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Abstract

We study sequential contract design for orchestrating autonomous
agents when the principal faces three deployment-era frictions: (i) the
outcome model linking hidden actions to observable outcomes is esti-
mated and may shift; (ii) the agent’s continuation values are misspeci-
fied due to approximation and strategic learning; and (iii) contracts are
computed from learned Q-functions. Building on principal-agent rein-
forcement learning with subgame-perfect equilibrium (SPE), we pro-
pose a distributionally robust contract design method that converts es-
timated minimal-implementation contracts into deployment-safe con-
tracts via ‘robust nudges’—small additional payments that stabilize
the agent’s best response under model uncertainty. Our core technical
contribution is a clean per-state robust incentive-compatibility (IC)
program that is linear/convex for standard uncertainty sets and yields
closed-form nudging rules in low-dimensional cases. We introduce an
identifiable signal-separability parameter that generalizes the overlap
measure dp,;, in prior analysis: when separability is low, any contract
is inherently fragile and requires large subsidies. We prove additive
welfare guarantees for the principal under validation against a best-
responding oracle agent, decomposing losses into (a) principal learning
error and (b) robustness cost that scales inversely with separability.
Empirically, we validate on adversarially shifted variants of sequential
social dilemmas (e.g., Coin Game) and show robust nudging prevents
incentive flips and preserves welfare at modest budget increases. The
results provide an implementable safety layer for contract-based gov-
ernance of agent ecosystems in 2026 settings, where principals must
operate under distribution shift, limited observability, and learning
agents.
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1 1. Introduction: Why learned contracts are frag-
ile under distribution shift; robustness as an es-
sential governance layer in 2026 agent ecosys-
tems; contributions and roadmap.

In contemporary digital economies, contracts are increasingly not hand-
written documents but learned objects: platform subsidy schedules that
adjust to user behavior, performance-pay schemes for gig workers, incentive
rules for content moderation and ranking, and, more recently, “contract-like”
payment and access controls governing tool-using Al agents. In these set-
tings the principal is typically operating a complex dynamical system, and
the incentive rule is computed from data, simulation, or a learned model of
how outcomes respond to hidden actions. This evolution creates an uncom-
fortable tension. On the one hand, learned contracts are attractive precisely
because they can exploit fine-grained predictive signals and adapt to high-
dimensional environments. On the other hand, the same dependence on
predictive models makes incentive schemes fragile: small distribution shifts
can flip best responses, and the resulting deviations can propagate through
time, amplifying losses in dynamic systems.

We study this fragility in the canonical place it arises: a finite-horizon
hidden-action principal-agent Markov decision process (MDP) with limited-
liability, outcome-contingent contracts. The principal posts a nonnegative
payment schedule b(-) over observable outcomes, the agent privately chooses
an action a, an outcome o is realized, transfers occur, and the system tran-
sitions. The principal chooses contracts using an estimated environment
model and an estimated description of the agent’s continuation incentives.
In deployment, however, the true outcome distribution may differ from the
estimate, and the principal’s continuation-value proxy for the agent may be
misspecified. These two sources of misspecification are not merely technical
nuisances. They are precisely the forms of error that arise when we train in-
centive rules on historical data, validate them on offline simulators, and then
ship them into environments that evolve—because of seasonality, adversarial
adaptation, novel products, new cohorts of users, or strategic gaming.

Why does a small modeling error matter so much? The reason is that
incentive compatibility is a knife-edge property. Contracts implement ac-
tions by making one action strictly better than another in expected utility
terms. Under limited liability b(o) > 0, we cannot “fine-tune” incentives
by punishing deviations; we can only reward certain outcomes. When two
actions induce similar outcome distributions, the principal has only weak
statistical leverage: expected payments differ little across actions unless the
contract has large payouts concentrated on rare but diagnostic events. In
that regime, even a modest shift in outcome probabilities or a modest error
in how we value the agent’s continuation payoffs can reverse the ranking of



actions. The principal then faces a dual risk: an implementation risk (the
agent chooses a different action than intended) and a dynamic compound-
ing risk (the induced state trajectory changes, so subsequent contracts are
computed in the wrong region of the state space).

This compounding risk has become more salient in 2026-era agent ecosys-
tems. Many principals now govern not only human agents but also auto-
mated agents that can search, plan, and exploit system loopholes at high
speed. These agents respond sharply to incentives, and their behavior can
shift the environment itself (e.g., changing congestion, liquidity, or the dis-
tribution of observable outcomes). In such systems, robust incentive design
functions as a governance layer: not an after-the-fact audit, but an ex ante
guarantee that the deployed contract remains incentive compatible across a
specified set of plausible shifts. Robustness is therefore not simply a con-
servative preference; it is an operational requirement when contracts are
computed by learning pipelines that are inevitably imperfect.

Our starting point is the observation that principals already implicitly
reason about robustness, but often in an ad hoc way: adding “buffers” to
performance bonuses, capping certain rewards, or requiring manual review
when a model extrapolates. We aim to formalize a principled version of
this buffer, one that is explicitly tied to two interpretable quantities: (i)
how uncertain the principal is about the mapping from actions to outcomes,
and (ii) how wrong the principal might be about the agent’s continuation
values under future contracts. In our framework, the principal possesses a
nominal outcome model O(s,a) and an uncertainty set Us, that contains
the true O(s, a). Separately, the principal computes contracts using an esti-
mated truncated continuation value @(s, a) for the agent, but acknowledges
a bounded misspecification €5 at each state. The key design question be-
comes: how should the principal translate (U,¢) into a simple, statewise
modification of the learned contract that restores incentive compatibility in
deployment, while incurring minimal additional expected payments?

A second observation motivates our approach: although the environment
is dynamic, the most immediate failure mode is local. At a given state s,
a learned contract is computed to implement an intended action a,. If, un-
der the true model, the agent instead prefers some deviation a # a,, then
the remainder of the dynamic plan is moot. This suggests a modular ar-
chitecture. We can treat the principal’s learning and planning pipeline as
producing a recommended action a,(s) (and a nominal contract), and then
apply a lightweight robustification step—a “nudge”—that enforces incentive
compatibility at the current state against worst-case distributions in &/ and
worst-case value misspecification €5. The result is an implementable gov-
ernance layer: a per-state rule that is easy to compute, easy to audit, and
easy to stress-test because it depends only on explicit uncertainty sets and
explicit error budgets.

Technically, the central object governing whether nudging is cheap or



expensive is a robust notion of outcome informativeness. Informally, we
ask whether there exists some observable outcome that remains uniformly
more likely under the intended action than under any deviation, even after
we allow Nature to choose the worst-case distribution in each uncertainty
set. When such a diagnostic outcome exists, paying only on that outcome
creates leverage: the expected payment advantage of the intended action
is proportional to the robust gap in probabilities. When the robust gap is
small, the same incentive margin requires larger payments. This logic mirrors
classical results on identification and contracting under limited liability, but
here it becomes a quantitative robustness calculus: a map from statistical
distinguishability (under uncertainty) to subsidy costs.

Our contributions develop this calculus in a dynamic setting and connect
it to learned contracting practice.

e Robust incentive compatibility with misspecified continuation values.
We formulate a robust IC constraint that accounts simultaneously for
distribution shift O € U and for bounded error €5 in the principal’s
proxy @(3, a) for the agent’s continuation payoff. The resulting con-
straint has a transparent interpretation: the contract must create an
expected-payment advantage large enough to dominate the worst-case
value misspecification.

o A constructive “single-diagnostic-outcome” nudge. Under a mild sepa-
rability condition—that the intended action is robustly distinguishable
from every deviation by at least one outcome—we show that robust IC
can be achieved by a nonnegative contract supported on a single out-
come. This contract is not merely convenient; it is the simplest possible
governance intervention: it adds mass to one payment entry b(o*) and
leaves the remainder unchanged.

e Closed forms under standard uncertainty sets. For commonly used am-
biguity sets, including total-variation balls and f-divergence balls, we
derive explicit expressions for the robust separability gap and hence
explicit robust nudging payments. This matters for practice because
uncertainty sets are often chosen to match statistical confidence re-
gions, and closed forms enable fast deployment-time computation.

o A sequential validation guarantee. We show that if the principal’s
recommended-action policy is approximately optimal up to a learn-
ing error dg, then adding the robust nudge at each visited state yields
a lower bound on the principal’s realized value in validation against an
oracle best-responding agent and any O € Y. The bound decomposes
into a term for planning/learning suboptimality (the 0’s) and a term for
robustness payments that scales as €, divided by robust separability.



o A necessity result. In a single-state environment, we provide a min-
imax lower bound showing that any limited-liability contract guar-
anteeing implementation under misspecification must incur expected
payments on the order of £,/d. This establishes that the basic tradeoff
we highlight—robustness requires subsidies when outcomes are weakly
informative—is not an artifact of our construction.

Beyond the formal results, we emphasize an interpretation relevant for
governance: robustness here is not “free safety.” It is a priced constraint that
depends on two design levers. First, one can invest in better prediction and
better uncertainty calibration, shrinking ¢/ and thereby increasing robust
separability. Second, one can invest in better behavioral modeling of the
agent’s continuation values, shrinking 5. Our welfare guarantee makes these
levers commensurable: it expresses, in the same units as the principal’s value,
how much each source of misspecification costs once we require incentive
compatibility in deployment. This provides a practical decision tool: when
should a principal pay for more data collection, better simulation, or richer
agent modeling, versus when should it simply pay larger subsidies to stabilize
behavior?

Several limitations are worth flagging at the outset. We assume limited
liability and focus on nonnegative outcome-contingent payments, which is
appropriate for many subsidy and bonus schemes but not for settings where
fines or clawbacks are enforceable. We also posit that the principal can
specify credible uncertainty sets U , and bounds €,. In practice, these may
themselves be learned or contested, and misspecification of uncertainty sets
is a genuine risk. Finally, our separability condition can fail in environments
where actions are observationally nearly equivalent; in such cases, robust
implementation may be prohibitively expensive or impossible without richer
observables or monitoring technology. We view this not as a drawback but
as a diagnostic: the model tells the principal when a desired behavior cannot
be robustly incentivized under the available signals.

Roadmap. In the next section we formalize the baseline principal-agent
MDP and the relevant equilibrium notion, highlighting where standard minimal-
implementation linear programs arise and why they can fail under model and
value misspecification. We then introduce our robust separability measure
and derive the nudging rule that restores incentive compatibility under dis-
tribution shift, before turning to closed-form expressions for standard am-
biguity sets, sequential validation guarantees, and lower bounds that clarify
the fundamental tradeoff between robustness and subsidy costs.

2 Baseline principal-agent MDP and SPE

We begin with the baseline dynamic contracting problem absent any ro-
bustness modifications. The environment is a finite-horizon hidden-action



principal-agent MDP. At each date ¢ € {0,...,T — 1} the system occupies
a publicly observed state s; € S§. The principal posts a limited-liability,
outcome-contingent contract b; € RLOOI, where b;(0) is the transfer paid to
the agent if outcome o € O is realized at t. The agent then privately se-
lects an action a; € A. Nature draws an observable outcome o; according to
O(st,ar) € A(O), transfers are executed, and the system transitions to the
next state s;y1 ~ T(s¢,0¢). The principal observes (s¢, 0;) but not a;; the
agent observes s; and b, when choosing a;.
Per-period payoffs take the additive form

R(s,a,b,0) =r(s,a)+ b(o), Rp(s,b,0) =rp(s,0) — b(o),

with discount factor vy € (0, 1] (allowing v = 1 for finite-horizon analyses). A

principal policy p maps states to contracts, p: S — RLOO‘, and an agent policy

m maps (s,b) to actions, 7 : S X R|>00| — A. For any (p, ), the principal’s
value is

N
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and analogously for the agent. The key difficulty is that the agent’s action
affects outcomes (hence both parties’ payoffs) but is not contractible; the
principal must steer actions using only payments contingent on observable
outcomes.

