the last two because they diagnose why a policy fails: persistent cap ex-
ceedances under stability constraints often coincide with frequent boundary
hits, indicating insufficient control authority to react to shocks.

Baseline findings in the stationary calibrated environment. In the
stationary calibration (where the data-generating primitives match the esti-
mated primitives used by the controller), the outer–inner loop reliably finds
multipliers λ such that both long-run average constraints are met with slack
roughly equal to the chosen buffers. Economically, the induced pricing rule
is intuitive: in high-demand regimes (high a(x)), prices rise to ration both
shipping volume and the future return pipeline; when the pipeline st is ele-
vated, prices rise further because near-term return arrivals yt = δst increase
effective marginal cost. The profit-only RL policy typically earns the high-
est raw profit conditional on ignoring caps but violates the return and/or
emissions constraints substantially; in our calibration the emissions cap is
the first to bind when κS is large, while the return cap becomes the bind-
ing constraint when ρ is high and h is material. The static OR benchmark
often respects neither constraint and, even when it happens to satisfy a cap
on average, it exhibits higher volatility in resource usage because it ignores
how current prices move st+1. This volatility matters operationally: under
finite-window auditing, a policy that meets a cap only in expectation can
still be unacceptable if it repeatedly overshoots in short horizons.

Out-of-sample robustness: return-rate shifts. We next introduce a
structural break in return behavior meant to mimic a product-mix shift or
a policy change (e.g., an extended return window): holding demand fixed,
we increase the return propensity by ∆ρ > 0 in all regimes, ρnew(p, x) =
min{1, ρ(p, x) + ∆ρ}. This perturbation is deliberately adverse because it
increases both future pipeline inflow and expected reverse-logistics costs.
Two patterns are robust across calibrations. First, the profit-only RL policy
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responds poorly: because it was trained to monetize demand without valu-
ing the shadow costs of returns, it continues to price aggressively, causing st
to drift upward and generating persistent return-cap violations. Second, our
controller remains stable in the sense that the outer loop can re-adjust λR
upward and restore feasibility with modest profit loss; indeed, the increase in
λR is a diagnostic statistic that the system is now consuming more return ca-
pacity per unit of sales. Importantly, the stability constraint |pt− pt−1| ≤ ∆
creates transient overshoots after the break: even a well-designed controller
cannot instantaneously raise prices enough to offset a sudden jump in ρ.
This is precisely where the auditing layer and conservative buffers become
economically relevant: earlier intervention (raising λR preemptively when
leading indicators predict a shift) reduces the magnitude and duration of
overshoots.

Out-of-sample robustness: carbon-price changes. We also vary the
carbon price τ , which in practice can change through regulation, internal
carbon accounting, or carrier surcharges passed through as carbon fees. In
the simulation, we increase τ unexpectedly and evaluate each policy without
retraining its core components, allowing only the minimal operational update
that a firm would plausibly implement quickly. The profit-only RL policy
again fails the emissions cap because it has no mechanism to internalize
the higher carbon cost beyond what is already embedded in π (and if τ is
imposed as a cap rather than a tax, it does not enter π at all). Our controller
adapts cleanly because τ enters the per-period emissions charge τEt and
the cap through the λE-update: an increase in τ mechanically raises the
effective marginal cost of shipments and returns, while a tighter effective cap
raises λE . In both cases the model predicts (and the simulation confirms) a
monotone shift toward higher prices and lower volume, with the adjustment
speed limited by ∆. Practically, this experiment motivates implementing τ
and κ as first-class inputs to the controller (not hard-coded constants), so
compliance can be maintained without re-estimating demand.

