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Abstract

We study contextual dynamic pricing with one-bit purchase feed-
back, building on the VAPE (Valuation Approximation—Price Elimina-
tion) framework that separates learning the contextual valuation func-
tion from learning a shared demand curve over price increments. While
VAPE attains minimax-optimal O(T%/3) regret under minimal assump-
tions, it relies on deliberately randomized prices to obtain unbiased
valuation signals—often infeasible in modern (2026) marketplaces with
experimentation governance and customer-trust constraints. We pro-
pose Offline-to-Online VAPE: an algorithm that uses historical logged
pricing data to warm-start both valuation and demand estimation,
thereby reducing the frequency of disruptive random-price rounds while
preserving the O(Tz/ 3) asymptotic regret rate in the linear valuation
model with bounded noise and Lipschitz demand. Our main analysis
quantifies how overlap in the logging policy (a small randomized com-
ponent) translates into fewer valuation-approximation rounds via an
improved elliptical-potential argument from a stronger initial design
matrix. We further provide a conservative wrapper that guarantees
high-probability safe improvement: cumulative online revenue stays
above a certified fraction of a baseline policy value. The resulting
framework connects modern offline evaluation (IPS/DR) with online
learning-to-price under minimal structural assumptions.
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1 Introduction

A recurring friction in deployed dynamic pricing systems is that the learning
signal is often binary—we observe whether a buyer purchases at a posted
price, but not the buyer’s valuation. This informational constraint turns on-
line experimentation into a delicate exercise: to learn where demand bends,
we must occasionally post prices that are “wrong” for the current context,
and those deviations can be disruptive. They are disruptive in the narrow
sense of foregone short-run revenue, and in the broader sense of product
and policy risk: extreme prices can degrade user trust, trigger complaints,
or violate internal governance rules that require stability relative to a vet-
ted baseline. In our setting, the central bottleneck is therefore not merely
statistical efficiency, but the economics of exploration: how to acquire in-
cremental information while limiting the economic and operational cost of
experimentation.

The VAPE approach (valuation approximation and price elimination) of-
fers a useful lens on this bottleneck. At a high level, VAPE recognizes that
with only purchase/no-purchase feedback, learning demand at a given con-
text is hard unless we can translate that binary feedback into an approximate
valuation signal. Doing so typically requires posting randomized prices on
a sufficiently rich support, which is exactly what creates disruption. Once
a valuation proxy is available, the algorithm can reduce uncertainty about
the parameter governing the valuation function and, in parallel, learn a one-
dimensional object capturing how purchase probabilities shift with price in-
crements. The decomposition is conceptually appealing: we pay a “tax”
during a limited set of valuation-approximation rounds, and then exploit the
learned structure to narrow down the optimal price among a discretized set of
candidates. Yet in the cold-start regime, the early valuation-approximation
phase can be long enough to dominate realized performance, especially when
the context dimension is moderate and the platform is unwilling to tolerate
large price swings.

Our main motivation is that many platforms are not truly in a cold-start
regime. Prior to launching an adaptive policy, firms frequently possess of-
fline logs generated by a previously deployed baseline pricing rule, sometimes
augmented by deliberate randomization for experimentation or compliance.
These logs are usually collected for business analytics, A /B testing, or audit-
ing, but they carry precisely the kind of overlap that valuation-approximation
methods require: occasional uniform or wide-support random prices that can
be treated as exogenous conditional on context. From an economic perspec-
tive, the existence of such logged randomization means that some of the
“costly” exploration has already been paid in the past. It is therefore natural
to ask how we can convert this historical experimentation into a warm start
that reduces disruption during future online learning, without changing the
online objective or weakening regret guarantees.



This paper develops an offline-to-online instantiation of VAPE that does
exactly that. The idea is simple: we use the portion of the logs generated
by the randomized component of the logging policy to initialize (i) a linear
estimator of the valuation parameter and (ii) initial estimates of purchase
probabilities at a grid of price increments. These two initializations are
complementary. The valuation warm start reduces the need for early on-
line rounds devoted to constructing valuation proxies, while the increment-
demand warm start shrinks confidence intervals for demand at relevant price
differences, accelerating elimination of dominated prices. The result is an
algorithm that retains the same asymptotic regret exponent as VAPE, but
with a smaller leading constant governed by an effective offline information
quantity (captured by the initial design matrix). Put differently, the logs do
not change the fundamental difficulty of learning from binary feedback, but
they can substantially reduce the time spent in the disruptive regime.

