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Abstract

Stable matching mechanisms with ties face a sharp fairness bar-
rier: even randomized stable matchings can yield linear losses, while
allowing (internally stable) lotteries recovers tight ©(log N) share guar-
antees via the Optimal Stable Share (OSS) ratio. This paper pushes
OSS fairness into dynamic markets, where workers and jobs arrive
and depart and where preference ties are induced by coarse ratings
and statistical indistinguishability. We propose ROSS, a rolling time-
sharing mechanism that recomputes an internally stable lottery using
a duplication-index construction on each epoch and then implements
it as a deterministic rotating schedule. ROSS guarantees ex-post e-
internal stability in every round and ensures that each worker’s cu-
mulative utility is at least a 1/0(log Nmax) fraction of their dynamic
optimal stable share (defined round-by-round), up to an additive churn
term that scales with the number of epoch interruptions experienced
by that worker. Our analysis adapts the source paper’s duplication-
index and directed-forest arguments to a time-indexed setting using
a churn-aware potential that quantifies losses from incomplete sched-
ule cycles. The results provide a tractable fairness—stability theory for
modern 2026 platforms (gig work, public service rosters, rotating re-
viewer assignments) where static stability is too brittle and ties are
ubiquitous.
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1 Introduction and motivation

Many allocation problems that are modeled as two-sided matching are, in
practice, dynamic and noisy. Gig platforms match workers to short-lived
tasks; hospitals and staffing agencies reassign shifts as demand fluctuates;
cloud systems schedule jobs on heterogeneous machines under changing avail-
ability; and even ostensibly “static” assignment problems (e.g., course allo-
cation or public-housing placement) are repeatedly revisited as participants
arrive, leave, or update their information. In such environments the platform
does not choose a single matching once and for all, but a sequence of match-
ings over time. This repeated choice creates an economic design problem that
is distinct from the classical one-shot stable matching model: we must simul-
taneously control (i) incentives and legitimacy in each period (captured here
through stability-type constraints), and (ii) intertemporal fairness (captured
through how utility accrues across rounds).

A key friction is that stability notions are inherently local—they con-
strain the set of matchings at a given time—whereas fairness concerns are
inherently global—they evaluate a worker’s realized utility over many rounds.
Static stability alone is therefore not a sufficient policy prescription. To see
this, imagine a worker who, in each round, is matched under a stable match-
ing to a “safe” but mediocre job because job priorities favor incumbents. If
the platform recomputes a stable matching myopically each round, the same
worker may be systematically left out even when there exists another stable
matching at that round that would give them a high-utility job. This pathol-
ogy is not merely a matter of bad tie-breaking: it is structural. When multi-
ple stable matchings exist, picking one deterministically can create persistent
winners and losers, and the repeated setting amplifies these disparities.

The second friction is informational: worker values are often observed
only coarsely. Platforms typically estimate match quality from sparse feed-
back, noisy performance measures, or discretized ratings. As a result, worker
utilities U(w, a) naturally contain ties. Ties matter because they enlarge the
set of stable outcomes but also complicate the platform’s credibility: small
perturbations can flip preferences, and strict stability can become unattain-
able or overly restrictive. In the presence of ties, it is often more realistic to
require a tolerance parameter € > 0, interpreting € as a minimal gain needed
to justify a deviation (or, operationally, as robustness to utility estimation
error). This leads to e-stability and its variants, which allow us to separate
economically meaningful deviations from those driven by noise.

These two frictions together motivate the central question we study: Can
a platform guarantee each worker a nontrivial fraction of what they could
obtain under an e-stable matching in each round, while maintaining (ex-
post) stability constraints in every realized round of play? Our benchmark is
deliberately individual-centric. For a worker w present at time ¢, we consider



their best attainable stable utility,

U (w) = maxUy(w, p(w)),

and we compare the realized cumulative utility to the dynamic sum of these
per-round “best stable shares.” This benchmark is demanding: it allows
the stable matching to vary by worker and by round, and thus captures the
strongest individualized notion of “what was stably feasible for me.” We view
this as an appropriate fairness yardstick in applications where workers eval-
uate outcomes relative to what the market could have offered them without
undermining stability.

A natural idea is to use randomization across stable matchings. In a static
market, if we could draw a stable matching from a distribution each period,
then in expectation each worker might receive a fairer share of the stable
surplus. However, this is precisely where a fundamental limitation appears.
The source material establishes a sharp “logarithmic barrier”: even in a static
one-shot instance, there are markets in which no distribution over stable
matchings can guarantee every worker more than an O(1/log N) fraction of
their own best stable utility, where N is the number of workers. Conversely,
there exist constructions—based on duplicating opportunities and carefully
selecting a small support of stable matchings—that achieve a 1/O(log N)
share for all workers simultaneously. Economically, this tells us that fairness
via time-sharing is possible but unavoidably limited by congestion in the
stable set: some workers’ best stable outcomes are mutually incompatible,
and spreading them across time requires a support whose size must grow
logarithmically.

Our contribution is to transport this insight into a dynamic environment
with arrivals and departures. Dynamics introduce a new obstacle: even if
we have a good distribution over stable matchings for a fixed participant set,
churn may interrupt the intended time-sharing schedule before each worker
has had a chance to realize their “good” outcome. This is not a second-order
concern. In short-lived markets (e.g., tasks that clear quickly, or workers
who are active only briefly), naive cycling can perform poorly because it
front-loads some workers’ gains and back-loads others’. Moreover, in a gen-
uinely dynamic market, requiring full stability with respect to unmatched
agents can be too stringent: newly arriving agents would retroactively cre-
ate blocking pairs against a matching that was stable for the previously
present population, making it impossible to maintain stability without con-
stant rematching.

For these reasons, we focus on an internal stability requirement: we
rule out only those blocking pairs (w, a) in which both agents are currently
matched to someone else. This captures a practically relevant notion of
stability—mno two matched agents should have a credible deviation—while
allowing the platform to manage entry and exit without being forced into



immediate global reoptimization. The distinction is not merely technical. In
many platforms, unmatched agents (or agents who just arrived) do not have
an enforceable claim to displace an existing match instantaneously; instead,
they queue, wait for the next batch, or are integrated at an epoch boundary.
Internal stability formalizes this operational reality.

Within this modeling choice, we propose a rolling schedule policy (ROSS)
built around two ideas. First, we partition time into epochs, maximal con-
tiguous intervals over which the set of participants is constant. Second, at
the start of each epoch we compute a small collection of e-internally stable
matchings with support size

m = [logy Nmax| + 2,

and then rotate deterministically through them round by round. The deter-
ministic cycle is an implementation device: it emulates the uniform lottery
over this support without requiring per-round randomization, while preserv-
ing ex-post internal stability in every realized matching. Intuitively, the
policy turns “random time-sharing” into “scheduled time-sharing,” which is
often preferable in practice because it is auditable and predictable.

The performance guarantee has the economic form we would expect from
a time-sharing argument with churn. Within a long epoch, the rotation en-
sures that each worker obtains, on average, a 1/m fraction of their per-round
optimal e-stable utility, up to an e slack that accounts for the tolerance in
stability. When epochs end early due to arrivals or departures, some workers
may miss their scheduled high-utility assignment; we can bound this loss ad-
ditively by the number of epoch interruptions the worker experiences. This
yields a guarantee that decomposes neatly into (i) a multiplicative fairness
term governed by log Npax, and (ii) an additive churn penalty governed by
the worker’s exposure to entry/exit events. The model thus illuminates a
tradeoff that practitioners routinely face: frequent recomputation (to reflect
churn) improves responsiveness but can harm intertemporal fairness by in-
terrupting rotation; infrequent recomputation improves fairness within an
epoch but may ignore important changes.

We also emphasize what our framework does mot attempt to do. We
do not claim to fully solve incentive compatibility in the dynamic setting;
rather, we take priorities as exogenous and focus on stability as a legitimacy
constraint. We also do not assume that utilities are cardinally meaning-
ful beyond being normalized to [0, 1]; the point of the OSS benchmark is
comparative—each worker is compared to what was stably achievable for
them—mnot to maximize utilitarian welfare. Finally, while our baseline anal-
ysis takes Uy as observed at time ¢, the motivating interpretation is noisy
measurement. This is why e-stability is not simply a mathematical relax-
ation: it is a robustness knob that can be calibrated to the resolution of
the platform’s estimates, and it allows us to reason about stable scheduling
policies even when preferences are coarsened or drifting.



In summary, the dynamic market setting forces us to marry two desider-
ata that are typically studied separately: per-round stability and across-
round fairness. The static literature tells us that we cannot escape a loga-
rithmic loss when guaranteeing individualized shares relative to stable bench-
marks. Our goal is to show that, with an appropriate notion of stability
and an explicit accounting for churn, we can extend these log-tight fairness
guarantees to dynamic environments using a simple, implementable rolling
schedule.

2 Related work

Our setting sits at the intersection of several literatures: dynamic two-sided
matching and scheduling, stability under indifferences (ties) and approx-
imate stability, time-sharing and fractional/randomized matchings, online
allocation with fairness objectives, and learning-based (bandit) matching.
We briefly situate our contribution relative to each.

Dynamic matching and repeated assignment. Classical matching the-
ory focuses on one-shot outcomes—most prominently the Gale-Shapley model
and its many variants—and provides a rich understanding of stability, lattice
structure, and comparative statics under fixed populations and preferences
??. Many applied markets, however, operate through repeated assignment
with changing availability. This has motivated dynamic models in labor
markets (e.g., re-matching over time), school choice with moving cohorts,
and operational settings such as shift scheduling and job allocation. Several
strands are relevant. One line studies dynamic or intertemporal matching
where agents arrive and depart and the planner chooses a policy to trade
off immediate matching against waiting for future participants ??7. Another
line, closer to operations, views the platform as a scheduler repeatedly se-
lecting matchings under feasibility constraints; these models often prioritize
throughput or welfare and treat strategic or stability considerations as sec-
ondary ??7. Our focus differs in that we treat stability-type constraints as a
per-round legitimacy requirement and ask what intertemporal fairness guar-
antees remain feasible under such constraints. In particular, by organizing
time into epochs with fixed participant sets, we separate the operational
source of nonstationarity (churn) from the within-epoch problem of select-
ing among multiple stable matchings.

