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Abstract

Modern agentic systems (2026) expose rich, verifiable traces of
computation—tool-call logs, cryptographic receipts, and execution proofs—while
internal reasoning effort remains hidden. We propose a principal-agent
framework that treats LLM ‘effort’ (compute budget, search depth,
tool planning intensity) as the hidden action and studies contracts
that condition on both task outcomes and verifiable compute receipts.
Building on principal-agent reinforcement learning with contracts and
subgame-perfect equilibrium (SPE), we formalize receipt-contingent
payments in a sequential environment and characterize when near-
first-best effort is implementable with small subsidies under limited
liability. Our main theoretical contribution is a tractable separability
parameter—the total-variation gap between receipt distributions under
high vs low effort—that governs the minimal expected subsidy needed
for incentive compatibility. When receipts are sufficiently separable,
a principal can implement efficient effort with bounded expected pay-
ments; when receipts are unavailable, outcome-only contracts suffer a
lower bound on required subsidy proportional to the informativeness
gap between outcomes and receipts. We further derive robust ‘nudging’
margins that stabilize best responses under model drift and approxi-
mation error, complementing the source paper’s analysis of contract
fragility and nudging. Finally, we outline an empirical protocol for
tool-use benchmarks that treats receipts as contractible outcomes and
evaluates learned principals under black-box validation against inde-
pendently trained agents.
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1 Introduction and motivation: paying agents to
think (2026)

In 2026, a large share of economically relevant work mediated by machine
learning systems can be described, unromantically, as “paying agents to
think.” A wuser, firm, or platform (the principal) delegates a task to an
LLM service (the agent), while caring about accuracy, safety, latency, and
cost. Yet the principal typically cannot observe the agent’s internal compute
choices—how long it searched, whether it verified intermediate claims, how
many tools it invoked, or whether it stopped early. This gap between what
the principal values (high-quality outcomes) and what the agent privately
controls (compute intensity and diligence) is a textbook moral hazard prob-
lem, but with a modern twist: the agent’s “effort” is literally an allocation
of expensive compute and tool-use budget, and its traces can sometimes be
logged.

The core contracting challenge is familiar. If the principal could directly
specify compute, it would simply require the agent to run the expensive
checks and pay accordingly. In most deployments, however, the principal
sees only a delivered answer (and perhaps some ex post evaluation) and must
rely on incentive-compatible payment schemes. Outcome-only incentives are
blunt: many tasks are noisy, long-horizon, or hard to score reliably, so the
mapping from “worked hard” to “got a better outcome” can be weak. In such
environments, attempts to elicit diligence via outcomes alone can require
large subsidies, can induce gaming, or can push the agent toward risk-seeking
behaviors that raise variance without improving reliability. These difficulties
are amplified by limited liability constraints that are natural in practice (we
rarely fine an API provider after a mistake; we at most withhold payment
or pay bonuses).

What has changed since earlier discussions of moral hazard in computa-
tion is the increasing availability of receipts: verifiable telemetry about the
agent’s behavior that is not itself the final outcome. Examples include cryp-
tographically signed tool-call logs, proofs of retrieval queries, attestations
of sandboxed execution, counts of verifier invocations, or hardware-backed
measurements of compute. Even when privacy or engineering constraints
require these receipts to be coarse, they can be substantially more informa-
tive about diligence than the final task outcome. The simple economic point
is that contracting power depends on informativeness about hidden action.
Receipts create additional contractible signals that may separate high effort
from low effort even when outcomes do not, thereby reducing the payment
needed to implement diligence under limited liability.

This paper formalizes that intuition in a principal-agent model designed
to speak to current LLM procurement and platform governance. We view
“effort” as a hidden choice of compute/search depth/tool intensity, and we



allow the principal to condition payments on observable outcomes as well as
verifiable receipts. The model is deliberately spare: we focus on when and
how receipts change the feasible set of incentive schemes, and on what can be
said in closed form about the cost of implementation. Our emphasis is not on
the specific engineering of receipts, but on the economic object they induce:
the divergence between receipt distributions under high and low compute.
When this divergence is large, small payments can create large incentive
wedges; when it is small, contracting becomes expensive and fragile.

A second motivation is methodological. Much of the modern literature
on learning systems frames the problem as reinforcement learning (RL): an
agent takes actions, receives rewards, and optimizes expected discounted re-
turn. But many real deployments are better described as principal-agent
RL, where a principal designs the reward/payoff process to induce desired
behavior from an optimizing agent whose internal choices are not fully ob-
served. In that lens, a contract is a reward-shaping rule, and receipts are
auxiliary observations that can enter the reward. Our analysis complements
algorithmic reward design by emphasizing the constraints of limited liability,
the need for equilibrium reasoning, and the central role of signal informa-
tiveness in determining subsidy requirements. The results deliver a language
for comparing regimes: outcome-only evaluation, receipt-based monitoring,
and hybrid schemes that combine the two.

The equilibrium concept also matters for practice. Many platform set-
tings resemble a sequential relationship: tasks arrive over time, the principal
updates terms based on state, and future opportunities depend on current
performance. We therefore frame contracting in a Markov (state-dependent)
manner and use subgame-perfect equilibrium (SPE) to capture credible con-
tinuation behavior. This is distinct from a one-shot Stackelberg view in
which the principal commits once to an entire intertemporal payment pol-
icy. In many procurement and API contexts, full commitment is unrealistic:
terms can be renegotiated, and users can switch providers. SPE is the ap-
propriate discipline when contracts are offered repeatedly and must remain
optimal in every continuation. At the same time, the Markov structure pre-
serves tractability and aligns with how real systems are managed (pricing
and evaluation policies depend on observable task class, risk tier, or other
state variables).

Our main contributions can be summarized as follows. First, we provide a
sharp characterization of how receipt informativeness translates into minimal
expected payment under limited liability. The key statistic is a separability
measure: the extent to which the distribution of receipts shifts when the
agent exerts high compute rather than low compute. When separability is
positive, we show that simple event-based contracts—pay a fixed bonus if and
only if a carefully chosen receipt event occurs—can implement high effort,
and we give an explicit upper bound on the expected subsidy required. The
structure mirrors classic results in moral hazard with nonnegative transfers:



optimal incentives concentrate payments on states that are most diagnostic
of effort, which here correspond to receipts with high likelihood ratios.

Second, we compare receipt contracting to outcome-only contracting
through what we call a proxy gap. When outcomes are weakly responsive to
effort (for instance, when success is largely determined by task difficulty or
stochastic evaluation), outcome-only incentives become expensive: to com-
pensate the agent for costly compute, the principal must pay large bonuses
on rare successes or pay broadly across outcomes, both of which raise ex-
pected transfers. Receipts can dramatically reduce this cost when they are
more sensitive to effort than outcomes. Our bounds make this comparison
transparent by expressing the minimal expected payment in each regime as a
cost term divided by a separability term, and thus relating welfare differences
to the ratio of receipt versus outcome informativeness.

Third, we extend the logic to sequential settings. When tasks are re-
peated, continuation values enter the agent’s incentive constraint: deviating
today may alter future states and future payments. We show how to bound
the total discounted subsidy required to sustain high effort along the equi-
librium path by decomposing the dynamic problem into per-state incentive
problems plus a continuation-value correction. This provides a practical ac-
counting identity for “how expensive it is to pay for thinking” over time, and
it highlights where receipts matter most: states with high compute cost and
low separability are the bottlenecks.

Fourth, we address robustness. Receipt models can drift: logging pipelines
change, tool APIs update, and the mapping from compute to telemetry is
imperfectly understood. We therefore study misspecification in total varia-
tion and derive a simple “nudging” rule: add slack to the incentive constraint
that scales with model uncertainty and inversely with squared separability.
The implication is a concrete design principle for practice: if receipts barely
separate effort, then not only are incentives expensive, they are also brittle
to small measurement errors; conversely, strong receipts buy both efficiency
and robustness.

We close the introduction with two limitations that guide interpretation.
We model the agent as risk-neutral and focus on limited liability, which fits
many contracting environments but abstracts from risk-sharing and reputa-
tion concerns. We also assume receipts are verifiable and non-manipulable;
in reality, receipts can be noisy, strategically obfuscated, or constrained by
privacy policies, and designing trustworthy telemetry is itself a technical
problem. Our contribution is not to solve these engineering challenges, but
to provide a clear economic calculus for why they are worth solving and what
is gained when they are solved well.

