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Abstract
Autobidding has shifted online advertising from manual bids to

target-based delegation, making advertiser behavior depend on platform-
provided prediction signals (click/conversion/value estimates). Recent
theory studies equilibria and efficiency of auction formats under RoS
and budget constraints, and separately studies platform competition
when advertisers allocate across channels. This paper connects these
threads by introducing an explicit information-design lever: platforms
choose not only auction format (first- vs second-price) and reserves, but
also the precision of the value signals exposed through prediction APIs
and reporting. We build a tractable two-platform model with RoS-
constrained value-maximizing advertisers who allocate spend based on
posterior net value. More informative signals are modeled via Blackwell
ordering and shown to increase cross-platform elasticity—advertisers
respond more strongly to differences in effective prices/auction formats.
Our main characterization delivers (i) a threshold rule in sensitivity,
competition intensity, and within-platform monetization under which
second-price mechanisms dominate first-price mechanisms for revenue,
and (ii) an information-garbling result: when precision substantially
increases advertiser responsiveness, platforms optimally coarsen sig-
nals to soften competition, despite precision improving match quality.
We discuss implications for auction format choice, prediction trans-
parency, and antitrust/policy debates about strategic opacity in digital
ad markets, and validate comparative statics in simulation on synthetic
multi-channel auction environments.
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1 Introduction

A growing share of display and search advertising is no longer mediated by
human bidders choosing keywords, bids, and budgets in real time. Instead,
advertisers increasingly delegate these decisions to platform-provided “auto-
bidders” that optimize toward high-level objectives such as return on spend
(RoS), cost per acquisition, or value-based conversion goals. In practice, the
autobidder is only as good as the information it receives: the platform sup-
plies machine-learning (ML) predictions, diagnostics, and targeting signals
that shape the advertiser’s inferred value of an impression and, ultimately,
the advertiser’s willingness to pay. As a result, what used to be an engineer-
ing choice about prediction accuracy has become an economic choice about
how informative, granular, and comparable the platform makes its signals to
the demand side.

This paper studies the strategic role of information policy in platform
competition when demand is governed by autobidding under RoS-type con-
straints. Our starting point is a simple observation from marketplace prac-
tice. The dominant frictions are no longer limited to auction rules or reserve
prices; rather, they include the platform’s control over the measurement and
prediction layer that determines how advertisers perceive value and how
readily they can compare alternatives across platforms. Platform signals
include predicted click-through and conversion rates, value estimates, attri-
bution and incrementality models, and sometimes opaque “quality” adjust-
ments that can be interpreted as part of the information environment faced
by advertisers. When signals are more informative, advertisers can target
and allocate budgets more effectively within a platform. At the same time,
more informative signals can make advertisers more confident about relative
performance across platforms, thereby increasing their propensity to reallo-
cate spend in response to small differences in fees, auction formats, or policy
changes. This double-edged nature of information is the central tradeoff we
formalize.

We build intuition before formalism. Consider two platforms offering
impressions that are close substitutes for a typical performance advertiser.
Each platform would like to convince advertisers that it delivers high value
per dollar, but it also wants to extract revenue per impression. If advertisers
can only imperfectly infer their realized value from a platform’s reporting
and ML predictions, their cross-platform reallocation is sluggish: a platform
can raise effective prices with limited immediate share loss. In contrast, when
reporting and prediction are highly precise, advertisers can identify where
their marginal dollar performs better and rapidly shift budgets. Precision
therefore acts like a competition amplifier. This suggests an incentive for
platforms to limit precision (or comparability) even when they possess the
technical capability to improve it. The resulting logic resembles classic ar-
guments about obfuscation and information disclosure, but the mechanism
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here is tailored to autobidding: information changes the elasticity of platform
demand, not merely the level of willingness to pay.

The institutional details of modern ad markets make this mechanism par-
ticularly salient. First, platform auctions are repeated, fast, and algorithmic,
so small changes in predictions propagate immediately into bidding behavior.
Second, platform-side tools are typically bundled: the same system that pro-
vides targeting and value predictions also determines pacing, optimization,
and sometimes eligibility. Third, advertisers often face explicit or implicit
RoS constraints (e.g., a campaign must meet a target return over a rolling
window), which induces threshold behavior: if the inferred net value of buy-
ing impressions on a platform falls below a profitability cutoff, spend is redi-
rected elsewhere. Under these conditions, increased signal quality can make
the demand response to price-like instruments steep. Thus, the platform’s
information policy is naturally strategic in a competitive environment.

Our model captures these ideas in reduced form while remaining close to
the economic objects of interest. Each platform chooses an auction format
(first-price versus second-price, represented as an expected price increment),
a reserve/price instrument, and a signal precision parameter. Advertisers ob-
serve platform-provided signals and allocate spend shares across platforms
via an objective consistent with RoS-constrained value maximization. The
key modeling move is to link signal precision to cross-platform sensitivity:
more informative signals reduce decision noise, so the allocation share be-
comes more responsive to differences in net value across platforms. We sum-
marize this channel by a sensitivity parameter β(σ) that increases with pre-
cision. Separately, precision may directly raise the value generated within a
platform through better matching, improved optimization, or tighter within-
platform bidding; we allow for such direct benefits as well. This separation
clarifies what is at stake: platforms may want to improve ML accuracy for
productive reasons, yet they may simultaneously fear the intensified compe-
tition that accuracy enables.

Two sets of results motivate the analysis. First, we show that the choice
between first-price and second-price formats interacts sharply with advertiser
sensitivity. A first-price format can mechanically raise expected payments
per impression (captured by an increment ∆ > 0 holding other instruments
fixed). But higher payments also lower advertiser net value, which reduces
demand share when advertisers can easily substitute. When sensitivity is
sufficiently high, the share loss dominates the per-unit gain, making the
second-price format revenue-dominant against a rival second-price platform.
The resulting condition yields a closed-form threshold β∗, highlighting a
basic point: even if first-price auctions extract more per impression in a
partial-equilibrium sense, they can be unprofitable in equilibrium when de-
mand reallocates elastically across platforms. In this way, the equilibrium
viability of “high-price” formats depends on the informational environment
that determines how quickly advertisers react.
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Second, and more centrally, we show that platforms may optimally choose
less informative signals than would be socially efficient. The reason is not
that information is intrinsically harmful; rather, information tightens com-
petitive constraints by raising β(σ). From a platform’s perspective, increas-
ing precision has a direct return (better within-platform monetization and/or
higher match value) but also a strategic cost (tougher competition, lower
markups). When the elasticity effect of precision is strong relative to the
direct return, the platform’s best response involves strategic coarsening, i.e.,
choosing a lower σ than the welfare benchmark. In symmetric equilibrium,
this can produce systematically opaque information environments even when
both platforms have access to high-quality prediction technology. This result
speaks directly to contemporary debates about transparency, measurement
quality, and the incentives of vertically integrated platforms that both run
the auction and provide the tools used to bid in it.

These findings have practical and policy relevance. Industry participants
often frame changes in reporting granularity, attribution windows, privacy-
preserving aggregation, or “black-box” bidding tools as responses to privacy
or complexity. While such factors matter, our analysis emphasizes an ad-
ditional incentive: opacity can be a competitive strategy that relaxes price
pressure. This perspective helps interpret why improvements in measure-
ment and comparability (for example, standardized conversion APIs or in-
dependent attribution) may face resistance even when they appear efficiency-
enhancing for advertisers. Conversely, it clarifies why platforms might se-
lectively increase precision in dimensions that raise within-platform revenue
while limiting precision in dimensions that facilitate cross-platform bench-
marking. The model thus suggests that policies aimed at transparency or
interoperability can have pro-competitive effects, but also that their inci-
dence depends on how they alter advertiser sensitivity and the platforms’
ability to extract surplus through format and reserve choices.

We also acknowledge limitations. Our reduced-form treatment of signal
precision abstracts from many institutional details: heterogeneous advertiser
objectives, multi-objective autobidders, learning dynamics, and the possibil-
ity that platforms commit to long-run measurement regimes while advertisers
adapt over time. We focus on two platforms to keep the strategic logic trans-
parent, though the forces we isolate plausibly strengthen with more competi-
tors. Finally, we model format differences as an expected price increment;
in reality, the welfare consequences of first- versus second-price auctions also
involve bidding strategies, risk, and dynamic budget management. These
simplifications are deliberate: they allow us to cleanly separate the direct
value of information from its competitive externality through elasticity, and
to derive transparent comparative statics.

The remainder of the paper situates our contribution in the related lit-
erature, develops the model, and characterizes equilibrium format and in-
formation choices. Throughout, our goal is not to claim that any partic-
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ular platform deliberately degrades prediction quality, but to illuminate a
general tradeoff: in autobidding markets, information is simultaneously a
productivity-enhancing input and a strategic lever that shapes competitive
intensity.

