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Abstract

Modern autobidding stacks typically implement multiple pacing
loops—most prominently spend pacing (budget) and efficiency pacing
(target CPA / RoS). The survey literature shows that naively decou-
pling these loops can cause poor performance and constraint violations,
while more coordinated designs can be near-optimal. We formalize this
systems question as communication-constrained online optimization in
repeated truthful auctions with a value-maximizing bidder facing both
a budget constraint and a return-on-spend constraint. Our first con-
tribution is a minimal-coupling sufficiency theorem: despite two con-
straints, the optimal bidding policy in truthful auctions remains uni-
form bid scaling, so the operational decision reduces to a single scalar
multiplier. We construct a distributed pacing architecture where the
budget and RoS controllers exchange only this scalar (a composite
shadow price), and we prove it achieves O(\/T) regret with tight fea-
sibility guarantees, matching fully-coupled primal-dual baselines. Our
second contribution is a necessity theorem: for a broad class of fully-
decoupled architectures with separated feedback and no cross-message,
there exist adversarial auction sequences where the controllers ‘fight,’
yielding Q(T") welfare loss or persistent infeasibility. The results give
actionable guidance for modular ad stacks in 2026: near-optimal per-
formance requires only a single shared statistic per period, but remov-
ing even that coupling can be catastrophic. We complement theory
with simulations on synthetic auction streams mimicking real pacing
loops; no numerical methods are needed for the core characterizations
beyond standard convex optimization steps.
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1 Introduction and motivation

Modern advertising platforms increasingly implement bidding as a collection
of modular “control loops” that operate as internal services. One loop paces
spend against a budget, another enforces an efficiency or return-on-spend
(RoS) requirement, and yet another may handle risk, experimentation, or
delivery goals. This modular design is attractive in practice: each controller
can be engineered, monitored, and tuned independently; each can consume a
narrow slice of feedback (spend logs for budgeting, conversion value for RoS);
and the overall system can be composed quickly across campaigns. Yet the
constraints that these modules aim to satisfy are coupled in a fundamental
economic sense. The budget constraint restricts the total quantity purchased,
while the RoS constraint restricts the average quality of what is purchased
relative to price. When the auction environment is volatile, these constraints
compete for influence over the same one-dimensional action—how aggres-
sively to bid—and this raises a basic architectural question: how much cou-
pling is actually required between controllers to achieve near-optimal value
while maintaining feasibility?

We study this question in a setting that intentionally strips away strategic
complications in order to isolate the information and coordination problem
inside the advertiser. The environment is a sequence of truthful single-slot
auctions, so the advertiser faces a per-round threshold price and wins if and
only if its bid clears that threshold. This reduces the auction-time decision
to a cutoff rule: buy an impression if it looks “good enough” relative to
price. In such settings, practitioners often implement bidding through a uni-
form multiplier (sometimes called a pacing multiplier), scaling the platform’s
estimated value by a single scalar. This design is not merely an engineer-
ing convenience; it is the natural degree of freedom in a truthful threshold
model, and it is also the object around which budget and RoS controllers
must coordinate.

The temptation, from a systems perspective, is to let each module com-
pute its own preferred multiplier and then combine them mechanically, for in-
stance by taking the minimum (to be conservative) or an average (to smooth
noise). This “fully decoupled” design appears to respect modularity: the bud-
get loop looks only at spend, the RoS loop looks only at value per dollar,
and the final bid multiplier is an aggregator applied to the two outputs.
The difficulty is that neither loop can infer, from its local feedback alone,
whether the other constraint is currently binding, slack, or about to bind.
In economic terms, each loop is attempting to learn a shadow price, but
shadow prices are meaningful only jointly: raising the budget shadow price
and raising the RoS shadow price both reduce bidding, but they do so for
different reasons, and an agent that cannot distinguish those reasons may
react in the wrong direction.

To see the intuition, consider two regimes that can alternate over time.



In one regime, impressions are plentiful and cheap but marginal in efficiency:
spending is easy, but RoS is hard to maintain. In the other regime, high-
efficiency opportunities arrive sporadically: they are exactly the impressions
one should buy, yet doing so may require keeping the multiplier high enough
not to miss them when they appear. A budget-only controller, observing
that spend is below target, tends to increase the multiplier during the first
regime, exacerbating RoS problems. A RoS-only controller, observing that
efficiency is deteriorating, tends to decrease the multiplier, potentially push-
ing bids so low that the advertiser fails to capture the sporadic high-efficiency
opportunities in the second regime. If the two modules are combined by a
fixed monotone aggregator, an adversary (or simply a nonstationary market)
can force persistent miscoordination: one module tightens when the other
should loosen, and the system either violates constraints chronically or leaves
substantial value on the table. The key point is informational: without some
shared state summarizing the joint tradeoff, local residuals are not sufficient
statistics for globally feasible bidding.

Our central message is that the required coupling is simultaneously min-
imal and essential. On the sufficiency side, we show that the relevant co-
ordination object collapses to one scalar. Because the auction is truthful
and allocation is a threshold rule, the offline optimum for a value maximizer
subject to budget and RoS constraints can be implemented by a uniform
multiplier—equivalently, by selecting a single cutoff on the ratio of price to
value. This one-dimensional structure means that a distributed architec-
ture does not need to exchange rich histories, gradient vectors, or separate
multipliers. It needs only the effective multiplier itself (or, equivalently, the
composite shadow price that induces it). We then construct a minimally
coupled two-controller implementation of a primal-dual pacing algorithm:
internally, the modules may maintain distinct dual variables (one for bud-
get, one for RoS), but at decision time they communicate only one real
number per round, the multiplier used to form the bid. The budget module
can still enforce the hard budget mechanically by stopping when cumulative
spend reaches the cap, while the RoS constraint is handled through online
dual updates that ensure sublinear violation. In this sense, modularity is
compatible with rigor: we can preserve the engineering separation of con-
cerns while matching the performance of a fully centralized controller up to
the standard online learning rates.

On the necessity side, we formalize the failure mode of fully decoupled
designs. We consider a broad class in which each module updates using
only its own feedback stream and the final multiplier is a fixed monotone
combination of the two outputs. For this class, we show that there exist
sequences of auction opportunities under which any such architecture must
incur linear loss in at least one dimension: either large cumulative violations
of budget and/or RoS, or linear regret relative to the best fixed feasible
multiplier in hindsight. This is an information-theoretic impossibility: when



the environment can switch between regimes in which different constraints
bind, a decoupled system cannot reliably identify which shadow price should
dominate without exchanging at least some coordinating message. The re-
sult clarifies why ad platforms that attempt strict service-level separation
often reintroduce coupling through shared state, global pacing layers, or
combined “effective bid” signals: these engineering patterns are not inciden-
tal, but rather reflect the minimal communication required by the economics
of coupled constraints.

Finally, we address robustness considerations that matter for practice.
Cross-service communication may be delayed, quantized, or noisy, and any
useful architectural prescription should degrade gracefully under such fric-
tions. Because the decision variable is effectively one-dimensional, we can
leverage stability results from online optimization to show that modest de-
lays or noise inflate regret and constraint violations by controlled additive
terms, rather than causing qualitative breakdown. This reinforces the prac-
tical appeal of minimal coupling: a single scalar message is not only sufficient
for coordination, but also easy to transmit reliably at scale.