The roadmap is as follows. In the next section, we formalize the static
receipt-contracting problem with binary effort and derive the minimal-expected-
payment contract as a linear program, obtaining closed-form event-based so-
lutions via likelihood-ratio reasoning. Subsequent sections build the sequen-



tial extension, the outcome-only lower bound and proxy gap comparison,
and the robustness analysis under receipt drift, returning throughout to the
practical question that motivates the theory: when do logs and proofs let us
pay less, and get more, for the same amount of “thinking”?

2 Static receipt contracting with binary effort

We begin with a one-shot version of the relationship at a fixed state s,
suppressing the state index to keep notation light. The principal commits to
a limited-liability payment rule b : Y x R — R>¢, the agent privately chooses
effort e € {0,1} (interpreted as a higher compute/search/tool-use intensity
when e = 1), and then a joint signal (Y, R) is realized with distribution
P(y,r | ). The principal values only the outcome, v(Y), while the agent
incurs effort cost c(e) with incremental cost Ac := ¢(1) — ¢(0) > 0. Payoffs
are

U =E[o(Y) - bY,R)], U*=E[b(Y,R) - c(e)], (1)

where expectations are taken under the induced distribution of (Y, R) given
the agent’s equilibrium effort.

The static question we study in this section is intentionally narrow: if
the principal wants to implement high effort e = 1, how expensive does the
cheapest incentive scheme have to be under limited liability? This isolates
the pure “incentive cost of compute” from other considerations (risk shar-
ing, participation rents, or dynamic reputation) that we treat separately in
later sections. In this static benchmark, the principal’s value term v(Y")
is unaffected by the payment rule once we fix the target action e = 1, so
the principal’s contracting problem reduces to minimizing expected trans-
fers subject to incentive compatibility.

Let

Be:=E[(Y.R) | e] = > Ply,r|e)bly.r) (2)

yeYrer

(with the obvious integral analogue when signals are continuous). The agent
chooses e = 1 iff

Bl — C(l) > BO — C(O) <~ B1 — Bo > Ac. (3)

Limited liability implies we can raise By but cannot lower By through fines;
incentives must be created by promising bonuses on some realizations of the
observable signal.

Minimal implementation as a linear program. Fix a target action
e = 1. Among all nonnegative payment rules b(-,-) > 0 that satisfy (3)), we



define the minimal expected payment as the value of

min E[b(Y,R) | e=1]
b:YXxR—R>q (4)

st. E[b(Y,R)|e=1] —E[b(Y,R) |e=0] > Ac.

This is a linear program (LP): the objective and constraint are linear in the
decision variables {b(y,7)}, and limited liability is a set of coordinate-wise
nonnegativity constraints.

Two immediate observations sharpen the economic content. First, only
the distributional shift in the contractible signal matters. Formally, if we
define the augmented signal Z := (Y, R), then the LP depends on the pair
of measures {P(- | 1),P(- | 0)} over Z := Y x R and not on any other
primitives. Second, because b enters only through expectations, there is
never a reason to pay on signal realizations that are less likely under high
effort than under low effort: if P(z | 1) < P(z | 0), then paying at z relaxes
the constraint weakly in the wrong direction. In an optimal solution we can
set b(z) = 0 on all such z without violating and while (weakly) lowering
expected payments.

Extreme-point structure: bonuses on diagnostic events. The LP
has a single nontrivial inequality constraint besides nonnegativity. This
geometry implies that optimal solutions take a stark form: incentives are
provided by concentrating payment on the most diagnostic realizations of
the signal. To see the logic cleanly, consider any measurable event £ C Z
and a simple event contract

b(z) =z-1{z € E} for some = > 0. (5)
Under this contract,
By =zP(E|1), By =xzP(E |0), (6)
so the incentive constraint becomes
z(P(E|1) = P(E|0)) > Ac. (7)
Whenever the probability gap P(E | 1) — P(E | 0) is positive, the cheapest

x satisfying is
Ac

T PE|L)-PE|0) ()

and the corresponding expected payment under high effort is

P(E|1)
PETD) - P(E]0) )

Bi(E) = 2(E) P(E | 1) = Ac



This simple calculation already delivers the key intuition: to make effort
cheap to implement under limited liability, we want contractible events whose
probability is much larger under e = 1 than under e = 0. Paying on such
events creates a large incentive wedge per expected dollar. Conversely, if
every event has only a small probability gap, then any bonus that generates
Ac units of incentive must be large in expectation.

A particularly transparent (and often nearly sharp) bound comes from
choosing an event F that maximizes the raw probability gap P(E | 1)—P(FE |
0). For that choice, (8) yields a bonus level proportional to Ac divided by this
maximal gap, and @D implies the expected payment is no larger than that
same ratio (since P(E | 1) < 1). We will elevate this maximal-gap statistic
in the next section because it provides a single, interpretable measure of how
“separating” a telemetry channel is.

Closed-form optimality via likelihood ratios (Neyman—Pearson logic).
While maximal-gap events give clean bounds, the LP can be solved more
sharply by ranking signal realizations by likelihood ratios. Assume for the
moment that Z is finite. Write pi(z) := P(Z = z | 1) and po(z) := P(Z =

z | 0), and define the likelihood ratio ¢(z) := p1(2)/po(z) (with the convention
that £(z) = 400 when po(z) = 0 and p1(z) > 0). Then for any candidate
payment vector {b(z)},ecz, the IC constraint can be written as

> (1(2) = po(2)b(z) = Ac. (10)

zEZ

Because the objective is ), p1(2)b(z), a natural “bang-per-buck” index is

pl(Z) —p()(Z) —1_ 1 (11>

p1(2) (z)
Paying on a realization with larger ¢(z) yields a larger incentive wedge per
unit of expected payment under e = 1. The LP therefore places all payment
weight on realizations with the highest likelihood ratios, and in generic finite
cases an optimal solution pays a single bonus on a single most-diagnostic
realization (or splits across ties). More generally, when we restrict attention
to event contracts of the form , the optimal event E solves

P(E|1) - P(E|0)

ET 12
CHERE T PE[D (12)
equivalently arg ming ggi?;, and such an E' is obtained by thresholding

¢(z): include z with £(z) above a cutoff, and (if necessary) randomize at the
cutoff to hit the constraint at equality. This is precisely the Neyman—Pearson
lemma in statistical testing form, with e = 1 as the “alternative” and e = 0
as the “null”: the cheapest way to induce effort is to reward the events that
are most informative about effort.



Receipts versus outcomes in the static problem. Finally, we connect
the mathematics back to the contracting interpretation. If the principal
can contract on the full augmented signal Z = (Y, R), then the preceding
analysis applies to Z directly, and receipts can only help relative to outcome-
only incentives because they enrich the signal space on which likelihood-ratio
screening can be performed. If, instead, the principal is restricted to receipt-
only contracts b(r) (or outcome-only contracts b(y)), we recover the same LP
with Z replaced by R (or ). The substantive difference between regimes is
therefore not philosophical but statistical: how much the distribution shifts
with effort on the available contractible signal. In the next section we package
that shift into a separability index and translate it into explicit subsidy
bounds and practical guidance for telemetry design.

Receipt separability as an incentive lever. To summarize the static
analysis into a single statistic we can reason about, we now specialize the
contractible signal to receipts alone and quantify how strongly receipts move
with effort. Fix a state s (suppressed) and consider receipt-only contracts
b: R — R>g. Let P; and Py denote the induced distributions of R under
e = 1 and e = 0. We define the receipt separability (or compute-signal
separability)

A = TV(P, Ry) = max (P(E) - Po(E)) = %Z‘Pl(r)_PO(T)’ (13)
- reR

(with the obvious integral form when R is continuous). Economically, A
measures how much statistical evidence the receipt channel can, in principle,
provide about whether the agent used high compute. The max-over-events
formulation is particularly revealing: it is the largest increase in the prob-
ability of passing any binary “audit test” E when the agent exerts e = 1
rather than e = 0.