2 Related literature and positioning

Our analysis speaks to four adjacent literatures: (i) autobidding and con-
strained optimization in ad auctions, including efficiency and price-of-anarchy
considerations; (ii) platform-side “auction design with ML advice,” where
platforms jointly choose pricing rules and prediction/quality adjustments;
(iii) competitive platform design in advertising markets, especially format
choice and multi-homing; and (iv) information design and strategic garbling
in industrial organization. We briefly position our contribution within each
strand and clarify what is deliberately abstracted away.

Autobidding, budget/RoS constraints, and equilibrium inefficiency.
A large theoretical and empirical literature studies auctions and pacing when
bidders are not standard quasilinear agents but face budget constraints or
performance targets. In these environments, bidders (or their delegates)
choose bids to satisfy constraints such as average cost-per-click, return on ad
spend, or value-per-dollar objectives, often in repeated and high-frequency
settings. Related models include analyses of budget-constrained bidding,
pacing equilibria, and the efficiency consequences of constrained bidding, as
in work on smooth mechanisms and welfare bounds, and in the ad-auctions
tradition that links platform rules to equilibrium bids and allocations (e.g.,
?; ?; ?). A recurring theme is that constraints can distort bids away from
true marginal values, generating welfare loss relative to a full-information,
unconstrained benchmark.

We view our reduced-form RoS constraint as a tractable way to capture
this empirically salient feature without committing to a specific pacing al-
gorithm. Rather than characterizing within-auction bid shading or dynamic
budget smoothing, we focus on the cross-platform implication: constrained
bidders exhibit threshold-like participation and reallocation when their in-
ferred net value falls relative to effective price. This emphasis connects to
price-of-anarchy style reasoning in a different dimension. The inefficiency
we highlight is not only allocative (misallocation across impressions within
a platform), but also informational and strategic (platforms may choose to
reduce the informativeness of the signals that drive the autobidder), which
can lower total surplus even when each platform could technically improve
prediction quality.
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Platform “ML advice” as an instrument: reserves, quality scores,
and bid multipliers. A second strand studies how platforms influence
auction outcomes through the prediction layer: reserve prices, scoring rules,
quality adjustments, and other transformations of bids or values that are jus-
tified as relevance, user experience, or ML calibration. In sponsored search,
quality scores and ad-rank rules effectively reweight bids; in display, ex-
changes frequently apply bid multipliers, floors, and other policy levers. A
related theoretical literature examines revenue-optimal mechanisms when
the seller has access to information or can choose what to reveal, including
the design of signaling schemes in auctions and the role of information in
extracting surplus (e.g., ?; ?). In parallel, empirical work in ad markets doc-
uments how prediction improvements and scoring changes can affect both
allocative outcomes and platform revenue.

Our contribution is to treat the prediction/reporting layer itself as a
strategic object that interacts with competition. We abstract from the fine
structure of the ad-rank formula and instead summarize the platform’s “ML
advice” by a one-dimensional precision parameter that is Blackwell ordered.
This choice is not meant to deny the richness of platform ML, but to separate
two conceptually distinct effects: (i) a direct return from better prediction
(higher match value and tighter within-platform monetization), and (ii) an
elasticity effect whereby better information makes advertisers more respon-
sive in their cross-platform allocation. Much of the existing mechanism-
design-with-ML perspective emphasizes the first channel; our main results
rely on the second.

Format choice and competitive platform design in advertising. There
is a substantial literature on auction format in ad markets, particularly the
practical shift from second-price to first-price auctions and the resulting role
of bid shading, equilibrium markups, and intermediary fees (e.g., ?; ?). At
the same time, industrial organization work on platforms and multi-homing
emphasizes that advertisers often allocate budgets across multiple channels,
and that platforms compete through fees, targeting capabilities, and mea-
surement. In such settings, a platform’s attempt to raise per-unit revenue
can be counteracted by share loss when advertisers substitute. This compe-
tition logic is familiar, but the ad-tech setting adds a distinctive feature: the
objects that govern substitution are not only prices and product character-
istics, but also measurement and comparability.

We build on this insight by making format choice and information policy
jointly strategic. We model the difference between first-price and second-
price as an expected payment increment holding other instruments fixed,
which allows us to isolate the competitive tradeoff without taking a stand
on the full bidding equilibrium under each format. The resulting format
threshold result can be read as a reduced-form complement to the detailed
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auction-theoretic analyses: even if a first-price format mechanically raises
payments in partial equilibrium, it may be dominated in a competitive envi-
ronment once one accounts for induced reallocation. Importantly, because in-
formation affects the responsiveness of reallocation, format viability becomes
endogenous to the information regime. This interaction is less emphasized
in the format-choice literature, which typically takes bidder information and
cross-platform outside options as given.

Information design, obfuscation, and strategic garbling in IO. Fi-
nally, our paper relates to the information design literature, which studies
how an informed party optimally chooses what to reveal to influence down-
stream actions (e.g., ?; ?). In IO, a complementary literature on obfuscation
and shrouded attributes shows that firms may strategically reduce trans-
parency to soften competition or exploit behavioral frictions (e.g., ?; ?). In
many of these models, disclosure affects demand either by changing perceived
quality/price levels or by creating search and comparison frictions.

Our mechanism is closest in spirit but differs in economic object. We
do not assume naive consumers or limited attention. Instead, advertisers
are rational but constrained and delegate decisions to an optimization al-
gorithm whose inputs are platform-provided signals. Garbling then oper-
ates through a rational elasticity channel: more informative signals reduce
decision noise and steepen the demand response to relative net value. In
this sense, we adopt an “as-if” discrete-choice representation of allocation in
which information policy shifts the slope parameter. This reduced form can
be microfounded using standard Blackwell comparisons and rational choice
with noisy signals, but we do not require a particular behavioral foundation.
The key point is that even with fully rational advertisers, the platform may
prefer opacity because precision intensifies competition.

Positioning and scope. Relative to these literatures, we contribute a par-
simonious framework in which platforms choose three instruments—format,
reserve/price, and information precision—and where the distinctive role of
information is to affect cross-platform sensitivity. This focus yields sharp
comparative statics and transparent conditions under which (i) lower-price
formats can dominate higher-price formats in revenue once demand reallo-
cation is elastic, and (ii) equilibrium information can be inefficiently coarse
because platforms do not internalize the surplus gains from improved allo-
cation while they do internalize the competitive pressure it creates.

At the same time, our modeling choices impose limitations that guide
interpretation. We abstract from dynamic learning by advertisers and from
repeated-game incentives that might discipline or amplify information ma-
nipulation. We also compress a multidimensional reporting environment (at-
tribution, incrementality, privacy-preserving aggregation, diagnostics) into a
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single precision index; in practice, platforms can selectively increase precision
in some dimensions while decreasing comparability in others. Finally, we do
not attempt to adjudicate the welfare ranking of first- versus second-price
auctions in full generality; instead, we take the observed “price increment”
effect as a sufficient statistic for how format changes translate into effective
prices facing autobidders. These simplifications are intentional: they allow
us to highlight a competition-relevant tradeoff that cuts across institutional
details and motivates the model we develop next.

Roadmap. Guided by these connections, Section 3 formalizes a two-platform
environment in which platforms choose auction format, a price instrument,
and a Blackwell-ordered signal precision, while RoS-constrained advertisers
allocate spend across platforms as a function of posterior net value and ef-
fective prices. The subsequent analysis uses this structure to characterize
equilibrium format and information choices and to compare private incen-
tives to a welfare benchmark.

3 Model

We model two competing advertising platforms, indexed by k ∈ {1, 2}, that
sell a homogeneous unit of attention (an “impression”) to a continuum of
advertisers i ∈ [0, 1]. The goal is to isolate a simple but practically salient
interaction: platforms can raise the effective price advertisers pay (through
auction format and related pricing instruments), but they also control how
measurable and comparable performance is through the information they pro-
vide to advertisers and their autobidders. More informative signals improve
match quality and monetization within a platform, yet also make advertis-
ers more willing to reallocate spend across platforms in response to small
differences in net value.

Advertisers, values, and RoS constraints. Advertiser i has a platform-
specific expected value vik from an impression on platform k. This value can
be interpreted broadly: expected conversions times margin, incrementality-
adjusted lift, or any internal value metric the advertiser would like the au-
tobidder to maximize. We allow vik to differ across platforms even for the
same advertiser, capturing differences in audience composition, creative fit,
or measurement.

A distinctive feature of the environment is that advertisers are con-
strained by performance targets. Each advertiser i has a return-on-spend
(RoS) requirement parameter τi ≥ 0. In reduced form, we treat the RoS
requirement as a constraint that ties expected value to expected payments.
Intuitively, if a platform becomes “too expensive” relative to the advertiser’s
perceived value, the advertiser (or its autobidder) will either scale back or
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stop allocating spend there. This captures a broad set of practical constraints
used in autobidding systems (e.g., target ROAS, target CPA, or value-per-
dollar pacing), while remaining agnostic about the exact algorithm.