Taken together, our contributions offer a simple organizing principle:
one scalar shadow price is the right unit of coordination for budget-and-
RoS-constrained bidding in truthful auctions. The remainder of the paper
situates this principle relative to the duality-based bidding literature and
to existing online pacing methods, and clarifies how our coupling results
complement equilibrium-centered analyses.

2 Related work

Our results build on (and are meant to clarify) a line of work that uses lin-
ear programming duality to characterize optimal bidding in truthful auction
environments when advertisers face long-run constraints. In threshold-price
models—including second-price and posted-price variants—a bidder’s deci-
sion in each round is essentially whether to accept a take-it-or-leave-it price.
For value maximizers subject to a budget, the classical dual view says that
an optimal policy can be expressed as a cutoff rule comparing value to a
shadow price of budget, equivalently bidding a scaled value; see, e.g., the
dual-bidding and pacing formulations in 77?7. A related theme is that ad-
ditional linear constraints (such as minimum ROI, CPA, or other average-
efficiency requirements) can often be folded into the Lagrangian as extra dual
variables, yielding bidding rules that remain simple but whose parameters
reflect multiple shadow prices ?7?7. We view Proposition 1 as a sharpening
of this perspective for the particular pair of constraints we study: despite
the presence of two constraints, the induced allocation in truthful auctions
is still implementable by a one-dimensional uniform multiplier (or a one-
dimensional cutoff on a price-to-value ratio), which is precisely the statistic



an implementation must coordinate on at decision time.

A second, closely related strand studies online pacing algorithms—typically
primal-dual or mirror-descent updates—that adapt multipliers in response
to realized spend and value. Online budget pacing in repeated auctions has
been analyzed under i.i.d. inputs, adversarial inputs with bounded variation,
and mixtures thereof; representative approaches include online primal-dual
schemes and their connections to online convex optimization and stochastic
approximation ?77. Many of these algorithms are presented in a central-
ized form: a single learner observes the necessary feedback and updates a
multiplier (or a small set of dual variables) that governs bidding. Our con-
tribution is not to improve the canonical v/T-type rates per se, but rather
to show that the same guarantees can be realized under an explicit archi-
tectural constraint motivated by how production systems are built: separate
controllers with separate feedback streams and an explicit communication
budget. In that sense, Proposition 2 can be read as an implementability
result for online primal-dual pacing: the algorithmic object that matters for
regret and feasibility is the effective multiplier x;, and the internal decom-
position into “budget dual” and “RoS dual” can be kept local as long as the
composed scalar is shared.

Our focus on RoS (or ROI) constraints connects to a broader literature
on constrained bidding objectives in ad markets, including CPA /ROI opti-
mization, value maximization with efficiency constraints, and variants with
risk or delivery constraints ??. Empirically, RoS-style requirements are of-
ten enforced at coarse time scales (daily or weekly) and are intertwined with
budget pacing; much of the applied work emphasizes heuristics for stabilizing
these coupled loops under delayed and noisy conversion signals. Our analysis
abstracts from conversion delay by treating v; as a realized per-impression
value, but we do address delay and noise at the level of the cross-controller
message (Proposition 4), which is the friction most directly tied to modu-
lar service architectures. This choice is deliberate: we aim to separate the
economic question of how much coordination is required from the statistical
question of how accurately value can be predicted, while acknowledging that
the latter is first-order in many deployments.

The paper is also informed by engineering observations about how large-
scale bidding stacks are actually organized. In practice, budget pacing com-
monly lives in one service, value/ROI optimization in another, and the serv-
ing system consumes a single “effective bid” (or multiplier) that is produced
by composing multiple signals. It is therefore natural to ask whether one
can maintain strict modularity (no shared state) without sacrificing per-
formance. The negative result in Proposition 3 formalizes a failure mode
that practitioners often report informally: when different constraints be-
come binding in different market regimes, independent controllers that only
see their own residuals can chase each other, producing either chronic con-
straint violations or excessive conservatism. While similar phenomena are



studied in control theory under interacting feedback loops, our contribution
is to cast the issue in an online economic decision problem and to provide
an information-theoretic separation between “no coupling” and “one-scalar
coupling.”

Our viewpoint differs from equilibrium-centric analyses of sponsored search
and auction markets, which study bidding incentives and equilibrium out-
comes under generalized second price or VCG, often with multiple strategic
advertisers and auction-specific features such as quality scores and reserve
prices 77. That literature explains how auction rules map bids into alloca-
tions and payments, and how strategic behavior shapes prices and welfare.
We instead take the auction environment as exogenous and focus on a single
advertiser’s internal constrained optimization, motivated by the observation
that large advertisers frequently delegate bidding to automated agents whose
primary difficulty is not strategic deviation from truthfulness but rather
real-time constraint management under uncertainty. The truthful thresh-
old model is thus an intentional simplification that allows us to isolate the
coordination role of shadow prices; extending the coupling/communication
question to non-truthful settings is important, but it would require disen-
tangling strategic considerations from architectural ones.

Finally, our results relate to work on decentralized and communication-
constrained online learning. A growing literature studies how limited mes-
sage passing affects regret in distributed optimization, and how delay/noise
in gradients or dual variables degrades rates 777. The novelty here is that
the relevant decision space collapses to one dimension due to the truthful-
auction structure, which makes the “right” message particularly simple: a
single scalar multiplier that plays the role of a composite shadow price. This
observation yields both a positive and a negative implication. Positively, a
minimal protocol can match centralized learning guarantees up to standard
stability terms. Negatively, if one insists on zero communication and fixed
aggregation rules, then even very weak adversarial nonstationarity can force
linear loss. We regard this as a useful bridge between algorithmic regret
guarantees and the practical design question of what state must be shared
across services in order for those guarantees to be attainable.

3 Model: repeated truthful auctions, value maxi-
mizer, Budget and RoS constraints; uniform mul-
tiplier policies; information partitions across con-
trollers; definition of architectures and communi-
cation budget.

We evaluate any online pacing architecture by comparing it to the best fized
uniform-multiplier policy that is feasible in hindsight. For a scalar multiplier



Kk € K, let the induced win decision in round t be
zi(k) = {roe > pi},

so that total value and spend under s are ), vx(k) and >, prae(k), re-
spectively. The benchmark s* is then defined as an optimizer of the offline
constrained problem over the same policy class,
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This choice is deliberately austere: we do not compare against a dynamic
oracle that can pick an arbitrary subset of auctions, nor against a policy
that can condition on future realizations. Rather, we benchmark against
the best single scalar that could have been used throughout the horizon.
In our setting this is not merely a convenient restriction: Proposition 1
says that, in truthful threshold-price auctions, the offline optimum can be
implemented by such a one-dimensional cutoff. Thus, by competing with *
we are effectively competing with the economically relevant offline optimum,
while keeping the benchmark aligned with what a production bidding stack
can plausibly represent (a single pacing/ROI multiplier applied to predicted
value).

Given an online sequence {x;}/_,, we measure performance along two
axes: foregone value relative to k*, and the extent to which long-run con-
straints are violated. Regret is defined by

T

Regr = g vy (KR
t=1 t=1
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while realized totals under the online policy are Vy = ), vz and Sy =
> ¢ Pexy, yielding the violation magnitudes

ViOlB = (ST — B)Jr, ViOlT = (TST — VT)Jr

These metrics separate “how much value we missed” from “how badly we
missed the constraints.” The separation is important in practice: a controller
can trivially satisfy both constraints by bidding x; = 0, but such a policy
would incur linear regret whenever there exist profitable impressions; con-
versely, an aggressive policy can drive value but at the cost of chronic RoS
shortfalls. Our target guarantees, Regr = o(T') and Violg, Viol, = o(T)
(typically O(v/T)), formalize the intuitive goal that any average loss or av-
erage infeasibility should vanish with horizon.

