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Abstract

Principal–agent reinforcement learning provides an economic lan-
guage for orchestrating autonomous AI agents with costly interven-
tions (payments) rather than unrealistic centralized reward shaping.
Recent work shows that in finite-horizon principal–agent MDPs, an
alternating principal/agent optimization meta-algorithm converges to
subgame-perfect equilibrium (SPE), but it can diverge in infinite hori-
zon under hidden actions due to best-response discontinuities. We
propose a clean stabilization: entropy-regularize both (i) the agent’s
best response over actions and (ii) the principal’s optimization over
contracts. This converts knife-edge incentive constraints into smooth,
probabilistic response curves and yields a single joint soft Bellman op-
erator. We prove this operator is a γ-contraction in sup norm for any
γ ∈ (0, 1), implying existence and uniqueness of a stationary regu-
larized SPE (rSPE) and global convergence of value iteration/soft Q-
learning to rSPE in infinite horizon. We further quantify how rSPE ap-
proximates unregularized SPE: the principal’s value loss relative to the
best unregularized SPE is bounded by (τp log |B|+ τa log |A|)/(1− γ),
delivering an explicit stability–optimality tradeoff controlled by tem-
peratures τp, τa. Finally, we provide cycling counterexamples showing
why some smoothing is necessary and empirically stress-test the stabi-
lized algorithm on known cycling instances. The result is a deployable
‘stability knob’ for always-on 2026 agent ecosystems, where institutions
must be learned and robust under approximation error.
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1 Introduction

Digital contracting is rapidly becoming an always-on problem. In 2026 it
is increasingly common for principals—platforms, marketplaces, employers,
insurers, or automated procurement systems—to interact repeatedly with
adaptive agents whose effort and choices are only imperfectly observed, but
whose outputs are verifiable and contractible. Recommendation partners are
paid on conversions rather than on unobservable targeting effort; logistics
providers are rewarded for on-time delivery rather than for internal routing
decisions; content moderation vendors are paid on measured outcomes rather
than on hidden screening intensity. In these settings, a contract is not a one-
shot document but a policy: it is selected again and again, in response to
a changing environment, and it must remain operational under continuous
deployment.

This simple shift from episodic interaction to persistent interaction raises
an old but consequential question: what stabilizes incentives over time when
actions are hidden? Classical principal–agent theory teaches us how to de-
sign incentives when the informational constraint is binding. Yet much of
that theory is built around a finite horizon or a static environment, where the
contract is chosen once, the agent responds, and the game ends. Always-on
systems do not end. They evolve, and today they evolve under algorithmic
control. Contracts are updated, agents learn about the mapping from out-
comes to payments, and states transition as a function of realized outcomes.
A good model for these ecosystems must therefore address not only incen-
tive compatibility at a point in time, but also the dynamic stability of the
contracting process itself.

Finite-horizon analyses can be misleading precisely because they inherit
stability from the clock. With a terminal date, backward induction often
selects a well-defined equilibrium path even when incentives are brittle along
the way. That discipline is useful for many applications, but it is an inad-
equate guide for environments where the interaction is intended to persist
indefinitely and where what matters is a stationary pattern of contracting
and behavior. In an infinite horizon, the principal must internalize that
today’s contract changes tomorrow’s state distribution; the agent must in-
ternalize that today’s action affects continuation payoffs through future con-
tract offers. These feedback loops are not a technical nuance: they determine
whether a deployed contracting system converges to a predictable regime or
instead oscillates across qualitatively different incentive schemes.

The practical motivation is mirrored by a computational one. In modern
deployments the principal does not solve a model once; it runs an update rule
that iteratively improves a contract policy from data. Even if an equilibrium
exists in principle, the relevant question is whether a plausible learning or
planning procedure will find it. Hidden action is especially challenging here:
small changes in a contract can induce discrete switches in the agent’s best

3



response, which in turn can cause discontinuous jumps in outcomes and
state transitions. Such discontinuities are innocuous in static comparative
statics but can be fatal for iterative methods, producing cycling behavior
and non-convergence. In an always-on setting, non-convergence is not merely
an analytical inconvenience; it is operational instability, with real costs for
welfare, safety, and compliance.

We therefore advocate a modeling move that is at once economically
interpretable and algorithmically powerful: entropy regularization for both
the agent’s action choice and the principal’s contract choice. Economically,
entropic terms capture bounded rationality, idiosyncratic preference shocks,
experimentation, or deliberate randomization to avoid being gamed. Algo-
rithmically, they replace hard maximization with a smooth log-partition op-
erator, turning set-valued best responses into single-valued, continuous map-
pings. The resulting equilibrium concept—a regularized subgame-perfect
equilibrium—can be viewed as the outcome of a long-run contracting problem
in which both parties trade off expected payoff against a desire for stochas-
ticity (or, equivalently, a cost of precision in optimization).

The key conceptual payoff is that regularization becomes a stability knob.
Temperatures govern how sharply each party concentrates on its currently
best option. When these temperatures are strictly positive, the induced dy-
namic programming operators inherit contraction properties familiar from
discounted control: continuation values are down-weighted by the discount
factor, and the smooth maximization step is non-expansive. Put differently,
smoothing restores the kind of global stability that discounted Markov de-
cision processes enjoy, but that hidden-action principal–agent problems can
lose when best responses are discontinuous. This stability knob has a trans-
parent tradeoff: higher temperatures increase stability and robustness but
introduce bias relative to the unregularized benchmark in which each party
chooses a deterministic best response.

This tradeoff is central for policy and practice. Designers of contracting
protocols often face a choice between aggressively exploiting the currently
estimated best contract and maintaining exploration, robustness, and pre-
dictability. A platform that re-optimizes payments every hour based on
noisy metrics may inadvertently create whiplash incentives that agents learn
to exploit; a regulator may prefer a mechanism that is slightly less sharp but
more reliable under misspecification. Our framework makes this tension ex-
plicit. By parameterizing smoothness, we can ask how much long-run value
is sacrificed for stability and uniqueness, and how that sacrifice scales with
discounting and the size of the action and contract sets.

At the same time, we are candid about what regularization does not
solve. First, it is not a substitute for identification: if outcomes are unin-
formative about hidden actions, no amount of smoothing creates incentives
out of thin air. Second, temperatures are not primitives in most economic
environments; they summarize behavioral noise or an algorithm designer’s
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choice, and must be calibrated or justified. Third, stability in the tabular,
finite setting does not automatically extend to large-scale function approxi-
mation, where additional sources of nonlinearity can reintroduce instability.
Our goal is therefore not to claim that entropy regularization is a universal
remedy, but to show that it delivers a clean and tractable baseline in which
infinite-horizon contracting is well-posed and computationally meaningful.

The remainder of the paper builds on this intuition in a disciplined way.
We model the principal’s contract as a state-dependent policy over a finite
set of outcome-contingent payment schemes, while the agent selects hidden
actions after observing the state and the offered contract. Outcomes are ob-
servable and contractible; actions are not. Both parties evaluate discounted
payoffs and face entropy terms that induce stochastic choice. Within this
structure we obtain three properties that are particularly valuable for always-
on ecosystems: (i) a unique stationary equilibrium induced by smooth best
responses, (ii) global convergence of natural dynamic programming iterations
to that equilibrium, and (iii) an explicit bound quantifying how close the reg-
ularized equilibrium value is to the best unregularized stationary benchmark
as temperatures approach zero. These properties jointly formalize the idea
that regularization is a controllable route from brittle but sharp incentives
to stable and learnable contracting dynamics.

With this motivation in place, we next situate our approach within the
literatures on principal–agent theory, reinforcement-learning-based contract
design, entropy-regularized control, and equilibrium learning, emphasizing
how the infinite-horizon hidden-action setting changes both the economic
questions and the algorithmic requirements.

2 Related work

Our framework sits at the intersection of four literatures: (i) classical principal–
agent theory, (ii) contract and mechanism design with reinforcement learning
and dynamic optimization, (iii) entropy-regularized control and its economic
interpretations, and (iv) equilibrium computation and learning in dynamic
games. We highlight where our modeling choices follow established practice
and where the infinite-horizon hidden-action setting forces different technical
and conceptual emphases.

Principal–agent theory and dynamic incentives. The core economic
friction we study—unobserved actions with contractible outcomes—is the
canonical moral hazard problem, developed in static and repeated settings
in foundational work such as ??. A large subsequent literature studies dy-
namic moral hazard and relational contracting, where continuation values
provide incentives and contracts can depend on histories or promised util-
ities (e.g., ?). Those models emphasize commitment, history dependence,
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and the rich structure of optimal contracts under persistent private infor-
mation. Our focus is deliberately different. We restrict attention to Markov
(state-dependent) contracts and policies in a finite MDP, not because his-
tory dependence is unimportant, but because modern “contracting policies”
deployed in platforms and automated procurement are often implemented
as stationary rules that map observables to transfers. This restriction allows
us to treat the contracting problem as a dynamic system and to ask when
natural iterative procedures converge to a well-defined stationary regime.