Markovian SPE and the agent’s continuation incentives. We focus
on Markov strategies and subgame-perfect equilibrium (SPE). The agent’s
decision at state s under contract b trades off immediate intrinsic reward
7(s,a), expected transfer E,_o(s.4)[0(0)], and the continuation value induced
by future play. A convenient representation is the agent’s (truncated) action-
value function under principal policy p, written Q% (s, a | p), which collects
the intrinsic term plus the discounted continuation value from future con-
tracts (but, by construction, excludes the current transfer so that current
incentives enter linearly through b). Formally, one can write

QQ(S, a ’ p) = T(Sv (L)—l—’}/ IEONO(S,(JL),S’NT(S,O) [mgﬁ (EO/NO(SI,G/)p(S/)(O/)+Qf4(8/7 a’ ‘ p))i|a

a/

with terminal condition Q% (-,- | p) =0 at t =T (or, equivalently, indexing
(% by time as in standard finite-horizon dynamic programming). Given b,
the agent’s best response at (s,b) is

7 (s,0) € argmax {Eo~o(s.a)[b(0)] + Qi (s:a | p)} -

This expression highlights the core contractual lever: because b > 0 and
depends only on o, the principal can alter incentives only through outcome
likelihoods O(s, a).



The principal’s per-state contracting problem. Given an intended
action a, at state s, a classical benchmark is the minimal implementation
contract: among all nonnegative payment schedules that make a, optimal
for the agent, choose one that minimizes the principal’s expected transfer
(equivalently, maximizes the principal’s immediate payoff holding continua-
tion fixed). In our notation, for a fixed continuation term Q%(-,- | p) and
true outcome model O, this problem takes the linear form

ml‘%‘ EONO(s,ap) [b(O)]
ber.S)

s.t. EowO(s,ap)[b(O)] + Q;&(Sv ap | p) = IE:owO(s,a) [b(O)] + Q;&(Sv a | p)a Va # Qp.

The objective and constraints are linear in b. Limited liability enters only
through b(0) > 0, and hidden action appears only through the incentive-
compatibility (IC) inequalities.

This LP is a statewise object, but it is not “static”: the constants Q% (s, a |
p) depend on the entire principal policy p through future contracts. In
equilibrium, contracts must be consistent with the continuation incentives
they generate.

SPE via backward induction: a meta-algorithm. In a finite-horizon
Markov setting, an SPE can be constructed by backward induction on time.
The conceptual meta-algorithm proceeds as follows. At the terminal date
t = T — 1, continuation values are zero, and the principal’s problem at
each state reduces to a one-step contracting problem: for each candidate
action a,, solve the minimal-implementation LP to compute the cheapest
contract b that induces ap, then evaluate the principal’s one-step value
Eo0(s,a,)[p(5;0) — b(0)], and select the maximizing action/contract pair.
Moving backward, suppose we have already computed the principal’s con-
tinuation value Vp;41(-) (and, implicitly, the future contracts). At time ¢, for
each state s and each candidate intended action a,, the principal considers
contracts that implement a, given the agent’s continuation terms and then
selects the action/contract that maximizes

EonO(s,0,), 5'~T(s5,0) [Tp (55 0) — b(0) + 7 Vpr11(s)].

The agent’s best response at each state is computed from the corresponding
IC condition using Q% ,, which itself is computed backward using the future
contracts. In this senée, equilibrium computation resembles dynamic pro-
gramming, but with an inner LP at each state to translate a desired action
into an implementable contract.

Two observations are useful. First, because the minimal-implementation
LP is linear and the feasible set is a polyhedron, optimal contracts are typi-
cally extreme points, concentrating payments on a small number of outcomes.



In particular, if one outcome is especially diagnostic of a,, relative to a devi-
ation, paying only on that outcome can be optimal (a point we will exploit
later when we design simple “nudges”). Second, because b enters the prin-
cipal’s objective negatively and enters the agent’s IC constraints positively,
the principal generically prefers contracts that make the agent just indiffer-
ent between a, and the most tempting deviation. Minimal implementation is
therefore often a knife-edge construction even when the underlying dynamic
program is well-behaved.

Where LP-based implementation fails under misspecification. The
preceding description is a benchmark: it presumes the principal knows the
true outcome model O and the true agent continuation terms Q% (-,- | p).
In modern applications, neither is available. Contracts are computed from
estimated transition/outcome models and from approximations of how the
agent values future play. Even if these approximations are statistically con-
sistent in large samples, in finite samples (or under distribution shift) the
minimal-implementation LP can be brittle. The core issue is that minimal
implementation typically selects a contract with zero slack in the binding
IC constraints. Thus, small perturbations in either (i) outcome probabilities
O(s,a) or (ii) continuation differences Q% (s, a, | p) — Q% (s,a | p) can flip
the agent’s preference ordering.

To see the mechanism in its simplest form, consider a fixed s and two
actions a, and a. The IC constraint compares

A(b) = IEONO(S,ULP) [b(O)] - IEor\«O(s,a) [b(O)]

to the (negative) intrinsic/continuation advantage of deviating:

A(b) = Quls,a|p) — Qils,ap | p).

Under limited liability, the only way to increase A(b) is to shift payment
weight toward outcomes that are more likely under a, than under a. If the
two outcome distributions are close, then A(b) is small unless b is large on
a narrow set of outcomes. Minimal implementation pushes exactly to the
boundary: it chooses b so that A(b) matches the required incentive gap with
equality. A small error in O(s, ) that reduces A(b), or a small error in the
estimated continuation gap that increases the right-hand side, can violate
IC.

These failures are not merely local. In a dynamic system, an implemen-
tation error at state s; changes the distribution over outcomes o, and hence
the next-state distribution over s;y1. But the principal’s future contracts
were computed under the assumption that the intended action was taken
and the nominal state trajectory would be followed. Thus, a one-step IC
failure can push the system into regions of the state space where the learned
policy is poorly calibrated, where outcome models are less accurate, or where



the principal has not even specified meaningful contracts. Put differently:
minimal implementation is designed to be payment-efficient conditional on
correct prediction, but it is not designed to be stable to the prediction errors
that are inevitable in learned contracting.

A second, closely related failure mode concerns rare-event leverage. Be-
cause LP extreme points concentrate transfers, the computed contract may
put a large payment on a low-probability outcome that is estimated to be
slightly more likely under a, than under deviations. This can be rational
from a cost-minimization standpoint, but it creates an operational fragility:
rare outcomes are precisely where empirical estimates are noisiest and where
distribution shift is most likely. When the diagnostic event is misspecified
(e.g., its probability advantage disappears in deployment), the contract loses
its incentive bite while still exposing the principal to potentially high trans-
fers when the event occurs.

Finally, the hidden-action dynamic setting introduces a subtle feedback:
continuation incentives depend on the future contracts, and future contracts
depend on the future states, which depend on today’s action. If the principal
computes contracts using an approximate continuation model, then even if
the one-step outcome model O(s, a) were correct, the induced IC inequalities
can still be wrong because the agent is optimizing through time. This is the
dynamic analogue of a familiar static lesson: when we design incentives
using the wrong model of the agent, we can create “perverse” rewards that
are locally sensible but globally misaligned with the agent’s true objective.

These considerations motivate the central design goal of the paper: rather
than relying on knife-edge minimal implementation computed from nominal
estimates, we seek a lightweight modification of the per-state LP solution
that creates an explicit buffer against (i) errors in predicted outcome proba-
bilities and (ii) errors in predicted continuation incentives. The next section
formalizes the modeling primitives that represent these errors and clarifies
what can be estimated from data versus what must be treated as an explicit
robustness budget.

3 Robust modeling primitives: what the principal
can (and cannot) know

Our robustness modifications are driven by a simple empirical premise: in
realistic deployments, the principal does not know the true outcome model
O(s,a), and—because the agent optimizes intertemporally—does not know
the agent’s relevant continuation incentives either. The purpose of this sec-
tion is to make these informational gaps explicit, to separate what can be
learned from what must be taken as a design budget, and to introduce
three primitives that will parameterize our guarantees: (i) an uncertainty
set Us o around the principal’s nominal outcome model O(s, a); (i) a bound
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€5 on misspecification of the agent’s truncated continuation values; and (iii) a
bound ds on the principal’s own dynamic-programming approximation error.

Throughout, we view the principal’s policy computation as occurring in
a training phase, while performance is evaluated in a validation/deployment
phase in which the agent best responds to posted contracts under the true
environment. The analysis is “distributionally robust” in the sense that we
evaluate the principal’s policy uniformly over all true outcome models O
consistent with the uncertainty sets.

3.1 Outcome-model uncertainty via state—action ambiguity
sets U, ,

Fix a state—action pair (s,a). The principal has a nominal (estimated or
simulated) outcome distribution O(s,a) € A(Q), but the true distribution
O(s,a) may differ. We summarize this deviation by a set-valued restriction

O(s,a) € U, € AO),

where U 4 is known to the principalﬂ We impose no special structure beyond

the minimal requirements needed for tractability in the contract program:

Us.q is typically taken to be convex and closed, and to contain O(s, a). The

key feature is that U, is action-specific: different hidden actions may be

more or less uncertain because they are observed at different frequencies in

training or because they are generated by different operational regimes.
Two canonical constructions capture much of what we need.

Total-variation balls. A transparent choice is a total-variation (T'V) neigh-
borhood

Uso = {p € AO) : TV(p, O(s, a)) < 7757,1},

where 1, , > 0 is a radius. TV balls are appealing because they translate
directly into worst-case bounds on expected payments, and because 7, , can
be calibrated from finite-sample concentration for multinomial data. For
example, if outcomes are observed under a known action a at state s for ngq
independent draws, then standard inequalities imply that, with probability
at least 1 — «,

log(|0]/e)

Ns.a

TV(O(s,a), O(s, a)) S (up to universal constants).
This calibration is deliberately schematic: the exact form depends on whether
one uses Dvoretzky—Kiefer—Wolfowitz-type bounds, empirical Bernstein in-
equalities, or a bootstrap. What matters for our purposes is that 7, can be
made state—action dependent and can be tightened with additional data.

In applications, U, , may itself be chosen conservatively from a family of candidate
radii or confidence levels. We treat it as fixed to keep the contracting problem well-posed.
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f-divergence balls. A second widely used family is an f-divergence neigh-
borhood,

Usa = {p € AO): Dy(p || O(s,a)) < noa},

including KL-divergence and y?-divergence as special cases. These sets
can be motivated by likelihood-based confidence regions (e.g., Wilks’ phe-
nomenon) and often yield tractable dual reformulations when the principal
optimizes expected payments subject to worst-case constraints.

What is (and is not) observable. A delicate point in hidden-action en-
vironments is that outcomes are not naturally labeled by the action that gen-
erated them. In many operational settings, however, the principal can cre-
ate action-revealing episodes in training by temporarily using high-powered
incentives (or rigid protocols) so that the agent’s optimal response is effec-
tively pinned down; under such “instrumented” regimes, outcomes can be
attributed to intended actions with small residual error. Alternatively, the
principal may rely on domain models or simulators that map proposed ac-
tions to outcome distributions. When neither is available, U, should be
interpreted as a partial-identification device: it collects all outcome distribu-
tions consistent with the data and the institutional assumptions the analyst
is willing to defend. Our results do not require point identification; they
require only that the true O(s, a) lies in the specified set.