The hard budget constraint admits a particularly sharp implementation:
we may enforce ). -, s, < B pathwise by stopping bidding once cumulative
spend reaches B. In that case Violg = 0 by construction, and the nontrivial



constraint becomes RoS (or, more generally, any efficiency constraint that
cannot be enforced myopically impression-by-impression). We nonetheless
keep Violp explicit for two reasons. First, it allows a unified comparison
across architectures that may not implement a hard stop (e.g., when spend
is only observed with delay). Second, it clarifies what the online analysis is
really doing: the algorithm is not “optimizing value subject to budget” in
a static sense, but rather learning a scalar that balances an intertemporal
scarcity (budget) against an intertemporal quality requirement (RoS), both
of which are only revealed through realized allocations and payments.

The one-dimensionality of the decision variable k is also economically
meaningful. Because z(k) = 1{k > p;/v:}, choosing k is equivalent to
choosing a cutoff on the price-to-value ratio py/vy, i.e., the cost per unit
of predicted value. Put differently, s~ ! is the maximum “shadow cost” per
unit value that the bidder is willing to accept. This interpretation aligns
with how practitioners discuss pacing: lowering k tightens the acceptance
criterion, dropping marginally efficient (high p;/v;) auctions; raising  relaxes
it, buying more volume at potentially worse efficiency. The RoS constraint
> (vg—Tpg)z > 0 says that, in aggregate, the average value-per-dollar must
be at least 7; in a ratio language, we must avoid systematically selecting
impressions with low v;/p;. A single cutoff cannot guarantee v;/p;y > 7
in every round, but it can ensure that, over time, the induced mix of won
auctions is sufficiently efficient while still spending budget in periods where
good opportunities arrive.

Finally, the scalar benchmark and the scalar communication primitive
coincide for a reason: in dual terms, the multi-constraint problem collapses
at decision time to a single composite shadow price. If we write the per-round
Lagrangian coeflicient on allocating in round ¢ as

(I1+ar)v — (ap+7Tar)pt,

then the decision “win if this coefficient is nonnegative” is equivalent to a
threshold on p;/v;, hence implementable by bidding b; = kivy with x; pro-
portional to (14 ar¢)/(ap ¢+ Tar:) (when the denominator is positive, with
the usual truncations to keep k; € K). The details of how the two dual
variables are updated can remain internal to separate controllers; what must
be shared with the bidding surface is exactly the composed scalar k; that
encodes the current marginal tradeoff between value, budget scarcity, and
RoS tightness. This is why the “one-scalar” design is not merely an engineer-
ing convenience: it is the minimal sufficient statistic for implementing the
economically correct cutoff rule in truthful auctions, and it is the natural
unit in which regret and feasibility can be stated and compared.

At the same time, we view the k* benchmark as an intentional ab-
straction with clear limitations. It leverages the threshold structure of
truthful auctions and the proportional-bidding reduction; richer mechanisms



(multi-slot, quality adjustments, non-truthful equilibria) may require higher-
dimensional bidding policies, in which case one scalar may no longer be suf-
ficient. Nonetheless, within the common production pattern where many
services ultimately emit a single “effective bid” or multiplier, competing
with £* and measuring (Regp, Violg, Viol;) provides a concrete way to ask
what modularity costs: if the economically relevant control variable is one-
dimensional, then communication of that one dimension should be enough
to recover centralized guarantees, and absence of it should be detectably
harmful.

A minimally-coupled primal—-dual control law. To operationalize the
“one-scalar” idea, we implement the online policy as a distributed primal—
dual method whose only cross-module artifact at auction time is the effective
multiplier ;. The conceptual starting point is the Lagrangian relaxation of
the two long-run constraints, with nonnegative dual variables ap (budget
scarcity) and a, (RoS tightness). Given duals (ap, ), the per-round con-
tribution of winning auction ¢ is weighted by the affine coefficient

(1+ ar)vy — (ap + T )py.

In a truthful threshold-price auction, the allocation decision induced by bid-
ding by = kv is exactly the indicator 1{kv; > p;}. Hence, for fixed duals,
the centralized primal step can be read as: choose a cutoff on p;/v; so as to
win whenever the above coefficient is nonnegative. Rearranging yields the

threshold condition
P 14+

vy T ap+Ta,

which is implementable by a uniform multiplier

1+,
klap,ar) = Ik <OzB+TOzT> , (1)
with the understanding that if the denominator is nonpositive (an edge case
early in learning), we set s to the maximal aggressive bid rkmax before pro-
jecting onto K. Equation is the key compositionality property: although
the problem has two constraints, the auction-facing decision depends only
on a single scalar ratio of dual variables.

Two controllers, one message. We implement via two modules. The
RoS controller C; maintains an internal state intended to track (apy, o )
and computes the composite shadow price ky = k(B ¢, ar¢). It then broad-
casts the single real number

my = Ky

to the Budget controller Cg. The Budget controller is deliberately simple:
it converts the message into an auction bid b, = kv so long as budget

10



remains, and otherwise bids 0 (equivalently, sets x; = 0 locally) once cumu-
lative spend reaches B. This hard stop enforces budget feasibility pathwise,
independently of how the dual variables evolve:

if Z sy > B, then set by = 0 and skip bidding thereafter.

u<t

Crucially, no additional coordination is needed at bidding time: the only
information that must traverse the module boundary is the scalar multiplier
k¢, which the budget layer can treat as an externally supplied “pacing/ROI
knob.”

Online dual updates from realized residuals. The remaining question
is how C, updates its internal dual variables using only realized feedback. A
convenient choice is projected subgradient ascent on the dual, driven by per-
round constraint residuals. Let s; = p,x; and y; = vyxy denote realized spend
and realized value (both equal 0 when we lose). Then the instantaneous RoS
slack is 7s; — y;, while a natural budget pacing slack is s; — py, where p;
is a per-round spend target. The simplest stationary choice is p, = B/T),
yielding the updates

QB4+l = [aB,t +n (s — B/T)} o (2)

Qritl = [Oér,t + 1 (75 — yt)} . (3)

Here [-]+ denotes projection onto R4, and n > 0 is the step size (typically n o«
1/VT). These updates are implementable with the prescribed information
partition: they require only (s, ), which are observed ex post, and do
not require observing the latent threshold price p; when we lose. Moreover,
they are interpretable: when realized efficiency falls short of the target (i.e.,
7S¢ > yt), the RoS dual o, increases, which (via ) tightens the cutoff;
when spending runs ahead of the pacing target, ap; increases, raising the
effective “shadow cost of money” and likewise decreasing k.

A practical refinement replaces the constant p, = B/T with an adaptive
target based on remaining time and remaining budget, e.g.,

_ B — Zu<t Su
A
which improves transient behavior without changing the one-message nature
of the protocol. With this choice, the same update reacts to how quickly
the advertiser is burning through budget relative to what is feasible to spread
across the horizon.