What the numerics add beyond the theory. The theoretical results
tell us that the frontier is low-dimensional and that multipliers act as shadow
costs; the numerical exercise shows how this plays out under platform fric-
tions and misspecification. Three empirical lessons stand out. (i) State mat-
ters: policies that ignore the pipeline state st can look competitive in average
profit but generate large compliance risk under realistic auditing windows.
(ii) Two multipliers are operationally sufficient : a simple two-dimensional
outer loop can correct for sizable shifts in returns or carbon conditions with-
out redesigning the inner-loop solver. (iii) Stability constraints amplify the
value of robustness: when ∆ is tight, early-warning signals and buffers are
not conservative bureaucracy; they are economically necessary because the
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controller’s feasible action set limits how quickly the system can re-enter a
safe region after shocks.

Summary. Overall, the calibrated simulations support the practical premise
of the model: treating returns capacity and emissions capacity as scarce re-
sources with shadow prices yields a pricing policy that is nearly as imple-
mentable as profit-only heuristics, but materially more reliable under long-
run constraints and under the kinds of nonstationarity that retailers face in
the field.

Extensions: coupling, competition, and heterogeneity (and where
numerics enter). The baseline model deliberately isolates a single de-
cision margin—a posted price under platform admissibility and stability
constraints—so that the economic role of delayed returns and resource shadow
costs is transparent. In many retail settings, however, three features matter
in tandem: (i) multiple SKUs sharing capacity and congestion, (ii) mar-
ketplace competition in which other sellers also price dynamically, and (iii)
heterogeneous customers with systematically different demand and return
behavior. We sketch each extension in a way that preserves the core logic
(Markov sufficiency under geometric delays; low-dimensional multiplier pa-
rameterization of constraints), while being explicit about when closed-form
structure breaks and numerical methods become essential.

(i) Multi-SKU coupling through shared congestion and shared caps.
Let SKUs be indexed by i ∈ {1, . . . , n}. Each SKU has price pi,t, de-
mand qi,t = Di(pi,t, xt), and a return pipeline si,t evolving (under the same
geometric-delay logic) as

si,t+1 = (1− δ)si,t + ρi(pi,t, xt)Di(pi,t, xt), yi,t = δsi,t.

The most operationally relevant coupling comes from shared fulfillment ca-
pacity and carrier surcharges that depend on total outbound volume Qt =∑

i qi,t. A natural congestion cost is then G(Qt), convex and increasing.
Likewise, platform- or firm-level constraints often apply in aggregate, e.g.,

lim sup
T→∞

1

T
E
∑
t<T

∑
i

yi,t ≤ R̄, lim sup
T→∞

1

T
E
∑
t<T

∑
i

Ei,t ≤ Ē,

with Ei,t = κSqi,t + κRyi,t. Two implications follow. First, the Markov state
expands to (xt, s1,t, . . . , sn,t, p1,t−1, . . . , pn,t−1), so even though each pipeline
remains one-dimensional, the overall state is O(n). Second, separability
across SKUs is broken by G(

∑
i qi,t): the marginal congestion cost G′(Qt)

acts like a common endogenous surcharge that depends on the joint pricing
vector.
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Conceptually, the Lagrangian relaxation still yields a small number of
global shadow prices (λR, λE) for the return and emissions caps, so the Pareto
frontier in (profit, returns, emissions) remains parameterized by at most two
multipliers under the same convexity/Slater conditions. What changes is the
inner optimization: the Bellman maximization becomes a coupled choice of
pt = (p1,t, . . . , pn,t) over a Cartesian product of ladder-and-stability sets. In
special cases, one can partially recover structure by introducing an auxiliary
“congestion price” γt ≈ G′(Qt) and solving per-SKU best responses condi-
tional on γt, iterating to consistency (a form of dual decomposition). But
in general, and especially when P is discrete and stability constraints bind,
closed-form affine rules like Proposition 3 do not survive: numerical dynamic
programming, approximate value function methods, or policy optimization
become necessary to compute implementable policies for moderate n.