Stability, priorities, and ties. We take strict job-side priorities as primi-
tives, consistent with many institutional environments (hospitals ranking res-
idents, schools ranking students by policy rules, or platforms ranking workers
by reliability scores). The theory of stable matching with priorities under-
lies much of the market design literature ?77. At the same time, practical



implementations often face coarse information and thus indifferences on one
or both sides. Stability with ties has been extensively studied both for its
algorithmic complexity and for its welfare/fairness implications; the “stable
marriage with ties” and related problems highlight that ties enlarge the sta-
ble set but can also make selection more delicate ?7. In applications, ties can
arise from discretized scores, measurement error, or deliberate policy coars-
ening; these motivate relaxations such as weak stability, super-stability, and
approximate notions that ignore negligible gains. Our use of an e-tolerance
is aligned with this robustness interpretation: deviations must clear a mini-
mal utility improvement threshold to be considered credible. This is also in
the spirit of “approximate stability” and perturbation-based arguments used
to make stability robust to noise ??. Conceptually, € plays a dual role: it
reflects estimation resolution and it expands the feasible set so that a plat-
form can commit to a stable-enough policy without overreacting to small
fluctuations.

Internal versus external stability in dynamic environments. A re-
curring challenge in dynamic markets is that full stability with respect to all
present agents can be too brittle: new arrivals can instantly create block-
ing pairs, forcing constant rematching and undermining predictability. Sev-
eral papers address this by weakening stability, for example by restricting
which deviations are actionable (e.g., only certain coalitions, or only devia-
tions that respect timing/contracting frictions) ??. Our “internal” stability
requirement—ruling out only blocking pairs among agents who are currently
matched—can be interpreted as formalizing the operational frictions that
prevent immediate displacement in many platforms (queues, batching, on-
boarding delays, or explicit non-preemption rules). Related notions appear
in scheduling and matching with commitments, where previously assigned
matches cannot be arbitrarily overturned without incurring costs or violat-
ing constraints ?7. The point of this restriction is not to weaken incentives
indiscriminately, but to capture a realistic boundary on who can credibly
deviate at a given moment.

Time-sharing, randomization, and fractional matchings. A central
tool in our analysis is the idea of time-sharing across feasible matchings
to improve intertemporal fairness. In assignment problems, randomization
and fractional allocations are classical devices: Birkhoff-von Neumann de-
compositions represent fractional matchings as distributions over integral
matchings, and mechanisms such as probabilistic serial implement ordinally
fair random allocations 7. In two-sided markets, there is also a literature on
randomized or fractional stability concepts (ex ante stability, fractional sta-
ble matchings) and on selecting among multiple stable matchings to achieve
distributional objectives ?7. Our contribution connects these ideas to a



worst-case, individual-centric fairness benchmark: we compare each worker
to their own best e-stable outcome and ask what guarantee is possible uni-
formly over workers. The static source result we build on establishes a sharp
logarithmic limitation and a matching constructive upper bound. In the dy-
namic setting, the analogous issue is not only whether a good distribution
exists, but whether it can be implemented over time when the population
changes and the schedule can be interrupted.

Online allocation with fairness objectives. Beyond matching theory,
there is a growing body of work on fairness in online resource allocation,
often framed through competitive ratios, max—min objectives, proportional
fairness, or regret relative to offline benchmarks ??. Many of these mod-
els study online bipartite matching, ad allocation, or scheduling where the
planner seeks to maximize total welfare subject to fairness constraints across
groups or individuals. Our benchmark is distinct: we do not compare to
a utilitarian optimum, but to the per-round e-stable opportunity frontier
for each worker. This creates a normative standard that is tightly linked
to legitimacy: the platform is only held accountable relative to what could
have been delivered without creating (approximate) blocking incentives. The
resulting guarantees resemble online-fairness bounds in that they combine
multiplicative approximation (a share factor) with additive penalties that
reflect nonstationarity—here captured by churn/epoch interruptions rather
than adversarial arrivals.

Learning and bandit matching. In many platforms, utilities are not
observed directly and must be learned from interaction. This motivates ban-
dit and reinforcement-learning models with matching constraints, including
“matching bandits,” combinatorial semi-bandits on bipartite graphs, and con-
textual bandit formulations where edges have unknown rewards 777. The
typical objective is to minimize regret to the best fixed matching or to an
offline optimal policy, and the main difficulty is exploration under combina-
torial structure. Our baseline analysis abstracts from learning by treating
U, as observed (or as lying in a known uncertainty set), because our focus
is on the feasibility and fairness limits imposed by stability. Nevertheless,
the e-stability framework is naturally compatible with learning: e can be
chosen to dominate estimation error so that the platform maintains cred-
ible outcomes while exploring, and our epoch-based recomputation can be
viewed as a batching device that reduces instability from frequent policy
changes. Incorporating full bandit feedback and endogenizing € is an impor-
tant direction, but orthogonal to the structural question we isolate: how far
time-sharing can go when we insist on per-round stability.



Summary. In short, the existing literature offers powerful tools for either
(i) ensuring per-period stability in static environments, or (ii) optimizing wel-
fare/fairness in dynamic and online allocation without stability constraints,
or (iii) learning utilities under matching constraints. Our goal is to bridge
a specific gap between these strands: we ask for a policy that is ex-post
stable (up to €) in every realized round, yet still guarantees each worker
a quantifiable fraction of their individualized stable opportunity over time,
with explicit degradation under churn. This framing clarifies which fairness
losses are inherent (the logarithmic barrier) and which are operational (epoch
interruptions), thereby connecting theoretical limits to design choices that
platforms actually face.

3 Model

We study a repeated one-to-one matching environment in which a platform
must make an assignment decision in every round while the set of available
participants changes over time. The goal of the model is to isolate two dis-
tinct sources of difficulty that arise in practice: (i) even in a fixed population,
stability restrictions limit how much the platform can “time-share” desirable
assignments across workers; and (ii) when workers or jobs arrive and de-
part, any attempt to implement time-sharing can be interrupted, creating
an additional and operationally meaningful loss.

Agents, rounds, and feasibility. Time is discrete, indexed by rounds
t € {l,...,T}. In each round t, a set of workers W; and a set of jobs/tasks A;
are present and eligible for matching. We write Ny := |Wy|, Ky := |A|, and
Nnax := max¢ Ny. A matching at round ¢ is a partial one-to-one assignment
between W; and A; with an explicit outside option 1. Formally, u; maps
each worker w € W; to either a job pu:(w) € A or py(w) = L; symmetrically,
each job a € A; is mapped to ui(a) € Wy or uy(a) = L, with the consistency
constraint p;(w) = a if and only if p(a) = w. We interpret pui(w) = L as
being unmatched (idle, waiting, or assigned to an outside alternative), and
we normalize the utility from L to be zero.

This feasibility constraint captures operational settings where each worker
can handle at most one task per round and each task can be served by at
most one worker (e.g., a shift, a job ticket, a delivery, or a micro-task).
While richer capacity constraints are relevant in many applications, the one-
to-one case already reveals the core stability—fairness tradeoffs and allows
the strongest analytical guarantees.

Preferences, priorities, and cardinal utilities with ties. Jobs have
strict priorities over workers. For each job a, let P, denote a strict total
order over the universe of workers (or, equivalently, over the workers who



may ever appear). We write w >, w’ if job a strictly prioritizes worker w
over w’. In many platforms, these priorities reflect a policy rule or score
(tenure, reliability, certifications, or compliance checks) and are taken as
exogenous constraints rather than strategic choices.

Workers evaluate jobs using cardinal utilities. In each round ¢, worker
w € Wy has a utility U(w, a) € [0, 1] for each job a € A, with ties allowed (so
distinct jobs may yield the same value). We set U(w, L) = 0. Allowing ties
is important empirically: platforms often discretize relevance scores, workers
may have coarse preferences across similar tasks, and measurement noise
can make strict rankings unrealistic. The use of cardinal utilities also lets
us formulate approximate stability in a way that cleanly separates “small”
deviations from meaningful ones.

Timing and what the platform controls. Each round proceeds in three
steps:

1. Nature reveals the current participant sets (W, A;) and the contem-
poraneous utility matrix U; (or, in extensions, the platform observes
an uncertainty set or noisy feedback).

2. The platform selects a feasible matching pu; on Wy x Aj.
3. Utilities realize and accrue: worker w receives Uy (w, pu(w)).

The platform’s decision rule can depend on the history and on current in-
formation. Our analysis focuses on policies that must satisfy a per-round
stability-type constraint, reflecting legitimacy, compliance, or non-preemption
requirements.

Stability notions and blocking pairs. Because jobs have priorities and
workers have utilities (with possible ties), we use a stability definition tailored
to priority-based institutions. Fix a round ¢ and a matching pu feasible for
(Wi, Ar). A worker—job pair (w,a) € Wy x A; is said to block p if two
conditions hold: (i) job a strictly prefers w to its current assignee, i.e.,
w >4 p(a) (where we interpret p(a) = L as the lowest-priority outcome); and
(ii) worker w strictly prefers a in utility terms to their current assignment,
ie., U(w,a) > Uy(w, p(w)). When utilities admit ties, this is the standard
“weak” improvement requirement on the worker side: the worker must gain
strictly in utility for the deviation to be compelling.

We will also work with an e-tolerant version. For a fixed € > 0, we say
that (w,a) e-blocks p at round ¢ if

w 4 p(a) and U(w, a) > Uy (w, p(w)) + €.

This relaxation treats deviations with negligible gains (below €) as non-
credible, which is natural when utilities are estimated, discretized, or when
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switching costs make small improvements irrelevant. Conceptually, ¢ will
play two roles in the paper: it enlarges the feasible set of matchings that
qualify as “stable enough,” and it provides robustness to small perturbations

of Ut~

External versus internal stability. In a static model, one typically re-
quires that no blocking pair exists among all present agents. In a dynamic
environment, that requirement can be brittle: an arriving worker may in-
stantly create a blocking pair with an already-matched job, forcing immedi-
ate displacement if we insist on full (external) stability each round. Many
platforms in fact cannot (or choose not to) preempt assignments in this way,
either due to contractual commitments, batching, onboarding delays, or fair-
ness norms about not bumping currently served workers.