11



Why this distributed protocol matches the centralized one. The
salient architectural point is that, if a centralized algorithm maintains (g +, ort)
and chooses bids through the composite map , then any decomposition
that preserves the sequence {r;} is behaviorally equivalent from the auction’s
perspective: allocations satisfy xy = 1{r;v;y > p;} and the realized feedback
(st,yt) is identical. Thus, allowing C; to own the dual variables while Cp
owns the hard stop is not a conceptual compromise but an implementation

of the same primal-dual recursion with a single shared sufficient statistic.

Guarantees and a constraint-tight variant. Under standard bound-
edness assumptions (e.g., v, pr bounded and K compact), the primal-dual
method with step size n oc 1/ VT yields sublinear regret relative to the best
fixed feasible multiplier and sublinear RoS violation; informally, the dual it-
erates cannot grow too quickly, and the average constraint residuals converge
to feasibility. The hard budget stop ensures Violg = 0 whenever spend is
observed without delay and bidding can be halted instantaneously. If we
seek tighter RoS control, we can strengthen the RoS update by adding an
augmented penalty, for instance replacing with an update on a smoothed
potential that penalizes positive cumulative RoS deficit more aggressively.
In effect, we trade off slightly more conservative bidding in early rounds for
an O(1) bound on Viol, (at the cost of constants in regret), while leaving the
communication pattern unchanged: the bid still depends only on the single
scalar k.

Implementation takeaway. The minimally-coupled protocol can there-
fore be summarized as follows: the RoS side performs the economically
meaningful accounting—tracking the shadow value of budget and the shadow
tightness of RoS—and emits exactly one number, the composite multiplier
k¢; the budget side enforces the hard spend cap mechanically and otherwise
acts as a thin execution layer. This division of labor mirrors production
constraints (separate ownership of spend and ROI surfaces) while preserving
the central theoretical insight: in truthful auctions with uniform-multiplier
sufficiency, the only coordination needed at decision time is one real scalar
that encodes the current marginal tradeoff across constraints.

Main sufficiency guarantee (regret—feasibility tradeoff). We now
formalize the sense in which the minimally-coupled protocol—dual updates
on (apt,art) combined with the composite map x; = k(apy, o) and a
mechanical budget stop—inherits the performance of a centralized primal—
dual method. Throughout, we impose standard boundedness: 0 < vy < v,
0<p <p, and K = [0, Kmax]. We also allow an explicit projection of the
dual variables onto a compact set, ap; € [0, Ag] and o, € [0, A;], which
is without loss for regret bounds (it only improves stability and simplifies

12



constants).
Fix any horizon T'. Run the distributed recursion with step size n > 0,

ABt+1 = H[O,AB}(aB,t +n (st — Pt))7 Qriyl = H[U,AT}(ar,t +n (T8t — yt)),

for some predictable pacing target p; (e.g. pr = B/T or the remaining-budget
rule), and bid using the single message k; = 11 K((l +aq)/(aps+ TO(T’t)) as
described above.

Theorem (sublinear regret and RoS violation). Assume the sequence
{(ve, p) }I_, is either i.i.d. or chosen by an oblivious adversary (independent
of the learner’s internal randomization, if any). Then there exist constants
Chreg, Cros depending only on (0, P, T, Kmax, AB, A7) such that, for any feasible
fixed multiplier k € K satisfying the two constraints in expectation (or
pathwise, in the oblivious-adversary model),

T T
C
E E vtxt(/f)—g vir(ke) | < ;eg—i—C’regnT,
t=1 t=1

CYrOS
n

IE[(TST - VT)Jr] < + CrosnT.

In particular, choosing 1 < 1/v/T yields
E[Regy] = O(VT),  E[Viol,] = O(VT).

Moreover, the budget layer enforces a hard spend cap in the usual platform
sense: if the platform (or execution layer) stops serving once cumulative
spend reaches B, then Violg = 0 pathwise; if instead we can only stop at the
next round after observing spend, then Violg < p (one-auction overshoot).

Discussion of constants and the role of . The bounds above have the
familiar “1-vs-nT” shape from online mirror descent: the % term is an initial-
ization/diameter cost (how quickly the duals can move to the right scale),
while the nT" term is an accumulated noise/variability cost (how much the
algorithm jitters in response to per-round residuals). Economically, larger
1 makes the shadow values ap; and a,; react aggressively to recent over-
spending or RoS shortfalls, improving short-run feasibility but potentially
inducing oscillations in k;; smaller 17 smooths bidding but slows the adjust-
ment of the composite shadow price and raises regret. The recommended
nol/ VT balances these forces and is the canonical choice when the hori-
zon is known; standard doubling tricks recover the same rates when 7' is
unknown.

13



Why “one message” is enough for the theorem. The theorem’s proof
is a bookkeeping exercise once we recognize that the auction outcome de-
pends on (ap, ar ) only through the scalar cutoff x;. A centralized primal-
dual algorithm and the distributed implementation generate the same se-
quence {r¢} (hence the same x, s¢, y¢) as long as the RoS module can com-
pute k; from its internal state and the budget module can enforce the stop.
Thus, we analyze the central saddle-point recursion, but implement it with a
single scalar broadcast; there is no additional approximation error introduced
by modularization.

Constraint-tight variants. If we require tighter RoS feasibility than O(v/T),
we can replace the linear dual update for o;; with an augmented penalty
that grows faster when the cumulative RoS deficit becomes positive (e.g.
adding a quadratic penalty on the cumulative slack, or using an adaptive
stepsize that increases when (75; — V;)4+ grows). Under the same bound-
edness assumptions, such “augmented Lagrangian” style variants typically
yield Viol, = O(1) while preserving sublinear regret (often still O(v/T) up
to constants). Importantly, the architecture remains minimally coupled: the
bid still depends only on the single number x;.

Extensions: partial feedback and missing prices. A practical advan-
tage of the update rules is that they do not require observing the latent
threshold price p; when the advertiser loses. The RoS update uses only real-
ized outcomes (¢, y¢), which are typically observable from billing and conver-
sion logging. Hence, partial observability of counterfactual prices does not
affect implementability or the stated rates. If realized value is observed with
noise—for instance, conversions arrive as an unbiased proxy 7; for y,—the
same analysis carries through in expectation, with an additional variance-
dependent term of order O(o+/T) in regret/violation bounds (the standard
stochastic-gradient phenomenon).

Extensions: delayed feedback and delayed messages. If spend/value
feedback arrives with delay d, the dual updates become “stale” and effec-
tively use residuals from ¢ — d. The resulting performance degradation is
graceful: the bounds above acquire an additive term scaling linearly in d
(or, more precisely, proportional to d times a bound on the per-round resid-
ual magnitude), matching standard delayed online optimization guarantees.
Similarly, if the one-scalar message k; is delivered with delay or corrupted
by mean-zero noise, the regret and RoS-violation bounds worsen by at most
O(d) and O(ov/T), respectively, reflecting that the control problem remains
one-dimensional at the decision boundary.
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Takeaway. From a mechanism-design perspective, the content of the the-
orem is that truthful auctions collapse the bidder’s action space to a single
cutoff, so the “coordination rent” between budget pacing and ROI enforce-
ment can be captured by one real number per round. With n tuned at the
usual ©(1/+/T) scale, this suffices to achieve centralized-grade guarantees
while respecting the organizational constraint that budget and RoS live in
separate modules.