(ii) Multi-agent marketplace competition and strategic feedback.
In a marketplace, a single retailer’s demand depends not only on its own
price but on competitors’ prices and availability. A reduced-form way to
incorporate this is to embed competitor conditions in the context state xt,
for example by letting

qt = D(pt, xt), xt = (seasonality, traffic, competitor index, . . . ),

where the competitor index evolves exogenously via a Markov kernel P (· | x)
estimated from observed marketplace dynamics. Under this interpretation,
our framework remains a single-agent constrained MDP: competitors are
part of the environment. This is empirically convenient and often defensible
when the retailer is small relative to the marketplace or when competitors’
pricing is noisy and not tightly coupled to any one seller.

If instead we treat competitors as strategic agents who also solve dy-
namic pricing problems (possibly with their own returns and emissions con-
straints), the correct object is a constrained Markov game with platform re-
strictions. In such a setting, the analogue of our multiplier-based approach
can be used in at least two ways. One is agent-level : each seller solves a
Lagrangian-relaxed control problem taking rivals’ policies as given, yield-
ing a best-response mapping in multipliers and policies, and we compute a
Markov perfect equilibrium numerically. The second is platform-level : the
platform chooses (or induces) shadow prices for system-wide caps (e.g., emis-
sions), effectively implementing a Pigouvian tax or quota price that all sell-
ers face, while allowing decentralized best responses. The latter perspective
is attractive because it connects directly to policy instruments, but it also
highlights a limitation: equilibrium existence and uniqueness are no longer
guaranteed by the convex CMDP logic alone, because strategic interactions
can introduce non-convexities in the induced performance set and disconti-
nuities when action sets are discrete (price ladders) and stability constraints
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bind. For this reason, even when the economic mechanism is clear (shadow
costs push equilibrium prices upward and volumes downward), equilibrium
computation is typically numerical.

(iii) Heterogeneous customer segments and return heterogeneity.
Customer heterogeneity matters because return propensity is not merely
a function of price and product; it varies systematically across segments
(e.g., new versus repeat customers, size-sensitive shoppers, or geographically
distinct shipping regions). A parsimonious extension introduces segments
g ∈ {1, . . . , G} with segment-specific demand Dg(p, x) and return propensity
ρg(p, x). If the retailer posts a single price pt, aggregate demand is

D(p, x) =

G∑
g=1

Dg(p, x),

and under common geometric delay δ, the aggregate pipeline remains one-
dimensional:

st+1 = (1− δ)st +
G∑

g=1

ρg(pt, xt)Dg(pt, xt), yt = δst.

In this case, our Markov reduction and multiplier interpretation go through
essentially unchanged; segment heterogeneity is “compressed” into the map-
ping p 7→

∑
g ρg(p, x)Dg(p, x). Economically, this is useful: it tells us that a

single scalar pipeline state can remain sufficient even with rich cross-sectional
heterogeneity, so long as return timing is memoryless and costs scale linearly
with total returns.

Where numerics (and higher-dimensional state) enter is when hetero-
geneity affects return timing or costs in a way that breaks aggregation. If
segments have different hazards δg (e.g., because some customers are sys-
tematically slower to return), then the correct sufficient statistic becomes a
vector st = (s1,t, . . . , sG,t) with

sg,t+1 = (1− δg)sg,t + ρg(pt, xt)Dg(pt, xt), yt =
∑
g

δgsg,t,

and pricing must manage a genuinely multidimensional pipeline. Similarly, if
emissions factors or handling costs vary by segment (e.g., remote regions with
higher κS and κR), then even with a common δ, the per-period objective de-
pends on the segment composition of shipments and returns, again pushing
us toward vector-valued states or richer context variables. In these cases,
projected affine rules become approximations rather than exact solutions,
and one typically relies on discretization, approximate dynamic program-
ming, or function approximation (e.g., linear or neural value functions) with
the same multiplier outer loop enforcing long-run feasibility.
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What persists across extensions. Across all three directions, two pieces
of economic structure remain robust. First, delayed returns create an in-
tertemporal externality that is summarized by a small state per independent
return-timing process (scalar under geometric delay, vector under multiple
hazards). Second, long-run caps on returns and emissions remain naturally
priced by a small set of multipliers (λR, λE), which can be adjusted in an
outer loop using observed stationary averages even when the inner control
problem is high-dimensional. What changes is not the logic of shadow costs,
but the computational burden of mapping state to an action under cou-
pling, strategic feedback, and heterogeneous dynamics—precisely the cases
in which numerics are not an optional embellishment, but the method by
which the theory becomes operational.