A second motivation is governance. In practice, an adaptive pricing pol-
icy is rarely deployed without guardrails relative to an approved baseline.
These guardrails may be motivated by revenue risk (e.g., “do not under-
perform the incumbent policy by more than a fixed margin”), by customer
protection (avoid unexpectedly high prices), or by organizational account-
ability (ensure that experimentation can be justified ex post). We therefore
frame an optional conservative wrapper around the learning policy: online
decisions are permitted to deviate from the baseline only when the algo-
rithm’s current evidence suggests that doing so is safe, and otherwise the
baseline is played. The conceptual analogy is to a budgeting rule: past gains
relative to a conservative lower bound can finance future experimentation,
while preventing “bankruptcy” relative to the benchmark. This wrapper sep-
arates two concerns that are often conflated in discussions of safe learning:
estimating the demand/valuation model efficiently, and controlling realized
performance relative to a reference policy.

Several limitations are worth stating up front. Our ability to reuse logs
hinges on known propensities and overlap: if the historical data contain too
little randomization, or if logging probabilities are misspecified, then offline
estimates can be biased and the warm start can be misleading. Likewise,
the high-probability guarantees we provide rely on standard regularity con-
ditions (boundedness and mild smoothness of the noise distribution) that
discipline how sharply demand can change with price. These assumptions
are not innocuous, but they match the operational reality that platforms typ-
ically impose explicit price bounds and monitor volatility. Finally, our safety
wrapper protects revenue relative to a baseline lower confidence bound; it
does not, by itself, address broader normative constraints (such as fairness
across groups) without additional structure.

With these motivations in place, we proceed as follows. The next section
formalizes the online pricing problem with binary feedback, specifies the
structural assumptions that make learning feasible, and reviews the VAPE



decomposition that underpins our algorithmic design.

2 Baseline online model and the VAPE decompo-
sition

We begin with the online problem absent any historical data. Time is indexed
by t =1,...,T. At each round the seller observes a context vector z; € R%
(features describing the buyer, product, or market state) satisfying ||z;||2 <
B, and then posts a price p; € [0, By|. The buyer has a latent valuation

Yt = x;r(9+§t7

where 6 € R? is unknown and bounded as ||0ls < By. The noise &; is i.i.d.,
centered, and bounded |§| < Be. We assume its CDF F' is L¢-Lipschitz,
which implies a mild smoothness of purchase probabilities in price. The
seller observes only a binary outcome

or = Hp <y},

and earns revenue 1y = pgo;. This is the canonical friction in many pricing
deployments: we do not see y;, we see only whether the posted price clears
the buyer’s willingness-to-pay.

The model implies a convenient factorization of expected revenue. Define
the demand-increment (or tail) function

D) = P(£>4) = 1—F(0).

Then conditional on (z,p) we have
w(z,p) = Elpl{p<zT0+¢}| x,p} = pD(}? - l‘Tﬁ) :

Economically, p — 26 is the price increment above the context-dependent
mean valuation g(x) = x'6, and D(-) maps that increment into a pur-
chase probability. The Lipschitz assumption on F equivalently gives |D(d) —
D(6")| < L¢|d — 6|, ruling out infinitely sharp discontinuities in demand as
we vary price.

Given a realized context sequence {a;t}thl, the benchmark is the best
price in hindsight at each round, i.e.,

p*(x) € arg max pD(p—z'0).
pE[O,By}

We evaluate an online policy {p;} via (pseudo-)regret

T T

Rr = max m(xz¢, p (e, pt) max pr x, pe D
2oz, 0P ; ;p 0.5, 00 Z

Pt*l”t 0).



This objective makes the central tradeoff transparent. To earn revenue we
want p; near p*(z), but to learn p*(-) we must infer both the level 270 and
the shape of D(-) using only binary outcomes.