A more explicit view of the regret—feasibility bounds. The stated
inequalities are most transparently read as a bound on the dualized per-
formance gap between our online sequence {x;} and any fixed comparator
Kk € K that is feasible for the two long-run constraints. Concretely, define
the per-round (random) residuals

B ._ T .
Ty = St — Pty Ty =TSt — Yty

and note that, under boundedness and the stop rule, they are uniformly
bounded by constants depending only on (v, p, 7) and the choice of p; (e.g.
|rP| < p+max; p; and |r]| < 7p+0). The dual recursion is then simply pro-
jected online gradient ascent on the dual variables, driven by these residuals,
while the primal action k; is the maximizer of the current Lagrangian surro-
gate (equivalently, a one-dimensional cutoff rule). Standard mirror-descent
algebra yields a decomposition of the form

T
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where ¢, is the (negative) per-round Lagrangian reward as a function of x, g;
is the (bounded) gradient in the dual space induced by (rZ,r7), and « is any
fixed dual vector. Translating this generic inequality back into our economic
primitives gives exactly the advertised “% versus 11”7 bounds for regret and
RoS violation, with constants proportional to (4% + A2) (dual diameter)
and to (sup, |rP|? + sup, |r7|?) (gradient magnitude). This makes clear that
the price of modular control is not statistical but purely parametric: once
the bid is summarized by the single scalar x;, we are effectively solving a
one-dimensional primal problem with a two-dimensional dual.

Choosing 7 and what the constants mean economically. Because the
upper bounds scale like %+7]T, the canonical choice n ~ ¢/+/T yields O(v/T)

regret and O(v/T) RoS shortfall, with the constant ¢ shrinking when the
residuals are small (stable environment) and growing when residuals are large
(high variability in realized spend/value). Economically, this is exactly the
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expected sensitivity tradeoff: if the market is volatile, the shadow prices must
react (larger n) to prevent persistent RoS drift, but reacting too quickly also
makes the cutoff ; oscillatory and can waste learning opportunity on “wrong-
side” adjustments. Conversely, in a stable market, smaller 7 is beneficial: it
reduces churn in k; and makes the effective cutoff closer to a fixed x*, which
is precisely the benchmark in our regret definition. When the horizon is
unknown, the same rates follow from standard horizon-free schedules (e.g.
ne o< 1/4/t) or doubling; the key point is that none of these require cross-
module communication beyond broadcasting the current x;.

Budget feasibility as a hard constraint (and the overshoot issue).
The budget layer deserves a separate comment because it is not merely a
Lagrangian penalty in practice: platforms typically implement budgets by
suppressing delivery when remaining budget is insufficient. Under such a
“mechanical stop,” the algorithm’s pathwise spend is capped at B up to exe-
cution granularity. In the idealized model in which we can stop immediately
upon reaching B, we obtain Violg = 0 deterministically. If instead we only
learn s; at the end of the round (the common logging convention), the worst-
case overshoot is at most one payment, so Violg < p. This is not a failure
of the primal-dual method; it is simply the discrete-time nature of auctions.
Importantly, the stop rule is entirely local to the budget module and re-
quires no additional information from the RoS module besides the common
bid multiplier already being broadcast.

Partial feedback: why missing counterfactual prices do not break
implementability. A frequent operational concern is that the bidder does
not observe the threshold price p; when it loses (and sometimes even when it
wins, one only sees an invoiced amount with delays and adjustments). The
minimally-coupled recursion is robust to this informational friction because
the updates are written in terms of realized spend and realized value, (s, y;),
which are exactly the quantities recorded by billing and conversion measure-
ment systems. When the advertiser loses, both s; and y; are zero, so the
residuals (rf, r7) are still well-defined and require no imputation of the coun-
terfactual p;. Conceptually, we are not estimating demand curves or price
distributions; we are controlling aggregate feasibility via dual variables, and
the stochastic approximation uses only realized constraint slack. If realized
value is noisy—for instance, we observe ¢y = y; +&; with E[§; | F;—1] = 0 and
E[¢?] < 0% —then the same mirror-descent proof goes through with an added
martingale-noise term, producing an additive O(O’\/T ) degradation in both
regret and RoS-violation bounds. This is the standard stochastic-gradient
phenomenon and does not alter the one-message nature of the protocol.
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Delayed feedback and delayed messages. Delays matter in two dis-
tinct places: (i) the dual updates may use residuals from earlier rounds,
and (ii) the scalar message itself may be delivered late, so the budget mod-
ule executes k;_q rather than x;. In either case, the control is “stale” but
still one-dimensional. Under bounded residuals, standard delayed online-
optimization results imply an additive performance loss that scales at most
linearly with the delay. A representative bound (suppressing constants) takes
the form

E[Regs] < o(}7 +nT) +O(d),  E[Viol,] < o(}7 +77T> +0(a),

and if the delivered k is further corrupted by mean-zero noise with variance
o2, the usual ov/T term appears additively. The economic interpretation is
straightforward: delays temporarily decouple the shadow price from current
feasibility, so we may briefly overshoot or undershoot RoS, but the system re-
centers once updates catch up. Crucially, there is no qualitative breakdown
because the relevant decision boundary is still a scalar cutoff; we are not
attempting to coordinate a high-dimensional action across modules.

What the sufficiency result does not claim. Finally, we emphasize
a limitation that clarifies the scope of the theorem. The regret benchmark
is the best fized multiplier * in hindsight (subject to feasibility), so the
O(V/T) rate should be read as: we compete well with the best static cutoff
rule, not with an omniscient dynamic policy that can condition on future
scarcity of high-v;/p; opportunities. In many advertising environments, this
is exactly the right benchmark because the actionable degree of freedom is
a stationary pacing factor; nevertheless, in highly non-stationary markets
one would want tracking guarantees against a drifting comparator, which
would require additional variation terms in the bounds. The point that
survives these refinements is the architectural one: regardless of which com-
parator class we choose, truthful auctions reduce the real-time decision to
a one-dimensional cutoff, and hence a single scalar message is sufficient to
implement the centralized update rule without loss.

Why ‘“no message” is genuinely restrictive. To make the necessity
claim precise, it is useful to pin down what we mean by a fully decoupled
pacing architecture. Fix a feasible multiplier set K C Ry and a fized mono-
tone aggregator h : K x K — K (nondecreasing in each coordinate; canonical
examples are min, product, and convex combinations). In each round ¢, the
Budget controller outputs

“F = ft(vt; 317---7315—1)7

while the RoS controller outputs

s = gdve; (Y1,81)s-- -, (Ye—1, 8t-1)),
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possibly using internal randomization, and the executed multiplier is
Kt = h(/@?, m[), by = Ky

The defining constraint is that neither controller may condition on the other
controller’s internal signal (in particular on s or x7), and there is no cross-
module message beyond what is mechanically revealed through the realized
outcome (x4, St, Yt).

The economic content of this restriction is subtle: each module is re-
acting to a long-run constraint, but the constraints are coupled through
the same binary allocation decision z; = 1{kv; > p;}. In a centralized
primal-dual method, this coupling is resolved by forming a single composite
“shadow price” that trades off the marginal value of relaxing budget against
the marginal value of relaxing RoS, and then applying a one-dimensional
cutoff on p;/v;. In a fully decoupled architecture, by contrast, the cutoff is
a deterministic function of two independently-evolved signals whose interac-
tion is frozen ex ante by h.