Policy and platform implications: effective constraints, carbon
pricing, and auditable compliance. Our framework is useful precisely
because it separates what society or the platform wants to limit (returns han-
dling burden and shipping-related emissions) from how the retailer chooses
to respond (a dynamically adjusted posted price, subject to admissibility and
stability). The central practical message is that long-run caps and per-unit
carbon fees enter the retailer’s problem through a small set of shadow costs.
This is more than a mathematical convenience: it provides a concrete design
principle for policy and platform rules. If the platform can translate abstract
objectives (“reduce returns” or “reduce emissions”) into stable, predictable
marginal incentives, then decentralized pricing decisions will internalize the
external costs without requiring the platform to solve the retailer’s entire
dynamic program.

Which constraints are most effective? Target the bottleneck, not
the symptom. A return-volume cap R̄ and an emissions cap Ē both re-
duce shipped volume in equilibrium, but they do so through distinct chan-
nels. A cap on returns directly prices the scarce resource in reverse logistics
(warehouse labor, inspection capacity, disposal constraints), and is there-
fore most effective when the operational system is genuinely constrained by
return handling. In contrast, an emissions cap (or equivalently a binding
emissions price) targets the environmental externality; it is most effective
when the social objective is to reduce total shipping footprint rather than
to protect internal processing capacity. In many settings the two objectives
are aligned, but the alignment is not mechanical: a retailer can reduce E[yt]
by shifting sales toward lower-return variants or better-described products
without proportionally reducing outbound shipments, whereas an emissions
constraint pushes on both outbound and returns via Et = κSqt + κRyt. The
model therefore suggests a “bottleneck test”: if the main harm is operational
congestion in returns, a return-cap instrument (or a return-processing fee)
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is more direct; if the harm is the environmental footprint, the emissions
instrument is the right target.

Fees versus caps: predictability versus hard guarantees. From an
implementation perspective, per-unit fees and hard caps differ in how they
trade off predictability and guarantees. A carbon fee τ provides a stable
marginal signal and is easy to administer; it does not guarantee hitting
a specific Ē, but it avoids the discontinuities that arise when hard caps
bind. Conversely, a cap provides a hard quantity guarantee but requires
either (i) rationing or (ii) a shadow price λE that can move over time as
scarcity fluctuates. Our Lagrangian formulation reconciles these: when Ē
is enforced as a long-run average, the optimal policy behaves as if there
were an endogenous carbon surcharge λEτ that is adjusted until measured
stationary emissions meet the cap. This suggests a practical “outer-loop”
platform design: rather than policing every price, the platform can update
category-level fees (interpretable as λE and λR) based on observed rolling
averages of emissions and returns, while allowing sellers to optimize locally.

How carbon charges shift optimal prices (and why returns am-
plify pass-through). In the one-period objective, carbon pricing enters
as −τ(κSqt + κRyt), which behaves like an increase in marginal cost of out-
bound shipments and return arrivals. Under downward-sloping demand, the
comparative static is typically ∂p∗/∂τ > 0, but the magnitude depends on
both demand elasticity and the returns pipeline. Intuitively, when returns
are substantial, a marginal increase in sales creates not only current out-
bound emissions but also future return emissions and processing costs. This
raises the dynamic marginal cost of selling an extra unit. Even if the immedi-
ate carbon charge is small, the discounted stream of expected return-related
charges can be meaningful when ρ(p, x) is high or when δ is large (fast re-
turns make the costs arrive sooner). As a result, categories with high return
propensity should exhibit larger effective pass-through of carbon fees into
prices, all else equal, because the same outbound sale carries more down-
stream carbon liability through st+1.