A sharp expected-subsidy bound under limited liability. Receipt
separability maps directly into an upper bound on the minimal expected
payment required to implement e = 1. Consider an event contract b(r) =
x1{r € E}, and choose E* € argmaxg(P1(F) — Py(F)). Then Pi(E*) —
Py(E*) = A by definition, so setting

= — (14)
makes the incentive constraint bind:
E[b(R) | 1] — E[bp(R) | 0] = =* (Py(E*) — Py(E")) = Ac.
The expected payment under high effort is

P (E¥)
A

* ®\ Ac
BI(R) | 1] = " Py(EY) = Ac- A

<



since P;(E*) < 1. Thus, whenever A > 0, there exists a feasible receipt-only
scheme with expected subsidy no larger than Ac/A. The bound is often close
to the true optimum: if the maximizing event E* also has P;(E*) not too
small (i.e., high effort triggers the event with reasonable probability), then
is within a small constant factor of the minimal expected payment.
Two aspects of deserve emphasis. First, the dependence is linear in
the incremental compute cost Ac and inverse in separability A. This makes
separability an interpretable “exchange rate” between dollars and incentives:
each expected dollar can buy at most A units of incentive wedge (in the
sense of shifting E[b | 1] — E[b | 0]), so achieving a wedge of Ac costs at
least on the order of Ac/A. Second, the argument uses only limited liability
and verifiability of receipts; it does not rely on any special structure of v(-),
risk aversion, or participation constraints. In that sense, A isolates the pure
informativeness contribution of telemetry to incentive provision.

When is high effort close to first best? In the one-shot benchmark,
the principal’s implementation decision trades off the value gain from high
effort against the required transfer. Let

Av = Ep(Y)|e=1]—-E[pY) | e=0] (16)

denote the principal’s incremental gross value from inducing e = 1. Be-
cause transfers are a deadweight loss for the principal in this risk-neutral,
static setup, a sufficient condition for implementing high effort using receipt
incentives is A
c
Av > N
Condition is intentionally interpretable: high effort is worthwhile when
(i) compute is not too costly (Ac small), and/or (ii) receipts are sufficiently
separating (A large), so that incentives can be created cheaply. Conversely,
when telemetry barely changes with compute (A ~ 0), limited liability forces
implementation costs to explode, and the principal optimally tolerates low
effort unless the value gain Awv is enormous.
A closely related budgeting view is often more practical. Suppose the
principal can afford expected transfers no larger than B under high effort.
Then a sufficient condition for implementability is

(17)

_ Ac Ac
B > — — A —.
- A B

Y

(18)

Thus A can be read as a minimum telemetry quality requirement for a given
payment budget and compute cost. This perspective is useful in platform
settings where budgets (or subsidy policies) are set administratively, while
telemetry design is the main engineering degree of freedom.

10



Interpretation of A via testing and classification. The total vari-
ation distance has a standard operational meaning that aligns well with
our contracting interpretation. Consider the best possible (measurable) test
¢: R — {0,1} for distinguishing e = 1 from e = 0 based on R. Then

A = max (P(QS(R) —1le=1)—P(¢R)=1]e= 0)). (19)

That is, A is the maximal true-positive minus false-positive gap achievable
by any audit rule. In words: if we are only allowed to look at receipts and
make a binary decision (pay bonus or not), then A is the best achievable
advantage that high effort has in passing the test. Our subsidy bound is
exactly the contracting analogue of this testing limit: to buy Ac units of
incentive under limited liability, we must scale up the bonus so that the test
advantage A is amplified into a payment wedge of size Ac.

This interpretation also clarifies why telemetry coarsening and privacy
constraints are costly. Any post-processing of receipts (hashing, binning,
adding noise) that makes P; and Py closer in total variation mechanically
reduces A, which raises the minimal expected subsidy roughly in proportion
to 1/A. In practice, this forces a concrete trade-off between privacy /overhead
and incentive efficiency.

Estimating A from telemetry. To use the bound quantitatively, we
need a way to estimate A from observed logs. Conceptually, the cleanest
approach is experimental: run the same task distribution (or state s) under
two controlled compute regimes corresponding to e = 1 and e = 0, record
receipts, and form empirical distributions ]31, ]30. For discrete receipts, the

plug-in estimator
1 ~ —~
=5 > |Pi(r) = Po(r)| (20)

reR

>

is immediate. When R is large (as is typical for rich logs), direct estimation
of the full distributions is sample-inefficient; nevertheless, the max-event
formulation suggests a more scalable route: we can estimate A by searching
over a restricted class of events/tests that are implementable and meaningful
for contracting (e.g., thresholds on runtime, number of tool calls, presence
of a proof object, verification success, depth of a search tree). Concretely, if
£ is a class of candidate events, we can compute the empirical gap

Ag = max (P(E) — Py(E 21
£ Eeg( L(E) — Py(E)), (21)
which is a lower bound on A (since £ may not contain the optimal event).
This lower bound is often exactly what we want for contract design, because
it directly identifies an implementable bonus trigger E together with its
estimated incentive leverage.

11



A complementary, high-dimensional method is to train a classifier to
predict the compute regime from receipts and translate its performance into
a bound on total variation. By , any learned test $ yields a computable
lower bound

A > Ag) = P(@R) =1]e=1)—P($(R) =1]e=0),

where the probabilities are evaluated on held-out data. This approach natu-
rally accommodates complex receipts (vectors of tool traces, lengths, verifier
outputs) and aligns with standard ML evaluation pipelines.

We should be explicit about limitations. First, A is state-dependent: if
task difficulty changes, or if the distribution of prompts shifts, then P(R | e)
shifts as well. Second, our assumption (H1) that receipts are non-manipulable
is substantive: if the agent can directly influence receipts without incurring
the intended compute cost, then the estimated A will overstate true separa-
bility with respect to effort, and contracts based on E* can be gamed. For
this reason, in applied settings we view A not as a purely statistical quan-
tity but as a joint property of telemetry and system integrity (attestation,
secure logging, verifier soundness). Under those caveats, receipt separability
provides a compact, empirically grounded way to connect telemetry design
decisions to concrete subsidy requirements.

Outcome-only contracting as a benchmark. We now ask what can
be achieved if the principal cannot condition transfers on receipts and must
instead use only the realized task outcome Y. This is a natural benchmark
for settings where telemetry is unavailable, privacy policy forbids logging,
or the platform’s contract language is restricted to end-to-end scores (e.g.,
pass/fail on a hidden test set). Formally, we restrict attention to limited-
liability contracts of the form b : YV — R>o. We again fix a state s and
suppress it in notation.

As in the receipt case, the key question is whether the distribution of
the contractible signal shifts with effort. Let @)1 and ()9 denote the induced
distributions of Y under e = 1 and e = 0. We define outcome separability

AY = TV(Q1,Qo) = max (Q1(4) — Qou(4)), (22)

with the usual L representation when ) is discrete. Economically, AY is
the best advantage high compute has in passing any binary test based solely
on the observed outcome (e.g., exceeding a score threshold).

A lower bound on required subsidies under outcome-only pay-
ments. The outcome-only restriction is not merely a modeling convenience:
it imposes a fundamental limit on the maximal incentive wedge attainable

12



per expected dollar under limited liability. Consider the minimal-expected-
payment implementation problem

rbn>i61 Eb(Y)|e=1] s.t. EbY)|1]-EBY)|0] > Ac.
A simple but sharp bound follows directly from the total-variation defini-

tion. For any nonnegative function b(-), scaling and the max-over-events
representation imply

EDb(Y) [1] —E[b(Y) | 0] < AY- Sup b(y), (23)

and, moreover, E[b(Y) | 1] > Q1(A)-infye b(y) for any event A. Combining
these ideas in the standard LP /extreme-point logic (the cheapest nonnega-
tive transfer concentrates payment on an event), we obtain the benchmark
implication: to generate an incentive wedge of Ac, the principal must pay
at least on the order of Ac/AY in expectation under e = 1. One convenient
statement is

Ac
Ep(Y) 1] 2 5y,

interpreting Ac/AY = +o0o when AY = 0. Thus if outcomes are (nearly)
insensitive to compute, outcome-only incentives are prohibitively expensive
(or impossible) under limited liability.

(24)

A concrete illustration: pass/fail outcomes. The bound is es-
pecially transparent when Y € {0,1} is a binary success indicator. Let
pp=PY =1]e=1)and po =P(Y =1]|e=0), so AY = |p1 — po|. The
natural outcome-only contract pays x upon success: b(Y) = z1{Y = 1}.
The incentive constraint is

Ac
p1—po’
and the expected payment under high effort is E[b(Y) | 1] = p1x > p1Ac/(p1—
po) > Ac/(p1 — po) = Ac/AY. In this canonical scoring environment,
is not merely a loose asymptotic statement: it describes the exact scaling
of the cheapest implementation. The economic punchline is that if extra
compute mainly affects how the answer is produced (e.g., longer reasoning
traces) rather than whether it is correct, then p; ~ py and outcome-only
payment must blow up.

x(p1 —po) > Ac, = x >

The proxy gap: why receipts can dominate outcomes. Outcome-
only contracts are a special case of receipt contracts in which the contractible
signal is a low-dimensional proxy for the agent’s hidden action. The natural
comparison is therefore between AY and receipt separability A from .