Platform instruments: format, reserve/price, and information pre-
cision. Each platform k commits to a triple of instruments

(Mk, rk, σk) ∈ {SPA,FPA} × R+ × [0, 1].

The first component Mk is the auction format, either second-price (SPA)
or first-price (FPA). The second component rk ≥ 0 is a price instrument
that the platform can directly control. We call it a “reserve” for concrete-
ness, but it should be interpreted more broadly as any lever that shifts the
expected payment per impression holding demand fixed: floors, take rates,
scoring/multipliers that scale bids, or other implementation details that,
from the advertiser’s perspective, show up as a higher expected cost per unit
of delivery.

The third component σk ∈ [0, 1] indexes the platform’s information pol-
icy. Higher σk corresponds to a more informative signal about advertiser-
impression value and, crucially for our competitive logic, to a more decision-
relevant signal for cross-platform allocation. While real reporting environ-
ments are high-dimensional (attribution windows, conversion modeling, in-
crementality diagnostics, privacy noise, aggregation, and so on), we summa-
rize the informativeness of what the platform provides by a one-dimensional
precision index that is Blackwell ordered.

Signal structures and the Blackwell order. For each platform k, pre-
cision σk selects a signal structure Sk(σk). Advertiser i then observes a
platform-specific signal v̂ik drawn according to Sk(σk). We assume that if
σ′ > σ, then Sk(σ

′) Blackwell-dominates Sk(σ): the lower-precision signal
can be obtained by garbling the higher-precision one. This assumption is
the standard way to represent a platform’s ability to commit to being more
or less informative without committing to a particular parametric noise dis-
tribution. It also matches practice: a platform can coarsen by adding noise,
reporting at a higher level of aggregation, delaying feedback, censoring di-
agnostics, or otherwise reducing how sharply the advertiser can infer which
placements, audiences, or platforms are performing best.

Advertisers use Bayes’ rule to form posterior expected values E[vik | v̂ik].
We emphasize that nothing in the model relies on advertisers being naive:
the information design problem arises even when advertisers process signals
optimally, because signal precision affects the responsiveness of subsequent
allocation decisions.

Timing. The game has three stages.
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1. Stage 0 (platform commitment). Platforms simultaneously choose
(Mk, rk, σk).

2. Stage 1 (advertiser allocation). Advertisers observe signals (v̂i1, v̂i2)
and allocate spend shares across platforms. We denote advertiser i’s
share on platform k by aik ∈ [0, 1], with (ai1, ai2) in the simplex (al-
lowing an outside option if neither platform meets the RoS constraint).

3. Stage 2 (auction execution and payments). Auctions execute
within each platform, and platform k collects expected payment per
impression pk times the allocated quantity it receives.

We interpret Stage 1 as the outcome of an autobidder that takes as inputs
platform-provided value signals and effective prices and outputs campaign-
level allocation across channels.

Reduced-form effective prices and the role of auction format. Rather
than modeling the full within-platform bidding equilibrium under each for-
mat, we summarize the platform’s expected per-impression payment by an
effective price function pk(Mk, rk, σk). This abstraction serves two purposes.
First, it lets us treat “format” as a pricing rule that affects expected payment
while also affecting advertiser net value, without committing to the detailed
mechanics of bid shading or pacing. Second, it keeps the competitive logic
transparent: what matters for cross-platform substitution is how platform
choices shift the expected cost of buying a unit of delivery.

We adopt the following simple decomposition:

pk(SPA, r, σ) = r + ϕ(σ), pk(FPA, r, σ) = r + ϕ(σ) + ∆,

with ∆ > 0 an exogenous increment capturing the idea that, holding other in-
struments fixed, first-price implementation tends to raise expected payments
relative to second price. The term ϕ(σ) captures within-platform monetiza-
tion effects of precision: better prediction and tighter matching can increase
competition for valuable impressions, reduce waste, and (in expected terms)
raise the price per impression even under a fixed reserve. We allow ϕ(σ) to
be weakly increasing.

This specification does not claim that first-price always raises payments
in all environments; rather, ∆ is a sufficient statistic for the partial-equilibrium
payment shift relevant for our comparative statics. In applications, ∆ can
be interpreted as incorporating bid shading frictions, intermediary fees, or
other implementation differences that make the effective price higher under
first price from the advertiser’s perspective.

Advertiser payoffs and feasibility under RoS. Given effective prices,
advertiser i chooses (ai1, ai2) to maximize expected value subject to meeting
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its RoS constraint:

max
(ai1,ai2)∈∆

2∑
k=1

aik E[vik | v̂ik] s.t.
2∑

k=1

aik E[vik | v̂ik] ≥ τi

2∑
k=1

aik pk(Mk, rk, σk).

This formulation captures the idea that advertisers scale spend only where
expected value is sufficiently high relative to expected cost. It also creates
a natural participation cutoff: if a platform’s expected net value falls be-
low zero (relative to the target τi), the advertiser optimally assigns it zero
weight. In the next section, we impose a tractable choice rule that aggregates
these individual decisions into a smooth demand share system and makes the
elasticity effects of σk explicit.

Platform payoffs and the cost of precision. Let Dk denote the aggre-
gate demand/spend share that platform k receives in Stage 1. Platform k’s
payoff is

Πk = pk(Mk, rk, σk)Dk − c(σk),

where c(σk) is a convex cost of providing precision. This cost can represent
engineering and data infrastructure costs, privacy and compliance burdens,
increased fraud/measurement risk, or brand/trust concerns associated with
highly granular reporting. Convexity captures diminishing returns and the
idea that moving from moderately informative to highly informative signals
may be disproportionately costly (technologically or institutionally).

Discussion and scope. Two modeling choices deserve emphasis. First,
we treat information as a platform commitment about what the autobidder
can observe, not as a passive byproduct of technology. This aligns with the
practical reality that platforms choose what to measure and report, what
to aggregate, and what to expose via APIs and dashboards. Second, we
isolate a competitive channel through which higher precision can intensify
platform competition: as advertisers can better infer relative performance,
they can more finely arbitrage across platforms, making demand more sensi-
tive to small price or format differences. Our subsequent analysis separates
this elasticity channel from the direct effects of precision on match value
and within-platform monetization, and it compares the private incentive to
choose σk to a welfare benchmark in which increased comparability is socially
valuable.

4 Advertiser allocation and demand elasticity

To study format and information competition we need a tractable mapping
from platform choices (Mk, rk, σk) into aggregate spend shares (D1, D2). The
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microfoundation in Section 3 delivers a natural object: advertiser i’s poste-
rior expected value E[vik | v̂ik], which is then compared to the platform’s
effective payment pk(Mk, rk, σk) through the RoS requirement. The diffi-
culty is that, taken literally, RoS feasibility generates corner solutions and
discontinuous market shares: an arbitrarily small change in price can flip a
campaign from “in” to “out.” We therefore impose a smooth reduced form
that (i) preserves the RoS participation cutoff logic, and (ii) makes explicit
how signal precision increases cross-platform responsiveness.

Posterior net value and the RoS participation cutoff. Fix platform
choices and consider advertiser i’s posterior RoS-adjusted net value (or “sur-
plus index”) on platform k,

mik := E[vik | v̂ik] − τi pk(Mk, rk, σk). (1)

The RoS constraint implies a participation cutoff: if mik < 0, then allocat-
ing spend to platform k worsens expected performance relative to the target,
so an optimizer sets aik = 0 unless it is needed to satisfy some other con-
straint not modeled here. Conversely, when mik > 0, platform k is “feasible”
for advertiser i and can receive positive allocation. In the knife-edge de-
terministic benchmark in which advertisers perfectly rank platforms by (1)
and face no adjustment frictions, each advertiser would assign all spend to
argmax{mi1,mi2, 0}, where the outside option (no spend) has normalized
payoff 0. This benchmark is conceptually useful—it highlights the role of RoS
cutoffs—but it is too discontinuous for comparative statics in (Mk, rk, σk).

A smooth allocation rule: random utility with an outside option.
We smooth the deterministic cutoff by allowing for residual campaign-level
dispersion in how advertisers translate posterior net values into realized al-
locations. One interpretation is that advertisers face additional unmodeled
constraints (budgets, learning, attribution uncertainty, creative fatigue) that
create “mistakes” or inertia relative to pure myopic maximization of (1). For-
mally, suppose advertiser i chooses among {0, 1, 2} according to

choose k ∈ {0, 1, 2} to maximize mik + εik,

where εik are i.i.d. Type-I extreme value shocks and mi0 ≡ 0 is the outside
option. The standard logit formula implies that the probability (and, with
a continuum of infinitesimal campaigns, the spend share) assigned to plat-
form k is increasing in its net value index and decreasing in rivals’ indices.
Importantly, the scale of the shocks governs how sharply shares respond to
utility differences. Writing this scale as an “inverse noise” parameter β ≥ 0
yields choice probabilities proportional to exp(βmik).