In short, O is a nominal object computed from data or simulation, while
U is the principal’s formal encoding of residual model uncertainty. Later,
robust incentive constraints will take worst cases over U 4, so enlarging U
directly increases the payment buffer required for reliable implementation.

3.2 Bounded misspecification of the agent’s truncated con-
tinuation values ¢,

Even if the principal knew O(s, a) perfectly, robust contracting would still
be necessary because the agent’s best response depends on the entire future
stream of contracts. In the benchmark formulation, the relevant object is
the agent’s truncated continuation value Q% (s, a | p), which depends on the
principal policy p through the continuation of play. In practice, the principal
computes contracts using an approximation @(s, a) (e.g., from approximate
dynamic programming, from a behavioral model fit, or from a structural
estimate of r(s,a) and future opportunities). We summarize the resulting
discrepancy by a uniform statewise bound:

Sup ‘QE(S,G ’ p) - Q(S,G)‘ < €s-
acA

We interpret €, as a robustness budget for continuation incentives at state s.
Several features are worth emphasizing.
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First, 4 is intentionally state-dependent. Continuation values are typi-
cally harder to approximate in parts of the state space that are rarely visited
in training, that are sensitive to tail events, or that depend on unobserved
agent attributes; allowing e, to vary lets the designer recognize this hetero-
geneity rather than imposing a single global slack parameter.

Second, €5 is a bound on an action-value approximation, not merely on
the agent’s one-step intrinsic payoff. This is important because dynamic
incentives can dominate static ones: two actions that look similar in imme-
diate outcomes may lead to different future states where the agent expects
different future rents. Misspecifying those future rents can flip the agent’s
preference even when O is accurate.

Third, while we state the bound as uniform over a, what ultimately
matters for incentive compatibility is the accuracy of differences Q% (s, a, |
p)—Q%(s,a | p). A convenient (and conservative) implication of the uniform
bound is that any such difference may be misspecified by at most 2e,, which
will directly determine the “margin” we must build into robust IC constraints
in the next section.

How can ¢, be chosen? Unlike U 4, €5 is not solely a statistical confi-
dence radius around an observable conditional distribution; it reflects mis-
specification of the agent model, approximation error in value-function fit-
ting, and (in some applications) genuine behavioral departures from full ra-
tionality. Nonetheless, there are several disciplined ways to set it.

If @ is computed from a parametric or nonparametric regression that
predicts realized agent payoffs (or revealed choices) in a controlled training
environment, then e, can be taken as a high-probability bound on predic-
tion error, possibly inflated by a model-misspecification penalty. If @ is pro-
duced by approximate dynamic programming with a known Bellman residual
bound, then ez can be chosen to dominate the implied error propagation to
truncated action values. If the principal has only coarse knowledge of the
agent’s future opportunities (e.g., bounds on outside options or on maximum
attainable continuation rents), then £ is best interpreted as a conservative
envelope that protects against those unknowns.

Our main point is conceptual: €4 quantifies how wrong the principal may
be about the agent’s dynamic incentives, and robust contracting will trade
off higher transfers for immunity to such errors.

3.3 Principal approximation error J,: robustness is not op-
timality

Robust implementation ensures that the agent takes the action the principal
intends, but it does not guarantee that the intended action is itself close to
equilibrium-optimal under the true environment. To track this distinction,
we introduce a separate error term 5 capturing the principal’s approximation
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error in computing its own recommended-action policy (or, more generally,
in approximating the relevant contractual value function used in dynamic
programming).

Formally, one can think of s as bounding the difference between (i)
the principal’s true equilibrium continuation value from state s and (ii) the
value implied by the approximate dynamic program used in training, eval-
uated on the recommended actions. Because different algorithmic pipelines
lead to slightly different formalizations, we keep d, deliberately high level:
it is a nonnegative quantity that enters the final welfare bound additively,
discounted along the realized trajectory. Intuitively, d, is the cost of using an
approximate planner, while €5 is the cost of not knowing the agent’s contin-
uation incentives well enough to implement the planner’s recommendations
without slack.

Estimating ;. In many applied dynamic programming settings, J; can
be related to a Bellman error or an off-policy evaluation error computed on
a holdout sample. For example, if the principal uses fitted value iteration
and can bound the sup-norm Bellman residual of its value estimate on the
relevant state distribution, then d; can be chosen to dominate the implied
performance loss. In model-based pipelines, é; may also include the effect
of outcome-model error O # O on the principal’s planning objective (as
distinct from the effect on incentive constraints). Conceptually, d5 is where
we “charge” the principal for choosing a suboptimal policy due to limited
data or function approximation; robustness will not remove this loss, but it
will prevent additional loss from unintended agent deviations.

3.4 Putting the primitives together: a robust information
structure

The three primitives (Us,a,es, 53) jointly define the robust environment we
will analyze. In deployment, we allow the true outcome model O to be any
selection with O(s,a) € U 4 for all (s,a). The agent is treated as an oracle
best responder given the true model and the posted contracts. The principal,
by contrast, commits to a policy computed from nominal objects (O, @) and
then protects itself by adding explicit slack to the per-state implementation
constraints.

This separation clarifies a practical tradeoff. Enlarging i/ and € makes the
incentive constraints more conservative, typically requiring larger transfers
to guarantee the intended action, which lowers the principal’s value mechan-
ically. Shrinking & and e reduces transfers but increases the risk that the
agent’s best response changes under deployment conditions. The role of §
is orthogonal: it measures how good the intended policy is even if perfectly
implemented.
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With these robustness primitives in place, we can now formalize in-
centive compatibility in worst-case terms and show how a simple per-state
“nudge”—a small additional payment concentrated on a diagnostic outcome—creates
the strict buffer required to stabilize the agent’s best response under both
outcome-model ambiguity and continuation-value misspecification.

4 Robust incentive compatibility and per-state nudg-
ing

We now turn to the central design problem created by the primitives in
Section [3} how can a principal reliably implement a desired hidden action
when both the outcome model and the agent’s continuation incentives are
only known up to bounded error? The key step is to replace the usual (model-
specific) incentive-compatibility (IC) inequalities with worst-case inequalities
that must hold uniformly over the ambiguity sets and over continuation-value
misspecification. This robustification has a direct economic interpretation:
we are asking for a contract that keeps the agent on the intended action
even in the least favorable environment consistent with what the principal
believes it has learned.

4.1 Robust IC as worst-case utility inequalities

Fix a state s and suppose the principal wishes to implement (or recommends)

an action a, € A. Given a posted contract b € ]R|>Ool, the agent compares
actions using (i) the expected payment under the relevant outcome distri-
bution and (ii) the continuation value from choosing that action. Under the
true environment, the agent’s best response at s solves

a € argmax {Epvo(sa [b(0)] + Qia(s,0' | ) }.

The principal does not observe a, and in deployment it cannot condition on
O(s,a) or on Q%(s,a | p) directly. What it can do is build a uniform slack
buffer into the inequality that makes a, strictly preferred to every deviation
a # ay.

Operationally, the principal computes contracts using @(s, a), while the
true continuation term may differ by up to e in either direction. The most
conservative implication is that the difference in continuation values between
ap and a deviation a may be misspecified by as much as 2e,. Similarly, the
mapping from actions to outcome distributions is only known through the
ambiguity sets Us ,. We therefore define robust IC for implementing a, at
state s as the collection of inequalities

inf Eoop [b(o)]—k@(s,ap)—ss > sup Eonyg [b(o)]+@(s,a)+5s, Va # ap.
peus’ap qeus,a
(1)
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The left-hand side evaluates the agent’s utility from the intended action un-
der the least favorable outcome distribution in U o, and the least favorable
continuation-value realization within the €5 envelope. The right-hand side
evaluates the utility of deviations under the most favorable outcome distri-
bution in Us, and the most favorable continuation-value realization. If
holds, then a, is a best response for an oracle agent for every true model
O € U, despite the principal computing the contract using @

Two remarks clarify why we write robust IC in this particular form. First,
the robustness is deliberately one-sided in a way that mirrors economic risk:
we only care about deviations becoming attractive in deployment, so we take
the worst case that reduces the appeal of a, and increases the appeal of a.
Second, the bound €, enters as a margin requirement. Rearranging yields

inf E,[b(o)] — sup Eq[b(o)] > (@(s,a) — @(s,ap)) + 2. (2)

PEUs,ap q€Us,a

Thus, any contract that would merely offset the principal’s estimated continuation-
value difference must be strengthened by an extra buffer of size 2¢,. This

is the precise sense in which continuation misspecification is “paid for” by
higher-powered incentives.

4.2 Robust separability: when limited liability can work

Robust IC is meaningful only if there exists some outcome-contingent con-
tract that can discriminate between a, and deviations. Under limited lia-
bility b > 0, the principal cannot punish the agent for “bad” outcomes; it
can only create incentives by rewarding outcomes that are (robustly) more
likely under the desired action. This motivates a statewise notion of outcome
informativeness that is robust to ambiguity.

For a # a,, define the robust separability between a, and a at state s as

d(s,ap,a) = max{ inf 0) — su 0}. 3
(s0p.0) = mas{ it plo) = s alo) 3)

The expression inside braces is the worst-case advantage, at outcome o, of
the intended action relative to the deviation. Maximizing over o selects the
most diagnostic outcome in the worst case. When d(s,a,,a) > 0, there
exists at least one outcome whose probability under a, is uniformly larger
than under a, even after allowing nature to pick adversarial distributions
within each ambiguity set. This is precisely what limited liability needs: if
such an outcome exists, then paying on it raises the expected payment from
choosing a,, more than it raises the expected payment from choosing a.
The converse is also instructive. If J(s,ap,a) < 0, then for every out-
come o the deviation can be made at least as likely as the intended action

under some admissible models. In that case, no nonnegative contract can
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guarantee that the expected payment advantage of a, over a is strictly pos-
itive uniformly over Uf; robust implementation may fail unless the principal
(i) enlarges the observable outcome space O with more informative signals,
(ii) tightens the ambiguity sets through additional data or instrumentation,
or (iii) relaxes limited liability (e.g., by allowing deposits or penalties). Our
results therefore make explicit a practical limitation: robustness is not “free,”
and in poorly identifiable environments it may be infeasible without redesign-
ing measurement.

4.3 A per-state “nudge” that guarantees robust compliance

The separability parameter d leads to a simple constructive implementation
rule that we will use repeatedly in the dynamic analysis: add a small extra
payment concentrated on a single diagnostic outcome to create the margin
required by . The underlying logic is linear: if we increase b(o) by one
unit for some o, then the worst-case expected payment under a, increases
by at least infpey,,, p(0), while the worst-case expected payment under a
deviation a increases by at most supgey, , q(0). The gap therefore increases
by at least their difference, and d captures the best such difference obtainable
from any outcome.
Formally, fix s and a,. Let

0*(s,a,) € ar max{ inf p(o) — su 0}7
(s,ap) € arg may peusyapp( ) Sup q(0)
where the dependence on the competing a is suppressed for readability; in the
multi-action case we will select an outcome that is simultaneously diagnostic
against the “hardest” deviation. Define the worst-case separability against
any deviation as

dimin (8, ap) = min d(s, ap, a).
P

a#a
When Jmin(s,ap) > 0, consider the single-outcome nudge contract
ns, 0= 0%(s,ay), . M
bs(o) =4 @) Gith  ng=—
0, otherwise, dmin (s, ap)

Then for any deviation a # a,

inf E,[bs] — sup Eglbs] > nsd(s,ap,a) > nsdmin(s,ap) = M.
PEUs,ap q€Us 0
Thus, choosing M, to match the required slack in guarantees robust IC.
The most important special case for our dynamic setting is when the principal
has already computed a nominal contract (or recommended action) using @,
and wishes only to immunize the recommendation against misspecification.
In that case, we set the nudge margin to

Ms = 2587
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so that the incremental contract adds precisely the buffer needed to prevent
a best-response flip due to continuation-value error. Substituting into (4]
yields the statewise robust nudge magnitude

2e,

szin(sv ap) '

ng = (5)

This construction is deliberately transparent: it isolates a single diag-
nostic outcome and pays only when that outcome occurs. In applied terms,
the nudge is a “bonus” tied to an outcome signal that is most indicative (in
a worst-case sense) of compliance with the intended action. The required
size of the bonus scales linearly in the robustness budget €5 and inversely in
the informativeness dp,i,. Put differently, continuation uncertainty makes us
demand a larger strict preference gap, and weak outcome information forces
us to pay more to create that gap under limited liability.