The ratio A

13



summarizes what we might call the prozxy gap: how much more informative
receipts are than outcomes about whether the agent actually expended high
compute. When G > 1, receipts can reduce the minimal expected subsidy
by a large factor relative to outcome-only contracting. Indeed, combining
the receipt upper bound E[b(R) | 1] S Ac/A with the outcome-only lower
bound yields the qualitative welfare claim:

. Ac : .
(minimal outcome-only expected payment) 2 v Vvs. (feasible receipt expected payment) <
Thus, holding fixed the compute cost Ac, the achievable implementation
cost differs by a factor comparable to G. Practically, this is the formal
sense in which telemetry can be “worth paying for’”: it expands the set of
implementable effort policies under any fixed transfer budget, and it does so
precisely when outcomes are a weak proxy for effort.

Welfare gaps under a payment budget. The proxy gap becomes es-
pecially policy-relevant in environments with hard budget caps (procure-
ment rules, platform subsidy schedules, or internal spend limits). Suppose
the principal can afford at most B in expected transfers under high effort.
Outcome-only contracting can implement e = 1 only if B > Ac/AY (at least
as a necessary condition by ), whereas receipt contracting can imple-
ment e = 1 whenever B > Ac/A (sufficient by our earlier construction).

Therefore, whenever A A

c _ c
the principal can induce high compute with receipts but cannot do so with
outcomes alone, no matter how cleverly payments are shaped over ). In
such regions, the welfare loss from outcome-only contracting is not a marginal
inefficiency but a discrete feasibility gap: the principal is forced into low effort

even if high effort would be value-enhancing absent contract constraints.

When do outcomes suffice? (Observed-action-like regimes). The
outcome-only benchmark is not meant to suggest that receipts are always
necessary. There are important regimes in which outcomes already act like a
nearly observed action. In our notation, this corresponds to AY being large:
the distribution of Y shifts sharply with compute. In the extreme, if Y
deterministically reveals effort (e.g., Y = y; under e = 1 and Y = yp under
e = 0 with disjoint support), then AY = 1 and the lower bound becomes
E[b(Y) | 1] > Ac, which is essentially the first-best “pay cost” benchmark.
More generally, outcome-only incentives are effective when (i) evaluation is
fine-grained enough that marginal quality improvements are detectable, and
(ii) noise in Y is small relative to the effect of compute. In such cases, the
engineering priority may be to improve evaluation (increase AY) rather than
to log more receipts (increase A).

14



This clarifies a useful design principle: when we cannot or do not want
to rely on receipts, we can sometimes recover incentive power by making
outcomes more informative—for instance, replacing a single pass/fail test
with a battery of independent checks, using stronger verifiers, or eliciting
richer graded outputs. Each of these interventions can increase AY by making
the outcome distribution more sensitive to compute, thereby reducing the
outcome-only subsidy required by .

Limitations of the outcome-only view. Finally, we emphasize what the
outcome-only benchmark leaves out. First, Y is often delay-prone and po-
tentially manipulable (distribution shift, dataset leakage), whereas receipts
are closer to the agent’s internal action and can be secured via attestation.
Second, even when outcomes are informative on average, they may be too
sparse to support fine-grained per-task incentives, whereas receipts can pro-
vide dense signals (timeouts, tool-usage patterns, proof objects) that vary
at the right temporal resolution. For these reasons, AY is best interpreted
as a best-case contracting limit under an intentionally austere signal space.
The next step is to return to the sequential setting and show how receipt
leverage composes across states once continuation values enter the incentive
constraint.

Sequential extension: Markov contracting with receipts. We now
lift the analysis from a single state to a controlled stochastic process. The key
economic question is whether the “receipt leverage” captured by A; can be
used repeatedly, state by state, without creating intertemporal distortions or
requiring the principal to solve a fully history-dependent mechanism design
problem. Our modeling choice of Markov contracts is designed precisely to
make this composition transparent: at each visit to state s, the principal
posts a contract bs(-) that depends only on the current contractible signal,
and the continuation game is summarized by the next state S’. In this
sense, the sequential setting does not change what a receipt s; it changes
what effort does, because effort may now affect not only the current receipt
distribution but also the distribution of future states.

Bellman representation and the dynamic IC constraint. Fix a Markov
strategy profile (contracts and effort choices). The agent’s continuation value
at state s admits the standard Bellman form

VA®s) = 62%3‘,’%}{ —¢o(e) + E[bo(Y, B) | ,5] + VE[VA(S) | e,5] }. (27)

where S’ is the next state drawn from the equilibrium transition rule given
(s,e) (i.e., integrating out (Y, R) and any exogenous shocks). Implementing
high effort at s requires that e = 1 solve . Writing the one-step deviation
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constraint explicitly yields

E[by(Y, B) | 1,5]~Elby(Y, R) | 0,5] > Acyty(E[VA(S) | 0,5]-E[VAS) | 1,5] ).
(28)
The additional term is the dynamic analogue of an incentive spillover: if low
effort makes it more likely the agent lands in states with higher continuation
payoff, then current transfers must also offset this future advantage.
For compactness, define the required incentive wedge at s (given contin-
uation values) as
ks = Acs+yAVS, AV =E[VAS) | 0,s] -E[VA(S) | 1,5]. (29)
Then becomes E[bs | 1] — E[bs | 0] > k5. Two polar cases are worth
keeping in mind. If high effort tends to move the system to better states
for the agent (in the sense of larger V4), then AVSA < 0 and dynamics
help incentives by reducing the needed current wedge. If instead low effort
preserves “easy”’ future rents, then AVSA > 0 and the principal must subsidize
more today.

Per-state decomposition as a minimal-implementation LP with
continuation values. The principal’s sequential problem is, in principle,
a coupled fixed point: contracts determine effort, effort shapes transitions,
transitions determine V4(-) and V7(-), and those values feed back into opti-
mal contracts. The main structural simplification is that, in a finite-horizon
game (or in a discounted infinite-horizon game under standard boundedness
assumptions), subgame perfection lets us treat continuation values as given
when solving the contract choice at the current state. Concretely, suppose
we are at a subgame in which the continuation strategy profile from period
t+1 onward is fixed, hence V4(-) is pinned down. Then, to implement e = 1
at s as cheaply as possible subject to limited liability, the principal solves
the per-state program

min E[bs(Y,R) | 1, s] s.t. E[bs(Y,R) | 1,s] —E[bs(Y,R) | 0,8] > Ks.

bs>0

(30)
Relative to the static LP, the only change is that Acy is replaced by k.
Economically, we can interpret y AVA as an effective incremental cost of
effort created by the future: it is the amount of discounted continuation
utility that high effort must compensate the agent for foregoing.

Closed-form carryover: the same event-pay contract, with an ad-
justed wedge. Because has the same linear structure as the static
problem, the extreme-point logic carries over essentially verbatim. In partic-
ular, if the principal is willing to use receipts alone (or to ignore Y when it is
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not helpful), then for any state with Ag > 0 there exists a receipt-contingent
contract that implements e = 1 and satisfies

Ks Acs+'yAVsA

< =
]E[bs(R) | 1?5] — As As

(31)
Moreover, as in the one-shot case, an optimal minimal-expected-payment
contract can be chosen to pay a constant on a single event E7 C R maxi-
mizing the probability gap Ps(E | 1) — Ps(E | 0). The object doing all the
work is still separability Ag; sequentiality enters only through the wedge .

This is the sense in which the sequential problem “decomposes™ holding
fized the continuation values induced by future play, the current-state incen-
tive provision problem reduces to the same one-step LP on the current signal
space. The principal does not need to design a long menu of intertemporal
payments to exploit receipts; she can, without loss of optimality for incen-
tive provision, use a locally targeted payment rule that triggers on the most
effort-informative receipt event at that state.

Constructing an SPE by backward induction (finite horizon). Ina
finite-horizon model, this decomposition yields an explicit equilibrium con-
struction. At the terminal date T', continuation values are zero, so ks = Acs
and the optimal contract at T is exactly the static receipt contract. Given the
period-T contracts, we can compute the induced Vi#(s) and hence AV | (s)
for each state at T—1. Plugging these into (30]) gives the period-7'—1 mini-
mal implementation contracts, and so on backward to date 0. The resulting
strategy profile is subgame perfect by construction: at each subgame, the
principal chooses a contract that is optimal given the continuation, and the
agent best responds by choosing e = 1 because the dynamic IC constraint is
satisfied.