A second difference concerns equilibrium selection. Many economic treat-
ments of dynamic moral hazard appeal to optimality within a class of incentive-
compatible contracts, often derived via a principal’s Bellman equation over
promised utilities. Here, because actions are hidden and contracts are chosen
repeatedly, the relevant object is a subgame-perfect solution concept in the
underlying stochastic game induced by the contract choice and the agent’s
subsequent action. In finite horizons, backward induction provides discipline;
in infinite horizons, stationary equilibria may be multiple and best-response
maps can be discontinuous. Our contribution is to show that a minimal and
economically interpretable smoothing device turns this potentially ill-posed
equilibrium selection problem into a globally stable fixed-point problem.

Contract design in reinforcement learning and dynamic decision
systems. A growing literature in computer science and adjacent areas
studies contract design when the principal interacts with a learning or adap-
tive agent, often motivated by markets, crowdsourcing, and platform incen-
tive design. One branch formulates bilevel problems in which the principal
optimizes a reward or payment rule anticipating an agent that solves an
MDP or a bandit problem (e.g., “reinforcement learning from incentives”
and “policy design” formulations). These approaches often assume a Stack-
elberg structure: the principal commits to a contract (or a parameterized
reward function), the agent computes a best-response policy, and the princi-
pal evaluates outcomes. This is analytically convenient and captures settings
where commitment is credible and contract changes are infrequent.

In contrast, our environment is intrinsically always-on: the principal
selects contracts repeatedly as a function of state, and the agent’s continu-
ation payoff depends on the principal’s future contract policy. This pushes
the appropriate equilibrium notion closer to Markov perfect equilibrium or
subgame-perfect equilibrium in stochastic games than to one-shot Stackel-
berg commitment. Put differently, the principal cannot be treated as choos-
ing a single contract parameter once; instead, the principal is itself a dynamic
optimizer whose policy is part of equilibrium. This distinction matters be-
cause it changes the shape of the principal’s optimization: the objective is
not simply to pick a contract that induces a desired stationary agent policy
under fixed continuation values, but to pick a contract policy whose induced
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state distribution feeds back into future incentives.
We also differ from regret-minimization and bandit-based contracting

models that emphasize learning transfers under uncertainty about the agent’s
type or response function. Such models often study myopic environments (no
state transitions) or treat each round as independent conditional on the con-
tract, yielding regret bounds for exploration–exploitation in contract space.
Those tools are valuable when the principal must learn the mapping from
payments to outcomes, but they typically abstract from the equilibrium feed-
back loop created by state dynamics and strategic adaptation over time. Our
analysis instead takes the dynamic structure seriously and asks for conditions
under which the natural dynamic programming iterations are stable. The
resulting value-loss bound in temperatures complements regret-style bounds
by quantifying a different tradeoff: not exploration for identification, but
smoothness for equilibrium uniqueness and computational robustness.

Entropy-regularized control, bounded rationality, and logit choice.
Entropy regularization has become a standard device in modern reinforce-
ment learning, particularly in maximum-entropy RL and “soft” dynamic pro-
gramming (e.g., ??). Technically, replacing a hard max by a log-sum-exp
yields a smooth Bellman operator with strong contraction properties in dis-
counted settings, and the induced policies take a Gibbs (softmax) form. Eco-
nomically, the same structure appears in quantal response and logit choice
models, where entropy terms arise from additive i.i.d. extreme-value shocks
or bounded rationality ?. It also connects to rational inattention and control-
cost interpretations, where entropy captures the cost of precision in selecting
actions ?.

We build directly on these insights, but apply them in a two-player
principal–agent setting with hidden action. The novelty is not the soft-
max formula per se; it is the way regularization resolves a specific pathology
of dynamic moral hazard: small contract changes can induce discontinuous
changes in the agent’s optimal action, which can in turn create discontinuous
changes in the induced outcome distribution and state transitions. In such a
setting, the principal’s effective objective can be non-smooth even with dis-
counting, and alternating best-response dynamics can fail to converge. By
regularizing both the agent’s response and the principal’s contract selection,
we obtain a single-valued joint operator whose fixed point defines a regular-
ized subgame-perfect equilibrium. The temperatures τa and τp then play a
dual role: they are interpretable as noise or optimization frictions, and they
serve as explicit stability parameters in the equilibrium mapping.

Equilibrium learning and computation in dynamic games. Finally,
our analysis relates to the literature on learning equilibria in Markov games
and stochastic games, including value-iteration-like methods, actor–critic
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schemes, and two-timescale stochastic approximation. In general-sum Markov
games, equilibrium computation is challenging: Bellman operators need not
be contractions, equilibria may be non-unique, and naive best-response dy-
namics can cycle. A parallel stream shows that entropy regularization can
improve stability in multi-agent RL by smoothing best responses and en-
abling convergence guarantees under appropriate conditions (e.g., regular-
ized Markov perfect equilibria and entropy-regularized policy gradients).

Our contraction-based result can be viewed as an instance of this broader
principle specialized to the principal–agent timing and information struc-
ture. The hidden-action feature is not merely decorative: because the prin-
cipal does not observe actions, its continuation value depends on the agent’s
policy only through outcomes, which introduces an additional layer where
discontinuities can arise. The payoff from our formulation is that, in the
finite tabular setting, we recover the familiar discounted-control geometry:
the regularized joint Bellman operator is a γ-contraction in ∥·∥∞, implying a
unique fixed point and global convergence of iterates. This provides a clean
benchmark for “equilibrium learning” in contracting problems and clarifies
what breaks when the regularization vanishes.

These comparisons motivate the baseline model we study next. We first
present the unregularized hidden-action principal–agent MDP and the nat-
ural stationary subgame-perfect equilibrium notion, and then illustrate why
infinite-horizon dynamics can be unstable when best responses are discontin-
uous. The regularized model can then be read as the minimal modification
that restores well-posedness while keeping the contracting primitives eco-
nomically transparent.

3 Baseline model (unregularized): hidden-action principal–
agent MDP

We begin from a minimal infinite-horizon contracting environment in which
incentives must be provided through outcomes rather than actions. Time
is discrete and the economy is summarized by a finite state s ∈ S. In each
period, the principal first chooses a contract b ∈ B ⊂ R|O|

≥0 , where b(o) is the
transfer paid if outcome o ∈ O is realized. After observing (s, b), the agent
privately chooses an action a ∈ A. The outcome is then drawn according
to o ∼ O(· | s, a), the transfer b(o) is paid, and the next state evolves as
s′ ∼ T (· | s, o). The key informational friction is that the principal never
observes a; the only contractible and publicly observed signal of effort is o
(and, through T , the induced state transition).

Per-period payoffs are

Ra(s, b, a, o) = r(s, a) + b(o), Rp(s, b, o) = rp(s, o)− b(o),

with bounded primitives and common discount factor γ ∈ (0, 1). This timing
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captures an “always-on” relationship: contracts are not committed once and
for all, but are selected repeatedly as a function of observable conditions, and
the agent understands that today’s action affects future states and therefore
future contracts. Because outcomes are observed and payments executed
each period, the public history is well-defined even though actions are hidden.
The substantive question is therefore not whether incentives can be provided
at all, but whether the dynamic feedback between future promised transfers
and current hidden actions yields a well-posed stationary equilibrium object.

Stationary Markov strategies and induced values. We restrict at-
tention to stationary Markov rules. A (possibly mixed) principal strategy
is a kernel ρ(· | s) ∈ ∆(B) mapping states to distributions over contracts,
and the agent strategy is π(· | s, b) ∈ ∆(A) mapping observed (s, b) into dis-
tributions over actions. Given (ρ, π), the resulting controlled Markov chain
on S is determined by the composition of ρ, π, O, and T . The principal’s
discounted value from state s is

V ρ,π
p (s) = E

[∑
t≥0

γt
(
rp(st, ot)− bt(ot)

) ∣∣∣∣∣ s0 = s

]
,

with an analogous definition V ρ,π
a (s) for the agent, replacing rp(st, ot)−bt(ot)

by r(st, at) + bt(ot). We emphasize that even under the Markov restriction,
the principal’s continuation payoff depends on π through the induced out-
come distribution and hence the induced state visitation, while the agent’s
continuation payoff depends on ρ through the distribution of future con-
tracts. This mutual dependence is the source of strategic feedback that is
absent in one-shot Stackelberg formulations.