4.4 Payment cost and the role of “minimal implementation”

Robust IC only constrains differences in expected payments across actions;
the principal would like to satisfy these constraints at minimal cost. A
natural benchmark is the per-state robust minimal-implementation problem:
minimize the worst-case expected payment under the implemented action
subject to robust IC and limited liability,

rgl>i(r)1 sup Ep[b(o)] s.t. inf E,[b(o)] — sup E4[b(o)] > M, Va # ay.
= peus,ap peuS’a‘P qeus,a

The single-outcome nudge is not merely feasible; it yields an interpretable
upper bound on payment cost. Indeed, under bs in ,

M
sup Ep[bs(o)] =MNg- SUp p(o*(s,ap)) <ng= 773
pEUs,ay PEUs,a dmin(s, ap)

Thus, to buy an additional robust IC margin of size M, the principal
never needs to increase the worst-case expected payment by more than
M /dmin (8, ap). This is the bound that will appear in the deployment wel-
fare guarantees: robustness can be “priced” in closed form by the ratio of
the continuation-value misspecification scale to the robust informativeness
of outcomes.

Finally, it is worth noting what this per-state construction does not do.
It does not claim that paying on a single outcome is always globally opti-
mal once one accounts for the principal’s intrinsic payoff rp(s, 0), risk con-
siderations, or regulatory constraints on contract variability. Rather, our
point is that in the limited-liability, risk-neutral benchmark, robust IC has
a particularly simple sufficient statistic: if dpin is bounded away from zero,
then a small additional payment mass concentrated on a diagnostic outcome
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stabilizes incentives. When dpin is close to zero, the same logic reveals a
limitation: any robust contract must become expensive, reflecting the fun-
damental difficulty of incentivizing hidden actions with weakly informative
outcome signals.

4.5 Closed-form contracts in tractable cases

The per-state nudge rule above is intentionally modular: all of the economics
is pushed into the single statistic d(s, ap, a), while the payment level is then
a simple ratio 2¢5/dmin (s, ap). To make this operational, we now show how
d and the associated “single-diagnostic-outcome” payments can be computed
in closed form for common ambiguity sets. The goal is pragmatic as much as
theoretical: in many applications the principal will want an explicit mapping
from estimated outcome frequencies and confidence radii to a contract that

is guaranteed to be incentive-compatible in deployment.

4.5.1 Total-variation balls: explicit separability and a one-outcome
bonus

Suppose the ambiguity set at (s, a) is a total-variation (TV) ball around the
nominal model O(s,a),

Usa = {p € A(0) : TV (p,0(s,a)) < ?7},

with radius n € [0, 1] interpreted as a distributional confidence parameter.
TV balls are attractive because they provide a transparent worst-case cal-
culus: nature can move probability mass by at most 7 in the direction that
hurts the principal’s IC constraints.

Fix an outcome o € O. Over a TV ball, the extremal value of p(o)
is obtained by shifting as much mass as possible away from (or into) that
outcome. Concretely,

nt (o) =max{O(s,0)(0) =00} sup plo) = min{O(s, a)(0) +n,1}
| (6)

Substituting @ into the definition of robust separability (3) yields the closed
form

(s, ap,0) = max (O(s,a,)(0) ~ O(s,a)(0) ~2n) . (7)

where (z)4y = max{z,0}. Economically, (|7]) says that ambiguity acts like
a uniform shrinkage of diagnosticity: even if the nominal model suggests
that outcome o is k percentage points more likely under a, than under a,
worst-case model error can erase up to 29 of that gap.

Once diin (8, ap) = mingq, d(s, ap, a) is computed, the robust nudge con-
tract that immunizes the principal against continuation-value error is imme-
diate: pick any outcome 0*(s,a,) attaining the maximum in against the
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hardest deviation (or, equivalently, attaining dp;, after taking the minimum
over deviations), and set

2¢e,
bs(0) = dmin(saap)’
0, otherwise.

0= 0"(s, ap),

This “bonus on a diagnostic event” interpretation is often exactly how prac-
titioners describe robust incentives: reward a verifiable signal that is hard
to fake, and scale the reward by how informative that signal is relative to
plausible model misspecification.

Two actions, two outcomes. The simplest case highlights why the one-
outcome bonus is not merely a convenient sufficient condition, but can coin-
cide with the optimal limited-liability implementation. Let A = {a;,a} and
O = {o01,02}. A contract is a pair b = (b1, be) with b; = b(o;) > 0. Under
TV ambiguity, robust IC reduces to a single inequality comparing worst-case
expected payments under the two actions. Using @,

inf E,[b]— sup Ey[b] = min {p(01)bi+p(02)bs}— max {g(01)b1+q(02)b2}.
peus,ap qeus,a peus,ap qEZ/ls,a

Because there are only two outcomes, any increase in the probability of oq
mechanically decreases the probability of 03. As a result, the “best” direction
to push incentives is to put all mass on whichever outcome has the larger
robust probability advantage under a,. More explicitly, define the robust
probability gaps

A= inf p(o;) — sup q(o;), i€ {l,2}.
peus,ap qeus,a

At most one of A, Ay can be positive in a two-outcome model, and d(s, ap,a) =
max{A1,As}. If d > 0, then to achieve a margin requirement M, it is op-
timal (in the robust minimal-implementation sense) to choose b supported
on the outcome i* € argmax; A;, with b= = M,/d and the other compo-
nent equal to zero. Any attempt to “spread” payments across both outcomes
weakens the worst-case payment gap per unit expected cost, because nature
can exploit the ambiguity to concentrate probability on the more expen-
sive outcome under the implemented action and on the more remunerative
outcome under the deviation.

This two-by-two case is useful not because real environments have only
two outcomes, but because it clarifies the economic role of d: limited liability
forces incentives to be built on relative likelihood of observable events, and
robustness forces us to focus on the event whose likelihood advantage survives
adversarial perturbations.
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Finite |O| and multiple deviations. When |O| > 2 and there are many
deviations @ # a,, the one-outcome contract remains a sharp and inter-
pretable implementation tool, but two practical subtleties arise.

First, the “most diagnostic” outcome can depend on which deviation we
are guarding against. In principle, one could design a contract that pays
on several outcomes to separate a, from different deviations along different
dimensions. Our approach instead selects a single outcome that is diagnostic
against the hardest deviation, capturing the idea that robust IC is only
as strong as the weakest link. Under TV balls, this is straightforward to
compute: for each deviation a # a,, compute the vector of nominal gaps
O(s,a,)(0) — O(s,a)(0) across outcomes, subtract 27, truncate at zero, and
take the maximum over outcomes to obtain d(s, ap, a). The robust bottleneck
deviation is then the minimizer over a # a,.

Second, while the single-outcome bonus yields an upper bound on the
robust minimal-implementation cost, it need not be the unique optimizer in
richer outcome spaces: paying on multiple outcomes can sometimes reduce
the worst-case expected payment under a, by better matching how ambi-
guity moves probability mass across outcomes. In such cases, the relevant
computation is a small linear program (because TV constraints are lineariz-
able), solved per state and intended action. From an applied perspective,
this is still quite tractable: it is ofHline, separable across states, and typically
low-dimensional because |O| is the number of reportable performance bins,
audit flags, or verifiable events.

4.5.2 f-divergence balls: convex duality and when we need nu-
merics

TV balls are deliberately conservative and yield clean formulas, but they
are not always the best description of statistical uncertainty. A common
alternative is an f-divergence ball,

Usa = {p € D) : DAp|| O(s.,0)) <},

where Dy (p||p) = >, 5(0) f(p(0)/p(0)) for a convex function f with f(1) =
0. Examples include KL divergence (f(u) = ulogu) and x? divergence
(f(u) = &(u—1)?). These ambiguity sets often arise naturally from likelihood-
based confidence regions and yield less “corner” worst-case distributions than
TV balls.

The key object we need, both for d and for robust IC, is the worst-
case expectation of a linear functional, p — E,[b] = > p(0)b(0), over an
f-divergence ball. This is a convex optimization problem, and convex du-
ality provides a convenient representation. In particular, using the Fenchel
conjugate f*(v) = sup,>o{uv — f(u)}, one obtains the robust expectation
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bound

sup  Eplb] = inf {An AP OFN ) } . ®

p:Ds(pllp)<n 0c®

~

where p = O(s,a). An analogous expression holds for the infimum (either
by replacing b with —b and negating, or by writing the corresponding dual
directly). Representation turns the inner worst-case problem into a low-
dimensional convex minimization over (\,v), even when |O| is large.

Two implications are worth emphasizing.

Single-diagnostic-outcome structure often survives. If we restrict
attention to one-outcome contracts b(o) = n1l{o = 0*}, then simplifies
substantially because b takes only two values: n on o* and 0 elsewhere.
In that case, the worst-case expectation depends on o* only through p(o*),
and computing infpey, , p(0*) or sup,ey, , p(0*) reduces to a one-dimensional
“binary” divergence problem. For KL balls, for example, the extremal distri-
bution is an exponential tilt of p; for x? balls, the extremal distribution has
a quadratic form and can be found by solving a scalar equation enforcing
the divergence constraint. Practically, this means that even beyond TV, the
principal can often implement robust nudges by (i) scanning outcomes to
find a diagnostic o* and (ii) choosing ns via a small scalar computation.

General contracts require convex programs, but they remain sep-
arable and tractable. If the principal wishes to go beyond one-outcome
bonuses—for instance, to satisfy additional constraints (budget caps, mono-
tonicity in outcomes, or fairness restrictions), or to exploit richer outcome
informativeness across deviations—then the robust minimal-implementation
problem becomes a convex program with f-divergence constraints. Dual
form implies that each robust expectation term can be evaluated effi-
ciently, and the overall per-state design can be handled with standard solvers.
The limitation is interpretability rather than feasibility: the resulting con-
tract may put positive weight on many outcomes, making it less transparent
as a policy instrument.

We view this as an economically meaningful tradeoff. The “single diag-
nostic outcome” contract is attractive because it is easy to communicate and
audit: it resembles a targeted bonus or a contingent subsidy keyed to an
event that is ex ante agreed upon as evidence of compliance. More complex
contracts can reduce worst-case payment costs, but at the cost of complex-
ity, potential regulatory scrutiny, and the possibility that small modeling
changes materially alter the contract. In settings where contracts must be
stable and explainable, the closed-form nudge is a reasonable robustness
primitive; where fine-tuned incentives are feasible, the convex program pro-
vides a systematic way to compute them.
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In sum, tractable ambiguity sets let us translate robustness assumptions
directly into explicit contracts. Under TV balls, separability and nudges
are available in closed form via . Under f-divergence balls, convex du-
ality provides a low-dimensional representation that supports efficient
computation, with closed forms or scalar root-finding in several important
special cases. Where neither applies—for example, with nonstandard am-
biguity sets, coupled constraints across states, or additional institutional
restrictions—the per-state design remains a numerical robust optimization
problem, but one that is typically small and solved offline, leaving the se-
quential analysis to focus on how these local nudges accumulate in welfare
over time.