This backward-induction perspective also clarifies when the earlier “first-
best everywhere” statement is meaningful. If the planner’s first-best calls
for e = 1 in every state along the equilibrium path, then the principal can
implement exactly that policy provided Ag > 0 on those states, with the
per-visit expected transfer bounded by . Summing along the realized
path yields the advertised total-subsidy bound:

T
<> +'E
t=0

A convenient coarse corollary obtains by upper-bounding AVSA by the range
of continuation values, but the sharper message is that dynamics matter
only insofar as they create (or destroy) a continuation-value advantage to
shirking.

Acg, + v AV;:
Ag

t

T
Z 'Yt bSt (i/t’ Rt)
t=0

E (32)
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When does the closed form suffice, and when do we need numerical
dynamic programming? The construction above is “closed form” in the
narrow sense that, conditional on knowing ks and Ag, we can write down
an optimal payment rule at each state (an event-triggered contract) and an
explicit bound on its expected cost. What is not closed form in general is
the mapping s — V4(s) (and hence s — k), because V4 is endogenous to
the entire future contracting policy. There are, however, important regimes
where ks becomes simple. If transitions are (approximately) independent of
effort, or if effort affects only current receipts but not future states, then
AVA =~ 0 and we revert to the static wedge sy &~ Acs period by period.
More generally, if the effect of effort on future states is monotone and known
(high effort stochastically improves S’ for both players), then AVSA < 0 and
the static bound Acs/Ay is conservative.

Outside these regimes—large state spaces, rich transition dependence
on (Y, R), or strategic interactions in which contracts affect the agent’s fu-
ture rents in subtle ways—one should view as a local characterization
embedded in a global fixed point. Computing the equilibrium can then be
posed as a dynamic program with incentive constraints: iterate on candidate
continuation values, solve the per-state LP to obtain implied policies
and payoffs, and update values until convergence. This is exactly where the
“engineering” complexity enters: not in designing complicated transfers, but
in estimating the objects (Ps(- | e), transitions, and value functions) that
determine k4 and the relevant separating events.

Why the sequential view sets up robustness concerns. The sequen-
tial extension therefore delivers a clean conceptual takeaway: receipts buy
us per-state incentive leverage, and Markov structure lets that leverage com-
pose. At the same time, sequentiality highlights a fragility that the one-shot
model hides: both A; and the continuation wedge ks are model-dependent
objects, and errors can accumulate across time through misestimated transi-
tions or misspecified receipt likelihoods. This motivates the next step, where
we study robustness and “nudging” margins that protect the IC constraints
when the principal computes contracts using an estimated model rather than
the true Py(r | e).

Robustness and nudging under drift. Our bounds so far are comparative-
statics clean but estimation fragile: the principal computes a separating
event (and hence a contract) using an estimated receipt model, while the
implemented system may drift. In practice, drift can come from innocuous
sources (logging changes, tool-version updates, caching policies) or strategic
ones (an agent learns to route computation to mimic “high-effort” teleme-
try). The economic issue is that limited-liability incentive provision relies on
a probability gap; if that gap is misestimated, the implemented contract may
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accidentally subsidize low effort or fail to motivate high effort.

We therefore treat the principal as choosing contracts from an estimated
model P(r | €) and an estimated continuation-value object (e.g., a learned
Q-function), while the true environment may differ within an uncertainty
set. The goal is not full minimax mechanism design, but a transparent
nudging rule: add a simple IC margin that restores incentive compatibility
under bounded misspecification, and quantify the associated extra expected
subsidy.

Uncertainty sets for receipt likelihoods. Fix a state s. We assume the
true receipt distributions lie in a total-variation ball around the estimated
ones:

TV(P(- e} Pl e)) < me e {01} (33)

This is deliberately coarse: it captures any misspecification that perturbs
event probabilities by at most 7, without committing to a parametric form.
The key inequality we repeatedly use is that for any event £ C R,

Py(E|e)~PBy(E|e)| < ns,  e€{0,1}, (34)

and therefore the incentive-relevant probability gap is perturbed by at most
2ns:

(PAE 1) = P(E|0) = (B(E 1) - PAE|0)] < 200 (35)

Robust IC via a slackened wedge. Recall that the dynamic IC con-
straint at s takes the form

E[bs(Y7 R) | 173} - E[bS(Yv R) ‘ O,S] > Ks, (36)

where r, = Acs + v AVA is the required incentive wedge given continuation
values. Suppose we restrict attention (without loss for minimal subsidy) to
receipt-only event contracts of the form bs(r) = 2 1{r € E} for some z > 0
and event £ C R. Under the estimated model, the IC constraint is

#(P(E 1) - PUE|0) > &, (37)

Under drift, the true gap may be smaller. A sufficient robustification is to
replace ks by ks + &5 in , where &, offsets the worst-case reduction in the
probability gap induced by . Cogcretely, if we select an event F with
estimated gap Ag(E) := Ps(E | 1) — Ps(E | 0), then the true gap satisfies
Py(E|1) = Py(E|0) > Ay(E) —2,.
Thus, choosing
Ks

r= rovided A4(E) > 2, 38
A.E) _om, (p (E) > 2ns) (38)
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guarantees for all true models satisfying . Equivalently, one can
implement this by solving the estimated-model problem but adding a slack
margin )
E) = kg =10 39
§s(E)  AE) o, (39)
which is exactly the extra wedge the principal must “nudge” into the contract
to cover worst-case drift.
When we choose E optimally under the estimated model (e.g., a maxi-
mizing event E* € argmaxg A(E)), write A, := AS(E;) Then the robust
expected payment under high effort is bounded by

E[bs(R) | 1,5] = 2 P,(E|1) < —2% (40)
As_2775

using Ps(E | 1) < 1. Comparing to the non-robust proxy ks/ A, vields
the incremental “price of robustness”

2 ~
A—gzﬁs'*:O 775% When’l73<<As.
As—2ns A As(As = 2n;) Ag

(41)
This recovers the central curvature: robustness costs scale like 75/A2, so

weakly separating receipts are disproportionately fragile.

Robustness with approximation error in learned continuation val-
ues. Receipt drift is not the only misspecification. In sequential problems,
the wedge ks depends on continuation values; in modern implementations
these are often produced by function approximation (value networks, fitted
Q-iteration, etc.). Let VA denote the principal’s estimate of the agent’s
continuation value under the continuation equilibrium, and suppose the es-
timation error is bounded uniformly:

Hf/f‘ - VAH < e (42)
oo
Then the induced error in the continuation wedge satisfies

[ (EVA(S') [ 0,5] = BIVAS) | 1,5]) = (BIVA(S) | 0,5~ EVAS) | 1,5])| < 29e,
(43)

since each expectation shifts by at most . Therefore, a contract computed

using Ry := Acs +y(E[VA(S") | 0,s] —E[VA(S") | 1, 5]) should be nudged by

an additional margin 2ye to remain valid for the true ;.

Combining receipt drift and value error , a sufficient robust
implementation rule is: pick an event E using the estimated receipt model,
and set =

Kg + 27ve .. -~
r ==, requiring A (FE) > 2n;. 44
N J(B) > 2, (44)
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This yields a clean interpretation: uncertainty in receipts shrinks the usable
separability (denominator), while uncertainty in dynamic incentives expands
the required wedge (numerator).

A diagnostic: when robustness is expensive (or impossible). The
expressions above provide an operational diagnostic. The robust contract is
well-behaved when 7, is small relative to A s, in which case the extra subsidy
is second-order in 74 as in (41)). By contrast, when 35 is small, robustness
becomes rapidly expensive; indeed if

Ay < 2, (45)

then the robust denominator in is non-positive, meaning that no non-
negative event-pay contract computed from P can guarantee a positive in-
centive gap under all models in the TV ball. Economically, (45)) says that the
principal’s uncertainty is large enough to erase the very statistical distinc-
tion between high- and low-effort receipts. In such regimes, one must either
(i) improve telemetry so that true Ay increases, (ii) reduce uncertainty 7
via better calibration/validation, (iii) fall back on outcome-based or hybrid
contracts (accepting higher subsidy), or (iv) introduce additional enforce-
ment instruments (audits, hard compute caps, or ex post verification) that
effectively enlarge the receipt space.