Why subgame-perfect equilibrium is the appropriate benchmark.
Because the principal chooses b each period after observing the current state,
and the agent chooses a after observing (s, b), a natural solution concept is
subgame perfection: after every publicly observed history, each player’s con-
tinuation strategy is optimal given the other’s continuation strategy. In
finite-horizon models, backward induction selects such behavior uniquely
(up to tie-breaking). In the infinite horizon, however, the same logic must
be expressed as a fixed point in continuation values. Under our stationarity
restriction, the relevant equilibrium is a stationary subgame-perfect equilib-
rium (SPE): a pair (ρ∗, π∗) such that (i) the agent’s action rule π∗ is optimal
in every (s, b) given the principal’s contract policy ρ∗ going forward, and (ii)
the principal’s contract rule ρ∗ is optimal in every s anticipating the induced
response π∗ both today and in the future.

A convenient way to express these conditions is via (unregularized) Bell-
man equations. Define the agent’s action-value function given a continuation
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principal policy ρ by

Qa(s, b, a) = Eo∼O(·|s,a), s′∼T (·|s,o)

[
r(s, a) + b(o) + γ Eb′∼ρ(·|s′)Va(s′, b′)

]
, (1)

and the corresponding value

Va(s, b) = max
a∈A

Qa(s, b, a). (2)

The agent’s best-response correspondence is then

BRa(s, b) ∈ argmax
a∈A

Qa(s, b, a),

with π(· | s, b) placing probability one on any selected maximizer (or mixing
over maximizers if desired).

Similarly, given an agent policy π, the principal’s contract-value function
is

Qp(s, b) = Ea∼π(·|s,b), o∼O(·|s,a), s′∼T (·|s,o)

[
rp(s, o)− b(o) + γVp(s

′)
]
, (3)

with value
Vp(s) = max

b∈B
Qp(s, b). (4)

An SPE in stationary Markov strategies is thus a fixed point in which π∗

selects maximizers of (1)–(2) given ρ∗, while ρ∗ selects maximizers of (3)–(4)
given π∗.

The infinite-horizon pathology: discontinuous best responses and
cycling. Although the hard-max Bellman equations resemble familiar dy-
namic programming objects, the joint equilibrium mapping can be ill-behaved.
The crux is that each player’s optimal choice depends on the other’s continu-
ation behavior through argmax operations. When multiple actions (or con-
tracts) yield nearly identical continuation values, an arbitrarily small change
in beliefs about future play can flip the identity of the maximizer. In a
hidden-action environment, such flips have first-order consequences: switch-
ing the agent’s action changes the entire distribution of outcomes O(· | s, a),
and therefore changes both current transfers and the transition kernel over
future states. Consequently, the principal’s objective as a function of b is
typically only piecewise smooth, with kinks at the boundaries where the
agent switches actions. Because the principal’s future policy determines the
agent’s continuation payoff, those kinks move endogenously with ρ, creating
a nontrivial feedback loop.

This observation matters for both equilibrium selection and computa-
tion. Consider the natural “alternating best response” procedure: fix a prin-
cipal policy ρ, compute an agent best response π ∈ BRa(ρ); then, fixing π,
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compute a principal best response ρ ∈ BRp(π); iterate. In a single-agent dis-
counted MDP, the Bellman optimality operator is a γ-contraction even with
a hard max, guaranteeing convergence of value iteration. Here, by contrast,
the composition of two set-valued best-response correspondences need not
be a contraction and need not even be single-valued. As a result, iterates
can oscillate between qualitatively different regimes rather than settling to
a fixed point.

One can see the mechanism in a simple two-by-two intuition. Suppose
that in some state s the agent has two candidate actions, aℓ and ah, and
the principal has two candidate contracts, bℓ and bh. For a range of contin-
uation values, bh makes ah strictly optimal, while bℓ makes aℓ optimal. If
ah induces outcomes that move the state distribution toward regions where
the principal later prefers bℓ (because, say, future rents become expensive),
then the principal’s best response to the induced π can switch from bh to
bℓ. But once the principal switches to bℓ, the agent optimally reverts to aℓ,
which changes the induced state distribution back toward the region where
bh is again attractive. The alternation can therefore generate a deterministic
two-cycle (bh, ah) → (bℓ, aℓ) → (bh, ah), even though the underlying primi-
tives are time-invariant and γ < 1. The discount factor controls how much
future payoffs matter, but it does not remove the discontinuity created by
hard best responses.

Implications and motivation for smoothing. The practical implica-
tion is that, in the unregularized infinite-horizon model, stationary SPE can
be difficult to compute and can be sensitive to seemingly innocuous pertur-
bations (e.g., rounding in a discretized contract set, numerical error in value
estimates, or sampling noise in learned outcome models). Economically, this
sensitivity reflects an equilibrium selection problem: when incentives are
provided through a coarse outcome signal, the set of contracts that approxi-
mately implement a given action can be large, and the agent may be close to
indifferent across actions over substantial regions of the state space. Com-
putationally, these near-indifferences translate into discontinuous policy up-
dates under argmax, which can prevent convergence of iterative procedures
that would be reliable in standard MDPs.

These considerations motivate the regularized model we study next. By
replacing hard best responses with entropy-regularized choice, we obtain a
smooth, single-valued response mapping for both players, restoring contraction-
like stability while preserving the economic primitives of hidden action and
outcome-contingent transfers.
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4 Regularized model: entropy smoothing and the
rSPE concept

We now modify the baseline environment in one targeted way: instead of
modeling each player as making an exact (hard) best response via an argmax,
we model choice as entropy-regularized optimization. This change preserves
the economic primitives of hidden action and outcome-contingent trans-
fers, but replaces discontinuous best-response correspondences with smooth,
single-valued maps. The resulting equilibrium notion will be a regularized
subgame-perfect equilibrium (rSPE).

Entropy-regularized agent problem. Fix a principal stationary con-
tract policy ρ(· | s). The agent observes (s, b) and selects a mixed action
π(· | s, b). We assume the agent maximizes a discounted objective that
includes an entropy term each period,

Ua(π; ρ) = E

∑
t≥0

γt (r(st, at) + bt(ot) + τaH(π(· | st, bt)))

 , (5)

where τa > 0 indexes the strength of regularization and H(p) = −
∑

i pi log pi
is Shannon entropy. The entropy term makes randomization directly valuable
to the agent, which has two consequences that will be crucial for well-posed
dynamics: (i) the maximizer exists and is unique, and (ii) the induced policy
is everywhere interior (full support) whenever τa > 0.

As in standard soft control, it is convenient to express the agent’s problem
through soft Bellman objects. Given ρ, define the agent soft Q-function by

Qa(s, b, a) = Eo∼O(·|s,a), s′∼T (·|s,o)
[
r(s, a) + b(o) + γ Eb′∼ρ(·|s′) Va(s′, b′)

]
,
(6)

and the corresponding soft value as the log-sum-exp aggregate

Va(s, b) = LSEτa((Qa(s, b, a))a∈A) = τa log
∑
a∈A

exp

(
Qa(s, b, a)

τa

)
. (7)

The associated optimal policy is recovered by a Gibbs (softmax) map,

π(a | s, b) = exp(Qa(s, b, a)/τa)∑
a′∈A exp(Qa(s, b, a′)/τa)

. (8)

Relative to the hard-max benchmark, (7) replaces the discontinuous operator
x 7→ maxi xi with the smooth operator x 7→ LSEτa(x), and (8) replaces
selection from a (potentially set-valued) argmax with a unique, continuous
mapping from continuation values to choice probabilities.
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Entropy-regularized principal problem. We impose an analogous reg-
ularization for the principal. Fix an agent action rule π(· | s, b). The princi-
pal chooses a (possibly mixed) contract policy ρ(· | s) to maximize

Up(ρ;π) = E

∑
t≥0

γt (rp(st, ot)− bt(ot) + τpH(ρ(· | st)))

 , (9)

where τp > 0 plays the same role for contract choice. Define the principal
soft Q-function

Qp(s, b) = Ea∼π(·|s,b), o∼O(·|s,a), s′∼T (·|s,o)
[
rp(s, o)− b(o) + γVp(s

′)
]
, (10)

the soft value

Vp(s) = LSEτp((Qp(s, b))b∈B) = τp log
∑
b∈B

exp

(
Qp(s, b)

τp

)
, (11)

and the induced contract policy

ρ(b | s) = exp(Qp(s, b)/τp)∑
b′∈B exp(Qp(s, b′)/τp)

. (12)

Two features are worth highlighting. First, because the principal’s action is
itself a contract (a vector of transfers across outcomes), the hard-max formu-
lation tends to generate kinks precisely where small changes in continuation
values switch the preferred contract. The soft aggregator in (11) smooths
those kinks, which is useful even when B arises from discretizing an under-
lying continuous contract space. Second, τp has a transparent interpretation
as controlling the degree of randomization in contracting: when τp is small,
ρ(· | s) concentrates on near-maximizers; when τp is large, contracts are
chosen more diffusely.