We therefore distinguish two notions.

External e-stability (the stronger requirement) rules out e-blocking pairs
(w, a) regardless of whether w or a are currently matched.

Internal e-stability (our baseline requirement) only considers deviations
among agents who are currently matched. Formally, a feasible matching g
at round t is e-internally stable if there does not exist a pair (w, a) such that
both w and a are matched in p (i.e., u(w) # L and u(a) # L), with

w 4 p(a) and U(w,a) > Up(w, p(w)) + €.

This requirement enforces a credible “no justified envy with significant gain”
condition among the participants who are actually trading in that round. It
is weaker than full stability, but it aligns with non-preemption: unmatched
workers cannot claim an immediate right to displace an ongoing assignment,
while matched workers and matched jobs should not have an obvious mutu-
ally beneficial swap that violates the priority rule.

Churn, epochs, and the structure of nonstationarity. The partici-
pant sets (Wy, A;) may change arbitrarily over time. To model this churn
in a way that is both operationally interpretable and analytically useful, we
partition time into epochs: maximal contiguous intervals over which the sets
(Wi, A¢) remain constant. Let E denote the number of epochs, indexed by
e € {1,...,E}. For each epoch e, let T, C {1,...,T} be its set of rounds
(a contiguous block), and let W€ and A® be the fixed worker and job sets
throughout that epoch. We write L, := |T¢| for the epoch length.

Epochs provide a natural unit for recomputation: when the pool of el-
igible participants changes, the platform may need to re-run a matching
procedure or re-compute a schedule. This recomputation, in turn, can in-
terrupt any deterministic rotation that was intended to share opportunities
across workers. For an individual worker w, define the set of active rounds
T(w) :={t: we W;}, and let E(w) be the number of epochs e such that
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w € W€. The quantity F(w) serves as a worker-specific churn exposure mea-
sure: it counts how many times w experiences an “epoch boundary” while
present, and thus how many times a time-sharing schedule can be cut short.
When we summarize churn at the market level, we may also refer to aggregate
measures such as £'—1 (the number of boundaries) or a symmetric-difference
volume ), |W;AW;_1| 4+ |AtAA;—1|; however, the guarantees we derive will
be indexed most cleanly by E(w).

Finally, while our baseline exposition treats stability relative to the con-
temporaneous utilities Uy, later results allow for slow within-epoch drift in
utilities. Intuitively, if U; changes gradually, then a matching computed at
the start of an epoch remains approximately stable throughout the epoch
provided e is calibrated to dominate the drift. This connects the model to
practice: platforms typically recompute infrequently and rely on stability
notions that are robust to small score changes.

4 Benchmarks: per-round OSS and its dynamic ex-
tension

To state meaningful guarantees in a changing market, we need a benchmark
that (i) respects the institutional constraint encoded by job priorities, (ii) is
well-defined even when the set of participants varies across rounds, and (iii)
is strong enough to make “time-sharing” nontrivial, yet not so strong that
it becomes infeasible or conceptually ill-posed under churn. We therefore
benchmark performance worker-by-worker against an optimal stable share
computed round-by-round, and then aggregate this quantity over the rounds
in which the worker is present.

Per-round optimal stable share (OSS). Fix a round ¢ and worker w €
W;. Let Sf denote the set of feasible matchings at time ¢ that satisfy the
(external) e-stability notion. We define worker w’s per-round optimal e-stable
share as
U (w) = /IL%%? Ui (w, p(w)),

with the convention Uy(w, L) = 0. This is the best utility that worker w
could obtain in round ¢ among matchings that clear the market subject to the
priority constraints (up to €). Importantly, this benchmark is individualized:
two workers may have very different U;"(-) in the same round, because
priorities and feasibility can make certain jobs unattainable in any stable
outcome for one worker while remaining attainable for another.

Two features of U,”* (w) are worth emphasizing. First, it is stability-aware
rather than welfare-optimal: if worker w could achieve utility 1 by taking
a job that would immediately be “justifiably” reclaimed by a higher-priority
worker, then that assignment is excluded from S§, and hence excluded from
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the benchmark. Second, the benchmark is deliberately permissive about
which stable outcome is chosen: we do not privilege the worker-optimal
or job-optimal stable matching, nor any particular selection rule. Instead,
Uy " (w) asks only whether some stable matching can award worker w a given
utility level. This aligns with our goal of understanding what can be achieved
through rotation or randomization over stable matchings: if there exists at
least one stable matching that gives w a high-value job, then in principle a
platform could try to allocate that job to w occasionally while staying within
the stability constraint each round.

Dynamic OSS (dOSS): aggregating across the worker’s active rounds.
In a dynamic environment, workers are not present in every round, and the
feasible set changes when participants arrive or depart. For this reason, the
natural extension of the per-round OSS is additive over the worker’s active
rounds. Let 7T (w) := {t : w € W;}. We define the dynamic optimal stable
share benchmark as

dOSSc(w) = Y U™ (w).
teT (w)

This quantity is an offline benchmark in the sense that it uses the realized
utilities U in each round. It is also non-strategic and round-local: it does
not attempt to couple decisions across time, but instead measures the total
“stable opportunity” available to w in the realized sequence of markets.

We stress that dOSS,(w) is not the value of any single matching or policy;
rather, it upper bounds what a worker could hope to obtain if, in every
round ¢, the platform selected whichever e-stable matching most benefited
that worker in that round. As such, it is an intentionally strong yardstick for
fairness-style guarantees: if a policy can secure a constant (or logarithmic)
fraction of dOSS¢(w) for every worker simultaneously, then it is allocating,
over time, a significant share of each worker’s stable opportunities.

Why we do not benchmark against a globally coupled “dynamic
stability” notion. One might ask whether a more ambitious benchmark
is appropriate—for example, optimizing a worker’s cumulative utility subject
to a stability constraint that is enforced across time, or requiring that the
entire sequence (), be stable in some intertemporal sense. Under churn,
such benchmarks quickly become problematic for three related reasons.
First, feasibility and existence become delicate. If we require stability
with respect to all agents who are present at any time (a “grand market”),
then most worker—job pairs are never simultaneously feasible, and stability
constraints become ambiguous: should an absent worker be treated as having
an outside option in that round, or as being unable to deviate? Different
modeling choices lead to different, often incompatible, notions of blocking.
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Even if one formalizes absences by adding outside options, the resulting
notion can force the platform to behave as if it could commit future capacity
to workers not yet present (or retain commitments to departed agents), which
is not operationally meaningful.

Second, strong dynamic stability can be incompatible with non-preemption
under churn. Consider a simple two-round example with a single job a.
In round 1, only worker w; is present, so any stable matching assigns a
to wi. In round 2, a higher-priority worker wsy arrives with wy >, wi.
Any notion of per-round external stability in round 2 would assign a to
wo, displacing wy. A global benchmark that tries to preserve wi’s round-
1 advantage into round 2 (or that penalizes displacement) is no longer a
stability benchmark; it is instead a commitment or tenure benchmark. Such
commitments may be desirable in some applications, but they are institution-
specific and should be modeled explicitly (e.g., via contracts, switching costs,
or service-level agreements). Our objective here is different: we take the
priorities as the “hard” constraint and study what fairness can be recovered
by rotating among stable outcomes, given that churn disrupts rotation.

Third, globally optimal dynamic benchmarks are not decomposable and
can hide arbitrary value in the choice of intertemporal constraints. Any
benchmark that allows the platform to trade off utility across time (e.g.,
matching a worker to a low-value job today to secure a high-value job to-
morrow) requires specifying what commitments carry over, what information
is known when, and whether a job is allowed to “hold” capacity. These are
important modeling decisions, but they are orthogonal to the stability—time-
sharing tension we wish to isolate. In contrast, dOSS.(w) is deliberately
modular: it measures, round by round, what was stably attainable given the
realized market in that round, and then sums those opportunities over the
worker’s presence.

A note on internal stability and the role of e. Our algorithmic con-
straint will be e-internal stability, reflecting non-preemption and operational
frictions. The benchmark dOSS¢(w) is nevertheless defined using (external)
e-stable matchings Sy, for two reasons. First, external stability provides a
conservative, institutionally interpretable notion of what a worker could re-
ceive without being justifiably displaced by an unmatched higher-priority
worker; thus it serves as a clean “best case” notion of stable opportunity.
Second, the parameter ¢ makes the benchmark robust to ties, discretization,
and small perturbations in the utilities, which will matter when we later
allow within-epoch drift. In our eventual guarantees, the gap between in-
ternal implementability and external benchmarking is handled explicitly via
additive terms (notably the €|7 (w)| discount and the churn exposure term).
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Connection to time-sharing and the next section. The benchmarks
above formalize what it means to give each worker a fair share of the stable
assignments available to them over time. The remaining question is mecha-
nistic: how can the platform, in each epoch with fixed participants, construct
a small set of e-internally stable matchings whose rotation ensures that every
worker attains a controlled fraction of U™ (w), and how does churn limit the
ability to realize that rotation without interruption? Section 5 answers these
questions by describing the rolling schedule policy (ROSS), which computes
an O(log Nyax)-sized support of internally stable matchings per epoch and
then implements a cyclic schedule across rounds.

5 Mechanism: Rolling Optimal Stable Shares (ROSS)

We now describe the rolling schedule policy (ROSS). The guiding idea is
simple: within any time interval in which the participant sets are fixed,
we can precompute a small collection of e-internally stable matchings that
“cover” workers’ best e-stable opportunities; we then rotate through this
collection deterministically, so that time averages mimic the fairness of an
explicit lottery while maintaining ex-post implementability each round.