Why this “nudging” viewpoint is useful. The reason we emphasize
margins rather than full robust optimization is practical: the principal can
keep using the simple extreme-point structure (pay on one informative event)
and only adjust the level & by a transparent safety factor. The resulting
comparative statics remain the same but sharpen into an engineering rule
of thumb: measure (or lower-bound) separability, upper-bound drift, and
scale subsidies by (85 — 2n,)~ ! rather than 38_1. This also clarifies what
the principal should monitor online: not just average task success, but the
stability of receipt likelihood ratios across time, since changes that reduce

A, have an amplified effect on the required payments.

Looking ahead: learning the objects that robustness needs. These
robustness bounds deliberately speak in terms of primitives the principal
must estimate: Ps(r | e) (to get A, and candidate events), 7, (to quantify
drift), and the continuation values (to get ks and e-type error bars). This
sets up the next step: how to learn principal policies and contracts, and how
to validate them against a black-box agent while maintaining a monitoring
pipeline that detects when 35 is eroding or when the robust condition 35 >
275 is close to failing.
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3 Learning and implementation

Thus far we have treated the objects that enter contracting—receipt likeli-
hoods, separability, continuation wedges—as primitives. In an LLM setting
they are not primitives: they must be estimated from interaction data, and
they evolve as models, toolchains, and workloads change. The design prob-
lem is therefore jointly (i) statistical (learning Ps(y,r | e) and the induced
Ag) and (ii) strategic (anticipating that the agent responds to the contract).
In this section we outline an implementation pipeline that keeps the eco-
nomics transparent: we retain simple contract classes with closed-form in-
centive leverage, and we learn only the quantities needed to choose among
them and to set their levels.

A model-free view of the principal’s problem. Operationally, the
principal controls a policy over contracts. Let my(- | s) denote a parametric
mapping from a state representation s to a contract parameter (e.g., an
event E and a payment level z, or a weight vector on receipt features). The
principal observes realized (y,r) and pays by(y,r); her per-period realized
payoff is vs(y) — bg(y,r). From the principal’s perspective, this is an MDP
with unknown transition law and an endogenous response: the agent’s hidden
effort e is a best reply to the contract. A pragmatic model-free approach is
to treat the agent as part of the environment and to optimize 6 directly
for long-run payoff, using standard RL (policy gradients, actor—critic, fitted
Q-iteration) on trajectories of (s¢, ye, r¢).

Pure model-free optimization, however, is not enough for our objectives
because it may converge to contracts that earn short-run value by not in-
ducing high effort (e.g., exploiting easy tasks), or to contracts that pay for
receipts that correlate with outcomes only transiently. We therefore advo-
cate a constrained learning formulation that uses the IC structure explicitly:
the learning system should search over contracts while maintaining an es-
timated IC wedge with an explicit margin. This keeps the resulting policy
interpretable and makes failure modes diagnosable.

Constrained learning with estimated IC. Fix a state s and a contract
family {bg s}9co with limited liability. The one-step IC constraint can be
written abstractly as

T.(0) = E[bo(Y,R) | 1,5] — E[bgs(Y,R) | 0,8] — ks > O,

where K is the required wedge (including continuation effects when relevant).
In sequential problems we can impose these constraints in expectation under
the principal’s visitation distribution. A simple Lagrangian approach is then

%éagxa zt:'yt(vst()/})—bgﬁt(}/t,Rt)) st Te(0) > & Vs, (46)
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where £ > 0 is a robustness margin chosen from drift /error considerations.
In practice, one can implement with primal-dual updates: the contract
parameters 6 are updated to increase value net of payments, while dual
variables penalize IC violations. The economic benefit of this constrained
view is that when learning fails, we can ask why: was separability low, was
ks underestimated, or did drift erode the relevant receipt statistics?

Estimating receipt and outcome responses. To evaluate Z,(#) we need
counterfactual expectations under e = 1 and e = 0, yet e is hidden in
deployment. We therefore separate estimation into two regimes.

Controlled calibration. In a sandbox, the principal can often induce ex-
ogenous variation in effort by controlling compute budgets, tool permissions,
or sampling policies—effectively creating “forced” e = 0 and e = 1 runs. This
yields labeled data {(s,y,r,e)} from which we can estimate Ps(r | e) and
Py(y | €) (or directly estimate gaps Ps(E | 1) — Py(E | 0) for candidate events
E). For finite receipt spaces, plug-in estimates with empirical Bernstein con-
fidence intervals are natural; for large or continuous receipts, we recommend
working with a feature map ¢(r) € R? and estimating a low-dimensional
score (e.g., a logistic model for e on ¢(r)) whose induced level sets define
events.

On-policy updating under strategic response. Post-deployment, the agent’s
best response makes naive inference hazardous: the distribution of r changes
when we change 6. We therefore treat online estimation as a monitoring
problem (detecting that previously estimated gaps have shifted) rather than
as an attempt to identify Ps(r | e) from unlabeled data. When identification
is required, we can introduce deliberate randomization: occasionally run an
audit mode contract that strongly incentivizes one effort level, or impose an
operationally enforced compute cap/floor for a small fraction of tasks. These
interventions create fresh labeled segments that re-anchor the receipt model.

Practical contract classes: from theory to deployable rules. The
extreme-point structure suggests paying on informative events, but a raw
event £ C R is rarely a convenient engineering object. We therefore recom-
mend contract classes that preserve the same logic (pay only when receipts
look “high effort”) while being implementable and auditable:

1. Threshold contracts on a receipt score. Choose a scalar score o(r) (e.g.,
a log-likelihood ratio proxy, a verifier acceptance score, or a weighted
sum of receipt features) and pay xz1{o(r) > 7}. This recovers the
event contract with £ = {r : o(r) > 7} while allowing 7 to be tuned
for separability.

2. Piecewise-linear bonuses. Pay b(r) = min{z¢ + z10(r), b} with a cap b
to control tail risk. This is useful when the principal wants smoother
incentives or when receipts are noisy.
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3. Hybrid outcome-receipt contracts. Pay b(y,r) = b¥(y) + b"(r) with a
small outcome component to discourage pathological ‘receipt gaming”
that passes telemetry but degrades quality.

All three can be parameterized compactly, enabling efficient RL over 6§ =
(z,7) or (zg,x1,7) rather than over arbitrary functions.

A two-phase protocol: calibrate, then validate as a black box.
Putting the pieces together, a robust implementation pipeline naturally has
two phases.

Phase I (calibration/training). We (i) define the receipt schema and
feature map ¢(r); (ii) collect paired datasets under forced low/high effort
across representative states; (iii) estimate separability (or a lower confidence
bound on Ay for candidate events); and (iv) train the principal’s contract
policy g either by solving per-state LPs inside a planner or via constrained
RL with IC margins. The output is not just a contract, but a model card for
incentives: estimates of which receipts separate effort, how large the gaps
are, and where uncertainty is concentrated.

Phase II (black-box validation and rollout). We then freeze the contract
policy and evaluate it on a holdout workload where the agent is treated
as a black box. The validation goal is not merely higher average y, but
compliance: do receipt statistics and outcome statistics line up with the
calibrated model? We recommend pre-registering acceptance criteria such
as (a) realized payment rates, (b) stability of key receipt frequencies, and (c)
maintained correlation between the receipt score and downstream quality.
Only after passing these checks do we scale traffic.

Monitoring and compliance: what to measure online. Because the
contract relies on a probability gap, monitoring should focus on objects that
proxy that gap. Concretely, for a deployed threshold contract z1{o(r) > 7},
the principal can continuously track the empirical payment indicator I; =
1{o(r:) > 7} and its conditional versions by state cluster. Large deviations
in E[I; | s] relative to the calibrated baseline indicate drift in receipts or a
shift in the agent’s best response.

Two additional diagnostics help distinguish benign drift from strategic
manipulation. First, track the receipt-outcome link: if o(r) was designed to
be informative about effort, then historically it should predict improved y;
a weakening of this relationship is a signature of “hollow receipts.” Second,
maintain a small stream of audited tasks where effort is partially controlled
or independently verified (e.g., verified tool traces, reproducible proofs, or
duplicated runs). Audits allow the principal to periodically re-estimate P, (r]
e) and update n,-type drift bounds.
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Limitations and where additional instruments matter. We should
be clear about what this approach does not solve. If the state space is
extremely large, any per-state estimation of A; is sample-hungry; practi-
cal systems will need state aggregation and conservative lower confidence
bounds. If receipts are only weakly informative or easily coarsened by pri-
vacy constraints, learning cannot manufacture separability, and the feasi-
ble contracts revert toward outcome-only subsidies. Finally, if (contrary to
our maintained hypothesis) the agent can manipulate receipts directly, then
learning “better” receipt models may only accelerate Goodharting; in such
settings, audits, cryptographic attestation, and hard compute controls are
not optional add-ons but part of the contractible signal design.