Interaction with stability constraints: why rigid pricing rules can
undermine environmental objectives. Platform stability constraints
|pt − pt−1| ≤ ∆ are typically motivated by consumer trust and by avoidance
of “price gouging” perceptions. Our analysis highlights a less discussed ef-
fect: tight ∆ can make environmental and returns constraints harder (and
costlier) to satisfy, because the retailer cannot respond quickly to shocks in
xt (e.g., demand surges) or in the pipeline st (e.g., elevated pending returns).
When ∆ binds, the policy effectively becomes a clipped version of the un-
constrained optimum, so the adjustment to a higher τ or a tighter Ē may be
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delayed. This does not mean stability constraints are undesirable; rather, it
suggests that if the platform insists on tight ∆, it should anticipate the need
for stronger shadow costs (larger λE or τ) to achieve the same emissions out-
comes, or should complement stability with non-price levers (better product
information, sizing tools, or shipping-mode changes) that reduce κS , κR and
ρ(p, x) directly.

Welfare: separating private profit, consumer surplus, and external
costs. The objective we solve is retailer profit subject to constraints, which
is the right positive model for platform compliance but not the full welfare
criterion. For welfare analysis, we would add consumer surplus and subtract
external damages from emissions and waste. Carbon pricing has a canon-
ical welfare interpretation: when τ reflects the social cost of carbon (and
when emissions measurement is accurate), the induced price increase can be
welfare-improving even if it reduces consumer surplus, because it internal-
izes external harm. Returns complicate this logic because lenient returns
generate consumer option value (insurance against misfit) while also creat-
ing processing, congestion, and environmental costs. A return cap R̄ can
therefore raise welfare when reverse-logistics costs are largely social (waste,
landfill constraints, transport emissions), but it may reduce welfare if it is
implemented bluntly (e.g., by discouraging legitimate purchases from un-
certain consumers) rather than by improving match quality. The model’s
main welfare lesson is to distinguish volume reduction from match improve-
ment : policies that reduce ρ(p, x) (better information, sizing, packaging) can
dominate policies that merely raise prices to shrink qt.

Instrument design: what platforms can implement without solving
the seller’s problem. Because the shadow-cost logic is additive, platforms
can implement approximate compliance with limited information by posting
linear surcharges: a fee per outbound unit proportional to κS and a fee per
return proportional to κR, with an additional return-handling fee capturing
congestion in processing. In our notation, this corresponds to operational-
izing λEτκS and λEτκR + λR as explicit charges. Importantly, these need
not be uniform across products: if the platform can estimate SKU-level or
category-level κ factors and average ρ, then differentiated fees align incen-
tives with heterogeneous footprints. Compared with direct price controls,
such fees preserve seller autonomy and are robust to the platform’s limited
ability to observe D(·) or to forecast xt.

Auditing and measurement: what must be verified for the model’s
prescriptions to be credible. Any policy that relies on emissions ac-
counting or return caps is only as good as its measurement system. Three
components are critical. First, outbound shipments qt and return arrivals
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yt must be measured consistently, including cancellations and multi-item
orders, because mismeasurement can distort both the estimated pipeline st
and the assessed charges. Second, emissions factors κS , κR must be auditable
and periodically updated: shipment distance, carrier mix, packaging weight,
and consolidation practices change over time, so static factors invite either
drift or gaming. Third, platforms should audit the return timing process to
validate the geometric-delay approximation in any compliance-critical appli-
cation. Our Markov reduction is exact under geometric delays; when delays
are duration-dependent, a single scalar st may understate near-term return
risk, and a seller could appear compliant in expectation while generating
clustered operational stress.