Step 0: epochs as the unit of recomputation. Because arrivals and
departures change feasibility and stability constraints, ROSS recomputes
only when the active sets change. Formally, we partition the horizon into
epochs, where an epoch e is a maximal contiguous block of rounds 7, C
{1,...,T} such that Wy, = W€ and A; = A€ for all t € T,. Let t, := minT,
denote the epoch start. Within an epoch, priorities (P,)qcac are fixed by
assumption, and we take the relevant utility matrix to be U¢ (in the baseline
version, U® = Uy, is observed at the epoch start and treated as constant
within the epoch).

This “recompute-on-churn” design has an operational interpretation: the
platform updates a roster only when the roster becomes invalid (because the
set of available workers or jobs changes), but otherwise it can run a simple,
transparent rotation rule.

Step 1: a duplication—index construction within an epoch. Fix an
epoch e with worker set W€, job set A€, utilities U¢, and priorities P,. ROSS
constructs a list of matchings

ﬁe,lv ﬁe,Qa ) ﬁe,ma m = Hog2 Nmax-l + 2,

each of which is e-internally stable in the epoch. The construction is based
on a standard “duplicate capacity to create time slots” reduction: we tem-
porarily enlarge the market by giving each job m identical copies, compute
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one stable matching in that enlarged market, and then interpret each copy
index i € {1,...,m} as a round in the rotation.
Concretely, define the duplicated job set

AS* = A®x {1,...,m}.

Each duplicated job (a,?) inherits job a’s priority order P, over workers.
Utilities do not depend on the copy index:

U™ (w,(a,i)) = U(w,a) Ywe W€ ae A% i€ {l,...,m}.

We then compute a feasible matching i, between W€ and A%* that is e-
stable in the duplicated instance (with the natural outside option ). In-
tuitively, because each job appears m times, i, is a single assignment of
workers to indexed time slots of jobs, consistent with priorities.

At this point, we define m matchings in the original market by projecting
fie onto each index. For each i € {1,...,m}, the matching fi; is given by
Hoa(w) = {a if ﬁe(w? = (a,4) for some a € A°, o

' 1 otherwise,

and fic ;(a) is defined by the one-to-one consistency condition. Feasibility is
immediate: since [, matches each worker to at most one copy, each worker
appears in at most one fi.; as matched; similarly, each job a has at most one
worker assigned in ji. ; because ji. assigns at most one worker to the specific
copy (a,1i).

Two remarks clarify why this helps.

First, internal stability is preserved by projection. Any e-blocking devia-
tion under internal stability must involve two agents who are both matched
in the realized matching. If i, ; had an internal e-blocking pair (w, a), then
in the duplicated market worker w would prefer the copy (a,4) by more than
€, and job copy (a,i) would prefer w to its assignee under the inherited pri-
ority P,. This would contradict e-stability of fi.. Thus, stability of [ is
a convenient sufficient condition for each projected schedule slot fi.; to be
implementable without internal blocking.

Second, the copy indices create “coverage” over workers. The duplication
factor m is chosen so that, in a worst case over preferences and priorities,
one can prove that for every worker w there exists some index i(w) for which
Fei(w) 8ives w a job attaining their per-round optimal e-stable share (relative
to the original, unduplicated market). The economic intuition is congestion:
if too many workers were denied their best stable opportunities across all m
indices, then tracing the implied priority conflicts generates an expanding set
of distinct workers, and an exponential-growth argument forces m to scale as
O(log |W*€|). ROSS takes m large enough to dominate |W€| uniformly over
epochs via Npyax, so that we can use a single rotation length throughout.

16



Computing ji.: an oracle view. Algorithmically, ROSS requires a sub-
routine that outputs an e-stable matching in the duplicated market. We can
treat this as an oracle STABLEMATCH (W€, A*, U%* P). When utilities
induce weak worker preferences (ties) and € > 0 creates additional indif-
ference, any standard stable-matching procedure can be adapted by using
e-comparisons: a worker regards (a,i) as strictly better than (b,7) only if
U¢(w,a) > U(w,b) + ¢, and ties can be broken deterministically (e.g., by
job identifiers) without affecting the guarantees stated later, since the anal-
ysis is worst-case over instances and does not rely on selecting a particular
extremal stable matching.

From an implementability standpoint, the key point is that STABLEMATCH,
runs once per epoch, not per round. After it returns ji., the m projected
matchings fie1,. - ., fle;m can be stored as explicit maps from workers to jobs
(or 1).

Step 2: scheduling within the epoch via cyclic rotation. Having
computed {fte;}i";, ROSS implements a deterministic rotation over the
epoch’s rounds. For each round ¢ € T,, define the index

it == 14 ((t —te) mod m),
and set the realized matching to be

IJ/t = /je,iz .

Thus, workers experience a repeating cycle of length m. This determinis-
tic schedule is the simplest way to operationalize the intuition behind time-
sharing: if the platform were allowed to randomize independently each round,
it could draw ¢ uniformly from {1,...,m} and play i ;; the cyclic rule pro-
duces the same long-run frequencies without requiring per-round random-
ness, and it supports auditability (agents can predict which matching will
be used on which day of the cycle).

A minor practical refinement is to choose a random phase at the epoch
start: draw an offset ¢ € {0,...,m—1} and set iy = 14+ ((t—tc+¢pe) mod m).
This preserves all structural properties while reducing systematic bias against
agents who tend to arrive just before an epoch ends.

What churn changes, and what ROSS does (and does not) attempt
to do. When a new epoch begins, the previously computed schedule may
no longer be feasible, so ROSS discards it and recomputes from scratch on the
new participant sets. This is deliberately conservative: we do not attempt
to “stitch” schedules across epochs or maintain intertemporal commitments,
because such commitments would interact sharply with priorities and could
violate even internal stability in the new market. Instead, we accept that
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churn can truncate a cycle, potentially preventing some workers from reach-
ing the index i(w) at which they would obtain their best stable opportunity
in that epoch. Later, this shows up as an additive loss that scales with the
number of epochs a worker experiences.

Computational complexity and operational footprint. Within epoch
e, the duplicated market has |1 ¢| workers and | A°|m job copies. If STABLEMATCH,
is implemented via a deferred-acceptance-style routine, runtime is polyno-
mial in [W¢| - |A°lm, and memory is linear in the same order to store pref-
erence access and the resulting matching fi.. The projection step to obtain
fe1s- -5 fem 1s a single pass over workers and is negligible relative to the
stable-matching computation.

Per round, the online work is trivial: compute ¢; and output fic;,. In
platform terms, the heavy computation occurs only when the market com-
position changes; the per-round matching decision is then a table lookup.
This separation between epoch-time computation and round-time execution
is precisely what makes ROSS plausible as a scheduling primitive in environ-
ments where stability is a hard operational constraint but fairness must be
delivered through repeated interaction.

5.1 Main results: stability, dynamic optimal-share guaran-
tees, and tightness

Our analysis of ROSS formalizes a basic design goal for repeated match-
ing markets: we want each realized round-t assignment to be implementable
(no credible within-assignment deviation), while simultaneously guarantee-
ing that over time each worker receives a meaningful fraction of what they
could have obtained from the best e-stable outcome available in each round.
The key point is that these objectives are in tension in worst case: stability
constraints restrict the set of feasible matchings, and time-variation (churn)
limits the extent to which we can smooth or randomize across matchings.

Ex-post e-internal stability each round. The first guarantee is qual-
itative but operationally central: every matching p; output by ROSS is
e-internally stable in that round. Internal stability is the appropriate notion
for dynamic settings in which the platform must commit to an assignment
among the agents who are actually matched at time ¢: it rules out a pair
(w,a) such that (i) both would be involved in a deviation that displaces
another currently matched agent and (ii) the worker gains more than € from
switching, while the job prefers the worker by its strict priority. Because this
definition only quantifies over pairs where both sides are currently matched,
it is robust to the presence of unmatched agents and to the fact that the
market composition changes over time.
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Formally, within an epoch e the policy plays a cyclic sequence of match-
ings {fte,; }i", that were constructed to be e-internally stable for that epoch’s
agent sets and priorities. Since the active sets (W3, A;) are constant inside
the epoch by definition, the same internal-stability certificate applies to any
round ¢t € T,. Thus, ROSS ensures

MtEIte VtE{l,...,T},

without requiring any on-the-fly reoptimization. Economically, this is the
sense in which ROSS produces ez-post stable outcomes: stability is not
merely guaranteed in expectation over randomization, but holds for the par-
ticular matching actually implemented on that day.

It is important to be explicit about what this does not claim. Internal
stability is weaker than full (external) e-stability, because it does not prevent
a blocking pair involving an unmatched worker or an unmatched job. This
asymmetry is deliberate: in many platform settings, an unmatched agent
can be interpreted as not participating (or being unavailable) in the opera-
tive round, so deviations involving them are not credible. In Section 7 we
discuss how one can strengthen the stability requirement (or accommodate
uncertainty) at the cost of a larger € or additional computation.

Dynamic OSS benchmark and the O(log Ny.x) share. To quantify
fairness over time, we compare each worker’s realized cumulative utility to a
per-round e-stable benchmark. Fix a worker w, and recall that their dynamic
benchmark is

dOSS(w) = Z U (w), Uy (w) = Prbr‘lg%}gUt(w,u(w)),
teT (w) ¢

i.e., the sum across the rounds in which w is active of the best utility they
could obtain in an e-stable matching computed fresh for that round’s market.
This benchmark is demanding: it allows the matching to change adversarially
from round to round in a worker-favorable way, subject only to e-stability
in that round. We view this as an appropriate “gold standard” for an online
platform that wants to provide each worker a stable share of the best stable
opportunities available when they show up.

ROSS guarantees a logarithmic approximation to this benchmark, with
additive losses that separate (i) the stability tolerance € and (ii) churn. Let
m := [10ogs Nmax| + 2. Then for every worker w,

e[ Y Ulwp))] > o U W) ~ elTw)] — Bw).
teT (w) teT (w)

The expectation is with respect to any random phase choice at epoch bound-
aries (or, equivalently, to a randomized implementation that samples uni-
formly from {fi.;} each round within an epoch). The deterministic cyclic
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schedule achieves the same long-run frequencies as uniform randomization;
the phase randomization simply avoids systematic alignment between arrival
times and the cycle index.