To connect the allocation rule to platform instruments, we aggregate
advertiser heterogeneity and signal realizations into a platform-level net value
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index. In our reduced form we write

uk := V (σk) − pk(Mk, rk, σk), (2)

where V (σk) captures the expected (RoS-normalized) value that advertisers
can generate on platform k when precision is σk. This term is meant to
absorb both (i) the direct match-quality value of precision (better target-
ing, fewer wasted impressions), and (ii) the effect of precision on posterior
expected value formation. We then posit the market share system

Dk =
exp(β(σk)uk)

1 + exp(β(σ1)u1) + exp(β(σ2)u2)
, k ∈ {1, 2}, (3)

with outside option share D0 = 1−D1 −D2 =
(
1 +

∑2
j=1 exp(β(σj)uj)

)−1.
The outside option is the reduced-form representation of RoS-driven non-
participation: when both platforms deliver negative net value indices, most
mass goes to D0; when a platform’s uk is strongly negative, its share van-
ishes. In the limit β(σ) → ∞, (3) converges to the deterministic cutoff rule
that places essentially all weight on the best nonnegative option, recovering
the sharp RoS participation logic.

Elasticities and substitution patterns. Equation (3) implies transpar-
ent comparative statics. Let βk := β(σk) and define zk := exp(βkuk) and
Z := 1 + z1 + z2. Then Dk = zk/Z and the share ratio satisfies

D1

D2
= exp(β1u1 − β2u2), (4)

so relative demand is exponentially sensitive to relative net values, with
sensitivity governed by the β’s. Differentiating delivers the familiar logit
response:

∂Dk

∂uk
= βk Dk(1−Dk), (5)

∂Dk

∂uj
= −βj DkDj , j ̸= k. (6)

Thus higher βj makes platform j’s net value more “pivotal” for all shares:
small changes in uj trigger larger reallocations.

Because uk subtracts the effective payment, the same expressions trans-
late into price elasticities. Holding σ fixed, a marginal increase in pk reduces
uk one-for-one, so

∂ lnDk

∂pk
= −βk(1−Dk), (7)

and raises rivals’ (and the outside option’s) shares. This is the key sense
in which β(σ) controls cross-platform contestability : when β(σ) is large,
the demand loss from a higher effective price (whether induced by rk or by
choosing FPA) is amplified.
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Why precision increases cross-platform sensitivity. We now connect
β(σ) to the information policy. The assumption that Sk(σ

′) Blackwell-
dominates Sk(σ) for σ′ > σ means that, with higher precision, advertisers
can form posterior means that more accurately rank alternatives. In discrete
choice terms, information reduces decision noise. A simple illustration is to
suppose that the advertiser’s perceived net value difference is a noisy signal

d̃i(σ) = (u1 − u2) + ηi(σ),

where ηi(σ) is mean-zero noise whose dispersion falls with σ. Then the
probability of allocating to platform 1 is Pr(d̃i(σ) ≥ 0), whose slope with
respect to (u1−u2) increases as σ increases. Under Gumbel noise this exactly
yields a logit form with β(σ) proportional to the inverse noise scale; under
other common noise families (normal, logistic), the same monotonicity holds:
more precision makes the choice probability function steeper. We therefore
treat

β′(σ) > 0 (8)

as the reduced-form implication of the Blackwell order for cross-platform
allocation. For later comparative statics it is useful to parameterize this
slope by b := β′(σ) (e.g., β(σ) = β0 + bσ), which measures how strongly
improvements in measurement and reporting translate into more aggressive
spend reallocation.

Two channels of σ in demand: levels versus elasticity. Finally, note
that precision affects demand in two conceptually distinct ways. First, it
shifts the level of net value through V (σk) (and, through within-platform
monetization, potentially through pk via ϕ(σk)). Second, it changes the slope
of the demand system through β(σk). To see the decomposition, observe that
Dk depends on σk through the index β(σk)uk(σk); thus

∂ ln zk
∂σk

= β′(σk)uk + β(σk)
∂uk
∂σk

.

The first term is the “elasticity channel”: holding the net value level fixed,
making information more precise changes how sharply advertisers react to
differences. The second term is the “direct value/monetization channel”:
precision changes uk itself. Our main competitive results will turn on the
first term: even when more information is intrinsically helpful (so ∂uk/∂σk
is positive), it can intensify substitution and thereby discipline prices and
formats.

With the demand system (3) in hand, we can now examine format com-
petition holding σ fixed. In particular, because format affects pk through
the increment ∆, the profitability of FPA versus SPA will hinge on the sen-
sitivity parameter β(σ): when advertisers can finely compare performance
across platforms, they punish high effective prices more strongly, shifting
equilibrium format choices.
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5 Format competition holding precision fixed

We next isolate the platforms’ format incentives by holding information and
reserves fixed. This serves two purposes. First, it provides a clean closed-
form condition under which a second-price auction (SPA) dominates a first-
price auction (FPA) in a competitive environment with cross-platform sub-
stitution. Second, it makes transparent why the format margin will later
interact sharply with the information margin: the same precision choice
that raises match value can also raise the sensitivity parameter β(σ) that
disciplines high-price formats.

5.1 A reduced-form format wedge

Fix σ ∈ [0, 1] and r ≥ 0 and suppose both platforms share these values.
Format affects the effective expected payment per impression through the
constant wedge ∆ > 0,

p(SPA, r, σ) =: pS , p(FPA, r, σ) = pS +∆.

We interpret ∆ as the expected price increment from switching the auction
rule while holding the platform’s other instruments fixed (e.g., due to reduced
bid shading under FPA relative to SPA, or, more generally, a format-induced
change in the expected price impact faced by the autobidder). This is not
meant to be a literal statement about auction theory under arbitrary infor-
mation; rather, it is the minimal reduced form needed to compare formats
in the presence of elastic cross-platform allocation.

Given σ, advertiser responsiveness is summarized by β := β(σ). Because
V (σ) is held fixed in this section, a platform that switches from SPA to FPA
reduces its net value index u one-for-one by ∆, i.e.,

u(FPA) = u(SPA)−∆,

while simultaneously raising its per-impression payment by ∆. The format
problem is therefore a canonical tradeoff between margin (higher p) and
share (lower D), with the share response governed by β.

5.2 Closed-form threshold: SPA versus FPA against an SPA
rival

To obtain a closed form, we focus on the standard competitive benchmark in
which the outside option is negligible at the margin of format choice (equiv-
alently, in the limit in which both platforms deliver sufficiently positive net
value that D0 ≈ 0). In that case, demand splits only across the two plat-
forms and the logit rule reduces to the familiar binary formula. If platform
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2 uses SPA and platform 1 deviates to FPA, the effective price difference is
∆, so platform 1’s demand share is

D1(FPA | SPA) =
1

1 + exp(β∆)
. (9)

If instead platform 1 also uses SPA, symmetry implies D1(SPA | SPA) = 1/2.
Profits in the format subgame (holding (r, σ) fixed) are therefore

Π1(SPA | SPA) = pS
2
, Π1(FPA | SPA) = pS +∆

1 + exp(β∆)
.

Comparing these expressions yields a simple threshold in β.

Proposition (Format threshold with fixed (r, σ)). Fix (r, σ) and let
pS = p(SPA, r, σ) and p(FPA, r, σ) = pS +∆ with ∆ > 0. Suppose platform
2 uses SPA and the outside option is negligible. Then platform 1 (weakly)
prefers SPA to FPA if and only if β ≥ β∗, where

β∗ =
1

∆
ln

(
1 +

2∆

pS

)
. (10)

Derivation. The condition Π1(SPA | SPA) ≥ Π1(FPA | SPA) is

pS
2

≥ pS +∆

1 + exp(β∆)
.

Rearranging gives exp(β∆) ≥ 1 + 2∆/pS , which is equivalent to (10).

Interpretation. The right-hand side of (10) is decreasing in pS and in-
creasing in ∆ in the natural way. A larger baseline payment pS makes the
incremental margin gain ∆ from FPA relatively less important, so the share
loss induced by a higher effective price becomes decisive at a lower level of
sensitivity. Conversely, when ∆ is large, FPA is more “extractive” in net value
terms, so a smaller β suffices for advertisers to reallocate strongly enough to
make SPA revenue-dominant.

The limiting cases are also intuitive. As β → 0 (almost inelastic al-
location), (9) yields D1 ≈ 1/2, so FPA strictly dominates by raising per-
impression payment while barely affecting share. As β → ∞ (almost deter-
ministic ranking), D1(FPA | SPA) → 0, so the FPA deviator is essentially
excluded, and SPA strictly dominates.