A two-type adversary that forces linear loss. We now describe an
adversarial construction (oblivious or adaptively chosen against a fixed de-
terministic algorithm; randomized algorithms can be handled by Yao’s prin-
ciple) showing that, for any such decoupled design, there exists a bounded
sequence { (v, pt) L, for which one must pay Q(T) either in RoS shortfall or
in regret relative to the best fixed feasible multiplier *. The simplest intu-
ition uses two impression types that alternately make one constraint locally
informative and the other constraint locally misleading.
Fix 7 > 0 and choose constants (v, p*) and (v—,p~) satisfying

vt —1pt = +A, v —Tp = A,

for some A > 0, with both pairs bounded (so u,p are finite). Type “+”
impressions generate positive RoS slack when won; type “—” impressions
generate negative RoS slack of equal magnitude. We additionally set the
price/value ratios so that winning “—" impressions requires a strictly larger
multiplier:
pto_ P
vt v

<

Thus there exists an intermediate cutoff k™4 that wins all “+” impressions
and loses all “—” impressions, while a larger cutoff xM8" wins both.

Now arrange the horizon into alternating blocks. In RoS-stress blocks, we
present only type “—” impressions. In budget-stress blocks, we present only
type “+” impressions but with prices scaled so that spend is large relative
to the remaining budget (so budget, not RoS, should be treated as binding).
The offline benchmark can be made clean by selecting block lengths so that
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the globally optimal fixed multiplier is x* = xM&": it wins both types, ac-
cumulates approximately zero net RoS slack over the full horizon (because
the number of “4” and “—” wins balance), and respects the budget by con-
struction (we choose B to match the spend induced by x"&"). Under x*, the

advertiser collects ©(T") value.

Why decoupling breaks: the “which constraint is binding?” am-
biguity. Consider what a fully decoupled protocol must do on such a se-
quence. In a RoS-stress block, any win produces r{ = 7s; — yr = +A,
pushing the RoS controller toward a more conservative 7. But whether we
should actually be conservative depends on the global plan: if ample “+”
slack will arrive later and sufficient budget remains to buy it, then taking
some “—” impressions now is efficient in the aggregate; if not, then those wins
are truly infeasible. The centralized algorithm resolves this by a single scalar
shadow price that already internalizes both the accumulated RoS deficit and
the opportunity cost of budget.

In a decoupled protocol, however, the Budget controller cannot condition
on the RoS deficit at all: its signal 7 is a function of past spend, and in RoS-
stress blocks the adversary can make spend uninformative (e.g. by choosing
p~ small so that the budget residual is near zero even while RoS deteriorates).
Symmetrically, in budget-stress blocks, the adversary can make RoS residuals
uninformative (choose “+4” impressions with very large v+ — 7p™ so RoS
appears extremely safe) while driving spend rapidly toward B, so that only
the budget module “sees the fire.” The result is that in alternating blocks
the two modules are systematically out of phase: one is tightening while the
other is loosening.

Because the executed action is x; = h(xf, k] ) with fixed monotone h, this
out-of-phase behavior cannot be neutralized without direct coupling. If h is
conservative in the sense of being bottlenecked by the smaller coordinate (as
with min or product on [0, 1]), then the RoS module’s tightening during RoS-
stress blocks drives k¢ below M8 for a linear number of rounds, so the bidder
systematically fails to win the “—” impressions that x* would have won,
implying Regp = Q(T'). If, instead, h is aggressive (e.g. closer to max or a
large weight on ntB ), then in RoS-stress blocks the budget module’s loosening
keeps k; high and the bidder continues to win “—" impressions, accumulating
Q(T) RoS deficit before sufficient “+” slack can be realized, implying Viol, =
Q(T) (and, depending on parameters, potentially exhausting budget in the
wrong blocks as well).

Lower bound as an information bottleneck. The deeper interpreta-
tion is not that any particular update rule is flawed, but that the needed
statistic 1s joint. The correct cutoff at time ¢ depends on a composite shadow
price—a single number encoding how costly additional spend is given the
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current RoS slack (and vice versa). In a fully decoupled design, the budget
module and the RoS module each maintain only a partial view and then com-
bine those views through a fixed aggregator that cannot represent the joint
Lagrange multiplier except in special cases. An adversary can exploit this by
alternating segments where one constraint should dominate the composite
price and segments where the other should dominate. Hence, without trans-
mitting at least one real scalar that aligns the two modules on a common
shadow price, no architecture in this class can guarantee simultaneously sub-
linear regret and sublinear constraint violations: for some bounded auction
stream, it must incur Q(7") loss in feasibility or in value.

Simulation design and what we want to learn. The theoretical re-
sults above isolate a one-dimensional decision statistic (an effective multiplier
k) and argue that (i) a single scalar of coupling is sufficient to implement
the same sequence of bids as a centralized primal-dual method, while (ii)
removing that scalar can create linear losses under adversarial inputs. We
complement those statements with simulations for two reasons. First, in
practice auction streams are neither worst-case nor perfectly stationary, so
we want to understand whether the minimally-coupled protocol is merely
a proof device or a quantitatively reasonable engineering choice. Second,
the impossibility result for fully decoupled designs is existential; simulations
help illustrate how the failure mode manifests (persistent RoS drift versus
chronic underbidding), and how sensitive it is to details like non-stationarity
and feedback delays.

Synthetic truthful-auction environment. We generate sequences {(vs, pt) }1_;
with T between 10* and 10%. Values v; are drawn from a bounded distri-
bution (e.g. vy ~ Unif|0, 1] or truncated lognormal), and threshold prices pt
are generated to mimic competition and reserve effects: we use p; = pvs + ¢
with p € (0,2) and €, mean-zero noise truncated to keep p; > 0, as well as
a misspecified case in which p; is independent of v;. The bidder observes v,
before bidding, submits b; = kiv:, wins if by > p¢, and pays p; upon winning.
We set a budget B = SE[p]T with § € (0,1) so that the budget binds but
does not trivially stop the bidder immediately, and we choose an RoS target
7 so that the feasibility region is nonempty but meaningful (e.g. 7 set to a
quantile of v;/p;). Performance is reported via realized value Vr, spend Sr,
regret proxy against the best fixed multiplier in hindsight, and RoS violation
ViOlq— = (TST — VT)+.

Architectures compared. We compare three bidding stacks that share
the same base action space K = [0, kmax| and the same step size 1. (i)
Fully coupled: a centralized controller runs a primal-dual update with dual
variables for budget and RoS and outputs x; directly. Budget is enforced
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by halting bids once cumulative spend reaches B. (ii) Minimally coupled:
the RoS-side computation maintains the dual state and broadcasts a single
scalar message m; = k; each round; the budget module simply applies that
k¢ while enforcing the hard stop at B. By construction, when the message
is delivered instantly and without noise, this reproduces the centralized k;
trajectory. (iil) Fully decoupled: a budget-only module outputs ntB from
spend history and an RoS-only module outputs x] from RoS residuals; the
executed multiplier is x; = h(kP, x]) for fixed monotone h (we report min,
product on [0, Kmax], and a convex combination). Each module uses the same
style of update (mirror/gradient) but without access to the other module’s
state.