The VAPE principle (valuation approzimation and price elimination) is
to separate these two learning tasks. The key observation is that the expected
reward depends on the context only through x'#, while all residual price-
response is captured by the one-dimensional function D(§). VAPE leverages
this structure by alternating between: (i) acquiring an approximate valuation
signal to estimate €, and (ii) learning D(-) on a discretized grid of increments
to eliminate suboptimal prices.

The first component is the valuation approximation step. Binary feed-
back becomes informative about 6 only if, conditional on z;, we some-
times post prices on a sufficiently rich support. Under a symmetric uniform
randomization over an interval containing the feasible prices (conceptually,
p ~ Unif([—-By, By])), one can construct a pseudo-outcome

2 = 2By (o - 3)

that satisfies an unbiasedness identity E[z; | 2;] = 2, @ (the intuition is that,
under uniform pricing, the purchase indicator integrates the valuation thresh-
old in a way that recovers the mean). This converts the pricing problem
into a linear regression with bounded noise, so that standard self-normalized
concentration controls [|§ — 6|y for a design matrix V = I+ 2z, . Impor-
tantly, these valuation-approximation rounds are precisely the ones that are
operationally disruptive: they deliberately inject price variation to obtain
identification.

The second component is increment-demand learning via discretization.
Fix a grid resolution € > 0 and grid points 0, = ke for k € K with |0| < B,,.
For a given context z, if we had a good estimate 0 then we could translate
a candidate price p into an estimated increment 5= p— 276 and hence into
a nearby grid point ;. VAPE maintains empirical estimates of D(d) from
observed purchase outcomes at prices whose implied increments fall in bin
k, along with confidence intervals that shrink at the usual y/1/Ny rate. The
Lipschitz property of D ensures that binning incurs only O(g) approximation
erTor.

Operationally, VAPE uses these ingredients to eliminate prices that are
provably dominated given current confidence sets for (6, D). One can think
of the algorithm as maintaining a set of plausible demand curves and val-
uation parameters; if a candidate increment J; cannot be optimal for any
plausible model, it is dropped. Over time, the remaining candidate set con-
centrates around the revenue-maximizing increment, and pricing becomes
less exploratory.

Two limitations of this baseline picture are worth flagging. First, with-
out any prior information, early valuation-approximation can consume a



nontrivial fraction of the horizon because uncertainty about 6 is high in d
dimensions. Second, the uniform randomization that makes valuation ap-
proximation clean is exactly the type of behavior platforms often wish to
minimize. These frictions motivate our next step: exploiting logged overlap
to shift part of the disruptive experimentation from the online phase into an
offline warm start.

3 Logged data and overlap: what historical prices
do (and do not) identify

We now introduce the offline log and make explicit the role of overlap. Before
online interaction begins, the seller observes a dataset

L= {(xL piL’OiL) ?:b

7

generated by the same valuation model as online: conditional on xZL , the
buyer valuation is y* = (zF)"0 + & with the same unknown 6 and the
same i.i.d. noise distribution for &. The key difference relative to the online
phase is that prices in the log are not chosen by our learning algorithm; they
are assigned by a historical logging policy (typically a production heuristic,
possibly with small randomized perturbations).

To reflect the operational reality that many platforms run limited explo-
ration (e.g., occasional A /B perturbations for measurement), we assume the
logging propensities are known and take the mixture form

:u(](p | ZL‘) = pUnif([_Byv By]) + (1 - p) 57ro(a:)7

where () is a baseline pricing rule and p € (0, 1] is the logged exploration
overlap. This class captures two stylized facts: (i) most of the time the sys-
tem plays a deterministic baseline price mo(z) chosen for revenue or business
constraints, and (ii) with small probability p the system deviates to a price
drawn from a broad support. The symmetry of Unif([—By, B,]) is analyti-
cally convenient for valuation approximation; in practice, one can interpret
the negative part as a normalization device (or as allowing rebates/credits),
and our bounds depend primarily on the existence of a known distribution
with sufficiently wide support.