5.3 Equilibrium implications: when is SPA uniquely selected?

The threshold in (10) characterizes a best response to an SPA rival. To
understand the full 2×2 format game, we also compare deviations when the
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rival uses FPA. Under the same covered-market approximation, if platform
2 uses FPA and platform 1 uses SPA, then platform 1’s demand share is

D1(SPA | FPA) =
exp(β∆)

1 + exp(β∆)
,

so

Π1(SPA | FPA) = pS
exp(β∆)

1 + exp(β∆)
, Π1(FPA | FPA) = pS +∆

2
.

A second threshold β∗∗ solves Π1(SPA | FPA) ≥ Π1(FPA | FPA), yielding
(when pS > ∆)

β∗∗ =
1

∆
ln

(
pS +∆

pS −∆

)
. (11)

This implies three regimes. If β < β∗, each platform prefers FPA even
against an SPA rival, so (FPA,FPA) is the unique equilibrium. If β > β∗∗,
each platform prefers SPA even against an FPA rival, so (SPA, SPA) is the
unique equilibrium. For intermediate β ∈ [β∗, β∗∗], both (SPA, SPA) and
(FPA,FPA) can be equilibria, reflecting a coordination problem: when both
platforms commit to a high-price format, each faces a weaker incentive to
unilaterally soften, but when the rival is already soft, matching softness is
attractive because share is highly contestable.

This multiplicity is economically important for practice. It suggests that
observed persistence of first-price formats need not indicate that FPA is
intrinsically revenue-superior; it may instead reflect equilibrium selection in
a setting where platforms anticipate that softening format would be met
by aggressive responses elsewhere (e.g., via reserves, quality adjustments, or
other fee instruments not explicitly modeled here).

5.4 Remarks: outside option and asymmetries

Two modeling choices deserve emphasis. First, incorporating the outside
option D0 generally strengthens the share-loss channel from raising effective
prices, because demand can exit rather than merely reallocate. The closed-
form expressions above are therefore best interpreted as conservative bench-
marks: when RoS constraints bind tightly and nonparticipation is salient,
the region in which SPA dominates expands.

Second, the clean thresholds rely on a symmetric comparison that fixes
(r, σ) across platforms. With asymmetric reserves or asymmetric baseline net
values, the same logic applies but the thresholds become state-dependent: a
platform with higher baseline net value can sometimes sustain the high-price
format for longer, because it starts from a position of higher share. This will
matter in Section 6, where rk and σk are themselves strategic choices and
may be used to manipulate both the level uk and the slope β(σk) of demand.
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Taken together, the results of this section formalize a simple competitive
message: holding information fixed, high sensitivity β(σ) makes demand
highly contestable, so a format that raises effective payments by ∆ can be
revenue-inferior despite its higher per-impression margin. In the next sec-
tion we allow platforms to choose σk and rk jointly, and show that precisely
because higher precision raises β(σ), platforms may have an incentive to
coarsen information to sustain higher markups and, in some parameter re-
gions, to support high-price formats that would otherwise unravel.

6 Joint choice of reserves and precision

We now turn to the main strategic interaction in the model: platforms si-
multaneously choose a price instrument (the reserve rk) and an information
policy (precision σk). Unlike the format comparison in Section 5, the reserve
margin cannot be analyzed under a fully covered market, because if the out-
side option were literally irrelevant then a symmetric increase in both plat-
forms’ reserves would leave shares unchanged while raising per-impression
payments. To discipline pricing and to make precision consequential for par-
ticipation, we therefore work with the baseline multinomial logit demand
system that includes the outside option,

Dk =
exp(β(σk)uk)

1 + exp(β(σ1)u1) + exp(β(σ2)u2)
, uk = V (σk)− pk,

and with the reduced-form payment rule

pk = rk + ϕ(σk) + 1{Mk = FPA}∆.

In this section we treat Mk as given when characterizing (rk, σk), and then
interpret the resulting equilibrium β(σ∗) through the format thresholds de-
rived earlier.

6.1 Reserve choice conditional on precision

Fix (M1,M2) and (σ1, σ2). Platform k’s profit is

Πk = pkDk − c(σk).

Because pk depends one-for-one on rk and uk = V (σk)−pk, the reserve first-
order condition (when interior) has the familiar logit “markup equals inverse
elasticity” form. Using ∂Dk/∂uk = β(σk)Dk(1−Dk), we obtain

∂Πk

∂rk
= Dk + pk

∂Dk

∂rk
= Dk + pk

∂Dk

∂uk

∂uk
∂rk

= Dk − pk β(σk)Dk(1−Dk). (12)

19



Thus any interior optimum satisfies

pk =
1

β(σk) (1−Dk)
. (13)

Equation (13) makes the central role of β(σ) transparent: holding fixed
demand share Dk, greater sensitivity (higher β) forces a lower equilibrium
effective payment pk, and hence a lower reserve rk. In other words, the same
informational improvement that helps advertisers allocate more sharply also
disciplines platform pricing.

In a symmetric profile (M1,M2) = (M,M) and (r1, σ1) = (r2, σ2) =
(r, σ), we can summarize reserve setting by the pair of fixed-point relation-
ships

D(σ, r) =
exp(β(σ)u)

1 + 2 exp(β(σ)u)
, p = r+ϕ(σ)+1{M = FPA}∆, u = V (σ)−p,

(14)
together with the pricing condition p = 1/(β(σ)(1−D)). While (14) typically
does not deliver a closed-form solution for r, it provides a sharp comparative
static: any change in σ that increases β(σ) tends to reduce the feasible
markup in (13), thereby pushing equilibrium reserves downward unless offset
by a sufficiently strong direct shift in u through V (σ) and ϕ(σ).

6.2 Precision choice and the incentive to garble

We next examine how a platform evaluates a marginal increase in σk. Pre-
cision affects profits through three conceptually distinct channels.

(i) Direct match-value channel. Higher σk increases advertisers’ ex-
pected match value V (σk), raising uk and therefore Dk for any fixed effective
payment pk. This is the standard efficiency rationale for more information:
better targeting and measurement make impressions more valuable to the
advertiser side and expand demand.

(ii) Direct monetization channel. Higher σk may also increase within-
platform monetization ϕ(σk) (e.g., tighter bid distributions or less wasteful
allocations raise clearing prices). This increases pk mechanically, holding
rk fixed, but it reduces advertiser net value uk. Whether ϕ′(σ) is profit-
increasing depends on how strongly the induced increase in per-impression
payment outweighs the share loss from the lower uk.

(iii) Elasticity (competition) channel. Crucially, by assumption β′(σ) >
0: more precise signals reduce decision noise and make cross-platform alloca-
tion more responsive to net-value differences. In the reserve condition (13),
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this channel operates like an endogenous increase in demand elasticity. In-
tuitively, as σk rises, advertisers become quicker to reallocate away from any
platform that raises its effective price, so the platform internalizes that it
cannot profitably sustain the same markup. This is the strategic force to-
ward coarsening (garbling): lowering precision softens competitive pressure
by keeping allocation relatively inert.

A convenient way to formalize this tradeoff is to consider the platform’s
reduced objective after optimizing the reserve, Π̂k(σk;σ−k) := maxrk≥0Πk(rk, σk; r−k, σ−k).
The envelope theorem implies that, at an interior optimum r∗k(σk), the
marginal value of precision is

dΠ̂k

dσk
=

∂

∂σk

(
pkDk

)∣∣∣∣
rk=r∗k(σk)

− c′(σk), (15)

where ∂(pkDk)/∂σk captures the direct V ′ and ϕ′ effects and the strategic
effect working through β′(σk). In symmetric equilibrium, this yields the qual-
itative implication emphasized in the global context: whenever the elasticity
effect is strong (large b := β′(σ)), the equilibrium precision σ∗ is depressed
relative to a benchmark that ignores competitive spillovers.

Proposition (Strategic coarsening relative to first-best). Suppose
β(σ) = β0+ bσ with b > 0, V ′(σ) > 0, ϕ′(σ) ≥ 0, and c(σ) convex. Consider
an interior symmetric equilibrium (r∗, σ∗). Then σ∗ solves (15) (symmetri-
cally), and there exists a parameter region with sufficiently large b (relative
to the direct gains V ′(σ)+ϕ′(σ)) in which σ∗ < σFB, where σFB maximizes
welfare.

The economic content is that platforms do not internalize the allocative
benefits of making demand more price-sensitive; they only experience the
resulting erosion of markups. Thus, even if precision improves match quality,
platforms may rationally choose opacity to dampen substitution.

6.3 Welfare, revenue, and the transparency wedge

To compare equilibrium precision to a welfare benchmark, we need to specify
what is socially valuable. In our environment, payments pk are transfers
between advertisers and platforms, while precision affects (i) the realized
value of allocated impressions via V (σ), (ii) participation via D1 +D2, and
(iii) platform costs c(σ). A natural reduced-form welfare objective therefore
treats revenue as a transfer and focuses on surplus from matching net of
information costs:

W (σ1, σ2, r1, r2) =

∫ 1

0

2∑
k=1

aik E[vik | v̂ik] di −
2∑

k=1

c(σk),
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which, under the logit reduced form, is increasing in V (σk) and in partic-
ipation D1 + D2, and decreasing in c(σk). The first-best σFB trades off
the direct informational gains against c′(σ) but does not assign independent
value to keeping β(σ) low. In contrast, the private platform optimum σ∗

values low β(σ) precisely because it relaxes the pricing discipline embodied
in (13). This gap is the transparency wedge: information policies can be
privately too opaque even when their direct allocative effects are positive.