Definition (regularized subgame-perfect equilibrium). An rSPE is
a pair of stationary Markov policies (ρ∗, π∗) together with bounded functions
(Q∗

a, V
∗
a , Q

∗
p, V

∗
p ) such that (i) (Q∗

a, V
∗
a , π

∗) satisfy (6)–(8) given ρ∗, and (ii)
(Q∗

p, V
∗
p , ρ

∗) satisfy (10)–(12) given π∗. Operationally, rSPE replaces the mu-
tual argmax optimality requirements of stationary SPE with mutual Gibbs
consistency : each player’s mixed action is exactly the softmax of its own
continuation Q-values, and those Q-values are themselves computed under
the other player’s induced policy.

Interpretation and what regularization does (and does not) as-
sume. We view entropy regularization as a disciplined way to capture
forces that are present in applications but absent from the knife-edge hard-
max model. One interpretation is bounded rationality : the agent and princi-
pal optimize subject to informational or computational frictions that make
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perfectly sharp best responses implausible, and τa, τp quantify the severity
of these frictions. A second, closely related interpretation is private payoff
shocks (or “trembles”): if, at the moment of choice, each action carries an
i.i.d. Type-I extreme value perturbation, then the optimal choice probabili-
ties take the logit form (8)–(12), with τ proportional to the shock scale. In
either case, the key modeling move is not that players are ex ante commit-
ted to randomize, but that their effective behavior is smooth in continuation
values, eliminating knife-edge switching.

At the same time, we emphasize a limitation: the entropy term is not
derived from first principles of contracting, and τa, τp are not primitives of
technology or preferences in the same way as O or T . Rather, they param-
eterize a regularization that trades off faithfulness to the hard-max bench-
mark against stability of equilibrium selection and computation. In the limit
τa, τp → 0, the soft operators approach the hard-max operators, and the in-
duced policies concentrate on best responses; for positive temperatures, the
model selects a unique smooth equilibrium object. This is precisely the sense
in which regularization can be read as an equilibrium selection device: it re-
fines a potentially ill-behaved correspondence into a well-defined mapping
while keeping the strategic feedback structure intact.

Finally, regularization has a direct computational implication. Because
LSEτ is smooth and Lipschitz, small errors in estimated continuation values
translate into small changes in ρ and π, rather than discrete jumps. This
property is especially valuable in hidden-action environments, where a small
change in incentives can induce large changes in behavior and therefore in
state visitation. The next section formalizes this stability by showing that,
under τa, τp > 0, the induced joint soft Bellman operator is a γ-contraction
and therefore admits a unique fixed point.

5 Main theorem: contraction, uniqueness, and com-
putation in the infinite horizon

We now formalize the stability claim implicit in the preceding discussion:
once both players use entropy-regularized optimization, the equilibrium con-
ditions can be written as a single discounted fixed-point problem. The key
step is to define an operator that (i) reconstructs the players’ mixed policies
from candidate Q-functions via the Gibbs maps (8) and (12), and then (ii)
applies the corresponding soft Bellman expectations (6) and (10). Because
the only intertemporal feedback enters through discounted continuation val-
ues, this operator inherits the standard γ-contraction structure familiar from
entropy-regularized control, despite the hidden-action strategic interaction.

State space for the fixed-point problem. Let Qa denote the space of
bounded real functions on S × B × A, and Qp the space of bounded real
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functions on S × B. We endow the product space Qa × Qp with the sup
norm

∥(Qa, Qp)∥∞ = max
{
sup
s,b,a
|Qa(s, b, a)|, sup

s,b
|Qp(s, b)|

}
.

Boundedness is immediate under our standing assumptions (finite sets and
bounded per-period rewards), and it ensures that all log-sum-exp expressions
are finite.

Policy and value reconstruction from candidate Q-functions. Given
any pair (Qa, Qp) ∈ Qa × Qp, we define the induced soft values and Gibbs
policies pointwise as follows. First, for the agent,

V Qa
a (s, b) = τa log

∑
a∈A

exp

(
Qa(s, b, a)

τa

)
, πQa(a | s, b) =

exp(Qa(s, b, a)/τa)∑
a′∈A exp(Qa(s, b, a′)/τa)

.

Second, for the principal,

V
Qp
p (s) = τp log

∑
b∈B

exp

(
Qp(s, b)

τp

)
, ρQp(b | s) =

exp(Qp(s, b)/τp)∑
b′∈B exp(Qp(s, b′)/τp)

.

These reconstructions are single-valued and yield full-support mixed strate-
gies whenever τa, τp > 0, which is precisely what removes the discontinuities
present in the hard-max benchmark.

The joint soft Bellman operator. We define T : Qa ×Qp → Qa ×Qp
by T (Qa, Qp) = (Ta(Qa, Qp), Tp(Qa, Qp)), where the two components are the
natural soft Bellman back-ups computed under the reconstructed policies.
For the agent, for every (s, b, a),

(Ta(Qa, Qp))(s, b, a) = Eo∼O(·|s,a), s′∼T (·|s,o)

[
r(s, a) + b(o) + γ Eb′∼ρQp (·|s′) V

Qa
a (s′, b′)

]
.

(13)
For the principal, for every (s, b),

(Tp(Qa, Qp))(s, b) = Ea∼πQa (·|s,b), o∼O(·|s,a), s′∼T (·|s,o)

[
rp(s, o)− b(o) + γ V

Qp
p (s′)

]
.

(14)
By construction, fixed points of T are exactly the objects required by the
equilibrium conditions: if (Q∗

a, Q
∗
p) = T (Q∗

a, Q
∗
p), then the induced (V

Q∗
a

a , πQ
∗
a)

and (V
Q∗

p
p , ρQ

∗
p) satisfy (6)–(12) simultaneously.

Theorem (contraction and uniqueness of rSPE). Fix finite S,A,O,B,
bounded rewards, and γ ∈ (0, 1). If τa > 0 and τp > 0, then the joint
operator T defined in (13)–(14) is a γ-contraction on (Qa×Qp, ∥·∥∞).
Consequently:
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1. (Unique fixed point) there exists a unique pair (Q∗
a, Q

∗
p) with (Q∗

a, Q
∗
p) =

T (Q∗
a, Q

∗
p);

2. (Unique policies) the reconstructed Gibbs policies π∗ = πQ
∗
a and

ρ∗ = ρQ
∗
p are uniquely determined and have full support;

3. (Unique rSPE) the pair (ρ∗, π∗) forms the unique stationary Markov
rSPE.

Why the contraction is economically natural. At a high level, the
argument mirrors the one-player case. The discounted Bellman step is affine
in continuation values, and stochastic averaging (expectations under O, T ,
and the reconstructed mixed policies) is non-expansive under ∥ · ∥∞. En-
tropy regularization enters through the log-sum-exp aggregator: for any two
vectors x, y of equal dimension,

|LSEτ (x)− LSEτ (y)| ≤ ∥x− y∥∞,

so replacing hard maximization by LSEτ preserves the Lipschitz modulus
1. Intuitively, the soft value is a smooth “certainty equivalent” of future
payoffs, and changing the continuation payoff profile by at most ε changes
that certainty equivalent by at most ε. The only systematic shrinkage comes
from discounting by γ, which is exactly what yields the γ-contraction.

Computational corollary (global convergence of joint value itera-
tion). For any initialization (Q

(0)
a , Q

(0)
p ), define iterates (Q(k+1)

a , Q
(k+1)
p ) =

T (Q(k)
a , Q

(k)
p ). The contraction property implies geometric convergence:∥∥(Q(k)
a , Q(k)

p )− (Q∗
a, Q

∗
p)
∥∥
∞ ≤ γk

∥∥(Q(0)
a , Q(0)

p )− (Q∗
a, Q

∗
p)
∥∥
∞.

Thus, unlike alternating hard best responses (which may cycle in hidden-
action settings), the entropy-regularized mapping admits a globally stable
computation: iterating the soft Bellman operator converges from any starting
point to the unique rSPE objects. This is the sense in which τa, τp > 0
provide not only an equilibrium selection device but also an algorithmic
regularization: equilibrium behavior becomes a fixed point of a contraction,
rather than a potentially ill-behaved correspondence.

From uniqueness to approximation. Having obtained a unique and
well-behaved infinite-horizon equilibrium for every (τa, τp) > 0, we can now
ask how this selected rSPE relates to the (possibly multiple) stationary SPE
of the unregularized model. The next section quantifies the value loss induced
by smoothing and characterizes the resulting stability–optimality trade-off
as τa, τp → 0.
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6 Approximation to unregularized SPE: value-gap
bounds and the stability–optimality frontier

Entropy regularization selects a unique stationary Markov rSPE for every
(τa, τp) > 0. The natural economic question is how far this selected outcome
can be from the unregularized benchmark in which both players use hard
best responses. In this section we quantify the worst-case value loss induced
by smoothing, clarify when the bound is informative (and when it is not),
and interpret the resulting stability–optimality trade-off as τa, τp → 0.