The inequality has a transparent economic interpretation. The first term
says that each worker receives at least a 1/m fraction of their dynamic stable
benchmark, where m grows only logarithmically with the maximum market
size. The second term, —e|7 (w)|, reflects the fact that allowing e-blocking
slack effectively relaxes comparisons by € each round; we pay for that relax-
ation in the performance bound. The third term, —E(w), is a churn penalty:
each epoch boundary can truncate a rotation and cause the worker to miss
(at most) one scheduled “good” index at which they would have attained
their best e-stable opportunity for that epoch.

Why a logarithmic factor, and why churn enters additively. The
multiplicative log Nyax dependence is not an artifact of our proof technique;
it reflects a real congestion phenomenon inherent to stability under priori-
ties. Intuitively, workers’ best stable opportunities are mutually incompati-
ble: many workers may regard the same small set of jobs as their best stable
outcomes, but job priorities restrict which of them can be served without
creating blocking incentives. The duplication—index argument underlying
the epoch construction shows that, by expanding each job into m indexed
“time slots,” we can distribute these best stable outcomes across indices so
that each worker attains their own best stable outcome on at least one in-
dex. A directed-growth (or forest) argument then implies that ensuring such
coverage for all workers in the worst case forces m to scale as ©(log |W*|);
choosing m based on Np.x ensures a uniform guarantee across epochs.

Churn matters differently: it does not change the intrinsic time-sharing
requirement (hence it does not appear inside the logarithm), but it limits
how effectively the platform can realize the within-epoch coverage over time.
When an epoch ends, the schedule must be recomputed because feasibility
and stability constraints change with the participant sets. This recomputa-
tion resets the rotation, so a worker who is present across many short epochs
may repeatedly lose the “tail” of the cycle that would have delivered their
favorable index. Bounding utilities by 1 implies that each such truncation
costs at most one unit of cumulative utility, yielding an additive penalty
proportional to E(w). In practice, this term emphasizes a policy tradeoff:
recomputing aggressively keeps matchings aligned with the current market,
but frequent resets reduce the ability to deliver time-averaged fairness.

Tightness and limits of improvement. Finally, the guarantee is essen-
tially the best possible in worst case. Even in the static setting (a single epoch
with fixed agents and utilities), no policy that selects matchings—even allow-
ing arbitrary mixing over stable matchings—can guarantee every worker a
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share better than Q(1/log N) of their optimal stable share in the worst case.
By embedding that hard static instance as an epoch in our dynamic environ-
ment, we inherit the same lower bound: the 1/m = 0O(1/log Npax) multi-
plicative dependence is order-tight up to constants. Thus, improvements over
ROSS must come from moving beyond worst-case guarantees (e.g., structural
assumptions on utilities or priorities), from weakening stability, or from al-
lowing richer intertemporal instruments than per-round matchings.

Taken together, these results characterize the tradeoff the model is de-
signed to illuminate. ROSS delivers ex-post implementability (internal sta-
bility) every round, and it converts repeated interaction into time-averaged
fairness with only a logarithmic loss in market size. The unavoidable costs
appear in intuitive places: a per-round e slack term, and an additive penalty
for churn that captures the fundamental difficulty of guaranteeing time-
sharing when the set of participants itself is unstable.

6 Extensions: robustness, uncertainty, and recourse

The baseline presentation treats utilities U; as observed and piecewise con-
stant within an epoch, so that we may precompute an internally stable ro-
tation and then implement it mechanically. In many applications, however,
the utility inputs are themselves moving targets (e.g., worker-specific con-
version rates, predicted completion times), or they are only estimated with
statistical error. Moreover, platforms often face recourse constraints: opera-
tional, contractual, or fairness considerations limit how sharply assignments
can change from round to round. We outline three extensions that preserve
the organizing logic of ROSS—time-sharing across a small support of inter-
nally stable matchings—while making explicit the additional slack one must
pay for robustness or implementability.

(i) Bounded utility drift within an epoch and e-robust internal
stability. Suppose that within an epoch e the participant sets (W€, A€)
and priorities P, are fixed, but utilities drift gradually over rounds ¢t € T,. A
convenient model is a max-norm Lipschitz condition: for consecutive ¢,t+1 €
Te,

1Vt = Utllma := | _max_

Ut+1(w>a) - Ut(w7a)‘ < p-

Operationally, the platform computes the rotation {ji;}/", once at the
epoch start ¢, := min T, using U;,_, and then plays it throughout the epoch.
The question is what internal-stability guarantee this implements at a later
round ¢, when the true utilities are U; # Uy, .

The key observation is that internal stability is a margin condition: a
blocking pair (w, a) requires a strict improvement for worker w of more than
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€ relative to their assigned job. If each entry of the utility matrix moves
by at most A, then the improvement margin moves by at most 2A (one
term for the deviation utility and one for the incumbent utility). Since
Ut — U, |lmax < (t — te)p, it follows that if fi.; is ep-internally stable under

Uy, , then the same matching is e-internally stable under U; for any
€ > e+2(t—te)p.

A simple and often useful corollary is a within-epoch calibration rule: if we
target a fixed tolerance e at all rounds, we may compute the rotation at
epoch start with a smaller tolerance ¢y that leaves room for drift. In the
common case where drift is small on the time scale of an epoch, choosing €
on the order of 2p (or, more conservatively, 2pL.) preserves ex-post e-internal
stability without recomputation.

This robustness comes with two economic limitations. First, increasing e
widens the set of matchings that qualify as stable but simultaneously weak-
ens the benchmark comparison by introducing larger —e|7T (w)|-type terms in
performance bounds. Second, if drift is not small relative to the desired sta-
bility margin, then the platform faces a design tradeoff between reoptimiza-
tion frequency (shorter epochs, hence more churn-like resets) and stability
slack (larger €). A practical compromise is a trigger rule: retain the current
rotation as long as an online estimate of |U; — Uy, ||max stays below €/2, and
otherwise declare an epoch break and recompute. This converts unmodeled
drift into an endogenous churn measure, making explicit that robustness and
churn are two sides of the same implementability constraint.

(ii) Uncertain utilities and rectangular confidence sets: robust e-
calibration. A second departure from the baseline is informational: the
platform may not observe U; directly, but only an estimate ﬁt derived from
historical data or noisy feedback. A parsimonious and analytically tractable
uncertainty model is rectangular (entrywise independent) confidence sets.
For each round t, let

Uy = {U: Wix Ay = [0,1] | U(w, a) € [Uy(w, a)—8;(w, a), Uy(w,a)+6;(w, a)] V(w,a)}

with truncation at [0, 1] implicit. The platform’s objective may then be to
ensure implementability and fairness uniformly over all U € U;, reflecting
worst-case misspecification within the confidence region.

There are (at least) two natural robust stability notions. The more con-
servative one requires that the realized matching p; be e-internally stable for
every U € Uy. This is a direct robustness constraint: no deviation should
become profitable by more than ¢ under any plausible utility realization. A
less conservative alternative requires stability only for the (unknown) true
Uy, but uses U; to pick an € that makes violations unlikely. Our framework
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accommodates either choice through the same calibration logic: the stability
margin must dominate the uncertainty in pairwise utility differences.
Concretely, define the round-t worst-case uncertainty radius

Ay = max  O0(w,a).
weEWy, acAs

If a matching u is eg-internally stable under the estimate ﬁt, then for any
U € U, the worker’s deviation gain satisfies

U(wva) - U(wmu(w)) < ﬁt(waa) - ﬁt(wa/‘(w)) + 2At7

so i is e-internally stable uniformly over U; whenever € > ¢y + 24A;. Thus,
rectangular uncertainty enters exactly as an additive slack in €, mirroring the
bounded-drift logic but with A; interpreted as statistical error rather than
temporal movement.

For fairness comparisons, one must also decide what benchmark is mean-
ingful under uncertainty. A pessimistic benchmark replaces U, (w) with a
robust optimal stable share,

€,%

op(w) = max min U (w, p(w)),

neS; Uel

which asks what a worker can guarantee in an e-stable matching when util-
ities are adversarially selected within U;. This benchmark is weaker than
the nominal one computed from ﬁt, but it aligns with environments where
the platform is accountable for performance under misspecification (e.g.,
when predicted worker-job fit is systematically biased). Alternatively, if U,
is a high-probability confidence set, the platform can benchmark against the
nominal [7: "(w) and interpret the resulting guarantees as holding with high
probability, with A; governing the necessary e-buffer.

The limitation here is conceptual as well as quantitative: robustifying
stability via larger e can be economically meaningful (it prevents fragile as-
signments that hinge on thin predicted differences), but it may also legitimize
outcomes that are materially blocked under the true utilities. This makes
the calibration step a policy parameter: platforms may wish to report the
chosen € (or its implied A;) as a transparency measure, since it encodes how
conservative the assignment is relative to estimation risk.

(iii) Optional recourse constraints and when numerical methods
become necessary. A third extension concerns operational feasibility.
ROSS as stated rotates among m internally stable matchings, and this rota-
tion may reassign many workers from one round to the next. In settings such
as school placement across terms, shift bidding with training requirements,
or gig platforms that value continuity, the platform may face hard or soft
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recourse constraints that penalize reassignment. A canonical hard constraint
is a per-round cap

[{w e Ws: p(w) # pe—1(w)}| < R,

or, more generally, a switching cost added to the objective:

T
Z Z cw - Hug(w) # pp—1(w)}.

t=2 weWN\Wy_1

Introducing such constraints changes the nature of the design problem. With-
out recourse constraints, we can analyze each epoch independently, and the
principal difficulty is distributing each worker’s best stable outcome across a
small index set. With recourse constraints, we must additionally construct
a path through the space of stable matchings whose adjacent elements are
close.