Revenue comparisons further sharpen the distinction between private
and social incentives. Because higher σ raises β(σ), equilibrium reserves and
effective payments can fall, so platform revenue pD may decline with trans-
parency even as welfare rises (through higher V (σ) and higher participation).
This is the sense in which precision is a complement to competition: it ben-
efits advertisers and efficiency, but it can make the market more contestable
and reduce platform markups. In turn, through the format thresholds in Sec-
tion 5, the equilibrium σ∗ also indirectly shapes whether high-price formats
(modeled as an FPA wedge ∆) are sustainable: greater precision pushes the
environment into the region where SPA becomes revenue-dominant.

These results motivate the extensions in the next section, where we relax
homogeneity and commitment assumptions and consider policy instruments
such as minimum transparency (a lower bound on σ) or increased curvature
in transparency costs.

7 Extensions

This section records a set of clean extensions that do not change the basic
logic—precision raises allocative value but also raises cross-platform responsiveness—
while clarifying when the strategic garbling force is stronger or weaker. Our
goal is not to solve each variant exhaustively, but to indicate which objects
in the baseline analysis are robust (e.g., a markup discipline channel through
β(σ)) and which are knife-edge (e.g., full commitment to (r, σ)).

7.1 Heterogeneous advertisers and heterogeneous RoS tar-
gets

In practice, advertisers differ sharply in both value and constraints. A par-
simonious way to incorporate this is to let RoS targets τi be distributed on
[0,∞) and allow match-value gains from precision to differ by type, e.g. Vi(σ)
with V ′

i (σ) ≥ 0. In the reduced form, type i has utility index

uik = Vi(σk)− pk,

and allocates according to the same noisy best-response rule (or a participa-
tion cutoff induced by the RoS constraint). Aggregate demand becomes an
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integral over types,

Dk =

∫ 1

0

exp(β(σk)uik)

1 +
∑2

j=1 exp(β(σj)uij)
di,

possibly with the understanding that types with maxj uij < 0 select the
outside option with high probability.

Two forces are worth highlighting. First, heterogeneity in τi makes par-
ticipation and elasticity state-dependent: advertisers with tight RoS targets
are effectively “closer to the margin,” so a given increase in pk can move them
to the outside option or to the rival platform. This amplifies the competitive
discipline effect of β(σ) precisely among types that generate large volume
in equilibrium. Second, heterogeneity in V ′

i (σ) creates a targeting motive
for transparency: if high-spend advertisers also benefit more from precision
(larger V ′

i ), then the direct match-value channel is weighted toward infra-
marginal demand, potentially offsetting the strategic coarsening motive. Put
differently, with heterogeneous types, the relevant comparison is no longer
“b versus V ′+ϕ′” pointwise, but rather an equilibrium-weighted comparison
between the incremental profit from attracting high-value/high-budget types
and the incremental profit loss from making all types more willing to switch.

An empirically useful implication is that observed average precision may
mask strong segmentation: a platform can provide high precision for cat-
egories where V ′

i (σ) is large (measurement-intensive verticals) while main-
taining coarser reporting elsewhere to soften competitive pressure.

7.2 Partial commitment and reserve adjustment

The baseline timing assumes commitment to (rk, σk) at Stage 0. A natural
alternative is partial commitment: platforms choose σk up front (reflecting
engineering and policy choices) but can adjust reserves rk later as market
conditions evolve. A minimal formalization is:

Stage 0: platforms choose σk; Stage 1: advertisers observe
signals and/or policies; Stage 2: platforms choose rk; Stage
3: allocation and auctions occur.

In a subgame-perfect equilibrium, the reserve at Stage 2 is a best response
given (σ1, σ2) and anticipated shares. The same markup condition (13) con-
tinues to characterize the reserve choice conditional on σ. What changes
is the interpretation of the precision choice: when reserves are adjustable,
increasing σk tightens the pricing constraint in every future state in which
pricing occurs. This strengthens the strategic motive to keep β(σ) low, and
therefore can push equilibrium precision further below the first-best.

At the same time, partial commitment opens an offsetting possibility
that is important in applications: if platforms can condition rk on observ-
ables that correlate with advertiser posterior values (e.g. query categories,
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user cohorts, or measured conversion propensity), then higher σ can im-
prove not only match quality V (σ) but also the platform’s ability to price-
discriminate. In reduced form, this can be represented as a stronger ϕ′(σ)
or as an expanded choice set rk(·). The model then predicts an ambiguous
net effect on transparency: precision raises β(σ) (hurting markups) but also
increases the feasible sophistication of pricing (helping extraction). Which
force dominates is a quantitative question, and it provides one motivation
for the simulation exercises in the next section.

7.3 More than two platforms K

The extension to K ≥ 2 competing platforms is immediate under the multi-
nomial logit demand with an outside option:

Dk =
exp(β(σk)uk)

1 +
∑K

j=1 exp(β(σj)uj)
.

In a symmetric profile with uk = u and β(σk) = β(σ), we have D =
exp(βu)/(1+K exp(βu)), so 1−D = (1+(K−1) exp(βu))/(1+K exp(βu)).
The reserve condition continues to take the markup form p = 1/(β(σ)(1 −
D)), but now the equilibrium share D is smaller and 1−D is larger for larger
K. Holding β(σ) fixed, this pushes the feasible markup down as competition
becomes more crowded; conversely, holding the markup fixed, the implied β
discipline is tighter. Both comparative statics strengthen the coarsening in-
centive: when there are more alternatives, any given increase in β(σ) makes
demand more contestable, so platforms have stronger private incentives to
dampen precision.

The format logic also generalizes. If a unilateral move from SPA to
FPA raises effective price by ∆, then the deviator’s demand share falls more
sharply when there are many close substitutes, and the revenue gain from
the price increment is spread over a smaller base. Thus, the region in which
SPA is revenue-dominant expands with K, consistent with the view that
“competitive thickness” and transparency jointly discipline high-price mech-
anisms.

7.4 Budgets, pacing, and the endogeneity of elasticity

A salient feature of ad markets is that many advertisers face hard budgets Bi

and pacing constraints. Budgets can be introduced by letting each advertiser
choose total spend si ≤ Bi and allocate shares aik across platforms subject
to the RoS constraint. In such an environment, the mapping from utility
indices uk to aggregate spend shares Dk is no longer purely substitution-
driven: when many advertisers are budget-constrained, marginal changes in
uk reallocate where spend goes but do not increase total spend much, and
the outside option becomes less relevant.
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In reduced-form terms, budgets tend to compress the effective elasticity
faced by platforms in the relevant region: when si = Bi for many types,
the outside-option margin is slack and cross-platform switching is limited by
campaign-level constraints, learning lags, and pacing rules. This suggests a
practical refinement of the baseline β(σ) channel: we can interpret β(σ) as an
effective sensitivity that itself depends on how often advertisers are at interior
margins. Precision may still increase responsiveness conditional on being
at an interior margin, but the fraction of advertisers at that margin may
shrink when budgets bind. The model then predicts that strategic garbling
should be weaker in periods or segments where budgets are tight (e.g. peak
season), and stronger when marginal dollars are actively re-optimized across
platforms.

7.5 Minimum transparency regulation and transparency-cost
instruments

Finally, the model provides a simple language for policy: regulation can ei-
ther impose a floor σk ≥ σ (minimum measurement/reporting precision)
or increase the private cost of precision through a steeper c(σ) (privacy
compliance, auditing, or liability). A binding minimum precision directly
eliminates the low-σ equilibrium that platforms may prefer for competitive
reasons. Mechanically, it raises β(σ), which (by (13)) reduces equilibrium
effective payments and thus platform rents, while increasing match value and
participation through V (σ). It also pushes the environment toward the re-
gion where SPA is revenue-dominant, because the penalty from raising price
(or adopting high-price formats) is larger when allocation is more responsive.

An increase in the curvature c′′(σ), by contrast, works in the opposite
direction: it makes high precision privately expensive and can rationalize
further coarsening even if transparency is socially valuable. This distinction
matters for interpreting privacy regulation. Policies that raise the cost of
data use (modeled as higher c) can unintentionally promote opacity; policies
that mandate standardized reporting or interoperability (modeled as σ ≥
σ) can counteract the strategic garbling motive but may reduce platform
revenue and induce other margin adjustments (e.g. higher reserves where
feasible, or product redesigns that shift value away from measured channels).