Baseline findings: one scalar is enough in benign regimes. Across
i.i.d. environments, the fully coupled and minimally coupled systems are em-
pirically indistinguishable up to Monte Carlo error: they spend at essentially
the same rate until the hard budget stop, achieve the same Vr, and exhibit
similar O(v/T') scaling of RoS shortfall when we use a standard n o 1/v/T.
This is a useful sanity check: the point of the distributed design is not to
improve on the centralized benchmark, but to match it under a stringent
communication constraint. The decoupled designs, by contrast, are highly
sensitive to the aggregator. With h = min, the system tends to be overly
conservative whenever either module becomes cautious, producing system-
atically lower win rates and value; with more aggressive aggregators, it tends
to chase value in a way that appears locally RoS-safe (because high-v; wins
look good) but can accumulate a persistent global RoS deficit when the price
environment shifts.

Non-stationarity and tracking. To stress adaptation, we consider piecewise-
stationary streams in which (v, p;) distribution parameters drift every L
rounds (e.g. p increases, making auctions more expensive relative to value),
as well as smoothly drifting processes. In these settings, the coupled and
minimally coupled controllers degrade gracefully: the multiplier «; adjusts
in the correct direction (down when prices rise relative to value; up when the
environment becomes more favorable), and constraint violations scale with
the variation budget of the sequence, consistent with standard online track-
ing intuition. The decoupled stacks often exhibit a lag mismatch: the budget
module reacts quickly to increased spend (tightening), while the RoS module
remains optimistic if realized wins still have high v;, so the aggregator either
(a) over-tightens (value loss) or (b) remains too loose (RoS drift), depending
on h. Importantly, this happens even when the stream is not adversarial
in any strong sense; mild regime changes suffice to expose the absence of a
shared composite shadow price.
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Feedback delays and message corruption. We next impose a delay d
on the minimally coupled message, implementing bids using k¢ = k(my—q)
with the natural convention for ¢ < d. We also consider additive mean-
zero noise my; = my + & with E[¢2] = 02 and projection back to K. In
both cases we observe a smooth deterioration: delays introduce oscillations
in spend pacing (the controller tightens after the environment has already
changed), while noise introduces jitter that slightly increases both regret
and RoS violation. Quantitatively, the incremental loss appears roughly
linear in d and proportional to ov/T over the ranges we tested, aligning with
the stability bounds one would expect from delayed/noisy one-dimensional
online updates. Practically, this suggests that the single-scalar interface is
not brittle: moderate latency or quantization does not destroy performance,
though it does reduce the effective aggressiveness with which the system can
track fast-moving conditions.

Takeaway from simulations. The simulations reinforce a simple engi-
neering interpretation of the theory. When the auction is truthful and the
bidder’s action is well approximated by a uniform multiplier, the only statis-
tic that needs to cross module boundaries at bid time is the effective cutoff
k¢ (or an equivalent scalar shadow price). Implementing this scalar makes
the distributed system behave like the centralized controller, including un-
der moderate non-stationarity and delayed feedback. Conversely, eliminat-
ing even this minimal coupling forces the system to combine partial views
through a fixed aggregator, and the resulting behavior can be systematically
miscalibrated in realistic streams, not only in worst-case constructions.

Extensions: when prices are endogenous (many advertisers). Our
model treats {p;} as exogenous thresholds, which is appropriate for under-
standing an individual bidder’s pacing logic when its market share is small
or when competition is sufficiently diffuse. With multiple strategic adver-
tisers, however, each bidder’s x; affects allocation and therefore the realized
price process faced by others. In that regime the interpretation of the dual
variables shifts: ap; and a,; remain meaningful as private shadow prices
of constraints, but the mapping from those shadows to realized spend and
value is mediated by equilibrium responses. Two implications follow. First,
regret-style guarantees become equilibrium-sensitive: an online algorithm
may be no-regret relative to a best fixed x under a counterfactual fized envi-
ronment, yet still induce cycling if all agents simultaneously adapt. Second,
the one-scalar interface can remain a useful control abstraction even when it
is no longer an exact sufficient statistic: if each advertiser’s feasible action is
well approximated by a scalar multiplier, then market interaction reduces to
a low-dimensional dynamical system in the multipliers, which can often be
stabilized with damping (smaller 7, averaging, or explicit inertia). Practi-
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cally, this is the regime where platform-level safeguards (throttling, bid caps,
pacing floors) and bidder-side smoothing jointly matter; our analysis informs
the bidder-side compression, not the existence of a unique global optimum.

Multi-slot auctions and richer allocation rules. Single-slot truthful-
ness yields the clean cutoff 1{rxv; > p;}, which is the technical source of
the one-dimensional reduction. With multiple slots and position effects, the
allocation becomes rank-based and the payment depends on the next highest
bid. Even in truthful multi-unit mechanisms (e.g. VCG in certain forms),
the bidder’s decision is not always characterized by a single threshold on
pt/ve; one must account for the marginal value of moving from position j to
j — 1. That said, in many ad systems the bidder chooses a single bid that
is then interpreted through an auction-specific scoring rule, and a uniform
multiplier remains the dominant degree of freedom for budget pacing. A use-
ful way to reconcile these facts is to view k; as selecting an ezpected tradeoff
curve between spend and value induced by the auction: the multiplier picks
a point on that curve, while the auction maps that point into a distribution
over positions and prices. When that induced curve is sufficiently smooth
and stable, the minimally-coupled architecture still captures the essential
coordination problem (budget versus RoS) with one scalar. When the curve
has kinks (due to discrete position jumps) or heavy-tailed price responses,
one should expect larger variance and slower convergence, and may need ei-
ther conservative step sizes or additional state (e.g. per-position multipliers)
beyond the one-scalar principle.

Non-truthful auctions: limits of the one-scalar principle. First-
price auctions, non-truthful generalized second price variants, and mecha-
nisms with complex discounts fundamentally change the role of x. In a
first-price auction, the bid is not a truthful report, so a value-multiplier
by = kv simultaneously controls allocation and shading. The optimal shad-
ing depends on beliefs about competition, which can vary across impressions
and over time; therefore, even offline optimal behavior need not be imple-
mentable by a single s applied uniformly to v;. Conceptually, the sufficient
statistic becomes a function by = (3;(v¢, features), and compressing that func-
tion into one scalar inevitably creates approximation error. Our view is that
the one-scalar architecture remains defensible only to the extent that shading
can itself be parameterized by a low-dimensional family (e.g. by = 7y - vy with
a scalar 4 that absorbs both pacing and shading, or by = ;- 0; where ¥ is al-
ready a calibrated “bid value” incorporating auction competitiveness). When
competitiveness varies materially across contexts, a single global multiplier
can be too blunt: the right remedy is not more communication between bud-
get and RoS modules per se, but a richer action space K (e.g. segment-wise
multipliers) so that the scalar message applies within a segment rather than
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across the entire stream.

Beyond one constraint pair: what scales and what does not. An
important limitation of the minimal-coupling claim is that it leverages a col-
lapse to one decision dimension. If the advertiser faces multiple simultaneous
constraints—say separate budgets across campaigns, frequency caps, or mul-
tiple RoS targets across objectives—then the natural centralized primal-dual
method maintains a vector of dual variables, and there is no general reason
for those duals to compose into a single cutoff that is optimal for all im-
pressions. In such settings, we should expect a corresponding increase in
the necessary communication: the minimally sufficient message is typically
the dimension of the effective decision statistic (often the number of binding
constraints after accounting for the structure of the allocation rule). From
an engineering standpoint, this suggests a design heuristic: invest in finding
the smallest decision representation that preserves the intended policy class
(e.g. one multiplier per campaign, or one multiplier per major segment),
and then communicate only that representation across modules. The benefit
is not merely bandwidth reduction; it is organizational clarity about what
information must be consistent at bid time.