Two approaches are natural. The first is structural: restrict attention to
rotations that change only a small set of assignments per step (for instance,
by decomposing the desired lottery over matchings into a sequence connected
by local exchanges). This resembles designing a mixing path on the graph
of e-internally stable matchings, with edge weights capturing recourse costs.
The second is computational: formulate the within-epoch schedule as an
optimization problem over matchings and time indices, balancing (i) inter-
nal stability constraints u; € If and (ii) coverage constraints that deliver
each worker a target fraction of U;"(w), subject to explicit recourse limits.
Even for a single epoch with fixed participants, this joint design problem can
become a mixed-integer program, because stability constraints are combina-
torial and the schedule couples decisions across rounds.

We view this as an appropriate point to acknowledge a boundary of the
analytic guarantee: the clean ©(log Nyax) factor is driven by worst-case cov-
erage under stability, but once recourse is imposed, additional lower bounds
may emerge from the geometry of the stable set itself (e.g., if stable match-
ings are disconnected under small Hamming moves). In practice, one can
still use the ROSS construction as a starting point—it provides a small sup-
port of candidate stable matchings with good per-worker coverage—and then
solve a secondary routing problem that orders these matchings to minimize
reassignment, possibly repeating matchings for multiple rounds when the
recourse budget is tight. This hybrid approach preserves the economic in-
terpretation of ROSS (time-sharing across stable outcomes) while adapting
it to environments where continuity is a first-class constraint rather than an
incidental preference.
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7 Lower bounds and the necessity of churn penal-
ties

Our guarantees combine two qualitatively different ideas: a congestion term
(the unavoidable O(log Nyax) multiplicative loss, even in a perfectly static
environment) and an interruption term (the additive dependence on how
often the market composition changes around a worker). It is useful to sep-
arate these forces, because they speak to different design levers. Congestion
is structural—it is present even with full information, no recourse limits, and
a single epoch—whereas interruption losses arise from the simple fact that
time-sharing requires time.

(a) The static Q(log N) barrier is inherited by the dynamic model.
Even if we set churn to zero (a single epoch, fixed utilities, fixed priori-
ties), a policy that is required to output (approximately) stable matchings
cannot simultaneously give every worker a constant fraction of their per-
worker optimal stable utility. Proposition 5 formalizes this by embedding
the hard static instance directly as a one-epoch dynamic instance. Economi-
cally, this lower bound reflects a familiar “bottleneck” phenomenon: stability
pins down who can displace whom, and in worst-case instances the workers
who are “locally” entitled (by priority) to high-value jobs form an exponen-
tially branching structure. Any lottery over stable matchings must spread its
probability mass across many incompatible local entitlements, and a log NV
loss is the price of distributing these entitlements broadly enough.

This point matters for interpretation. Without the Q(log N') obstruction,
one might read the m = [logy Nmax | + 2 rotation length as an artifact of our
construction. Proposition 5 says it is not: even with unlimited time to rotate
and no arrivals or departures, O(log N) is the right order in worst case when
benchmarking against per-worker OSS.

(b) Why any churn-free guarantee must fail under epoch interrup-
tions. The additive term E(w) in Proposition 3 is not merely a byproduct
of the proof technique; it captures a genuine impossibility created by short
epochs. The core tension is that the fairness logic of ROSS is fundamentally
a coverage statement: within a fixed instance, we identify a small set of in-
ternally stable matchings and ensure that across a full cycle each worker is
covered (i.e., receives a matching that attains their per-round stable bench-
mark up to the 1/m factor). When an epoch ends early, the cycle may be
cut before that worker’s “covering” index is played.

We can make this precise via a simple scheduling argument that is ag-
nostic to how the matchings are constructed.

Interruption lower bound (informal). Fix a participant set (W, A),
priorities P, and utilities U. Suppose there exists a collection of internally
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stable matchings {v1,...,v} C I¢ and a map i(-) such that each worker w
achieves their per-round benchmark in at least one of them, i.e.,

U, viy(w) > U (w).

Any policy that plays one matching per round can realize this coverage for
all workers only if it has at least m rounds in which to deploy (a permutation
of) these matchings. If the epoch length is L < m, then regardless of the
policy, there exist workers whose covering index is not played. For such a
worker w, one can have

L

L
ZU(w,,ut(w)) =0 while ZUG’*(w) =L,
t=1

t=1

simply by designing utilities so that w obtains value 1 only in their covering
matching and value 0 in all other stable matchings the policy might play.

The point is not that the worker gets literally zero in realistic markets, but
that the gap scales with the number of interrupted opportunities to complete
a coverage cycle. If we concatenate many short epochs, the losses compound.
For example, consider a worker w who is present for E(w) epochs of length
one. If in each epoch the platform is forced (by stability) to choose one
matching from a set in which w is “served” only by a particular index, then
w may miss that index in every epoch. In that case, the worker’s cumulative
benchmark is 3,7, U (w) = E(w), but the realized utility can remain
0. Any guarantee of the form

B[] > - dOSS.(w) — o(B(w)

must therefore fail on such a path: the right-hand side grows linearly in F(w)
while the left-hand side need not. This is exactly why Proposition 3 pays an
additive term proportional to E(w): each time an epoch ends, the platform
may lose (for some workers) up to one unit of utility relative to what a full
rotation would have delivered, and there is no way to amortize this loss if
the environment repeatedly denies the platform enough rounds to complete
a cycle.

Two further remarks sharpen the interpretation.

First, the lower bound does mot rely on the platform being ignorant of
the epoch length. Even if the platform knows an epoch will last L < m
rounds, it cannot generally order L stable matchings so as to cover all work-
ers’ benchmark-achieving indices: the coverage requirement itself demands
at least m distinct “slots” in the worst case. Knowledge can help choose
which workers to prioritize early in the cycle, but it cannot remove the com-
binatorial scarcity of stable opportunities.

Second, the dependence on F(w) is inherently worker-specific. Some
workers may experience low effective churn because they remain present in
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long epochs; others (e.g., occasional gig workers) may appear only in short
bursts. A uniform global churn measure C' can be a useful summary, but the
impossibility is pinned to how often the individual worker’s participation is
fragmented.

(c) When stability restrictions become tighter, barriers can strengthen
to Q(N). The Q(log N) barrier concerns the best possible guarantee when
we are allowed to randomize (or equivalently time-share) over stable out-
comes. If we impose additional restrictions that shrink the feasible set of
matchings or the feasible set of lotteries, much stronger impossibilities can
emerge. One salient case is insisting on exact stability with no slack (or,
more generally, restricting attention to a thin subset of stable matchings
with special structure). In such environments, it is possible to construct
instances where different workers’ optimal stable assignments occur in es-
sentially disjoint stable matchings, so that any lottery supported on fewer
than Q(N) stable matchings leaves some worker with vanishing probability
of receiving their OSS-attaining assignment. In the extreme, one can have a
family of instances where for each w there exists a stable matching p" that
gives w utility 1 but gives many other workers utility 0, and no single stable
matching can simultaneously deliver utility 1 to more than O(1) workers.
Then, for any distribution D over stable matchings,

min . [U(w, pu(w)] < O(1/N),

yielding an Q(N) multiplicative barrier relative to the per-worker OSS bench-
mark (which equals 1 for all workers in this construction). The economic
message is straightforward: if the stable set fragments into highly special-
ized outcomes, then fairness-by-time-sharing requires a large support, and
short epochs make that requirement operationally infeasible.

This is one reason we regard € not as a purely technical relaxation, but as
an implementability parameter. Allowing e > 0 can “thicken” the feasible set
I¢ enough to recover small-support coverage (and thus logarithmic rotation
length), whereas insisting on razor-thin exact stability can force either very
long rotations or very unequal treatment.

Takeaway. Putting these pieces together, we should read Proposition 3 as
a sharp decomposition of what can and cannot be improved. The ©(log Nyax)
factor is the irreducible congestion cost inherited from the static model. The
additive churn term is the irreducible interruption cost that appears when-
ever participation is fragmented into many short epochs. The platform can
trade between the two only by changing modeling commitments: permitting
slack in stability (e€), recomputing more often (thereby increasing effective
churn), or changing the benchmark (e.g., adopting a recourse-aware or ro-
bust benchmark). In this sense, churn is not merely a nuisance parameter;
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it is the dynamic analogue of market thickness, and any fairness guarantee
that ignores it must fail in worst case.

8 Empirical protocol (optional): estimating dynamic
OSS proxies, simulation design, and fairness di-
agnostics

The theory above is benchmarked to the (unobserved) dynamic OSS quantity
dOSSe(w) = 31 (w) U; " (w). In applied settings, a platform rarely observes
U; directly; instead it observes a log of feasible pairs, recommended /assigned
matches, acceptance/completion outcomes, payments, and worker/job at-
tributes. This section outlines a pragmatic protocol for (i) constructing proz-
ies for dOSS¢(w) from logs, (ii) designing simulations that mirror gig/task
marketplaces, and (iii) reporting interpretable metrics for e-stability viola-
tions (envy incidents) and share fairness.

Step 0: reconstruct the per-round instances from logs. For each
round ¢, we require an empirical analogue of (W;, Ay, P,U;). The partici-
pant sets (Wy, A;) are typically observed (active workers online; open tasks).
Priorities P, can be (a) an explicit rule (e.g., rating tiers, seniority, response-
time buckets), in which case it is directly recoverable, or (b) an implicit policy
(e.g., a learned ranking score), in which case we recommend fixing P, to the
auditable ordering the platform claims to use for compliance. The main mod-
eling choice is utilities: we recommend estimating a bounded cardinal score
Us(w, a) € [0,1] that predicts realized worker surplus (or a monotone trans-
form of acceptance probability) as a function of observables (wage, distance,
duration, skill match, time-of-day, etc.). Concretely, one can set

~

Ui(w,a) = a(BT:Ut(w,a)>,

where o is a squashing map to [0, 1] (logit/probit or a calibrated isotonic
regression), and x;(w, a) are logged features. When only bandit feedback is
available (utilities observed only for served pairs), we recommend counterfac-
tual modeling with inverse-propensity weighting or doubly robust estimation;
the output remains a proxy, and this limitation should be reported explicitly.