4.6 Welfare guarantees in sequential settings

Having reduced robust implementation at a state to a modular “nudge” rule,
we now ask what this buys us in a genuinely sequential environment. The
central point is that per-state robust incentive compatibility does more than
prevent myopic deviations: it allows us to treat deployment as if the principal
could directly choose the agent’s action, up to two explicit and economically
interpretable loss terms. One term reflects how well the principal learned
(or approximated) the optimal recommendation policy; the other reflects
the unavoidable cost of robustness—the extra payments needed to keep the
agent on-path when both outcome models and agent continuation values may
be misspecified.

Setup and benchmark. Fix a finite horizon T and discount factor v €
(0,1]. In training, the principal computes a recommended action ap(s) at
each state and attaches a contract by € RLOOI. In validation (deployment),
an oracle agent best responds under the true model O, while the principal
is committed to the trained policy. We benchmark performance against the
principal’s true subgame-perfect equilibrium (SPE) value Vlg‘PE(so) under
the true environment.

Two sources of misspecification matter. First, the principal may not know

the agent’s truncated continuation values: we assume a uniform bound
sup |Qf4(57a | P) - Q(S,CL)’ < €5,
acA

which, from an economic perspective, captures errors in forecasting the
agent’s outside opportunities, future subsidies, or downstream costs. Sec-
ond, even if the principal knew the agent perfectly, it may still recommend
the wrong action because it learned the environment imperfectly or used ap-
proximate dynamic programming; we summarize this by a per-state principal
learning error J;.
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Backward-induction logic: robust IC pins down the action path.
The key technical step is a backward-induction argument that propagates
action implementation forward through time. Suppose that at every state s
that can be encountered under the principal’s policy, the posted contract by
satisfies robust incentive compatibility with a strict buffer,

inf  Eowp[bs(0)] — sup Eowg[bs(0)] > 2¢4, Va # ap(s).  (9)
PEUs ap(s) q€Us

Because the agent’s continuation values may be misspecified by at most e,
in either direction, the 2e, margin ensures that even the most adversarial
realization of (O, Q%) consistent with the bounds cannot flip the agent’s best
response away from a,(s). Put differently, @D makes the intended action
locally dominant among deviations in the worst case. Once this holds at
every reached state, we can treat the deployed play path as if the principal
had direct control over actions: the agent takes a; = ap(s¢) for all ¢ along
the realized trajectory.

This observation is what makes a finite-horizon welfare bound essen-
tially a dynamic-programming exercise. After robust IC removes strategic
slippage, the only remaining differences between deployment and the SPE
benchmark come from (i) choosing suboptimal recommended actions and (ii)
paying extra subsidies to enforce robustness.

A finite-horizon guarantee and a clean regret decomposition. Let
Vgeploy(so) denote the principal’s realized expected value in validation under
the true model O € U when it posts the trained contracts and the agent best
responds. Under the robust IC condition @D, the deployed action at s;
coincides with ay(s;), hence the only welfare loss relative to the SPE can be
charged to two state-by-state terms.

First, we charge learning/approzimation error. Conceptually, s mea-
sures how far the principal’s training procedure is from choosing an SPE-
optimal recommendation at state s (for instance, because its estimated con-
tractual @-function is off by at most ds and it chooses actions greedily with
respect to that estimate). Standard approximate dynamic programming ar-
guments yield a local comparison: the continuation value from taking a,(s)
is within 24, of the continuation value from taking the truly optimal SPE ac-
tion at s (the factor 2 is the familiar price of using an approximate argmax).

Second, we charge the robustness cost induced by limited liability and
misspecification. Let

25
X —

Ng := mMmax ——————,
atap(s) d(s, ap(s), a)

where d is the robust separability statistic. By the constructive per-state
design, there exists a contract that attains @D while increasing the worst-
case expected payment under the intended action by at most ng above the
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nominal minimal-implementation payment. Economically, ns is the (worst-
case) subsidy “overhead” required to stabilize incentives when the principal
may be wrong about the agent and the outcome model may drift within .

Combining these two local comparisons with backward induction yields
the following path-wise bound along the states induced by the deployed
policy:

T-1 T-1
Vlgleploy<80) > VEPE(SO) _9 Z ”)/t 5875 _ Z ,.yt Ng, - (10)
t=0 t=0

Expression is the sequential counterpart of a one-shot robust implemen-
tation guarantee. The inequality is informative precisely because it separates
what is statistical from what is incentive-theoretic. If the principal can drive
ds down through better learning (more data, richer features, better plan-
ning), the first loss term shrinks. If the principal can model the agent more
accurately (smaller ) or work in environments with more informative out-

comes (larger d), the second loss term shrinks.

Proof sketch (finite horizon). The proof is a dynamic-programming
sandwich argument. Fix any time ¢ and state s. Consider the principal’s
deployed one-step payoff plus continuation value when the agent takes ay(s).
Under robust IC, this is exactly the deployed outcome, and the principal’s
expected continuation is well defined under the true kernel O o T. Compare
this value to the principal’s SPE continuation at (¢,s). We decompose the
gap into two pieces:

1. Action selection error: the difference between the SPE action and the
recommended action ap(s), bounded by 20, by the definition of ap-
proximate optimality.

2. Payment overhead: the difference between the payment needed for
nominal implementation and the payment needed for robust imple-
mentation, bounded by ng by construction of the nudge.

Discounting and iterating from ¢ = T — 1 backward to ¢t = 0 yields .
The induction relies on the fact that robust IC is imposed with respect to a
conservative estimate of the agent’s continuation values, so the agent’s best
response at t does not depend on the principal having correctly forecast the
downstream contract sequence.

Extension sketch: infinite horizon with discounting and regularity.
In many applications (compliance, maintenance, platform governance), the
principal-agent interaction is effectively ongoing. Extending (10]) to an in-
finite horizon requires two additional ingredients: (i) discounting, and (ii) a
regularity condition ensuring that per-state errors do not accumulate patho-
logically.
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If v < 1 and we have uniform bounds §, < § and n, < 7 for all states that
can be visited under the deployed policy, then the infinite-horizon analogue
follows immediately from summing a geometric series:

26 + 7
1—~"

VP (s0) 2 VE"E(s0) (11)
This bound is coarse but transparent: it says that robustness and learning
errors translate into a steady-state “tax” on value, scaled by the effective
planning horizon (1 — )7L

When errors are state dependent, the relevant object is the (discounted)
occupancy measure induced by the deployed policy. Writing d5(s) for the
expected discounted number of visits to state s under the deployed policy,
one obtains the refined decomposition

V](Dieploy(SO) > VEPE(SO) -9 Z df/(s) 63 — Z dg(s) Ng,
seS SES

provided robust IC holds wherever d%(s) > 0. Establishing that d% is well be-
haved typically requires a mild stability condition (e.g., geometric ergodicity
under a stationary policy, or simply bounded visitation under discounting).
Economically, this is a “no-explosions” assumption: the policy should not
concentrate all its mass on rare states where the model is unlearnable and
incentives are prohibitively expensive.

Interpretation and limitations. Bound highlights a tradeoff we
view as central for sequential contracting under partial observability. Ro-
bustness is not free: the nudge term ng is the premium the principal pays
to insure against two kinds of uncertainty at once—ambiguity about how
actions map into observable outcomes and ambiguity about how the agent
evaluates future continuation. Yet, precisely because this premium is state-
by-state and separable, it can be engineered and audited locally, while the
sequential welfare impact is obtained by discounting and summing.

At the same time, the guarantee is only as strong as the modeling prim-
itives permit. If J(S,ap,a) is near zero at states that matter, robust IC
becomes expensive and the bound deteriorates, reflecting a real economic
obstruction: outcomes simply do not reveal enough about actions to in-
centivize cheaply under limited liability. Moreover, our argument presumes
that the principal can commit to the contract sequence generated by its pol-
icy; without commitment, the relevant equilibrium notion changes and the
backward-induction implementation step must be revisited.

The next section formalizes the sense in which the robustness cost cap-
tured by e5/d(s,ap,a) is not merely an artifact of our construction, but
an inherent feature of hidden-action sequential environments with limited-
liability contracts.
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4.7 Minimax lower bounds and necessity of separability

Our per-state nudge construction delivers a simple upper bound on the sub-
sidy overhead needed to stabilize incentives under outcome ambiguity and
continuation-value misspecification. A natural question is whether the scal-
ing in that bound is merely an artifact of the construction. In this sec-
tion we show it is not: up to constant factors, the dependence on the ratio
es/d(s,ap,a) is minimaz necessary under limited liability. Economically, d
is not just a convenient statistic for our design; it is an inherent measure
of how much leverage observable outcomes provide for disciplining hidden

actions once we allow for adversarial shifts within .

A one-state reduction. We isolate the economic obstruction in the sim-
plest environment: a single state s (or, equivalently, a fixed period of a
dynamic problem holding the continuation policy fixed), two actions a, (the
intended action) and a (a deviation), and a contract b € RLOO‘ paid after
observing o € O. The agent compares actions by expected payments plus a
continuation-value term. The principal does not know Q%(s,- | p) exactly
and uses @(s, -), with misspecification bounded by e, in either direction.
As in the robust IC condition, to ensure that no combination of outcome
ambiguity O € U and continuation-value misspecification can flip the best
response away from a,, the contract must create a payment advantage that
clears a strict buffer. Abstracting from known differences in @ (which can be
folded into the required margin), we can write the required robust payment
advantage as a margin constraint
inf E,up[b(o)] — sup Eog[bo)] > M, with M =< 2e;. (12)
pEus,ap q€Us 0

We emphasize that the left-hand side is evaluated in the least favorable model
for implementing a,: nature minimizes the expected payment under a, and
maximizes it under a.

The principal, however, bears the subsidy cost under the true O € U.
In a robust (minimax) evaluation of payments, the relevant exposure is the
worst-case expected payment under the intended action,

sup Eoup[b(0)]
PEUs ap

This is the sense in which robustness can be expensive: the same uncertainty
set that forces us to be conservative about incentives can also contain models
in which the subsidized outcome is frequent.

The separability parameter as a bound on implementable margins.
Recall the robust separability statistic

d(s,a,,a) = ma { inf — 8 }
(o) =g, 0= 1 09
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It captures the best worst-case gap in the probability of any single outcome
under a, relative to a. When d is small, even the most diagnostic outcome
can be made nearly equally likely under the deviation once we allow for
ambiguity; when d = 0, there is no outcome that remains robustly more
likely under a, than under a, so limited-liability incentives lose their bite.

The next proposition formalizes the converse: if d is small, then any
robustly incentive-compatible contract must entail a large worst-case subsidy
exposure. The statement is minimax: we exhibit an ambiguity structure
consistent with a given d that forces the lower bound.

Proposition 4.1 (Minimax lower bound: /d is unavoidable). Fiz a state
s and two actions a, and a. Let M > 0 be the required robust margin in
(12). For any d € (0,1], there exist an outcome set O and uncertainty sets
Us a,,Usq such that d(s,ap,a) = d and the following holds: every limited-
liability contract b > 0 satisfying must have

M

sup  Eovplb(o)] 2 = (13)
PEUs ap

In particular, taking M = 25 yields the scaling Q(es/d(s, ap, a)).

Proof sketch and economic interpretation. The construction is delib-
erately stark and highlights the role of limited liability. Take O = {o*,0°}
with two candidate models for the intended action and one for the deviation:

us,ap = {pevph}a us,a = {Q}a

plo*)=d, p'(o*) =1, q(0*) =0, and probabilities on o° fill the remainder.

inf p(o*) =d, sup ¢(0*) =0,
pEUs,ap qGUs,a

and for the other outcome 0° the corresponding difference is nonpositive, so

indeed d(s, ap,a) = d.