A generic “softmax vs. max” inequality. The basic ingredient is the
standard comparison between hard maximization and the log-sum-exp ag-
gregator. For any finite set I and any vector (xi)i∈I ,

max
i∈I

xi ≤ LSEτ
(
(xi)i∈I

)
≤ max

i∈I
xi + τ log |I|. (15)

The left inequality says regularization never undershoots the best available
continuation value when measured in the soft value units; the right inequality
says it can overshoot by at most τ log |I|. Economically, τ log |I| is the
maximal “randomization rent” one can extract from the entropy term when
the decision maker is indifferent among many alternatives.

Value-gap bound for the principal. Fix an initial state s0. Let V τp,τa
p (s0)

be the principal’s value at the unique rSPE under temperatures (τp, τa). Let
supSPE V SPE

p (s0) be the principal’s maximal value across (possibly multiple)
stationary Markov SPE in the unregularized game. Then the rSPE value
satisfies the bound

V
τp,τa
p (s0) ≥ sup

SPE
V SPE
p (s0) −

τp log |B|+ τa log |A|
1− γ

. (16)

The logic is directly analogous to one-player entropy-regularized control,
with two layers of smoothing. The principal’s own soft value replaces a hard
maximization over contracts b ∈ B, generating a per-period discrepancy of at
most τp log |B|. In addition, because the agent uses a soft best response, the
principal faces a softened mapping from contracts to induced actions; this
introduces an additional discrepancy controlled by τa log |A|. Discounting
then converts a per-period bound into an infinite-horizon bound through the
geometric series

∑
t≥0 γ

t = (1− γ)−1.
Two remarks help interpret (16). First, the bound is uniform in the prim-

itives: it does not depend on the magnitudes of r, rp, b, nor on the details
of O and T , beyond boundedness. This is exactly why it must scale with
the worst-case entropy gap log | · |: without additional curvature or margin
assumptions, a decision maker can be made arbitrarily close to indifferent, so
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even tiny smoothing can change the selected mixture substantially. Second,
the bound isolates how patience amplifies approximation error: for fixed tem-
peratures, the loss grows like 1/(1− γ), so near-undiscounted environments
require smaller τa, τp to achieve a given approximation tolerance.

Convergence as τa, τp → 0: what it does and does not mean. Equa-
tion (16) immediately yields

lim
τa,τp→0

V
τp,τa
p (s0) = sup

SPE
V SPE
p (s0),

in the sense that the value gap can be made arbitrarily small by taking tem-
peratures small. This is a value statement, not a statement about equilib-
rium selection among multiple unregularized SPE. When the unregularized
model admits several stationary SPE with different principal payoffs, the
rSPE does not in general converge to a particular equilibrium profile inde-
pendent of how (τa, τp) are taken to zero. Intuitively, when the hard-max
correspondence has flat regions (ties), the softmax rule breaks ties smoothly
but in a way that depends on relative payoff differences at the scale of τ .
Small perturbations—including the interaction of the two temperatures—can
therefore determine which hard best-response branch is approached.

In particular, even if V τp,τa
p (s0) approaches the best attainable SPE value,

the limiting policies (ρ∗, π∗) may fail to converge, or may converge only along
subsequences, whenever the unregularized equilibrium set contains continua
or whenever multiple contracts/actions are exactly optimal in some states.
Put differently: entropy regularization provides a canonical selection for each
(τa, τp), but not necessarily a canonical selection at τ = 0 without additional
tie-breaking structure.

The stability–optimality frontier. From a mechanism-design perspec-
tive, τa and τp parameterize a frontier between (i) stability—smooth depen-
dence of behavior on payoffs and on approximation error—and (ii) optimality
relative to the unregularized benchmark. Larger temperatures enlarge the
right-hand side of (16) linearly, but they also make behavior less brittle.

A simple way to see the stability benefit is through sensitivity of mixed
strategies to perturbations in Q-values. For the agent,

πQa(a | s, b) =
exp(Qa(s, b, a)/τa)∑
a′ exp(Qa(s, b, a′)/τa)

,

so a perturbation of size ε in Qa(s, b, ·) changes log-odds by at most ε/τa.
Thus, for fixed (s, b), smaller τa makes the mapping from estimated values to
action probabilities steeper and hence more sensitive to estimation error (or
to small contract changes). Analogous statements hold for the principal’s
contract selection as a function of Qp(s, ·) with scale τp. In applications

18



where Q-values are learned from finite samples or approximated with func-
tion approximation, these Lipschitz-type controls are often the difference
between stable training and oscillatory behavior.

The frontier is therefore operational: a designer can interpret τa, τp as
robustness knobs. If the environment is noisy, learning is approximate, or
the contract set is discretized coarsely, modest regularization can improve
out-of-sample performance even if it introduces some bias relative to the
ideal hard-max optimum.

When is the bound tight? The inequality (16) is worst-case and can
be tight (up to constants) in knife-edge cases. Tightness arises when, at
many histories/states, the relevant Q-vectors are nearly flat across a large
fraction of A and/or B. For example, if the principal is nearly indifferent
among a large menu of contracts in a given state, then LSEτp can exceed
max by close to τp log |B|. Similarly, if the agent is nearly indifferent among
several actions under the prevailing contract, then the agent’s soft value can
differ from the hard max by nearly τa log |A|, and this difference propagates
through continuation values.

Conversely, in environments with margins—i.e., a unique optimal con-
tract and action separated by a gap from the runner-up—the effective value
loss is typically much smaller than (16). In such cases, once τa, τp are be-
low the relevant payoff gaps, the soft policies concentrate sharply on the
unique maximizers and the rSPE behavior becomes close to the hard-max
equilibrium. Making such “margin” statements formal is possible but nec-
essarily depends on instance-specific constants (gaps that vary across states
and along the equilibrium path), so we treat (16) as the robust baseline
guarantee.

What is not guaranteed. Finally, it is worth separating three distinct
claims. First, we do guarantee a unique rSPE for every (τa, τp) > 0 and a
computable contraction-based procedure to find it. Second, we do guarantee
that the principal’s value at rSPE is within an explicit and vanishing bound
of the best unregularized stationary SPE value as τa, τp → 0. Third, we do
not claim that rSPE selects a particular unregularized equilibrium outcome
independent of the limiting path, nor that it resolves multiplicity in a way
that is normatively “correct” absent further equilibrium selection criteria. In
the next section we complement these positive results with necessity and
limitation statements, illustrating what breaks without smoothing and what
additional complications arise when the contract space is continuous rather
than finite.
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7 Necessity and limitations: what breaks without
smoothing, and what changes with continuous
contract sets

Our existence, uniqueness, and global-convergence statements rely on the
fact that both players replace hard best responses with entropy-regularized
(logit) choice. This is not merely a technical convenience. In hidden-action
environments, discontinuities in best-response correspondences are the cen-
tral obstruction to stable computation and to equilibrium selection, and
smoothing is precisely what removes those discontinuities. Here we make
this point concrete by describing what can fail when either temperature is
set to zero, and by clarifying the additional complications that arise when
the contract menu is naturally continuous rather than finite.

Why a positive temperature is doing real work. In the unregularized
game, the agent’s best response is a set-valued correspondence

b 7→ argmax
a∈A

Qa(s, b, a),

and the principal’s best response is similarly set-valued in b. Both correspon-
dences can jump as payoffs cross tie thresholds. These jumps are particu-
larly acute in moral-hazard problems because contracts affect the agent only
through the distribution of outcomes, so small changes in b(·) can flip incen-
tives discretely when two actions have nearly equal expected utility. As a
result, the natural “alternating best-response” mapping (principal optimizes
given the agent’s best response; agent best-responds given the principal’s
contract choice) need not be a contraction, need not be single-valued, and
can exhibit cycles.

A canonical failure mode is a two-state, two-action, two-contract con-
struction in which each player’s unique best response at time t makes the
other player’s unique best response at time t+1 switch to the opposite ex-
treme. When both best-response steps are hard argmax operations, this
induces a deterministic two-cycle. The underlying economic mechanism is
simple: the principal slightly increases incentives to induce action a1; once a1
is induced, the principal prefers to reduce incentives (because payments are
costly), which in turn makes the agent revert to a0; and so on. The details
of such a construction can be implemented with bounded rewards and a dis-
count factor γ ∈ (0, 1) by arranging that (i) the two actions generate outcome
distributions that differ only slightly, and (ii) the principal’s gross reward is
sufficiently sensitive to which action is taken, but the agent’s intrinsic cost
makes the agent indifferent at a knife edge. At the knife edge, arbitrarily
small numerical error or perturbation in Q-values causes the induced action
to flip, and the subsequent contract choice flips with it.
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What breaks if τa = 0 (hard agent response), even if τp > 0. Suppose
we keep the principal regularized but let the agent best-respond via a hard
max:

Va(s, b) = max
a∈A

Qa(s, b, a), π(· | s, b) ∈ argmax
a

Qa(s, b, a).