Step 1: partition time into epochs and compute churn summaries.
Given (W, A;), we compute epochs T, as maximal contiguous intervals with
constant participant sets. Empirically, one may also use approximate epochs
by thresholding the symmetric difference |W,AW;_1| + |A;AA;_1] to avoid
treating minor fluctuations as full recomputations. For each worker w, we
compute F(w) (the number of epochs in which w appears) and |7 (w)|. These
quantities are not merely descriptive: they determine, in the theory, the scale
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at which interruption losses can appear, so we recommend reporting them
alongside fairness outcomes (e.g., stratifying by high- vs. low-churn workers).

Step 2: estimate a per-round OSS proxy ﬁf’*(w). Exact computation
of Uf"(w) = maxyese Up(w, p(w)) may be intractable at scale, especially
under ties and e-slack. We therefore recommend two complementary proxies.

(A) Optimization-based proxy (small/medium instances). Fix t and a
worker w. Solve a mixed-integer program that maximizes ﬁt(w,a) over
matchings subject to feasibility and e-internal stability constraints induced
by P,. Using binary variables x,, € {0,1} and outside option z,, feasi-
bility is linear. e-internal stability can be enforced by forbidding internally
blocking pairs: for any a and any pair of workers u =, v, we rule out allo-
cations in which a is assigned to v while u is assigned to some b that makes
u e-prefer a. With discretization (or by precomputing preference relations
ﬁt(u, a) > ﬁt(u, b)+e¢), these constraints can be written as linear inequalities
of the form

Tya T Z Tup < 1.
b: ﬁt(u,a)>fjt(u,b)+e

The objective pins down the best stable job for w, yielding ﬁf *(w). This
proxy is computationally heavy but has the advantage of being explicit and
auditable.

(B) Sampling-based proxy (large instances). Generate a diverse collec-
tion of e-internally stable matchings for round ¢ (or for epoch e) by running
a stable-matching routine under random perturbations/tie-breaks. For ex-
ample: add i.i.d. noise 7, to utilities, compute a worker-proposing deferred
acceptance outcome with workers ranked by ﬁt(u, a) + Nue and jobs ranked
by P,, then post-check e-internal stability under ﬁt and keep only feasible
matchings. Repeat R times, obtaining {u("}2 | and define

7TE,* - - (r)
U (w) - max Ui (w, ' (w)).

This estimator is a lower bound on the true ﬁf*(w) (it can miss the best
stable outcome), but it scales and aligns with the time-sharing logic: it
directly produces a small support of stable matchings that can also serve as
candidate schedules.

Step 3: compute dynamic OSS and realized-share diagnostics.
Given a policy’s realized assignments p; and utilities U;, compute each
worker’s realized cumulative utility

My = Y Ui(w,u(w),  dOSSc(w) = > Uf*(w).
teT (w) teT (w)
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We then report a share statistic,
_— T,

Share(w) 1= —— )
dOSS(w) + 109

along with its distribution across workers (minimum, 10th percentile, me-
dian). Because me(w) is itself estimated, we recommend sensitivity anal-
yses over (i) the number of samples R in the sampling proxy, (ii) alternative
utility models (Aft, and (iii) alternative € values (especially if € is interpreted
as a compliance tolerance).

Step 4: measure envy incidents and stability violations. To connect
to the stability constraints, we recommend logging and reporting blocking-
pair statistics. For any round ¢, define the e-blocking gain of pair (w,a)
as ~ R

Af(w,a) = Ui(w,a) — Up(w, pe(w)) — e

An external e-envy incident occurs if Af(w,a) > 0 and w =, pt(a) (treating
ue(a) = L as lowest priority). An internal e-envy incident additionally
requires that both w and a are matched in p;, matching our internal-stability
constraint. Report:

1. the rate of incidents, e.g. m > twa HA(w,a) > 0N w =,
t I I
pe(a)};

2. an intensity metric, Y, , . (Af(w, a))
violations from a few large ones;

I which distinguishes many tiny

3. a per-worker exposure metric, >, 1{w is e-envied at ¢ via a}, to de-
tect systematic unfairness concentrated on specific cohorts.

These diagnostics translate the abstract notion of stability into audit-friendly
quantities: how often could a worker plausibly claim a justified displacement
under the stated priority rules, and how large are the gains at stake.

Step 5: simulation design for gig/task markets. For controlled eval-
uation, we recommend simulating a sequence of rounds with (i) stochastic
arrivals/departures that generate epochs, (ii) structured utilities, and (iii)
explicit priorities. A minimal design is:

1. Arrivals: each worker appears according to an on/off Markov process
(capturing shift-like availability); tasks arrive as a Poisson process with
service times and deadlines.

2. Utilities: let ﬁt(w, a) be increasing in pay and decreasing in distance
and expected duration, with heterogeneity in worker-specific weights;
optionally add drift p by evolving task characteristics or worker loca-
tion.
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3. Priorities: set P, by a composite score (e.g. rating tier first, then re-
sponse speed), fixed across time to mimic a compliance rule.

Compare ROSS-style rotations to baselines such as (a) myopic stable match-
ing each round (e.g. worker-optimal stable matching under (/jt), (b) max-
weight matching ignoring stability, and (c) stability-constrained max-weight
matching. Report tradeoffs among (i) share fairness S/hzﬁ(w), (ii) incident
rates, and (iii) churn exposure E(w), since the theory predicts that short
epochs can dominate the welfare loss even when congestion is mild.

Limitations and interpretation. Any empirical me(w) is a model-
based construct; it should be interpreted as an auditable counterfactual un-
der declared priorities and an estimated utility model, not as a ground-truth
entitlement. Nevertheless, the protocol is useful precisely because it decom-
poses performance into (i) a stability /compliance dimension (envy incidents)
and (ii) a fairness-by-time-sharing dimension (realized share relative to an
e-stable benchmark), which can then be linked to concrete operational levers
such as recomputation frequency (epoch length) and the permissible slack e.

9 Policy and platform implications: rotating sched-
ules, auditability, and stability as a compliance
constraint

The central practical lesson of the model is that time-sharing over stable
matchings can serve as an operationally simple bridge between two objec-
tives that are often in tension in platform design: (i) respecting a declared
priority rule (for compliance, legitimacy, or contractual reasons), and (ii)
delivering a meaningful notion of long-run fairness when the market is con-
gested and participants churn. ROSS makes this bridge explicit. Rather
than interpreting stability as a one-shot outcome concept (“compute a stable
matching and stop”), we treat it as a per-round constraint—each realized
matching must be (internally) stable up to slack e—and then use rotations
across a small set of such matchings to share scarce “good” opportunities
over time.

Rotating schedules as a design primitive. Many platforms already
rotate exposure implicitly (e.g., cycling who is shown first in a ranking, or
who is offered the next job). Our framework suggests making this rotation
structured and verifiable. Within an epoch e (a period of stable participation
sets), ROSS precomputes a collection {fi¢ 1, ..., fle;n} Of e-internally stable
matchings and then cycles through them. The theoretical point of the con-
struction is not that any particular fi.; is optimal, but that the support size
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m = [logy Nmax | +2 is small while still guaranteeing each worker a nontrivial
fraction of her per-round best e-stable outcome in expectation.

From an engineering perspective, this “small support” feature matters:
platforms can store and reason about a small menu of matchings per epoch
(or per recomputation window), rather than relying on a continuously chang-
ing, hard-to-audit ranking model. Moreover, deterministic cycling can be
implemented without continuous randomness, which can simplify incident
investigations (one can trace which index i was scheduled at time t) while
still approximating the fairness benefits of random time-sharing.

Auditability and explainability: why stability helps. A recurring
challenge in applied matching systems is that stakeholders want an answer to
the question: “Why was I skipped?” Stability provides a crisp and auditable
response when priorities P, are part of the platform’s public commitments. If
the platform asserts that jobs follow a strict priority order P, (e.g., seniority,
licensing tier, or a legally protected ordering), then e-internal stability implies
there is no pair (w, a) of currently matched agents for which (i) job a would
rank w above its assigned worker and (ii) w would gain more than e in utility
by switching to a. In other words, among those currently being served, there
is no justified displacement that simultaneously respects the job’s declared
priority and yields a material gain to the worker.

This is a compliance-oriented notion. It does not claim global optimality,
nor does it preclude envy by unmatched agents (which would be ruled out by
external stability). But it is often the relevant legal or contractual constraint:
disputes frequently involve two served parties (“this task should have gone
to me instead of them”), and internal stability directly addresses that class
of claims.

ROSS also encourages a separation of concerns in governance. Priorities
P, can be treated as a policy object chosen for transparency and compli-
ance; within that policy, the platform uses rotation to allocate opportunities
fairly over time. This separation makes it easier to audit changes: if pri-
orities change, that is an explicit policy revision; if only the rotation phase
changes, that is an operational adjustment without altering the underlying
entitlement structure.

Stability as a constraint, not an objective. A practical temptation is
to treat stability as a performance target and attempt to “optimize stability”
directly (e.g., minimize the number of blocking pairs). Our results instead
motivate stability as a hard constraint (up to tolerance €) and fairness as
the design objective subject to that constraint. This framing matches how
many platforms operate: the platform cannot violate certain priority rules,
but it has discretion in how to schedule feasible stable allocations over time.

This constraint-based view also clarifies what the fairness guarantee is
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and is not. The benchmark -, .7, U/ " (w) is already conditioned on the
stability rule; it is not a claim about the best unconstrained matchings. Con-
sequently, when a worker receives a low share, the diagnosis is not necessarily
“the algorithm is unfair,” but may be “the declared priorities and the market
thickness together imply that no stable policy can do much better.” This
distinction is valuable for policy discussions because it ties fairness outcomes
to explicit institutional choices.