Now consider any b > 0. Under this uncertainty structure, the worst case
for incentive provision is p¢ under ap (which makes the “diagnostic” outcome
rare) and ¢ under a (which makes it impossible). Thus the robust margin
becomes

inf E,[b] — sup E,[b] =E

b] —E,[b
pEZ/Is,ap qeus,a pZI: ] q[ ]

= (db(0*) + (1 — d) b(0°)) — b(0")
=d(b(0*) = b(0")) < db(o¥),
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where the inequality uses b(o?) > 0. To satisfy , we therefore must
have b(0*) > M/d. But p" € Uy, puts probability one on o*, implying the
worst-case expected payment under the intended action is at least

sup By > Eyult] = blo") >
PEUs,ap
which is ([13)).

The economics are immediate. Limited liability prevents the principal
from using negative transfers to “undo” the payment in benign models. Once
the contract must be large enough to create a margin when o* is rare under
ap (the p’ case), the principal is exposed to paying that large amount in
any model within U 4, where o* is common (the p"* case). Robustness thus
couples two forces: (i) the need to amplify a small diagnostic probability gap
(captured by d) to overcome continuation-value misspecification (captured
by M =< €5), and (ii) the inability to hedge the resulting large transfer across
models because payments must remain nonnegative.

Why d > 0 is not just sufficient but essentially necessary. Proposi-
tion also clarifies why the strict separability condition d(s,a,,a) > 0 is
qualitatively indispensable. When d = 0, the bound becomes vacuous only
because the correct statement is stronger: for some ambiguity structures, no
finite comtract can satisfy a strictly positive margin M > 0 under limited
liability. Intuitively, if every outcome that could trigger a subsidy under a,
can be made at least as likely under the deviation once we take worst cases
in U, then no nonnegative payment vector can create a robust advantage for
ap.

This conclusion aligns with a familiar identification logic: under hidden
actions, contracting power comes from statistical distinguishability of action-
induced outcome distributions. Our contribution is to show that with am-
biguity and agent misspecification, the relevant notion of distinguishability
is not a likelihood ratio under a known model but the worst-case probabil-
ity gap summarized by d. In this sense, d is a “price of unobservability plus
shift”: unobservability because actions are not directly contractible, and shift
because ambiguity allows outcome distributions to drift in the direction that
erodes incentives.

Relation to common uncertainty sets. The lower bound above is min-
imax and therefore uses an extreme ambiguity structure to make the point
sharply. For more regular sets, such as total-variation or f-divergence balls,
the same comparative statics persist. As the radius of the uncertainty set
grows, the infimum probability under a, can fall and the supremum prob-
ability under a can rise for the same outcome, shrinking d; simultaneously,
the set typically also contains models that make high-payment outcomes
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more frequent, increasing worst-case expected subsidies. Thus even when
does not hold with constant 1 uniformly over all such sets, the quali-
tative implication survives: robustness requires paying in inverse proportion
to the residual diagnostic power that remains after allowing for adversarial
probability shifts.

Implications for sequential contracting. Although we have presented
the argument in a one-state reduction, its force is sequential. At any state
where the principal needs to stabilize incentives against continuation-value
errors of order e, the local problem contains the same tension: if d(s, ap,a) is
small for some plausible deviation a, then the principal must either (i) accept
large worst-case subsidy exposure in that state, or (ii) change the recommen-
dation to an action whose deviations are more separable, or (iii) invest in
measurement /monitoring that enlarges the outcome space and increases sep-
arability. In practice, this reframes “better incentives” as often being “better
observables”: richer signals (audits, sensors, verification, or informative in-
termediate outcomes) increase d and therefore reduce the minimax price of
robustness.

Limitations and what can break the lower bound. Finally, it is im-
portant to be clear about what drives the necessity result. The lower bound
hinges on (a) limited liability (b > 0), which prevents ex post clawbacks, and
(b) robustness with respect to a nontrivial uncertainty set, which can cou-
ple “hard-to-incentivize” models (small gaps) with “expensive” models (high
incidence of subsidized outcomes). If either ingredient is relaxed, the scal-
ing can change. For example, allowing negative transfers (or allowing the
principal to escrow funds and impose penalties) can hedge subsidy exposure
across models; allowing additional instruments such as costly state verifica-
tion can effectively create new outcomes and increase d; and restricting U to
rule out large swings in the frequency of the paid outcome can weaken the
worst-case payment implication. We view these as economically meaningful
design levers rather than technical loopholes: they correspond to changing
the informational and legal constraints of the contracting environment.

The central takeaway is that the ratio £5/d(s,ap,a) is not an artifact
of a particular contract construction. It is a structural measure of how
expensive it is to robustly implement hidden actions when (i) outcome data
are only partially informative about actions and (ii) the principal cannot
perfectly forecast how the agent values the future. The next section builds
on this characterization to discuss computational methods: once we accept
that robustness costs are pinned down by such local statistics, we can design
algorithms that compute robust contracts efficiently and diagnose when (and
where) incentives will be prohibitively expensive.
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4.8 Algorithms: per-state robust programs, plug-in uncer-
tainty, and scalable heuristics

Our theory is deliberately “local” at each visited state s, we stabilize a de-
sired recommendation ay(s) by adding a robust nudge that clears a margin
of order €4 against outcome ambiguity. This locality is not only concep-
tually clean—it is computationally useful. In finite-horizon problems (and,
more generally, in episodic training), contract computation can be decom-
posed into a collection of per-state subproblems that can be solved inde-
pendently once we have (i) a recommended action a,(s) from the principal’s
learning procedure and (ii) state-dependent uncertainty and error summaries
(Us,a)aca and es.

A per-state robust optimization template. Fix a state s and an in-
tended action a,. The principal chooses a limited-liability contract b € RL%'.
To guarantee that a, remains a best response for any O € U and any
continuation-value misspecification consistent with e, it suffices to enforce,
for each a # a,,

inf E,[b] — sup E,b] > Ala),  Ay(a) = Q(s,a) — Q(s, ap) + 2.

peus,ap q€Us o
(14)
When Ag(a) <0, the corresponding constraint is slack and can be dropped,;
economically, the principal already believes (with buffer) that the agent
prefers a,, absent additional subsidies.
Given ((14]), we can formalize a robust minimal-implementation objective
as minimizing worst-case subsidy exposure under the implemented action,

min  sup E,[b] s.t. Va # ay. (15)
b20 peuts,a,,

Problem is a distributionally robust linear program once U, is cho-
sen from standard convex families (total-variation balls, f-divergence balls,
moment sets, or polytopes defined by confidence intervals). In small out-
come spaces, solving directly provides a useful benchmark: it returns
the cheapest robust contract given the chosen uncertainty model. In large
outcome spaces, also clarifies what must be approximated: the computa-
tional burden is concentrated in evaluating the robust expectation operators
sup,ey Ep[b] and inf ey Ep[b].

Computing robust expectations under common U. Two cases recur
in practice.

(i) Total-variation balls. Let U = {p € A(O) : TV(p,p) < n} where
p = O(s,a). For any fixed b, computing sup,,¢;, E,[b] is equivalent to moving
at most 7 mass (in TV units) from low-payment outcomes to high-payment
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outcomes. Operationally, one can compute these quantities by sorting out-
comes by b(o) and greedily reallocating probability mass subject to the ¢;
budget ||p—plj1 < 27n. This yields an O(|O|log |O|) routine per evaluation of
sup (and similarly for inf by moving mass in the opposite direction). When
b is supported on a small set of outcomes (in particular, a single diagnostic
outcome), the computation collapses to constant time.

(ii) f-divergence balls. Let U = {p : D¢ (p||p) < n} for a convex f with f(1) =
0. Then sup,ey Ep[b] admits a standard convex dual representation: it can
be computed as a one-dimensional convex minimization over a multiplier
A > 0 involving the convex conjugate f*. For example, for KL divergence
Dk, one obtains an entropic risk form,

sup E,[b] = inf § \n + Aog (Eowp b(0)/A ’
p:Dkw(pllp)<n P A>0 { ( p[ ]> }

and inf s Ep[b] is computed by applying the same formula to —b (with a sign
flip). The practical advantage is that robust expectations can be evaluated
accurately with a handful of Newton or bisection steps in A, even when |O|
is large, provided we can compute (or estimate) Es[exp(b/\)].

These evaluation routines can be embedded in an outer solver for . In
the TV /polyhedral case, the overall program remains an LP (after standard
epigraph transformations). In the f-divergence case, the program is convex
but not linear; nonetheless, its dimension is still |O| and typically small in
applications where outcomes are coarse categories.

Closed-form robust nudges as a computational shortcut. While
is a natural baseline, our constructive results imply a far simpler imple-
mentation that is often near-optimal and, crucially, scales to very large O.
Namely, compute a diagnostic outcome

0*(s,a,) € argmax< inf p(o) — su 0) ¢,
(s.2,) € arg ey {peus,ap p(o) qeuan( )}

and then place all payment mass on o*. Concretely, let

= .3 _ As(a)

il ) = iy ol = 0 T )
and set bs(0*) = Bs and bs(0) = 0 for o # o*. This “single-diagnostic-
outcome” heuristic replaces solving by computing J(s,ap,a) for each
deviation and taking a maximum. Under TV balls, d has a closed form in
terms of O and 7, so the computation is O(|.A||O]) per state and requires no
numerical optimization.

We emphasize the economic interpretation: the contract is not “complex”

but rather targeted. The algorithm is therefore well aligned with practice: it
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suggests that robust incentives can often be implemented by paying on one
verifiable event (an audit trigger, a diagnostic sensor pattern, a milestone)
rather than by attempting to price every possible outcome.

Plug-in construction of uncertainty sets. The per-state computations
above require O(s, a) and Us 4. In many applications, we estimate O(s,a)
from counts in a generative model or from logged trajectories. A simple
plug-in approach is:

O(s,a)(0) = W, N(s,a) = ZN(S,G,O),

with an uncertainty radius 7, chosen from finite-sample concentration. For
TV balls, a conservative but transparent choice is

_ [log(2|0]/a)
Lo 2N (s,a) ’

which ensures TV(O(s,a),O(s,a)) < 154 with high probability (up to con-
stants) under i.i.d. sampling. In settings with heterogeneous outcome prob-
abilities, empirical Bernstein radii can materially tighten 7, ,, reducing sub-
sidy costs by shrinking U precisely where the model is well measured.

For f-divergence balls, one may instead calibrate 7 4 via likelihood-ratio
confidence regions; for KL, this corresponds to a classical multinomial con-
fidence set. The practical message is the same across constructions: the
radius 1s a policy lever. Larger radii improve robustness but raise the re-
quired nudge; smaller radii economize on payments but risk incentive failure
under shift.

Estimating and operationalizing ¢; and continuation-value uncer-
tainty. The robustness margin in scales with &4, the principal’s bound
on continuation-value misspecification for the agent. In applications, we
rarely observe % directly, so €5 must itself be estimated or upper bounded.
Two pragmatic approaches are common.

First, if @ is obtained from a supervised or fitted value procedure (e.g.,
regression on Monte Carlo rollouts), we can form confidence bands using
standard generalization bounds or, more practically, bootstrap /ensemble dis-
persion. This yields a state-dependent e, that is larger in regions with limited
data support.