Engineering guidance: implementing the scalar interface robustly.
The simulations suggest that the scalar channel is tolerant to delays and
noise, but implementation details matter. We have found three practical
guardrails to be especially important. First, treat x; as a control signal
and enforce stability explicitly: project onto K, limit per-round changes
|kt — ki—1], and optionally smooth via an exponential moving average. Sec-
ond, separate hard enforcement (budget stop) from soft enforcement (RoS),
mirroring the theory: when budget is binding, hard stopping is simpler and
safer than relying on a dual to avoid overspend. Third, calibrate the step size
7 and any penalty augmentation to the time scale of non-stationarity: if the
environment drifts on a horizon L, then 7 tuned for v/T regret may be too
sluggish, and one should instead tune for tracking (larger n plus damping)
while accepting slightly higher variance. None of these modifications alter
the one-scalar communication pattern; they merely make the scalar behave
like a reliable pacing knob under realistic latency and measurement error.

Takeaways. The broader message is that the “one-scalar” result is best
understood as a statement about where coupling is essential, not that all
bidding problems are one-dimensional. Truthful single-slot auctions plus
a uniform-multiplier policy class place the bidder in a particularly clean
regime where budget and RoS interact only through a composite cutoff,
making one scalar sufficient and, in a precise sense, necessary. As we move
to endogenous prices, multi-slot effects, or non-truthful mechanisms, the
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same architectural idea survives as a design pattern: identify the smallest
statistic that determines auction-time actions, and ensure that statistic is
shared across constraint controllers. When that statistic ceases to be one-
dimensional, the right response is to expand the statistic, not to revert to
fully decoupled control. This perspective also clarifies the role of our negative
result: it is not a claim that modularity fails, but that modularity without
a shared decision statistic can be systematically miscalibrated.

Conclusion. We can now summarize the economic message of the paper in
the most operational terms: in the repeated truthful single-slot environment,
the advertiser’s bid-time decision is effectively one-dimensional, and therefore
the right form of modularity is not to isolate budget and RoS (ROI) logic
completely, but to make them consistent through a shared scalar pacing
signal. The substantive content is not that budgets and RoS are easy—
they are coupled long-run constraints, and in general coupled constraints
are difficult to manage online—but that, under the allocation rule z; =
1{kivs > pi}, the coupling can be compressed into a single statistic without
sacrificing the classical learning guarantees that one would obtain from a
fully centralized primal-dual controller.

On the positive side, the sufficiency claim says that if we restrict at-
tention to the uniform-multiplier class b; = kv;, then there exists a scalar
k (or cutoff on py/v;) that implements an optimal offline policy, and there
exists an online update that tracks the best fixed feasible k* with sublinear
regret while keeping long-run RoS violations sublinear (and budget enforce-
able exactly via stopping). This is conceptually important: it reconciles two
facts that practitioners often hold in tension. First, pacing is commonly
implemented as a multiplicative adjustment to a predicted value. Second,
feasibility involves two constraints that appear to require two prices (one for
budget, one for RoS). Our reduction clarifies why these are not contradictory
in the truthful single-slot case: the two shadow prices can be composed into
a single effective multiplier that determines the allocation decision, so the
auction interface need not expose more than one real number per round.

On the negative side, the necessity claim disciplines a popular engineering
instinct: “let the budget module pace down when spend is high; let the ROI
module pace down when ROI is low; combine the two multiplicatively or by
taking the minimum.” Without an explicit coupling channel, such a design
can fail in a strong sense. The underlying economic reason is informational
rather than computational. Each module sees only its own residual and
therefore cannot infer whether tightening is socially efficient given the other
constraint’s status; an adversary (or simply a non-stationary environment)
can present sequences where the correct action alternates between being
budget-driven and RoS-driven. In such cases, fixed monotone aggregators
h(xP, KkT) induce systematic underreaction or overreaction, producing either
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linear regret relative to x* or linear cumulative constraint violation. The
upshot is that modularity per se is not the problem; modularity without a
shared decision statistic is.

The broader design principle we take from these results is a communication—
control equivalence: the minimal cross-module message should have the same
dimension as the effective action statistic that determines allocation in the
auction. In our baseline model that statistic is one scalar k¢, hence one scalar
of coupling is both sufficient and (up to constants) necessary. This framing
is useful because it separates two levers that are often conflated. If a single
global multiplier is too blunt for performance reasons (heterogeneous com-
petitiveness, context-dependent shading, multiple objectives), the remedy is
primarily to enrich the action space K (e.g. segment-wise multipliers) rather
than to keep K one-dimensional but attempt to “coordinate harder” through
more elaborate internal heuristics. Conversely, if the action space truly is
one-dimensional, then insisting on fully decoupled control is not a virtue; it
is an avoidable information constraint.

From a policy and platform perspective, the one-scalar interface suggests
a concrete way to align bidder-side autonomy with system-side stability.
Platforms often prefer bidders to implement pacing and ROI controls in a
manner that is predictable, smooth, and easy to audit for compliance with
spend limits and efficiency constraints. A scalar pacing knob naturally sup-
ports such governance: it can be rate-limited, bounded to K, and logged;
and it interacts with platform safeguards (caps, floors, throttles) in a trans-
parent way. At the same time, our analysis highlights a limitation of purely
bidder-side solutions in thick markets: when many advertisers adapt simul-
taneously, the mapping from k; to outcomes becomes equilibrium-dependent,
so no-regret properties relative to a fixed environment do not automatically
translate into stable joint dynamics. This does not negate the value of the
scalar interface; rather, it clarifies what it can and cannot guarantee without
additional damping, coordination mechanisms, or platform-level stabiliza-
tion.

We also want to be explicit about where the theory is tight and where
it is an approximation. The truthful single-slot threshold structure is what
makes the cutoff rule exact, and thus what makes one-dimensional control
exact. Multi-slot rank-based allocations, first-price shading, and context-
dependent competition all weaken the reduction: they can make the op-
timal policy genuinely multidimensional, and then one scalar cannot be
information-theoretically sufficient. Likewise, when the advertiser faces mul-
tiple budgets, multiple RoS targets, or other non-separable constraints, the
composite statistic typically becomes a vector. The main lesson persists,
but with a different dimension: communicate the minimal vector that ac-
tually determines bid-time actions, and do not expect zero-communication
modularity to succeed when constraints are coupled through allocation.

Finally, the paper is also a statement about organizational design. In
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many real systems, budget control and ROI control are owned by different
teams, rely on different data pipelines, and operate under different latency
constraints. Our results provide a disciplined contract between them: the
shared object must be the scalar (or low-dimensional) decision statistic that
pins down auction-time behavior, not a collection of loosely aligned heuris-
tics. When that contract is respected, decentralization can preserve the
performance of a centralized primal-dual controller; when it is not, decen-
tralization can be predictably fragile. The model thus illuminates a tradeoff
that is as practical as it is theoretical: we can have modularity with strong
guarantees, but only if we pay the small price of communicating the right
statistic.
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