The central takeaway is that implementation hinges on a small set of
learnable, monitorable statistics—separability of receipts, stability under
drift, and continuation wedges—and that we can embed these objects into
a model-free control loop without abandoning the economics: the principal
learns a contract policy, but remains accountable to explicit IC constraints
and explicit robustness margins.

Experimental objectives. Our experimental goal is not to “beat a bench-
mark” per se, but to test the central comparative statics of the model in an
LLM tool-use environment: (i) when receipts are informative about hidden
compute/effort, receipt-contingent contracting should reduce the expected
subsidy required to elicit high effort relative to outcome-only contracting;
(ii) naive pay-for-compute rules (a constant-proportion subsidy) should be
less cost-effective than contracts that concentrate payment on the most sep-
arating receipt events; and (iii) the advantage of receipts should persist (or
fail gracefully) under distribution shift and receipt-model drift. We therefore
design experiments around controlled variation in effort, explicit construc-
tion of contractible receipt signals, and stress tests that deliberately perturb
the mapping from effort to receipts and outcomes.

Benchmarks and a state representation. We instantiate S using a
small set of task clusters that differ in how valuable additional compute and
tool depth are. Concretely, we recommend a suite of tool-use benchmarks
spanning: (a) multi-hop web search and synthesis; (b) code generation with
unit tests; (¢) mathematical reasoning with external calculators/provers; and
(d) data-wrangling tasks with a sandboxed interpreter. Each task instance
induces a state s consisting of coarse, contractible descriptors: task family,
input length bucket, time budget bucket, and (when relevant) tool availabil-
ity. This “state” is not intended to be a full Markov description; it is an
engineering device that allows us to estimate separability and contracts at
a manageable granularity while still testing whether the economics survives
heterogeneous workloads.
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Operationalizing effort. To create a ground-truth analogue of e € {0, 1},
we use operational controls that are available in many LLM deployments:
compute caps/floors (token budgets, wall-clock limits), enforced tool-use
policies (maximum number of tool calls, enforced minimum depth), and
search parameters (beam width, number of self-consistency samples, number
of retrieved documents). High effort e = 1 is implemented as a configuration
with strictly higher allowed compute/tool intensity; low effort e = 0 is the
restricted configuration. Importantly, we keep the base model weights fixed
within each experimental run so that the induced distributions Ps(y,r | e)
are attributable to compute/tool differences rather than model identity.

Receipts as contractible signals. We define R as a collection of verifi-
able telemetry objects emitted by the runtime: tool-call traces (timestamps,
tool names, inputs/outputs hashes), retrieval metadata (number of retrieved
documents, diversity statistics), execution artifacts (unit test logs, inter-
preter transcripts, proof checker acceptance), and coarse compute meters
(tokens generated, latency). To reflect practice, we evaluate two receipt
schemas. A rich schema logs fine-grained tool traces and verifier outcomes;
a coarsened schema logs only aggregate counts and pass/fail verifications
(motivated by privacy and storage constraints). For each schema we prede-
fine a feature map ¢(r) and a scalar score o(r) used by threshold contracts;
in a controlled calibration phase (where e is known), we estimate receipt
separability via an empirical approximation to

A, = sup (IP’(J(R) >1(1,s) —P(o(R) > 7| o,s)),

and we record the approximately optimal event E* = {o(r) > 7} achieving
the largest gap within the contract class.

Contract regimes compared. We compare three families that map nat-
urally onto procurement-like payment rules.

1. Outcome-only contracts. Payments depend only on benchmark-scored
outcomes y (e.g., pass/fail, normalized score). We include (i) a thresh-
old bonus b(y) = x1{y > y} and (ii) a linear score bonus b(y) = x -y
with b > 0. These contracts are attractive operationally but should
struggle when AY is small.

2. Receipt-contingent contracts. Payments depend on receipt events (or
hybrid b(y,r) = b¥(y) + b"(r) with a small b term fixed across con-
ditions). The primary specification is the event bonus b(r) = z1{r €
E*}, where EY is chosen from the calibrated class (e.g., a threshold
on o(r)). We also include a capped piecewise-linear variant to test
sensitivity to tail receipts.
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3. Constant-proportion subsidy (pay-for-metrics). Payments are propor-
tional to a compute proxy, such as tokens or tool-call count: b(r) =
a - m(r) with m(r) > 0. This mirrors common “pay per token/tool”
pricing and provides a baseline for how much is lost by ignoring sepa-
rability and concentrating payments.

Within each regime we tune payment levels to target a common implementa-
tion objective (e.g., induce e = 1 in the calibration environment at minimal
expected payment, subject to limited liability).

Evaluation protocol: calibration, then strategic rollout. We run
a two-stage evaluation aligned with the model’s identification needs. In
calibration, we execute forced-e runs to estimate Ps(r | €) and Py(y | €) and
to select contract parameters (event thresholds, slopes) using only training
tasks. We compute an estimated incentive gap for each candidate contract,

I, = E[b(Y,R) | 1,s] — E[b(Y,R) | 0, s] — Acs,

and add a robustness margin & when choosing parameters (implemented
as requiring 7, > &s). In rollout, we evaluate on held-out tasks where the
agent is free to choose behavior (to the extent the platform permits) and
we treat the system as a black box, measuring realized outcomes, receipts,
and spend. When true strategic response is hard to elicit in a single-model
setup, we approximate it with a “mixture agent” that selects among available
compute configurations based on the realized expected payment (a reduced-
form best response calibrated from historical data).

Distribution-shift and drift stress tests. To test robustness, we intro-
duce shifts that alter either Ps(y | e), Ps(r | e), or both. (i) Task shift:
new domains (e.g., different websites, new coding libraries), longer contexts,
adversarially composed tasks, and changed tool availability. This probes
whether a contract tuned on one workload generalizes. (ii) Receipt drift:
logging changes (coarsening, delayed tool events), verifier version updates,
and added latency noise. This directly maps to an increased 7, and should
differentially harm receipt contracts. (iii) Effort-to-receipt decoupling: con-
figurations where high effort yields diminishing receipt differences (e.g., ad-
ditional internal sampling without extra tool calls). This creates low Ag
even if compute increases, and should expose when receipt contracting loses
leverage. For each shift we re-run rollout without retuning to measure per-
formance degradation, and we separately evaluate a “nudged” variant that
increases margins &g (hence payments) to maintain IC under drift.

Metrics: welfare, spend, compliance, and robustness. We report
four primary metrics, each computed per state cluster and aggregated by
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the empirical state visitation distribution. Welfare (principal value net pay-
ments):

77 = LS () — o)

ur = - Vs, (Yi) — bs; (Yi, 14) ) -

i

Spend and cost-effectiveness: average payment, payment conditional on suc-
cess, and the empirical analogue of “subsidy per induced effort” using forced-e
counterfactuals from calibration. Compliance/IC diagnostics: the realized
frequency of the paid event (e.g., 1{r € E*}), stability of receipt statistics
relative to calibration baselines, and (when audits are available) the mea-
sured gap P(E* | e = 1) — P(E* | e = 0) over time. Robustness under
shift: worst-case (or tail) degradation in UF and increased spend across the
stress tests, together with a decomposition into (a) receipt drift (changes
in receipt frequencies) versus (b) hollowing (weakened relationship between
receipt score and outcome).

Ablations and limitations. To connect outcomes tightly to the theory,
we include ablations that manipulate separability directly: coarsen receipts
to reduce Ag, remove tool-trace features from o(r), and restrict the event
class to suboptimal thresholds. We also vary Acs by changing the com-
pute gap between e = 0 and e = 1, testing whether required payments
scale linearly as predicted. Finally, we emphasize a limitation: without a
genuinely strategic agent that can adapt its internal policies to the con-
tract, some Goodharting channels will be underexplored. For that rea-
son, the most informative experimental signal is not merely higher bench-
mark scores, but whether receipt-contingent contracts deliver the predicted
payment—separability tradeoff across environments and whether this tradeoff
breaks precisely when separability erodes.

4 Extensions and policy discussion.

The model is intentionally spare: a single principal, a single agent, binary
hidden effort, and verifiable receipts that shift in distribution with compute.
That sparseness is a feature for comparative statics, but it also tells us ex-
actly where practical deployments will strain the assumptions. In this section
we discuss four extensions that matter for real procurement and platform
governance—manipulation-resistant receipts, privacy constraints on teleme-
try, competition across principals, and multi-agent coordination—and we
close with limitations and a concrete future-work agenda.