Second, when we cannot credibly quantify 5 pointwise, we can work with
a small number of bins or state abstractions C(s) and use a conservative
groupwise bound e¢. Algorithmically, this amounts to computing nudges
using e¢(s); economically, it is a commitment to worst-case robustness within
an operationally meaningful class (e.g., “early-stage projects” versus “late-
stage projects”).
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Large outcome spaces: learning diagnostic events. When |0 is very
large or outcomes are high-dimensional (images, text, rich sensor traces),
contracts that specify a payment for each outcome are infeasible. Our frame-
work suggests an alternative: learn a diagnostic event g(o) € {0,1} and
contract only on g(o) = 1. Doing so induces a binary outcome space with
probabilities

Pia(g=1) Zo (s,a)(0)g(0),  Pualg=1)=>_0(s,a)(0) g(o),

and therefore a one-dimensional separability statistic

dg(s,ap,a) = inf Py(g=1)— sup Py(g=1).
peu‘s »ap qeusa

Computationally, choosing g becomes a classification problem: we seek a
function of the observed outcome that best distinguishes data generated
under a, from data generated under a, subject to robustness penalties. In
practice, we can train gy (e.g., logistic regression on handcrafted features, or
a neural classifier) to maximize an empirical proxy for mingqa, dg, (s, ap, a)
while controlling overfitting through held-out validation. Once g is fixed, we
revert to the simple single-event contract: pay Bs when g(o) = 1, where By
is chosen using the estimated (and robustified) gap d,.

This heuristic has an appealing institutional interpretation: rather than
contracting on raw high-dimensional data, the principal designs an auditable
signal (a rule for when the data counts as “success”) and then uses a simple
transfer on that signal.

Integration with deep RL and policy optimization. In large state
spaces, the principal typically learns a,(s) via approximate dynamic pro-
gramming or deep RL. The robust nudge can be integrated into this pipeline
in two complementary ways.

First, in a plug-in mode, we learn a nominal recommended-action policy
using standard RL on the principal’s intrinsic reward, and only at deploy-
ment compute the per-state nudge using current (O,Z/{ , @,z—:). This isolates
robustness in the contract layer and is attractive when we cannot easily
differentiate through the nudge computation.

Second, in a robustness-aware mode, we incorporate an estimate of the
subsidy overhead into the principal’s training objective. A simple surrogate
is to penalize actions with low separability by subtracting an estimated cost
term maxgq, 265/d(s, ap,a) (or its smoothed version) from the principal’s
per-step reward. This encourages the learned policy to avoid regions of the
state space where incentives are intrinsically expensive, thereby converting
a post hoc robustness fix into an endogenous feature of the recommended
action rule.
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Implementation heuristics and diagnostics. Two additional heuris-
tics matter in practice. First, we often impose a hard cap b(o) < B or a
per-episode budget; when the computed B exceeds this cap, a reasonable
fallback is to change the recommendation to an action with higher d (if avail-
able), or to trigger a monitoring intervention that effectively enriches O and
increases separability. Second, we advocate reporting dumin (s, a,) as an online
diagnostic. From an operational perspective, dpmin is a leading indicator of
when contracting is likely to be fragile: small dp,;, flags states where either
more data (to shrink /), a different recommendation, or richer observables
are required.

Taken together, these algorithmic components translate the theoretical
objects in our bounds into a practical workflow: estimate (O,U ) from data,
learn a recommendation policy, compute (or approximate) per-state robust
nudges using separability statistics, and use separability as a diagnostic to
understand when robustness will be inexpensive versus prohibitive. The
next section evaluates this workflow empirically in controlled environments
where we can adversarially shift outcomes and directly observe the resulting
budget—welfare tradeoffs.

4.9 Experiments: adversarial shift, non-stationary agents,
and budget—welfare tradeoffs

We use controlled experiments to stress-test the algorithmic workflow from
Section under exactly the failure modes that motivate our robust IC
constraints: (i) distribution shift in outcome generation relative to the prin-
cipal’s nominal model O, and (ii) misspecification and drift in the agent’s
continuation values relative to @ The experiments are not intended as re-
alistic calibration; rather, they provide an “engineering sanity check” of the
comparative statics and decompositions implied by our bounds. In partic-
ular, we ask whether the per-state robust nudge behaves as predicted: it
should (a) prevent incentive reversals under adversarially chosen O € U,
(b) incur additional payments that scale as £,/d, and (c) expose states with
small separability as the operational bottleneck.

Protocol: two-phase training/validation with adversarial shift. Across
all environments we adopt a two-phase protocol aligned with our theoretical
setup. In a training phase, the principal learns (or is given) a recommended-
action policy a,(s) and constructs nominal estimates (O,@) from rollouts
under a reference outcome model. In a validation phase, we freeze the prin-
cipal’s policy and contracts, but allow Nature to choose a true outcome
kernel O within the declared uncertainty sets U, ,. The agent best responds
as in the equilibrium condition (Agent BR), using the true O and its true
continuation values. This validation design is deliberately asymmetric: the
principal is “committed” to its estimates and uncertainty model, while the
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environment and the agent are treated as adversarial (within the declared
robustness envelope). Economically, this corresponds to deployment in a
new regime (market conditions, platform composition, measurement drift)
where the principal cannot re-fit models on the fly, and must rely on ex ante
robustness.

Within validation, we consider two shift models. First, an oblivious ad-
versary chooses a fixed O € U before the episode begins. Second, an adaptive
adversary selects, at each visited (s,a), an extremal distribution in U, to
minimize the principal’s realized payoff subject to respecting the uncertainty
descriptionﬂ In both cases, we report (i) principal value, (ii) realized pay-
ments, and (iii) a direct incentive diagnostic: the fraction of visited states in
which the agent deviates from the principal’s intended recommendation.

Contracts compared: nominal vs robust nudging. At each state, we
compare three contract layers built on the same underlying recommendation
ap(s). (1) Nominal minimal implementation: solve the non-robust counter-
part of with O and g5 = 0, i.e., implement a, under the estimated
model. (2) Robust nudge: enforce robust IC with margin 2¢, using the per-
state construction from Section (either by directly solving or via
the single-diagnostic-outcome heuristic when applicable). (3) No contract:
set b = 0, to quantify the extent to which incentives are needed at all. To
isolate the role of ambiguity, we hold fixed the recommended actions and
vary the uncertainty radius (e.g., n for TV balls) and the misspecification
envelope (the &5 schedule). This produces budget—welfare curves directly
interpretable through our theoretical comparative statics.

4.9.1 Adversarially shifted tree MDPs

Environment design: where robustness should matter. The first
family is a finite-horizon “tree MDP” designed to make incentive failures
easy to observe and easy to attribute. Starting from sg, each period ¢ the
agent chooses an action a; € {0,1} and an outcome o; € {0,1} is realized;
the next state is the history (og,...,0:), so the episode induces a depth-T'
outcome tree. The principal receives a terminal reward depending on the
leaf (e.g., a high reward on a sparse set of “good” leaves), and the agent has
an intrinsic cost for the principal-preferred action. Outcome distributions
O(s,a) are Bernoulli with state- and action-dependent biases, so that O can
be estimated from counts, and TV uncertainty balls provide a transparent
robustness model:

Uso = {p € A{0,1}) : TV(p, O(s,a)) < s}

2The adaptive adversary is stronger than our equilibrium model if interpreted literally;
we use it as a worst-case diagnostic of how “tight” the robustness layer is.

36



This construction deliberately creates two types of states: (i) high-separability
states where the two actions induce substantially different outcome probabil-
ities, and (ii) low-separability states where actions are observationally similar
and incentives are intrinsically expensive.

Shift construction and what it targets. In validation, Nature perturbs
outcome probabilities within U , to reduce the diagnostic power of the con-
tract. For single-outcome support contracts (paying only when o = 1, say),
the worst case pushes down Pr(o =1 | s,a,) and pushes up Pr(o =1 | s,a)
for deviations. This directly attacks the separability term

d(s,a,,a) = max inf p(o) — sup q(o) |,

(s.07,0) = mave (u (©) = 5w q(o)

and therefore targets the exact leverage through which transfers create in-
centive differences.

Main findings: robust nudging prevents incentive collapse under
shift. The nominal minimal-implementation contracts perform well when
the true kernel equals O, but degrade sharply as we increase 7 or allow the
adaptive adversary. In particular, deviation rates concentrate in the low-
separability region of the tree, where small perturbations can flip the ranking
of actions in expected transfer. By contrast, robust nudging yields near-zero
deviation rates throughout the episode across the tested uncertainty radii,
consistent with robust IC being enforced by construction.

Welfare decomposes in the predicted way. Relative to the no-contract
baseline, both nominal and robust contracts raise value by inducing the de-
sired actions at many states. Relative to the nominal contracts, robust nudg-
ing sacrifices value primarily through higher payments, rather than through
changes in state Visitationﬂ Empirically, the additional payment mass con-
centrates on a small fraction of states with small Jmin(s,ap), providing a
sharp diagnostic: robustness is not uniformly expensive, but rather “spikes”
at informational bottlenecks.

Budget—welfare curves and the role of separability. Varying » traces
out a smooth budget-welfare frontier. As predicted, increasing 7 reduces d
and therefore increases the required nudge magnitude approximately as 1/d.
Plotting realized expected payments against realized principal value yields
a curve with a distinct elbow: initially, small robustness investments buy
large improvements in incentive stability (and hence welfare under shift),

3In a finite-horizon tree, changes in early actions can change the distribution over later
states. The fact that robust nudging stabilizes actions makes later-state distributions
closer to training, which is exactly the point of the approach.
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but beyond a point the marginal cost rises quickly because the remaining
problematic states have very small dmin. This is the operational content of
our comparative statics: robustness is cheap when outcomes are informative,
and expensive precisely when actions are hard to distinguish.

4.9.2 Coin Game with controlled perturbations and non-stationary
agents

Why a “Coin Game”? The second family strips away state complex-
ity to focus on the interaction between outcome ambiguity and agent non-
stationarity. At each period the agent chooses a € {H,T} and a coin out-
come o € {0, 1} is realized with probability O(a)(1). The principal prefers
H (because o = 1 is more valuable downstream, or because transitions are
better), but the agent’s intrinsic payoff drifts over time: we model this as
a time-varying cost ¢; for choosing H, unknown to the principal at training
time. This drift captures a realistic deployment concern: even if the prin-
cipal’s model of outcomes is stable, the agent’s private continuation values
can change with market conditions, learning, or fatigue.

Controlling ¢ via drift. We connect the drift to the misspecification en-
velope by calibrating ¢; so that the principal’s estimate @ is accurate up to
€, while the agent’s true continuation values reflect the current ¢;. Con-
cretely, in training we fit @ under a reference cost process, and in validation
we perturb costs within a band that implies a known &; bound. This makes
the robust IC margin 2e; economically meaningful: it is exactly the buffer
needed to prevent the agent from switching actions when its private incen-
tives shift moderately relative to what the principal anticipated.

Outcome perturbations and ambiguity sets. Simultaneously, we per-
turb the coin bias within uncertainty sets around O. We consider both TV
balls (transparent and worst-case sharp) and KL balls (smoother, capturing
likelihood-based confidence regions). In all cases, the qualitative pattern is
the same: as ambiguity increases, nominal contracts become fragile because
they price the wrong diagnostic event, while robust nudges remain stable be-
cause they explicitly purchase a gap that survives worst-case perturbations.

Nominal contracts fail under joint drift; robust nudges trade money
for stability. When either (i) outcome shift is present but the agent is sta-
tionary, or (ii) the agent drifts but outcomes are known, nominal contracts
can often limp along. The failure mode is the interaction of the two: drift re-
duces the intrinsic advantage of a,, while outcome shift reduces the transfer
advantage of the contract, and the combination flips best responses. Robust
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nudging addresses exactly this interaction by requiring

inf E,[b] — sup Eq[b] > 2y,
peuﬂp q€EU,

so the contract remains valid even when both terms move against the princi-
pal. Empirically, the robust policy exhibits a clean substitution pattern: as
drift (and hence &) grows, it increases payments linearly; as outcome am-
biguity grows (shrinking d), it increases payments superlinearly via the 1/d
channel. This is the exact tradeoff highlighted by the welfare bound.