The principal’s Bellman backup still contains a smooth log-sum-exp over
contracts, but the quantity being exponentiated,

Qp(s, b) = Ea∼π(·|s,b), o,s′
[
rp(s, o)− b(o) + γVp(s

′)
]
,

now depends on π(· | s, b), which can be discontinuous in (Qa(s, b, a))a∈A and
thus discontinuous in b. In particular, the mapping from contract vectors b
to induced outcomes (through the agent’s argmax) can have jump disconti-
nuities. This matters for computation: even if the principal takes a softmax
over b, the function b 7→ Qp(s, b) can be highly non-smooth, with large effec-
tive Lipschitz constants (indeed, no global Lipschitz bound) because a tiny
change in b can change the selected a and hence the entire outcome distri-
bution. Consequently, the joint operator need not be a γ-contraction in sup
norm, and we can lose both global convergence of iteration and uniqueness
of the stationary equilibrium.

Economically, τp > 0 alone gives the principal a smooth selection among
contracts, but it does not smooth the induced mapping from contracts to be-
havior when the agent’s incentives are close. Thus, principal randomization
by itself does not eliminate the core moral-hazard discontinuity: the agent’s
response to incentives.

What breaks if τp = 0 (hard principal response), even if τa > 0.
Now suppose the agent uses a soft best response but the principal chooses a
hard maximizer:

Vp(s) = max
b∈B

Qp(s, b), ρ(· | s) ∈ argmax
b

Qp(s, b).

With τa > 0, the mapping b 7→ π(· | s, b) becomes continuous, and this indeed
eliminates one major source of discontinuity. However, the principal’s own
argmax can still generate non-robust jumps as Qp(s, b) changes, especially
when two contracts are close substitutes. In a dynamic setting, these jumps
can propagate across time through continuation values, leading again to non-
convergent iterates of naive best-response dynamics. Moreover, multiplicity
reappears: if several contracts are optimal at a state, there is no canonical
selection without an explicit tie-breaking rule, and different selections can
support different stationary equilibria.

From a mechanism-design standpoint, this case is also troubling in appli-
cations with approximation or learning. Even when the agent’s response is
smooth, a principal that implements a strict argmax is maximally sensitive
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to estimation error in Qp: an ε-perturbation can flip the chosen contract
entirely. Thus τp > 0 is not only an equilibrium-selection device; it is a
robustness device for the principal’s optimization problem.

The knife-edge case (τa, τp) = (0, 0): cycling and non-computability
by naive iteration. When both temperatures are zero, we are back in
the classical stationary Markov SPE concept with hidden action. In finite
spaces, stationary SPE may exist, but the set of equilibria can be large
and the correspondence from primitives to equilibrium outcomes can be dis-
continuous. More importantly for our purposes, the computational object
changes: the natural fixed-point iteration that alternates hard best responses
is not generally well-behaved. There are instances (including variants of the
cycling construction described above) where iterating best responses does not
converge from generic initializations. This does not contradict existence of
equilibrium; it indicates that equilibrium computation requires more delicate
methods (global search, mixed-integer formulations, or explicit equilibrium
solvers) and that small numerical perturbations can substantially change the
equilibrium selected.

Continuous contract spaces: conceptual and computational com-
plications. We have maintained B finite to keep both the equilibrium op-
erator and the value-gap bounds transparent. In many contracting envi-
ronments, however, B is naturally continuous (e.g., payments b(o) can vary
continuously subject to limited liability). Extending entropy regularization
to continuous B is conceptually straightforward but requires additional struc-
ture.

First, the principal’s soft value becomes a log-partition integral rather
than a finite log-sum:

Vp(s) = τp log

∫
B
exp

(
Qp(s, b)/τp

)
dµ(b),

where µ is a chosen reference measure on B (e.g., Lebesgue on a compact
subset). This highlights an often-overlooked modeling choice: in continuous
spaces, “entropy regularization” is properly interpreted as relative entropy (a
KL penalty) with respect to µ, and the value depends on the scale/volume
induced by that reference measure. Without compactness or integrability
conditions, the log-partition function may be infinite, and the regularized
objective can become ill-posed.

Second, computation typically requires numerical integration or approxi-
mation. In low dimensions one may approximate the integral via quadrature;
in higher dimensions one typically resorts to (i) discretization of B to a fi-
nite grid (reducing to our baseline model), (ii) Monte Carlo estimation of
the log-partition, or (iii) restricting ρ(· | s) to a parametric family (e.g., an
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exponential family over contracts) so that sampling and density evaluation
are tractable. Each choice introduces a new approximation layer beyond
(τa, τp): discretization error, sampling variance, or function-approximation
bias. Moreover, discretization interacts with regularization in a nontrivial
way: refining a grid improves the approximation to the continuous contract
problem but increases the effective menu size, which can change the magni-
tude and interpretation of entropy terms unless one simultaneously adjusts
the reference measure or rescales the regularizer.

These limitations are not defects of the framework; they clarify its domain
of clean guarantees. Finite B delivers a sharp contraction-based theory with
explicit bounds. Continuous B is often the economically natural benchmark,
but it shifts part of the problem from equilibrium existence to numerical
analysis: specifying the appropriate reference measure and building reliable
approximations to the soft Bellman integrals. The next section therefore
turns to algorithms and implementations that preserve the stability bene-
fits of regularization while remaining practical in large or continuous design
spaces.

8 Algorithms: soft value iteration and soft Q-learning
in hidden-action contracting

The contraction result is not only a conceptual equilibrium-selection state-
ment; it also suggests a particularly simple computational template. Be-
cause both players’ operators are smooth and globally stable, we can treat
the rSPE as the unique fixed point of a coupled pair of soft Bellman equa-
tions and compute it by straightforward iteration, much as in single-agent
entropy-regularized control. In the finite (tabular) setting, this lets us replace
brittle alternating argmax best responses with numerically well-behaved log-
partition updates.

Model-based soft value iteration (tabular). When the primitives (O, T, r, rp)
are known, we can iterate the joint operator directly. Given current estimates
(Q

(k)
a , Q

(k)
p ), we reconstruct the policies by Gibbs formulas,

π(k)(a | s, b) = exp(Q
(k)
a (s, b, a)/τa)∑

a′ exp(Q
(k)
a (s, b, a′)/τa)

, ρ(k)(b | s) = exp(Q
(k)
p (s, b)/τp)∑

b′ exp(Q
(k)
p (s, b′)/τp)

.

We then compute the associated soft values,

V (k)
a (s, b) = τa log

∑
a∈A

exp(Q(k)
a (s, b, a)/τa), V (k)

p (s) = τp log
∑
b∈B

exp(Q(k)
p (s, b)/τp),
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and apply the soft Bellman backups:

Q(k+1)
a (s, b, a) = Eo∼O(·|s,a), s′∼T (·|s,o)

[
r(s, a) + b(o) + γ Eb′∼ρ(k)(·|s′)V

(k)
a (s′, b′)

]
,

Q(k+1)
p (s, b) = Ea∼π(k)(·|s,b), o∼O(·|s,a), s′∼T (·|s,o)

[
rp(s, o)− b(o) + γ V (k)

p (s′)
]
.

In implementation, these expectations are finite sums. The main compu-
tational burden is therefore combinatorial rather than conceptual: a naive
update scales like

O(|S| |B| |A| |O|) for Qa, O(|S| |B| |A| |O|) for Qp,

with an additional factor for transitions if T is dense in |S|. The contrac-
tion guarantee justifies asynchronous variants (updating one (s, b, a) triple
at a time) and standard acceleration tricks (Gauss–Seidel sweeps, prioritized
updates), since all inherit global stability in the tabular case.

Sample-based learning: coupled soft Q-learning. When (O, T ) or
rewards are unknown, the same structure yields a natural learning instanti-
ation in which each side performs soft Q-learning with bootstrapping. The
agent observes (s, b, a, o, s′) and can update

Qa(s, b, a)← (1− α)Qa(s, b, a) + α
(
r(s, a) + b(o) + γ Eb′∼ρ(·|s′)Va(s′, b′)

)
,

where Va(s
′, b′) = τa log

∑
a′ exp(Qa(s

′, b′, a′)/τa). The principal observes
(s, b, o, s′) (but not a); importantly, it can still update Qp from the realized
outcome and next state without ever imputing the hidden action:

Qp(s, b)← (1−β)Qp(s, b)+β
(
rp(s, o)−b(o)+γ Vp(s

′)
)
, Vp(s

′) = τp log
∑
b′

exp(Qp(s
′, b′)/τp).

This is the key practical advantage of working with outcomes o as the con-
tractible statistic: the principal’s temporal-difference target only requires o
and s′. The hidden action matters only through the data-generating process,
not through observables needed for the update.