These extensions underscore a common theme: the key empirical ob-
jects are (i) how precision shifts allocative value V (σ) and within-platform
monetization ϕ(σ), and (ii) how precision shifts effective sensitivity β(σ)
once budgets, frictions, and the number of competitors are accounted for.
We now turn to numerical validation to map these reduced-form forces to
auction primitives and to check robustness beyond the symmetric analytic
benchmarks.
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8 Numerical validation: mapping reduced-form forces
to auction primitives

Our analytic results are intentionally reduced-form: we summarize trans-
parency by a one-dimensional precision index σ, and we summarize the re-
sulting cross-platform discipline by an effective sensitivity β(σ). This ab-
straction is useful for proving clean comparative statics, but it naturally
raises a practical question: when we embed the same economic ingredi-
ents into a more literal multi-channel auction environment with (i) noisy
value prediction, (ii) within-platform auction competition, and (iii) RoS-
constrained autobidding, do we recover the same objects {V (σ), ϕ(σ), β(σ),∆}
and the same qualitative tradeoffs? We address this question with synthetic
simulations designed to (a) make the mapping from primitives to reduced-
form parameters explicit, and (b) stress-test the strategic coarsening and
format-reversal logic outside the symmetric closed-form benchmark.

8.1 A synthetic multi-channel auction environment

We simulate two (or K) platforms that repeatedly run independent single-
impression auctions. On each auction instance t, a set of advertisers i ∈
{1, . . . , n} draws platform-specific values {vikt}. We allow for rich correlation
by writing

vikt = µk + ηit + ξikt,

where ηit is an advertiser–impression component common across platforms
(capturing, e.g., product-seasonality fit) and ξikt is platform-specific fit (cap-
turing, e.g., audience match). This structure makes platforms imperfect
substitutes even under full information.

Platform k discloses to each advertiser a signal v̂ikt generated by a precision-
controlled signal structure. A convenient parametric implementation is ad-
ditive noise,

v̂ikt = vikt + εikt(σk), εikt(σk) ∼ N
(
0, s2(σk)

)
,

with s′(σ) < 0. Higher σ is Blackwell-more-informative in the Gaussian
location family, and this monotone informativeness lets us interpret σ as
“measurement quality” or “reporting granularity” in a way that is close to
industry practice.

Each advertiser has an RoS target τi and delegates bidding to a simple
value-based autobidder. Given v̂, the bidder computes a posterior mean
mikt := E[vikt | v̂ikt] and submits a bid proportional to the maximum cost-
per-impression consistent with meeting the RoS target in expectation,

bikt =
mikt

τi
.
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This rule is not meant to be an equilibrium of the full dynamic bidding
problem; rather, it captures the operational reality that autobidders translate
predicted value into bids under a target constraint.

Within each platform, we run either a second-price auction (SPA) or a
first-price auction (FPA) with reserve rk. We record the realized payment
and winner for each auction. Aggregating across auction instances yields
an expected payment per impression pk(Mk, rk, σk) and an expected gross
value (to the advertiser) among allocated auctions. Importantly, σ affects
pk even holding rk fixed, because better signals change bid dispersion and
hence expected clearing prices.

Cross-platform allocation is implemented at the campaign layer. At the
beginning of a simulation run, each advertiser observes platform policies
(Mk, rk, σk) and then allocates a share of its auctions to each platform based
on estimated net value. To parallel our baseline, we use a smoothed choice
rule with an outside option:

Pr{choose k} =
exp(β0 ũik)

1 +
∑

j exp(β0 ũij)
, ũik := Ṽik(σk)− p̃k(Mk, rk, σk),

where Ṽik(σk) and p̃k(·) are advertiser i’s beliefs (computed from signal mod-
els and historical outcomes). This step makes explicit what is implicit in
practice: advertisers treat channels as competing options, and more precise
measurement makes those comparisons sharper. We then measure the effec-
tive β(σ) induced by the environment rather than imposing it, as described
next.

8.2 Recovering V (σ), ϕ(σ), ∆, and β(σ)

The simulation produces primitives (signals, bids, payments, allocations)
from which we back out reduced-form objects.

Within-platform monetization ϕ(σ) and format wedge ∆. Fix par-
ticipation and allocation shares, and run a single-platform counterfactual in
which only σ varies. Define

ϕ(σ) := E
[
p(SPA, r, σ)

]
− r,

so that p(SPA, r, σ) = r + ϕ(σ) by construction. We then define the format
increment as

∆(σ, r) := E
[
p(FPA, r, σ)

]
− E

[
p(SPA, r, σ)

]
.

In many simulated environments ∆(σ, r) is approximately constant in (σ, r)
over relevant ranges, validating the convenient reduced-form approximation
∆ > 0. When it is not constant, we can still compute the relevant local
wedge at the equilibrium (r∗, σ∗).
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Allocative value V (σ). We define V (σ) as the (allocation-weighted) ex-
pected gross value generated when the platform uses precision σ, holding
fixed the advertiser population and the platform’s market share. Opera-
tionally, we run a counterfactual in which each advertiser is assigned to the
platform with exogenous probability (so that competition effects are held
constant), and we compute

V (σ) := E
[
v | allocated to platform, σ

]
,

where the conditioning includes the effect of σ on bidding and thus on which
impressions are won. This definition captures the idea that better mea-
surement improves match quality and conversion efficiency, even absent any
strategic share shifting.

Effective sensitivity β(σ). To map σ into cross-platform responsiveness,
we estimate an effective logit slope as follows. For each σ (symmetric across
platforms for measurement), we run small perturbations to a platform’s re-
serve r (or equivalently to its expected payment p) and record the resulting
change in demand shares Dk. Under the logit structure,

ln

(
Dk

D0

)
= β(σ)uk + constant,

so we can recover β(σ) by regressing ln(Dk/D0) on uk across perturbations,
where uk is computed using the simulated V (σ) and p(·). Intuitively, higher
σ reduces the variance of posterior errors in mik, which makes advertisers
more confident about small net-value differences across platforms, and this
steepens the empirical choice curve. In our experiments, β(σ) is increasing
in σ across a wide range of primitives, providing a microfoundation for the
assumed β′(σ) > 0.

8.3 Equilibrium computation and what the simulations ver-
ify

Given the mapping above, we compute platform best responses on a grid
over (Mk, rk, σk) and search for pure-strategy Nash equilibria (and, where
needed, mixed strategies over formats). The primary objects we track are:
equilibrium precision σ∗, equilibrium format M∗, equilibrium payment p∗,
advertiser surplus, and total surplus.

Three regularities emerge.
First, we replicate the format threshold logic: when the estimated β(σ)

is high, the demand-share penalty from increasing effective price dominates
the mechanical revenue gain from FPA, so SPA is revenue-dominant for
each platform against an SPA rival and typically also against an FPA rival.
Empirically, the simulated β(σ) threshold at which SPA becomes dominant
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is close to the analytic β∗ computed using the local ∆ and pS , which supports
the interpretation of Proposition 1 as a useful rule-of-thumb.

Second, we replicate strategic coarsening : as we increase the responsive-
ness of allocation to measured ROI—either by tightening the RoS distribu-
tion (more types near the margin) or by reducing campaign-level frictions—
the estimated slope b = β′(σ) rises and the equilibrium σ∗ falls. Impor-
tantly, this occurs even though ϕ(σ) and V (σ) are increasing: platforms
reduce precision not because it is technologically unproductive, but because
it intensifies cross-platform substitution and erodes markups.

Third, we observe an endogenous complementarity between transparency
and “softer” formats: when σ is forced upward exogenously (e.g., by a simu-
lated reporting mandate), FPA becomes less attractive and equilibrium selec-
tion shifts toward SPA. This mirrors the policy intuition that transparency
can discipline high-price mechanisms by making advertiser switching more
salient and credible.

8.4 Robustness checks and limitations

We stress-test these findings along several dimensions that matter in ap-
plications. We vary the number of bidders n, the degree of common-value
components (which affects the informativeness of rivals’ bids), the correlation
of values across platforms (which affects substitutability), and the presence
of budgets and pacing. Budgets, in particular, dampen the outside-option
margin and mechanically lower estimated β(σ), weakening (but not revers-
ing) the coarsening force: opacity is most profitable precisely when marginal
dollars are flexible and re-optimized across channels.

We also replace additive Gaussian noise with discrete coarsening (buck-
eted conversion reporting) and obtain similar qualitative results, which is
reassuring because many platform measurement policies are naturally dis-
crete. Finally, we allow partial commitment by letting rk adjust after σk
is chosen; this tends to strengthen the incentive to keep σ low, because the
platform anticipates being “held up” by future elasticity in every pricing
subgame.