4.9.3 Separability diagnostics as an operational tool

Predicting fragility ex ante. Across both environments, we log Jmin(S, ap)
along the realized trajectory and compare it to (i) whether the nominal con-
tract experiences a deviation, and (ii) the magnitude of the robust nudge
payment Bs. Two patterns are consistent and practically useful. First, nom-
inal deviations occur almost exclusively when dpmin is small, even when @
is accurate on average. Second, By is well explained by the simple proxy
2¢5/dmin(s, ap), validating the interpretation of separability as “incentive
leverage.”

Implications for system design. These diagnostics suggest a concrete
workflow for practitioners: before deployment, compute (or estimate) dpin
under the uncertainty model implied by available data; if dpyi, is small in
frequently visited regions, then robust contracting will be expensive or in-
feasible under limited liability. In such cases, the right intervention is often
not “more clever contracting” but better observables: richer measurement,
audits, or redesigned outcome categories that increase separability. This is
where the economics connects to policy: platforms and regulators that man-
date standardized reporting, auditing protocols, or verifiable milestones can

expand the feasible set of low-liability incentive schemes by increasing d.

Limitations of the experimental evidence. Our experiments are in-
tentionally stylized. The adversarial shift is worst-case within U, whereas
many applications face structured (and sometimes benign) drift. We also
treat the agent as an oracle best responder in validation, which is conserva-
tive when agents are boundedly rational, but may be optimistic when agents
strategically manipulate observables beyond our modeled outcome space. Fi-
nally, we focus on per-state robustness rather than end-to-end learning with
contract-aware exploration. These choices reflect the purpose of this section:
to isolate the mechanism predicted by the theory. The next section discusses
how the framework extends when these simplifying assumptions are relaxed,
and how robustness interacts with multi-agent settings, partial observability,
and budget constraints.
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5 Discussion and extensions

Our framework is intentionally modular: a learning layer produces nominal
objects (O, @) together with uncertainty envelopes (U, €), and a contracting
layer transforms these objects into per-state limited-liability transfers that
are stable to the corresponding misspecifications. This separation clarifies
what robustness is buying. The contract does not “fix” a bad recommenda-
tion a,, (that loss is tracked by ds), but it can prevent a second, operationally
distinct failure mode: incentive reversals when the world at deployment dif-
fers from the world in which the contract was computed. In this section
we discuss extensions that preserve this modularity while relaxing modeling
choices that are restrictive in applications.

5.1 Multi-agent robustness: dominant-strategy IC versus learning-
stable IC

Many platform and regulatory settings involve multiple strategic agents—
e.g., multiple suppliers on a marketplace, multiple departments within a
firm, or a committee of auditors—whose actions jointly determine observable
outcomes. A natural extension is to index agents by i € {1,...,N}, let
a’ € A; denote agent i’s hidden action, and let a = (a',...,a"). Outcomes
are generated by a kernel O(s,a) € A(O), and the principal posts a vector

of contracts b’(0) > 0. Agent i’s payoff becomes

allowing for action externalities through 7%(s, a) and through O(s, a).

The first conceptual choice is the equilibrium notion. A Bayes—Nash or
Markov—perfect analysis ties agent ’s incentives to beliefs about other agents’
responses; robust guarantees then depend on joint deviations and strategic
feedback loops. If our goal is a conservative guarantee—and if the principal
can commit to contracts that do not condition on unobserved actions—a
more attractive target is a dominant-strategy style condition: for each i, the
recommended action a;(s) should be optimal for agent 7 irrespective of what
other agents do. In a one-shot version, a robust dominant-strategy incentive

constraint takes the form

inf Ep[bi(o)]+@i(s, a;, a ')—el > sup Eq[bi(o)]+@i(s, a',a”")+el

peus,(a%,,a_i) qEU&(ai’aq)

for all a® # aﬁ, and all a=*. This is stringent: it asks the principal to in-
sure agent i’s incentives against the worst-case play of others and worst-case
outcome perturbations. The benefit is interpretability and deployment sta-
bility: if the constraint holds, agent ¢ does not need to forecast other agents’
behavior for the mechanism to work.
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A direct generalization of our separability lever exists, but it is weaker
in multi-agent environments because deviations can be masked by others’
actions. Fixing a recommended profile a,(s), we can define an agent-specific
robust separability

di(s,a’ — a';a™") = max inf  plo)— sup  ¢(o)

and then a conservative worst-case leverage d™"(s) = minai?ﬁa; inf,—: d;(s, a;; —
a’;a™"). When d™"(s) > 0, a single-diagnostic-outcome contract for agent

i again exists, with required payments scaling as & /d™®(s). Economically,
the message is sharper than in the single-agent case: externalities reduce au-
ditability. If other agents can “explain away” the diagnostic event, then no
limited-liability transfer can cheaply isolate a unilateral deviation.

A second issue is collusion and coalitional deviations. If agents can
coordinate off-platform, the relevant constraint is not unilateral dominant-
strategy IC but a coalitional notion: no subset C' C {1,..., N} should gain
by deviating jointly. The separability object then becomes a set compari-
son between outcome distributions under a, and under (a®, a, @), and the
required transfers can scale with the smallest separation across coalitions,
which may be prohibitively small. This limitation is not merely technical:
it highlights when contractual robustness must be complemented by orga-
nizational interventions (anti-collusion monitoring, randomized audits, or
structural separation of duties) that increase effective separability.

Finally, even in the single-agent environment, the agent in our validation
analysis is an “oracle” best responder with correct beliefs about O and its
own continuation values. In many deployments, agents learn the mapping
from actions to outcomes over time and may behave according to evolving
beliefs. This motivates a weaker but behaviorally plausible robustness notion
that sits between ex post IC and full rationality: learning-stable IC. One
formalization is to require that, for every belief p in a set of plausible beliefs
Bs.q (e.g., the same uncertainty set U , or a confidence region derived from
the agent’s data), the recommended action remains optimal:

IE:’orv]o(~|s,a;,)) [bS(O)] + @(37 aP) —€s 2 ]Eowp(-|s,a) [bS(O)] + @(57 a) +es Va 7£ Qp.

This condition can be easier to satisfy than worst-case robust IC if B is
smaller than U, but it can also be harder if the agent’s learning dynam-
ics transiently concentrate on “wrong” models. The broader point is that
robustness is ultimately relative to a declared misspecification class; differ-
ent operational assumptions about what agents know and learn map into
different classes.
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5.2 Partial observability and information design

Our baseline assumes the principal conditions contracts on the current state
s and the realized outcome o. In many settings the state is only partially
observed: a regulator observes a noisy signal of firm quality; a platform ob-
serves engagement metrics but not true user welfare; a manager observes
performance indicators but not project difficulty. Let 3; denote an observa-
tion generated by y; ~ Z(- | s¢), and suppose the principal can condition on
(yt, 0¢) but not on s; directly. Then the principal’s control problem becomes
a POMDP in the belief state pu; € A(S).

The robust contracting layer extends cleanly if we redefine objects on
beliefs. The nominal model becomes O(y, a) induced by O(s,a) and p, un-
certainty sets become belief-dependent (e.g., U, , as the set of mixtures of
U, o weighted by p), and the per-period contract is by (o) or by(o,y) depend-
ing on what is contractible. The key change is that separability can collapse
when the observation blurs distinctions between states in which the diagnos-
tic outcome is informative and states in which it is not. Formally, if contracts
cannot condition on y, separability is computed under the marginal distribu-
tion of o, which is typically less separated than the conditional distribution
of o given y. This gives an economic interpretation of “information design” in
our setting: making richer observables contractible (better logging, verifiable
milestones, third-party attestations) increases d and can strictly expand the
set of implementable policies under limited liability.

Two caveats arise. First, richer observables can create new manipulation
channels: agents may strategically affect y if it is itself influenced by hid-
den actions or reporting. Second, when the principal’s belief updates are
misspecified, the mapping from (y, 0) to u becomes another source of e-type
error; robustness then must include uncertainty over filtering, not only over
outcome generation. Both issues suggest that partial observability is not
merely a technical extension: it is the locus where robustness, measurement,
and strategic gaming interact.

5.3 Budget constraints and feasibility under limited liability

Our per-state construction highlights that robustness is “paid for” through
higher expected transfers, scaling as e5/d. In practice, principals rarely have
unlimited subsidy capacity. A simple way to incorporate budget limits is to
add an explicit constraint to the per-state problem:

sup E,[bs(0)] < Bs,
peus,ap

where By is a state-dependent spending cap (or a uniform cap B). This
immediately yields a feasibility bound. If we restrict attention to single-
diagnostic-outcome contracts, the largest robust margin achievable at state
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s is on the order of By - Jmin(s); therefore a sufficient condition for robust
implementation with margin 2¢ is

B, > -2
dmin(s)

When this inequality fails, the model delivers a sharp operational conclusion:
robust implementation is impossible under the declared robustness envelope
and the declared liability constraint. The principal must then change some-
thing structural—choose a different recommended action with higher separa-
bility, enrich observables to increase d, relax robustness (smaller uncertainty
set or smaller €5 through better value estimation), or accept a probabilistic
notion of compliance.

Dynamic budget constraints complicate matters further. If the princi-
pal has an episode-wide budget B, then high payments early can crowd out
future robustness where it matters more. This naturally leads to a joint
dynamic program in which the “shadow price” of budget enters the con-
tract computation, and may rationalize deliberately tolerating small devia-
tion risks in early, low-stakes states to preserve funds for later bottlenecks.
Importantly, this is not a departure from our logic: it is the same robust-
ness tradeoff, but with an additional resource constraint that couples states
across time.

5.4 Policy implications for platforms and regulation

The most immediate policy implication is that robustness can be improved
either by paying more or by measuring better, and these two levers are substi-
tutes. Our separability parameter d makes this substitution concrete: when
outcomes are weakly informative about hidden actions, limited-liability in-
centives become expensive or infeasible, even for a well-intentioned principal.
This provides an economic rationale for interventions that increase verifiabil-
ity: standardized reporting requirements, audit rights, tamper-evident logs,
or the design of outcome categories that are hard to manipulate and highly
diagnostic of effort. In platform settings, this points toward product and in-
strumentation design as part of the mechanism: the platform can sometimes
increase d more cheaply by changing what it observes than by increasing
subsidies.

Regulators also shape the robustness envelope indirectly. Legal con-
straints on contracting (minimum payments, restrictions on penalties, limits
on contingent pay) effectively tighten limited-liability constraints and can
make £/d bottlenecks binding. Conversely, regulation can reduce uncertainty
by mandating disclosure and data access, shrinking ¢/ and improving separa-
bility. Our framework suggests a “safe harbor” interpretation: if a principal
commits to an incentive scheme that is robust with respect to a regulator-
approved uncertainty model, then observed deviations are more plausibly
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attributable to unmodeled manipulation or to failures of monitoring rather
than to predictable distribution shift.

We close with limitations. Worst-case robustness can be conservative
when the true shift is benign or structured; per-state constraints ignore the
possibility of correlating incentives across time to economize on payments;
and our uncertainty sets treat Nature as adversarial rather than statistically
grounded unless they are carefully calibrated. Nevertheless, these are not
reasons to abandon robustness; they are reasons to connect it more tightly
to data (how to choose U) and to system design (how to increase d). In
our view, the central tradeoff remains: robust incentive alignment is feasible
when observables are sufficiently diagnostic, and costly when they are not.
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