Choosing epoch length: recompute less often than you think. The
dynamic guarantee highlights a concrete tradeoff in recomputation frequency.
On the one hand, frequent recomputation adapts quickly to changing sup-
ply/demand and changing estimated utilities. On the other hand, each epoch
boundary creates an interruption cost that appears as an additive term E(w)
in the worker’s guarantee:

[ Y wm@)] 2 = Y U w) - dT(w)] - Bw)
)

teT (w) teT (w

Operationally, this suggests a simple rule-of-thumb: choose recomputation
windows long enough to complete rotations. Since a full cycle has length
m = O(log Nmax), epochs shorter than m rounds systematically prevent
some workers from reaching their “good” scheduled index before the instance
resets. When the platform must recompute frequently (e.g., because sup-
ply/demand changes quickly), it can still mitigate the churn penalty by (i)
using approximate epochs that ignore small participant fluctuations, (ii) car-
rying over the rotation phase when changes are minor, or (iii) maintaining
a stable “backbone” set of participants for the purpose of rotation while
handling marginal arrivals via an auxiliary mechanism.

This perspective also changes how we interpret product requirements
such as “real-time matching.” Real-time does not necessarily require recom-
puting the entire stable allocation each round; it often suffices to recompute
the menu of stable matchings less frequently while assigning in real time
according to the current rotation index.

Choosing e: from a mathematical slack to a policy tolerance. The
parameter € plays two roles. Mathematically, it enlarges the feasible set of
matchings (making stability robust to estimation error or drift) while intro-
ducing an additive fairness loss €|7 (w)|. Policy-wise, it can be interpreted
as a tolerance for justified envy: a worker should not be able to claim a
displacement that improves her payoff by more than e while respecting the
job’s priority.

This suggests choosing e neither as zero by default nor as an arbitrary
constant, but rather by anchoring it to measurement and volatility. If utilities
are estimated with error on the order of § (in max norm), then setting e
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modestly above that error scale can prevent spurious instability findings that
are artifacts of noise. Likewise, if utilities drift within an epoch at rate p, the
robustness logic motivates € proportional to p. The platform can then report
€ transparently as a compliance tolerance: “we guarantee that no matched
worker can be displaced by a higher-priority worker for a gain exceeding €.”

At the same time, the bound cautions against setting € too large: a large
slack can make stability easier to satisfy, but it effectively licenses larger
per-round envy gains and weakens the fairness guarantee linearly in time.
In practice, this tradeoff can be managed by monitoring empirical e-envy
incident rates as a function of € and selecting the smallest € that yields
acceptable robustness (e.g., stable outcomes do not oscillate wildly due to
minor estimation changes).

Limitations and stakeholder risks. Two limitations are worth empha-
sizing in policy discussions. First, internal stability may be insufficient when
stakeholders care about claims by unmatched agents (e.g., a worker argues
she should have been matched at all). Addressing such concerns requires
external stability, which is stronger and may reduce feasibility or welfare.
Second, rotating schedules can create strategic timing incentives if workers
can anticipate the cycle (e.g., logging in only during favorable indices). This
is not a failure of the concept, but it means that platforms should consider
randomizing the phase, committing to schedules in advance, or designing
availability requirements that blunt timing arbitrage.

Overall, the model illuminates a practical tradeoff: stability can make
matching systems more legitimate and auditable, but it constrains one-shot
efficiency; rotation can restore a long-run fairness notion, but only if recom-
putation is not so frequent that churn prevents cycles from completing.

10 Conclusion and open problems: decentraliza-
tion, multi-stakeholder objectives, and learning
under churn

We view the main contribution of the framework as conceptual rather than
purely algorithmic: it reframes a repeated matching problem as the inter-
action of (i) a per-round e-internal stability constraint tied to priorities and
legitimacy, and (ii) an intertemporal fairness objective benchmarked against
what is achievable subject to that same constraint. The resulting guarantee
is deliberately modest—a 1/O(log Nyax) share with additive losses from e
and churn—because the model makes precise why more ambitious worst-case
promises are structurally impossible, even without dynamics. At the same
time, the guarantee is operational: it is realized by a small-support rotation
over stable matchings, which is exactly the kind of primitive platforms can
implement and audit.
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Several open problems follow naturally once we take this “stability-as-
constraint, fairness-over-time” perspective seriously.

Decentralization and implementation: can rotation be made incentive-
compatible? ROSS is a centralized scheduling policy: it precomputes a
menu of matchings and then commits to a deterministic (or randomized) ro-
tation. In practice, many markets are not fully centralized. Workers choose
when to participate; jobs may have discretion; and the platform may only be
able to recommend matches rather than enforce them. A first open problem

is therefore implementation: under what behavioral or institutional assump-
tions can a rotation over stable matchings be sustained as an equilibrium of

a decentralized process?

One direction is to interpret the rotation index as a form of time-dependent
entitlement. If workers can observe the index and anticipate future assign-
ments, then they may delay participation to enter on favorable indices, un-
dermining both stability and fairness. This raises a mechanism-design ques-
tion: can we randomize the phase or conceal the index while preserving
auditability? More broadly, what is the right equilibrium concept when (i)
priorities are fixed, (ii) utilities may be private information, and (iii) agents
can opt in and out? The natural tension is that transparency improves
legitimacy, yet predictability creates timing arbitrage. Understanding the
minimal information that must be revealed for compliance, while still deter-
ring manipulation, remains open.

A second direction is to search for distributed analogues of rotation. For
example, one might ask whether repeated applications of deferred acceptance
with slowly varying tie-breaking rules can approximate the same time-sharing
distribution, or whether there exist local swapping dynamics that converge to
a cycle visiting the desired support. Here, internal stability is an advantage:
because blocking pairs are only defined among matched agents, one can hope
to design decentralized acceptance protocols that preserve internal stability
by construction, even if external stability is unattainable.

Multi-stakeholder objectives: beyond the worker-side OSS bench-
mark. Our benchmark is worker-centric by design: each worker is com-
pared to her best e-stable outcome in each round. This is appropriate when
fairness to workers is the salient concern and priorities P, are non-negotiable.
Yet many platforms face multi-stakeholder objectives that do not reduce to
a single side. Jobs may care about match quality or completion time; reg-
ulators may care about non-discrimination; and platforms may care about
revenue, retention, or geographic coverage.

A natural generalization is to define a vector of benchmarks—for workers
and for jobs—and to ask whether one can rotate over matchings to guarantee
simultaneous shares. Even in static markets, such multi-objective guarantees
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may be impossible without relaxing feasibility or priorities. In dynamic
settings, the question becomes sharper: does churn exacerbate the tradeoff
between worker fairness and job-side service quality? Can we characterize
Pareto frontiers over long-run shares, e.g.,

(wossim), ™ (q0s5:)

and ,
dOSSc(w) /, dOSSc(a) /,
under a shared stability constraint? A related open problem is the design of
stability notions that better reflect job-side concerns when priorities are only
a partial ordering, or when jobs have capacity and downstream complemen-
tarities (e.g., teams, shifts, or routing constraints). In such environments,
internal stability may be too weak to prevent credible complaints on the job
side, yet external stability may be too strong to admit any rotation-based
fairness guarantees.

More practically, platforms often impose service-level constraints (fill
rates, response times) that are not captured by stability alone. It is open
how to integrate such constraints without losing the small-support struc-
ture that makes rotation implementable. One promising approach is to treat
these constraints as additional feasibility restrictions defining a smaller set
I;°¢ C If, and then ask whether an analogue of the m = O(log Npax)
support bound still holds.

Learning under churn: stability with partial feedback and chang-
ing participants. The analysis assumes that, at the time of matching,
the platform observes Uy (or at least an adequate proxy) and priorities P,.
In many applications, utilities are latent: the platform observes noisy accep-
tance/decline decisions, completion outcomes, ratings, or long-run retention.
This raises a central open problem: how do we learn utilities while maintain-
ing per-round e-internal stability and providing long-run fairness guarantees?

At a high level, learning introduces an exploration—stability conflict. Ex-
ploration requires occasionally deviating from currently estimated best as-
signments; but such deviations can create blocking pairs relative to the true
U, violating the compliance constraint. One conceptual resolution is robus-
tification: maintain a confidence set U; around the estimated utility matrix
and require that p; be e-internally stable for all U € Uy. This resembles the
drift-robust logic (choose € to dominate uncertainty), but learning makes the
uncertainty endogenous and time-varying. The open question is whether one
can obtain guarantees of the form

1
E[Il,] > —dOSS(w) — (learning regret) — (churn penalty),
m

where the learning term scales sublinearly in |7 (w)| under realistic feedback
models.
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Churn complicates learning in two distinct ways. First, arrivals and de-
partures change the identity of competitors, so estimates may not transfer
cleanly across epochs. Second, the additive F(w) term interacts with explo-
ration: recomputation and experimentation both “reset” effective progress
through the rotation. This suggests that the right object may be a joint
design of (i) epoch segmentation (possibly via change-point detection), (ii)
within-epoch exploration schedules, and (iii) a stability slack e calibrated
to both statistical error and drift. We do not yet understand the minimal
recomputation frequency needed to track nonstationarity while keeping the
rotation long enough to deliver its fairness share.

Additional structural extensions. Several modeling extensions are im-
mediate but nontrivial. Many applications are many-to-one (firms with mul-
tiple slots) or involve matching with contracts (different hours, pay, or task
attributes). It is open whether the logarithmic support phenomenon persists
in such richer lattices of stable outcomes, and whether internal stability re-
mains the right compliance proxy. Likewise, priorities may be endogenous
or multi-dimensional (e.g., affirmative action constraints, geographic tiers).
Embedding such policy constraints into P, is straightforward formally, but
the welfare and fairness implications can be subtle: a rigid priority rule may
amplify inequality even as it improves transparency, and the OSS benchmark
then measures fairness conditional on that policy. Developing diagnostics
that separate “policy-imposed scarcity” from “algorithmic allocation” would
strengthen the interpretability of any guarantee.

Closing perspective. The broader lesson is that repeated matching plat-
forms should be evaluated not only by one-shot efficiency, but by the long-
run distribution of opportunities under constraints that stakeholders recog-
nize as legitimate. Rotation over stable matchings is one principled way to
operationalize that lesson. The open problems above—decentralized imple-
mentability, multi-stakeholder benchmarks, and learning under churn—all
ask, in different ways, how far this principle can be pushed before either
stability or fairness must be reinterpreted. We view answering those ques-
tions as essential for translating theoretical guarantees into robust platform
governance.
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