Manipulation-resistant receipts and the boundary of (H1). The
key institutional assumption behind receipt contracting is (H1): the agent
cannot choose r directly except through the costly effort margin. In practice,
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this is not a metaphysical claim; it is an engineering and governance target.
If the agent can cheaply inflate a receipt (e.g., generate spurious tool calls,
pad token counts, or selectively log favorable traces), then Ay becomes a
poor proxy for true effort and the event E} can be Goodharted. The theory
suggests a useful diagnostic: receipt contracting is only as good as the effort
elasticity of the log distribution. When manipulation channels open, the
effective separability collapses, Ay | 0, and the minimal-implementation
bound Acs/As diverges.

Two design patterns help restore an (approximate) (H1). First, attesta-
tion and provenance: receipts should be emitted by components the agent
cannot rewrite, such as a platform-controlled tool router, a trusted execution
environment, or a cryptographic transcript with hash chaining and server-
side timestamps. Second, verifier-coupled receipts: instead of paying for raw
activity (calls, tokens), we pay for events that are hard to generate with-
out genuine work, such as unit tests passing, proof checker acceptance, or
consistency checks across multiple independent tools. Economically, these
constructions aim to ensure that, for any cheap “receipt inflation” strat-
egy, the induced distribution Py(r | e) either changes negligibly or triggers
detectable anomalies that reduce expected payment. A complementary gov-
ernance tool is randomized auditing: if the platform occasionally re-executes
tool calls or requests reproduction seeds, then receipt manipulation becomes
a mixed strategy problem with expected penalties (or forfeited bonuses) even
under limited liability.

Privacy constraints and the price of coarsening. Receipt richness is
rarely free. Telemetry can contain sensitive user content, proprietary re-
trieval results, or security-relevant traces. Platforms therefore coarsen, ag-
gregate, or privatize logs, and this interacts mechanically with incentives:
any privacy mechanism that reduces information about e reduces A;. The
comparative static is immediate: holding Ac, fixed, any privacy-induced
reduction in separability raises the subsidy required to induce high effort.

This point can be made operational. If a privacy filter applies a random-
ized mechanism II to raw receipts R to produce released receipts R= II(R),
then the relevant separability becomes

Ay = TV(Py(7 | 1), P(7 | 0)),

and data processing implies A, < A,. For example, if Il satisfies an e-
differential-privacy constraint at the receipt level, then the likelihood ratio
between Py(7 | 1) and Ps(7 | 0) is bounded, which in turn upper-bounds total
variation and can force Ag to be small unless ¢ is permissive. This creates
an explicit policy frontier: stronger privacy (smaller £ or heavier coarsening)
reduces incentive leverage, and the system must either tolerate lower effort
or pay more to sustain it.
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A practical compromise is to separate content from effort evidence. We
can often retain manipulation-resistant, privacy-preserving receipts by log-
ging only (i) tool identities and counts, (ii) cryptographic commitments to
tool I/O (hashes) without raw content, and (iii) pass/fail verifier outcomes.
Where even that is too revealing, we can use secure aggregation across tasks
or delayed release, but then robustness margins s become more important:
privacy mechanisms can introduce additional drift and noise, effectively in-
creasing 7 and requiring larger nudges to preserve incentive compatibility.

Multi-principal competition and “incentive arbitrage.” Many LLM
deployments occur in markets with multiple principals: enterprise customers,
platforms, and intermediaries simultaneously purchase model outputs and
can each impose a contract. A simple extension indexes principals by j €
{1,...,J} with contracts bgj )(y, 7), so the agent internalizes total expected

payment », E[bgj )(Y, R) | e, s] net of effort cost. Competition can cut both
ways. On one hand, it can discipline rents: if receipts allow precise incentive
targeting, principals may achieve high effort with lower expected transfers,
and competitive pressure pushes contracts toward minimal-implementation
forms. On the other hand, competition can create externalities in telemetry:
if one principal pays on a receipt event that is easy to inflate, the agent may
reshape behavior in ways that degrade other principals’ outcomes, and the
relevant Ps(y,r | €) becomes endogenous to the portfolio of contracts.

This suggests a platform-governance role for standardization. If the plat-
form defines canonical receipt schemas, audit rules, and manipulation penal-
ties, then principals compete on thresholds and bonus levels rather than on
incompatible measurement regimes. Moreover, without coordination, com-
petition may induce a “race to the simplest metric” (e.g., tokens) because it
is easiest to specify and verify, even when it is a poor separator of true ef-
fort. The model clarifies why that is inefficient: proportional pay-for-metrics
typically fails to concentrate payments on E7 and therefore wastes budget
whenever the metric is only weakly correlated with effort.

Multi-agent systems and coordination across components. Modern
tool-using systems are often modular: a planner, retriever, coder, and verifier
may be separate agents or services, each with its own effort choice and cost.
Let effort be a vector e = (e;))¥; with costs >, csi(e;) and receipts r =
(Ti)i]i1 that may be individually attributable. The principal then faces a
joint implementation problem: induce high effort in the components that
matter, while avoiding overpaying those whose receipts do not separate.
Two economic frictions emerge. First is free-riding: if outcome y is a
joint product, outcome-only bonuses induce each component to rely on oth-
ers. Receipts mitigate this by enabling component-specific incentives when
Agi = TV(Ps(r; | e = 1),Ps(r; | e = 0)) is large. Second is attribu-
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tion: when receipts are coupled (e.g., planner choices affect retriever logs),
a naive per-agent event contract may create perverse substitution across
modules. The natural design response is to define receipts that are both
attributable and verifiable (e.g., per-module test suites, provenance tags for
retrieved sources, or sandboxed execution logs) and to use hybrid contracts
that pay on module-specific events while retaining a small outcome term to
align system-level objectives.

Technically, the minimal-payment logic generalizes: the principal solves
an LP over nonnegative payments on the joint receipt space, and extreme-
point solutions again concentrate payment on separating events—but now
the event can be a pattern across modules. This highlights a governance
benefit of modular receipts: if we can maintain approximate conditional
independence of r; given e;, then incentive design decomposes and avoids
combinatorial explosion in R.

Implications for procurement and platform governance. Receipt
contracting reframes Al procurement from “pay for outcomes” toward “pay
for verified process evidence,” with clear guardrails. First, procurement
should begin with an informativeness audit: estimate A; (and its drift)
for candidate receipts and reject metrics that do not separate effort. Sec-
ond, contracts should be written to minimize Goodhart pressure: concen-
trate payments on hard-to-fake events, cap exposure to tail receipts, and
include periodic recalibration of E} as tools, models, and workloads change.
Third, platforms should treat telemetry standards as market infrastructure.
A well-defined receipt API, verifiability guarantees, and privacy-preserving
attestations expand the feasible set of contracts and reduce the need for
blunt, expensive outcome subsidies.

From a policy perspective, the model also suggests a narrow and testable
case for transparency mandates: not “full logging,” but auditable evidence
of effort-linked events that improves separability without revealing sensitive
content. Conversely, overly restrictive telemetry rules can backfire by forcing
contracting onto outcomes alone, which is precisely the regime where the
required subsidies can become arbitrarily large when AY is small.

Limitations and future work. We close by being explicit about what the
model does not yet capture. Risk neutrality and limited liability are useful
baselines, but many vendors are risk averse and may demand insurance-
like premia for volatile receipt bonuses. Binary effort is a simplification; real
systems allocate compute continuously and choose among many tool policies.
Our treatment of drift via 7, is deliberately reduced-form; in practice, drift
can be strategic (agents adapt to the contract) and adversarial (agents search
for receipt loopholes). Finally, we have assumed commitment to contracts
and verifiability of receipts; where either fails, repeated-game reputation and
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audit enforcement become central.

These limitations point to concrete extensions: (i) continuous effort and
multi-dimensional actions (e,a) with endogenous receipt design; (ii) online
learning of contracts with exploration costs and adversarial robustness; (iii)
equilibrium analysis under multi-principal competition with shared telemetry
standards; and (iv) mechanism design for multi-agent systems with attribu-
tion constraints and collusion. Our view is that the model is most valuable
precisely because it sharpens these questions: it turns vague debates about
“paying for compute” into measurable objects—A;, AY, and ns—that can be
estimated, stress-tested, and governed.
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