Auditing recommendations: rolling windows, category benchmarks,
and gaming-resistant metrics. Operationally, we recommend a three-
layer audit. (i) Rolling-window reporting : compute realized averages of yt
and Et over overlapping windows to detect persistent exceedances early, con-
sistent with the long-run nature of R̄ and Ē. (ii) Category benchmarks: com-
pare realized return rates and emissions intensities to peer baselines condi-
tional on observable xt (seasonality, region), which helps separate genuine
product problems from demand shocks. (iii) Gaming-resistant accounting :
ensure that incentives do not encourage relabeling returns as exchanges, split-
ting shipments to manipulate κ factors, or shifting fulfillment off-platform.
In our language, the goal is to make the measured qt, yt, Et close to the true
physical quantities so that the shadow costs λR, λE guide behavior rather
than guide accounting choices.

Limitations and a practical synthesis. We emphasize two limitations.
First, price is not the only lever that affects emissions and returns; improv-
ing fulfillment operations can lower κS , κR, and product design and infor-
mation can lower ρ(p, x). Second, stability and ladder constraints create
discrete, sometimes non-smooth decision rules that can weaken first-order
comparative statics in finite samples. Nonetheless, the policy synthesis is
clear: (a) choose instruments that price the true scarce resources (emissions
capacity and return-processing capacity), (b) implement them via auditable
marginal charges or dynamically updated shadow fees, and (c) recognize that
rigid price constraints may require complementary non-price interventions to
achieve environmental and operational targets at low welfare cost.

7 Conclusion

We study a dynamic pricing problem in which a retailer faces two opera-
tional externalities that are increasingly central in practice: product returns
and shipping-related emissions. The distinctive modeling challenge is that
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both externalities are intrinsically intertemporal. Returns arrive with delay,
creating a pipeline of future reverse-logistics workload and refund exposure;
emissions are generated by both outbound shipments and subsequent re-
turns. At the same time, real platforms often restrict how the retailer may
adjust prices through admissibility ladders and explicit stability rules. Our
goal is therefore not only to characterize an optimal policy in principle, but
also to identify a compact state representation and an implementable policy
structure that can be audited and tuned with a small number of interpretable
parameters.

The first contribution is a Markov reduction of delayed returns. Under
geometric return delays, the expected flow of future return arrivals can be
summarized by a scalar “pipeline” state st that evolves as

st+1 = (1− δ)st + ρ(pt, xt)D(pt, xt),

with current expected return arrivals yt = δst. This reduction is not merely
a technical convenience: it clarifies what a retailer must track to manage
returns dynamically. Rather than remembering the full history of sales by
cohort, the retailer only needs the current mass of pending returns, which
aggregates past sales through the memoryless property. In our setting, the
relevant decision state becomes (xt, st, pt−1): covariates that shift demand
and return propensity, the return pipeline that governs near-term arrivals,
and the previous price that determines the stability-feasible set.

The second contribution is a low-dimensional description of the perfor-
mance frontier when the retailer faces long-run average constraints. We
impose caps on mean return arrivals and mean emissions, motivated by op-
erational capacity in reverse logistics and by environmental policy. While
such constraints appear to create a complex intertemporal feasibility prob-
lem, standard convexity and Slater-type conditions imply that every Pareto-
efficient operating point—in terms of profit, mean returns, and mean emissions—
can be implemented by solving an unconstrained dynamic program with a
two-dimensional vector of multipliers (λR, λE). In this sense, the efficient
set is parameterized by at most two scalars. This perspective matters for
implementation: it suggests that a platform or regulator need not directly
control the retailer’s entire policy. Instead, it can adjust a small number of
shadow prices (interpretable as fees) until measured long-run averages meet
operational or environmental targets.

The third contribution is structural: in a linear demand and affine return-
propensity specification, the optimal price rule in the Lagrangian-relaxed
problem is approximately affine in the key state variables and shadow costs,
and the platform and stability restrictions enter through a projection. Con-
cretely, the unconstrained optimizer p̂(xt, st;λR, λE) is clipped to the feasible
interval

p∗t = ΠP∩[pt−1−∆, pt−1+∆]

(
p̂(xt, st;λR, λE)

)
.
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This “projected affine” structure yields a practical algorithmic template: es-
timate local demand and return responses, compute an unconstrained tar-
get price that internalizes carbon and return shadow costs, and then apply
transparent platform-compliance rules. The projection form also makes clear
when and why stability rules bind: the retailer would like to move the price
more aggressively in response to shocks in xt or st, but the platform restricts
the step size.