Because the policies π and ρ are deterministic functions of the current
Q-tables, the learning dynamics are coupled. In the tabular setting, the con-
traction theorem provides a strong heuristic: simultaneous updates behave
like stochastic approximation to a contraction mapping, so we should ex-
pect stable convergence under standard Robbins–Monro step-size conditions
and sufficient exploration. In practice, exploration is endogenous here—the
entropy terms themselves produce persistent randomization—but one may
still add explicit exploration (e.g. occasional uniform mixing in ρ) when τp
is very small.
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Numerical stability and temperature schedules. Two numerical is-
sues arise repeatedly. First, computing LSEτ should use the standard stabi-
lization

τ log
∑
i

exi/τ = m+ τ log
∑
i

e(xi−m)/τ , m = max
i

xi,

to avoid overflow when τ is small. Second, while our theory treats τa, τp as
fixed primitives, practitioners often want behavior close to the unregularized
SPE. A common approach is annealing: start with larger temperatures (pro-
moting exploration and smoothing) and gradually decrease them. This can
work well empirically, but it reintroduces a familiar tradeoff: as τ ↓ 0, the
problem becomes less smooth and the effective condition number worsens,
so one typically needs slower step sizes, more samples, or both.

When the regularized selection replaces LP-based contract choice.
In many finite-menu applications, the principal’s contract design problem
is operationally: choose b ∈ B subject to exogenous feasibility constraints
(limited liability, budget caps, regulatory restrictions), where B is already
a discrete set of admissible contracts (e.g. standardized bonus schemes). In
that case, the entropy-regularized operator is a direct substitute for per-state
deterministic optimization: instead of repeatedly solving maxb∈B Qp(s, b)
(with all its tie-breaking and discontinuity problems), the principal com-
putes ρ(b | s) ∝ exp(Qp(s, b)/τp). The algorithmic implication is simple:
equilibrium computation becomes iterated evaluation of soft Bellman backups
plus softmaxes, with no additional inner optimization.

This contrasts with “minimal-implementation” approaches in static principal–
agent models, where one often solves a linear program to implement a target
action at minimum expected payment subject to incentive constraints. In
our dynamic hidden-action setting, if we insist on designing contracts from
a rich (effectively continuous) family {b(·)} and we impose constraints that
are not captured by a finite B, then an inner optimization problem can reap-
pear. For example, if B is described by linear inequalities (limited liability
b(o) ≥ 0, budget

∑
o b(o) ≤ B̄, etc.), then evaluating either the hard max-

imum maxbQp(s, b) or its soft analogue (a log-partition integral) generally
requires numerical optimization or discretization. In such cases, the regu-
larizer does not eliminate the need for optimization; rather, it changes the
nature of the inner problem from brittle argmax selection to a smoother ob-
jective (often strictly convex in suitable parametrizations), which is typically
easier to solve and more robust to approximation error.

Function approximation and large state spaces. Finally, while our
guarantees are sharpest in the finite tabular case, the same computational
blueprint extends naturally to large |S| with parametric approximators Qa(s, b, a; θ)
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and Qp(s, b;ϕ). One can view the principal as running a soft actor–critic
over contracts (actor ρψ, critic Qp), while the agent runs a soft actor–critic
over actions (actor πη, critic Qa). The key limitation is that contraction is
no longer automatic under nonlinear approximation; stability becomes em-
pirical and depends on optimization choices, replay, target networks, and
coverage of (s, b) pairs. We therefore treat large-scale implementations as a
numerical extension: the rSPE structure supplies a disciplined target (the
coupled soft Bellman equations) and a principled exploration mechanism
(entropy), but it does not, by itself, resolve the standard instabilities of deep
reinforcement learning.

9 Experiments: stabilization, stress tests, and a
large-scale illustration

We use a small set of experiments to make three points that mirror the the-
ory: (i) the entropy terms eliminate the non-convergence pathologies that
arise under hard best responses in hidden-action contracting; (ii) the re-
sulting equilibrium computation is materially more robust to approximation
error in value estimates and in model estimation; and (iii) the same coupled
“soft” structure can be carried to larger problems with function approxi-
mation, though we emphasize that the latter is a numerical demonstration
rather than a theorem-backed claim.

(i) Reproducing a cycling instance and showing stabilization. Our
first experiment revisits a canonical failure mode for alternating best re-
sponses in dynamic principal–agent problems: even in a finite tabular envi-
ronment, the principal’s contract update can trigger a discrete change in the
agent’s optimal action, which then changes the principal’s continuation value
enough to flip the contract choice back, producing a cycle. Concretely, we
implement a small hidden-action MDP in which the agent has two actions
(“safe” versus “risky”) and the outcome distribution differs sharply across ac-
tions; the principal’s gross reward rp(s, o) is aligned with the risky outcome
only in some states, and the transition kernel T (· | s, o) makes those states
persistent. We restrict the principal to a finite menu B containing contracts
that are near substitutes in expected payment but that tilt incentives in
opposite directions.

In the unregularized baseline (τa = τp = 0), we run the natural alternat-
ing scheme: given a contract policy, compute the agent’s best-response policy
by dynamic programming; then, given the induced agent policy, compute the
principal’s best-response contract policy. Starting from different initializa-
tions, we observe persistent cycling of the induced stationary policies and
non-convergence of the iterates of the principal value V

(k)
p (the iterates oscil-

late within a band rather than approaching a limit). Importantly, this is not
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a numerical artifact of step sizes: the baseline is model-based and uses exact
expectations, so the oscillation reflects the discontinuity of argmax selection.

We then repeat the same procedure with entropy regularization, setting
τa > 0 and τp > 0 and performing soft value iteration on the coupled Bellman
system. In contrast to the baseline, the iterates converge rapidly from all
initializations to the same fixed point. Empirically, the convergence rate is
geometric and visually consistent with the γ-contraction prediction: plotting
∥Q(k+1) − Q(k)∥∞ on a log scale yields an approximately linear decay. The
qualitative mechanism is exactly the one highlighted by the theory: the
principal’s policy ρ(· | s) varies smoothly with Qp(s, ·), and the agent’s
policy π(· | s, b) varies smoothly with Qa(s, b, ·), so the iterative mapping
cannot “jump” across best-response correspondences. We also verify that
as τa, τp are decreased toward zero, the regularized fixed point approaches
one of the limiting unregularized equilibria when those equilibria exist, but
the numerical condition worsens (more iterations are needed and the iterates
become more sensitive to rounding), consistent with smoothing as a stability–
bias tradeoff.

(ii) Stress tests under approximation error. The second set of exper-
iments asks a practical question: in finite contracting problems, one rarely
has exact Q-values, even in the tabular setting, because either the model
must be estimated or the values must be learned from sample. We therefore
introduce controlled perturbations and measure how much the induced poli-
cies and achieved values degrade under the unregularized and regularized
operators.

We consider two perturbation modes. First, we add bounded noise di-
rectly to the Q-tables before policy reconstruction: at each iteration we use
Q̃a = Qa + ϵa and Q̃p = Qp + ϵp, where ϵ is i.i.d. across entries and clipped
to [−ϵ̄, ϵ̄]. Second, we estimate the primitives (O, T ) from a finite dataset,
compute model-based backups using the empirical (Ô, T̂ ), and evaluate the
resulting stationary policies in the true environment.

Across both perturbation modes, the unregularized baseline exhibits “brit-
tle” behavior: small ϵ̄ frequently triggers discrete switches in either the
agent’s action or the principal’s contract, leading to large changes in re-
alized value. In particular, the principal’s realized return can drop sharply
when a contract that was almost tied in Qp(s, ·) becomes the argmax due to
noise; because action is hidden, the downstream effect is amplified through
the induced change in π and therefore in the outcome distribution. Under en-
tropy regularization, the same perturbations translate into gradual changes
in ρ and π. We quantify this by measuring (a) the average total variation
distance between the perturbed and unperturbed policies, and (b) the value
loss relative to the unperturbed solution. Both metrics scale smoothly with
ϵ̄, and the slope is controlled by the temperatures: larger τa, τp produce
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smaller policy deviations for a fixed Q-perturbation, at the cost of a larger
asymptotic bias relative to the hard-max optimum.

A practical implication emerges from these stress tests. In contracting
applications where |B| is large (many standardized bonus schemes) or where
incentives are finely balanced, small estimation errors are unavoidable. The
regularized equilibrium provides a principled way to trade off incentive sharp-
ness against stability. In deployment language, τ plays a role analogous to
a robustness knob: if the environment or the learned model is noisy, slightly
higher temperatures can prevent regime-switching behavior that would oth-
erwise appear as erratic contract changes.

(iii) A large-MDP demonstration with function approximation.
Finally, we provide an optional large-scale illustration to show that the
coupled structure is not confined to toy tabular settings. We construct a
gridworld-style state space with stochastic outcomes and hidden actions (the
agent’s action affects the distribution over outcomes such as “high output”
versus “low output,” which in turn affect both the principal payoff and the
transition). The principal’s action is a discrete contract index b ∈ B drawn
from a menu that encodes a few interpretable shapes (e.g. high-powered in-
centives, flat wage, and intermediate schemes), possibly crossed with budget
caps.