These exercises are not a claim of literal calibration. They abstract from
learning dynamics, multi-objective platform design, and general-equilibrium
feedback from advertiser product-market competition. Their role is nar-
rower: to demonstrate that the reduced-form objects we use—V (σ), ϕ(σ),
∆, and especially β(σ)—can be recovered from plausible auction primitives,
and that the key qualitative predictions persist under operationally meaning-
ful deviations from the knife-edge symmetric benchmark. With this mapping
in hand, we can interpret policy and product interventions as shifts in σ, in
the curvature c(σ), or in the feasible dependence of pricing on signals, which
we take up next.
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9 Policy and product implications: transparency
mandates, interoperability, prediction API de-
sign, and competitive effects of signal coarsening

Our framework is stylized, but it isolates a practical mechanism: information
policies that improve advertisers’ measurement and targeting (σ higher) also
raise cross-platform responsiveness (β(σ) higher), which disciplines pricing
and makes high-price formats less viable. This complementarity between
transparency and competition creates a wedge between what is privately
optimal for platforms (strategic coarsening) and what may be desirable from
the standpoint of advertiser surplus and allocative efficiency. In this section
we draw out implications for regulation and for product design choices that,
in practice, are often justified in technical terms but have clear competitive
content.

9.1 Transparency mandates and reporting requirements

A natural intervention is to impose minimum reporting quality—for exam-
ple, standardized conversion reporting, disclosure of key auction statistics,
or restrictions on discretionary “bucketing” of performance signals. In the
model, such policies operate as a lower bound on precision, σk ≥ σ, or equiv-
alently as a reduction in the platform’s effective cost of transparency c(σ) by
clarifying legal safe harbors and compliance standards. Two effects follow.

First, mandating higher σ directly raises advertisers’ match value V (σ)
(better targeting and measurement) and may also increase within-platform
monetization ϕ(σ) through tighter bids. Second, and more distinctively, it
raises β(σ), steepening the demand-share response to differences in net value.
This latter effect pushes equilibrium away from high-effective-price choices,
including the format premium ∆ associated with first-price implementations.
Thus transparency mandates can have an indirect mechanism-design conse-
quence: even if a mandate does not explicitly regulate auction format, it can
shift equilibrium selection toward lower-price (or lower-price-impact) formats
by making switching more credible and more sensitive to ROI differences.

A key limitation is that platforms will typically re-optimize on other in-
struments. If σ is forced up, a platform may attempt to restore margins
through reserves rk, fees, or product-level bundling. Our reduced form high-
lights when such recoupment is difficult: when β(σ) is high, any increase
in effective price pk is met with substantial share loss. In that region, the
policy-induced increase in σ tends to translate into lower equilibrium prices
and higher advertiser surplus rather than being fully offset elsewhere. In con-
trast, when advertisers are relatively insensitive (low β), transparency can
raise V (σ) without much competitive discipline, and much of the surplus
may be appropriated by the platform through higher r or other charges.
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Practically, this suggests that regulators should evaluate transparency
rules jointly with frictions that determine effective responsiveness: multi-
homing costs, contractual restrictions, and measurement comparability all
move β. A reporting mandate in a market with high switching frictions
may improve measurement while leaving market power largely unchanged;
the same mandate in a low-friction environment can materially discipline
pricing and format.

9.2 Interoperability, portability, and common measurement
standards

Interoperability policies—data portability, common attribution standards,
and API-level access that lets advertisers compare performance across channels—
are often analyzed as reducing lock-in. In our model they can be interpreted
as increasing β holding σ fixed: even if each platform’s internal signal about
value is unchanged, the decision noise in cross-platform allocation falls be-
cause comparisons become cleaner and more trusted. Put differently, in-
teroperability shifts the market toward the high-sensitivity region in which
per-impression prices are more tightly disciplined.

This observation has two implications. The first is positive: interop-
erability can substitute for direct transparency regulation by increasing the
effective elasticity that deters high-price formats and excessive markups. The
second is strategic: when platforms anticipate that interoperability raises β,
they may respond by reducing σ (garbling) to partially restore slack. This is
exactly the strategic coarsening force: if higher σ increases β(σ), and higher
β intensifies competition, then platforms have an incentive to reduce the
informativeness of the signals they control. Interoperability thus creates an
endogenous “arms race” between policies that make platforms more compa-
rable and platform choices that make their own performance harder to verify
or interpret.

From a design perspective, interoperability requirements are therefore
most effective when they pin down not only access, but also semantics:
definitions of conversions, treatment of delayed attribution, and error bars or
uncertainty quantification. Standardization reduces the scope for strategic
coarsening that is formally “compliant” but economically obfuscatory. In
the language of our reduced form, standardization effectively constrains the
mapping from technical reporting to σ, preventing platforms from relabeling
lower precision as a benign product change.

9.3 Prediction and measurement API design as an informa-
tion policy

Many of the most consequential platform choices are not framed as “trans-
parency” at all, but as engineering decisions: how granularly to report con-
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versions, whether to provide user-level vs aggregated signals, whether predic-
tion APIs expose calibrated probabilities or only coarse scores, how quickly
signals are delivered, and whether privacy-preserving noise (e.g., differential
privacy) is added. Each of these choices changes the Blackwell informative-
ness of the advertiser’s signal structure S(σ), and thus moves σ.

The model clarifies a tradeoff that product teams face but rarely articu-
late in competitive terms. Increasing σ can raise V (σ) and ϕ(σ)—advertisers
bid more effectively and auctions may clear at higher expected payments—
but it can also raise β(σ), eroding margins through increased substitutability
across platforms. Consequently, a platform with market power may ratio-
nally choose an API design that is less informative than technologically fea-
sible, even absent any privacy cost. Conversely, when competitive pressure is
strong, platforms may supply high-precision measurement as a competitive
differentiator, but only up to the point where the induced elasticity makes
further precision privately unprofitable.

This perspective suggests concrete diagnostics. If an API change reduces
reporting granularity or increases noise while being justified as “simplifica-
tion,” we should expect (i) reduced cross-platform reallocation in response to
price or format changes (a drop in estimated β), and (ii) increased ability to
sustain higher effective prices p or higher-price formats. Conversely, exoge-
nous increases in precision—for instance, mandated disclosure of calibrated
conversion probabilities or standardized incrementality metrics—should pre-
dictably (a) steepen demand response, and (b) shift equilibria toward lower-
price-impact formats, consistent with the format threshold logic.

9.4 Competitive effects of signal coarsening and the bound-
ary with exclusion

Strategic coarsening has a competitive interpretation that is distinct from
classic price-setting. By reducing σ, a platform makes advertisers less able
to rank channels by true ROI, weakening discipline from multi-homing and
thereby relaxing competition. This resembles a form of nonprice obfusca-
tion: the platform does not prohibit switching, but it makes switching less
informed. In settings where advertisers rely on platform-provided measure-
ment to satisfy RoS constraints, lower σ can also shift spend toward the
incumbent simply because the autobidder cannot confidently validate alter-
natives.

This raises a policy question: when should coarsening be treated as a le-
gitimate privacy or user-experience choice (captured by a higher c(σ)), and
when is it best viewed as an anticompetitive degradation of comparability?
Our model does not adjudicate intent, but it suggests an evidence-based
approach. One can estimate β(σ) and its change following reporting modifi-
cations using quasi-experimental variation (reserve changes, fee changes, or
format changes) and test whether reduced precision measurably lowers cross-
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platform responsiveness. If it does, then a reporting change has competitive
impact even if it leaves average conversion counts unchanged.

A related implication concerns mergers or exclusivity. Consolidation that
reduces the number of outside options effectively reduces contestability and
can lower the competitive cost of raising σ, potentially increasing preci-
sion while also increasing markups. This ambiguity underscores that trans-
parency is not a monotone proxy for competition: a dominant platform may
be quite transparent about outcomes and still sustain high prices if advertis-
ers have few credible alternatives. In our notation, high σ does not guarantee
high β when alternatives are limited or highly differentiated.

9.5 Implementation guidance and limitations

Two practical recommendations follow from the reduced-form mapping. First,
transparency and interoperability policies should be paired with monitoring
of behavioral responsiveness, i.e., tracking β (or elasticity of spend shares
with respect to net value) rather than focusing exclusively on disclosure
checklists. Second, when privacy concerns necessitate noise addition, reg-
ulators and platforms can aim for structured transparency: preserving the
information that is most important for cross-platform comparability (which
drives efficient allocation) while allowing coarsening along dimensions that
are privacy sensitive but less central for ROI ranking. In terms of S(σ), this
is a move from scalar σ to multi-dimensional precision, a natural extension
in which only some components of information raise β sharply.

Finally, we emphasize what our model does not capture. Real systems
feature learning dynamics, budget smoothing, and multi-objective platform
constraints; these can dampen or delay the elasticity channel. Nonetheless,
the core prediction is robust: whenever improved measurement makes adver-
tiser substitution more sensitive to small net-value differences, platforms face
a private incentive to limit informativeness, and policies that increase com-
parability can indirectly discipline pricing and format. This is precisely why
“measurement” and “auction design” should be treated as jointly competitive
choices rather than as separable engineering decisions.
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