Across these results, a unifying economic message emerges: returns and
emissions constraints enter the pricing problem like additional marginal costs,
and their dynamic consequences are mediated by the return pipeline. In the
per-period objective, emissions pricing penalizes both outbound and return
shipments; return constraints penalize the arrival flow. In the continua-
tion value, today’s price affects tomorrow’s costs by changing st+1 through
ρ(pt, xt)D(pt, xt). As a result, the incentive to raise price in high-return
states is not simply about lower expected net revenue today, but about re-
ducing the stock of future reverse-logistics pressure. This helps interpret
why seemingly similar categories can exhibit different price dynamics: two
products with identical demand elasticities but different return propensities
ρ or different return-speed parameters δ will have different dynamic marginal
costs of selling an extra unit.

We also view the framework as a disciplined way to connect platform
rules to operational realities. Platforms often adopt price ladders and stabil-
ity constraints to promote transparency and consumer trust. Our analysis
highlights the tradeoff: such constraints can be welfare-improving on their
own terms, but they reduce the retailer’s ability to respond to shocks that
are relevant for emissions and returns. The model does not argue against
stability; rather, it makes precise how stability restrictions can necessitate
higher shadow costs (or complementary non-price interventions) to achieve
the same environmental or reverse-logistics outcomes. The projection char-
acterization is useful here because it provides a direct diagnostic: frequent
clipping events indicate that the platform is constraining the retailer’s pri-
mary adjustment margin, so the platform should expect either higher com-
pliance costs or greater reliance on alternative levers.

Several limitations point to natural extensions. First, the geometric-
delay assumption is essential for the one-dimensional pipeline state. When
return delays are duration-dependent or depend on cohort characteristics
(e.g., holiday gifting, carrier disruptions), the sufficient state becomes higher-
dimensional, and the computational burden grows. Second, we focus on price
as the principal control, but in many environments the retailer can also affect
ρ(p, x), κS , and κR through information provision, packaging, consolidation,
and shipping mode. Endogenizing these operational levers would enrich the
set of feasible tradeoffs and may reduce the need for blunt volume reductions
via higher prices. Third, our baseline presentation abstracts from strategic
consumer behavior (e.g., “bracketing” and anticipatory returns). Incorporat-
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ing forward-looking consumers could amplify the value of stability constraints
for trust, while also changing the mapping from price to returns.

On the empirical and computational side, the model suggests a concrete
agenda. Because the policy-relevant objects are elasticities and emissions in-
tensities, the platform can prioritize measurement of D(p, x), ρ(p, x), and
shipment-return emissions factors. The multiplier parameterization then
provides a simple outer-loop calibration: adjust (λR, λE) based on observed
rolling averages until caps are met, and let the retailer’s inner-loop opti-
mization manage day-to-day pricing within platform constraints. Even when
closed forms are unavailable (e.g., with general G(·) or richer state dynam-
ics), the same structure supports approximate dynamic programming: the
state is compact, the multipliers are low-dimensional, and the projection step
is transparent.

We close with a synthesis. The model is designed to illuminate a specific
tradeoff that practitioners face: operational and environmental constraints
are real, but so are platform rules restricting price dynamics. By showing
that delayed returns admit a low-dimensional state, that constrained objec-
tives admit a low-dimensional shadow-price representation, and that plat-
form rules often act through simple projection, we obtain both theory and a
blueprint for implementation. The broader lesson is that effective policy and
platform design should focus on pricing the true scarce resources—reverse-
logistics capacity and emissions capacity—while preserving enough flexibility
for retailers to adapt to evolving demand and return conditions.
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