We implement two soft actor–critic learners: one for the agent (critic
Qa(s, b, a; θ), actor πη(a | s, b)) and one for the principal (critic Qp(s, b;ϕ),
actor ρψ(b | s)). The critics are trained with temporal-difference targets that
mirror the soft Bellman equations, and the actors are trained to match the
Gibbs policies induced by the critics (equivalently, to maximize the entropy-
regularized objectives). Because the principal does not observe a, its critic
update uses only (s, b, o, s′), reinforcing the operational appeal of outcome-
based contracting: the learning signal is aligned with what is contractible
and observable.

We find that training is stable over a broad range of hyperparameters
when τa, τp are not too small, and that learned behavior is qualitatively sen-
sible: in regions of the state space where high effort is valuable, the principal
shifts probability mass toward higher-powered contracts, while in low-return
regions it economizes on incentives. We emphasize, however, that this is a
numerical demonstration, not a guarantee. With nonlinear approximation,
contraction need not hold, and familiar deep-RL issues arise (overestimation,
distribution shift, and sensitivity to target network updates). We therefore
interpret this experiment as evidence that the rSPE equations provide a co-
herent learning target and a stable exploration mechanism, rather than as a
claim of universal convergence.

Taken together, these experiments support the central message of the
paper: smoothing is not merely a technical convenience. In dynamic hidden-
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action contracting, entropy regularization functions as an equilibrium-selection
device, a computational stabilizer, and a practical hedge against approxima-
tion error, while preserving a clear economic interpretation as controlled
randomization over contracts and actions.

10 Conclusion and open problems

We have studied a dynamic hidden-action principal–agent problem through
the lens of entropy-regularized control. The substantive modeling move is to
replace hard best responses—which are discontinuous in payoffs and therefore
fragile in coupled dynamic systems—with soft responses induced by τa > 0
for the agent and τp > 0 for the principal. This yields a regularized subgame-
perfect equilibrium (rSPE) characterized by coupled soft Bellman equations,
and, in the finite tabular setting, a joint operator that is a γ-contraction in
∥ · ∥∞. The economic content of the regularization is not merely compu-
tational: it formalizes controlled randomization over actions and contracts,
selects a unique stationary Markov equilibrium, and quantifies a transparent
stability–bias tradeoff via the bound of order (τp log |B|+ τa log |A|)/(1− γ).

Several open problems are immediate once we move beyond the stylized
assumptions needed for a clean contraction argument.

Partial observability and richer information structures. Our base-
line assumes that the principal conditions only on the observed state st when
selecting bt, and that the outcome ot is the only contractible signal. In prac-
tice, the principal often faces partial observability of the underlying economic
state (demand, quality, macro conditions), while the agent may have private
information about that state or about their own cost type. A natural exten-
sion replaces st with a latent state and allows the principal to condition on
a history of signals, yielding a principal-side belief state and a POMDP-like
object. Two challenges arise. First, the equilibrium object becomes a fixed
point in policy space over beliefs rather than in finite-dimensional Q-tables,
complicating existence and uniqueness results. Second, incentive constraints
interact with filtering: contracts shape not only effort but also the informa-
tiveness of outcomes about hidden actions, and thus the evolution of beliefs.
An appealing direction is to combine entropy regularization with belief-space
dynamic programming, using softmax policies to maintain continuity while
tracking approximate beliefs; however, it remains open to identify condi-
tions under which a contraction-type argument survives (e.g., with finite
belief grids or with additional regularity assumptions). Economically, such a
framework would let us analyze how contract power should respond to uncer-
tainty about the environment, and when the principal should optimally “pay
for information” by inducing actions that make outcomes more diagnostic.
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Robust and distributionally robust contracting. Another limitation
of the baseline is correct specification of primitives (O, T, rp). Contracting
environments are often misspecified: the principal may distrust the map-
ping from actions to outcomes, or worry that rare events are under-sampled.
This motivates robust MDP and distributionally robust (DR) variants in
which the principal evaluates contracts under a worst-case model in an am-
biguity set around (Ô, T̂ ). Conceptually, robustness is complementary to
entropy: robustness addresses model uncertainty, while entropy addresses
strategic discontinuities and computational brittleness. Technically, combin-
ing the two raises delicate questions because the principal’s Bellman opera-
tor becomes a max–min–soft object. One promising route is to adopt convex
ambiguity sets that preserve dynamic consistency (e.g., rectangular sets) so
that the robust backup decomposes statewise, and then to study whether
the resulting “robust soft” operator remains a contraction. On the economic
side, robust contracting changes the interpretation of τp: the principal may
rationally randomize not only for stability but also to hedge against mis-
specification, producing incentive schemes that are deliberately less sharp in
environments with high ambiguity. We view the joint calibration of robust-
ness radii and temperatures as a key deployment question: overly conser-
vative ambiguity sets can dominate the effect of incentives, while too little
robustness can resurrect the same regime-switching behavior that motivates
smoothing.

Multiple agents, teams, and strategic interaction. Many organiza-
tions contract with multiple agents whose actions jointly determine out-
comes, sometimes with complementarities (team production) and sometimes
with competition (tournaments). Extending rSPE to these settings raises
two kinds of issues. First, the informational externality of outcomes be-
comes more complex: an outcome informative about one agent may be con-
founded by others’ hidden actions, affecting both incentives and learning
dynamics. Second, equilibrium selection becomes more delicate because the
principal’s contract menu may induce multiple correlated-response patterns
among agents. Entropy regularization is attractive here because it naturally
induces interior mixed strategies and can smooth best-response correspon-
dences in multi-agent games, but the fixed-point analysis becomes higher-
dimensional and may require monotonicity or potential-game structure to
recover uniqueness. A particularly relevant direction is networked contract-
ing, where outcomes are local (peer effects, platform moderation, supply
chains) and the principal chooses a vector of local contracts; understanding
whether separability or approximate decomposability yields scalable equi-
librium computation is open. From a policy perspective, these extensions
matter for interpreting observed pay schemes in teams: what looks like
“inefficiently low-powered incentives” may be rational once we account for
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strategic spillovers, partial observability, and the value of stability.

Continuous contract spaces and mechanism design constraints. We
have emphasized a finite menu B, which is both computationally convenient
and economically realistic in settings with standardized schemes. Yet many
applications call for continuous contracts, additional constraints (limited li-
ability, monotonicity, budget balance), or richer payment rules based on
histories. A continuous B changes the nature of the principal’s softmax: one
would replace LSEτp with a log-partition integral and interpret ρ(· | s) as a
Gibbs density over contracts. This raises questions of existence (normaliz-
ability), computation (sampling in contract space), and economic interpreta-
tion (does the resulting randomization reflect genuine commitment or merely
an approximation device?). Moreover, once B is large, our approximation
bound highlights a tension: increasing |B| reduces discretization error but
increases the worst-case entropy bias through log |B|. Developing principled
discretization schemes—for example, adaptive menus that refine only where
Qp(s, ·) is steep—is a practical open problem with direct relevance to orga-
nizational design.

How should we tune τa and τp in deployment? Temperatures are
central because they govern the stability–bias frontier. In applications, we
rarely observe τ directly, and we may not want to set it purely for numerical
convenience. One interpretation treats τ as bounded rationality or imple-
mentation noise: τa captures the agent’s limited optimization or unmodeled
idiosyncrasies, while τp captures institutional frictions that prevent perfectly
sharp contract selection. Under this view, τ is an estimand, to be fit to
observed behavior. A second interpretation treats τ as a robustness and ex-
ploration knob chosen by the designer: higher τ yields smoother responses
and reduces sensitivity to value estimation error (at an explicit bias cost).
Practically, we can tune τ by validation on held-out episodes (or historical
counterfactuals), selecting the smallest temperatures that avoid instability
under plausible perturbations of Q or primitives. A useful operational heuris-
tic is a homotopy schedule: start with larger (τa, τp) to obtain a stable fixed
point, then gradually anneal toward smaller values while monitoring sensi-
tivity (e.g., policy variation or worst-case value under model uncertainty).
Formalizing such procedures—and linking them to guarantees under mis-
specification and function approximation—remains an important direction
for making dynamic contracting algorithms both economically interpretable
and operationally reliable.

More broadly, we view entropy-regularized equilibrium as a bridge: it
retains the core economic structure of hidden-action contracting while im-
porting the analytical and computational tools of soft dynamic program-
ming. The remaining work lies in identifying the boundary of this bridge—
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where partial observability, misspecification, and strategic complexity begin
to dominate contraction-based guarantees—and in developing theory-guided
heuristics that preserve the economic logic of incentives while meeting the
practical demands of noisy data and large state spaces.
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