The central identification issue is that, with binary outcomes, wvaria-
tion in prices conditional on context is what turns purchase data into in-
formation about x'# and about the tail function D(-). If the logger were
purely deterministic (p = 0), then conditional on a fixed & we observe only
0o = 1{mo(x) < x"70 + &}, i.e., a single threshold event at one price. Such
data can be informative for predicting purchase under the same policy mg—it
directly identifies the purchase probability at that posted price—but it does
not, by itself, identify counterfactual purchase probabilities at other prices,



nor does it cleanly identify the linear index = '§. Put differently, determinis-
tic logging leads to a form of set identification: many combinations of (6, F')
can rationalize the same mapping = — P(o = 1 | z,p = my(x)), because we
never observe how demand changes when price is perturbed around mo(z).

Even when we maintain the linear structure g(z) = z'6, biased logs
can still be problematic because the baseline price my(z) is typically chosen
as a function of x (and possibly other unobserved state). This adaptivity
induces a strong correlation between the chosen price and the latent valuation
component ', so naive regressions of 0 on z or p are generally invalid for
recovering @ or D. The correct object we need for learning is not Eo | z]
under the baseline, but rather P(o = 1 | x,p) as a function of p at fixed =z,
which requires overlap in the conditional price distribution.

This is precisely what p > 0 supplies. On rounds where the logger uses
the uniform component, the price is independent of £ conditional on x, and
moreover has a known, rich support. That combination delivers two benefits.
First, it yields an unbiased valuation signal: on uniformly randomized log
rounds one can construct the pseudo-outcome z = 2B, (o — %) satisfying
E[z | 2] = 276. This converts a subset of the logged data into a standard
linear estimation problem for 6, with effective sample size on the order of
pn. Second, broad price support implies broad support over increments
§ = p— 6, which is what we need to learn the one-dimensional demand-
increment curve D(§) = P(§ > §) beyond the narrow region induced by the
baseline policy.

The notion of overlap is therefore not an abstract technicality; it is the
formal expression of the business practice of running small but systematic ex-
ploration to make future improvements possible. The mixture model makes
the tradeoff stark. As p increases, we get more randomized data and hence
tighter offline confidence sets; but the logger departs more often from the
baseline policy. As p decreases, the log becomes safer and closer to business-
as-usual, but offline learning becomes weaker, and at the limit p | 0 we
cannot hope to initialize the online learner in a statistically reliable way.

Finally, we emphasize what the log can and cannot buy us. Logged data
can reduce online disruption only to the extent that it contains genuine ex-
perimental variation with known propensities. It cannot, by itself, eliminate
the need for online learning, because the contexts {x;} arriving online may
differ from those in the log, and because binary feedback fundamentally lim-
its how quickly we can localize the optimal increment without continued
data collection. Moreover, if the propensities pg(p | =) are misspecified or
unobserved, off-policy reasoning becomes fragile: without correct propensi-
ties, even evaluating the baseline reliably can fail, undermining any safety
guarantee built from a lower confidence bound. With these caveats in place,
the mixture logger provides a clean and realistic route to offline-to-online
transfer: it supplies a tractable set of “as-if randomized” rounds that we can
use to warm start estimation while preserving the operational interpretation



of small randomized exploration.

4 Offline initialization: learning ¢, seeding demand
increments, and certifying the baseline

We now describe how we use the log £ to warm start the online VAPE rou-
tine. Conceptually, we want three offline objects: (i) an initial confidence set
for the linear index z "6 (implemented via a ridge-style estimator and design
matrix), (ii) initial counts and empirical estimates for the one-dimensional
demand-increment curve D(§) = P(£ > 0) on a discretized grid, and (iii) an
offline lower confidence bound on the baseline value, which will later power
an optional conservative (baseline-safe) wrapper.

Step 1: Ridge-style estimation of 6 from randomized log slices.
Because binary feedback makes direct regression of o on (z, p) ill-posed under
adaptive logging, we deliberately restrict attention to the “as-if randomized”
subset of the log. Let Z, C {1,...,n} be the indices for which the logger
drew pF from the uniform component of (- | #¥). Operationally, this is a
flag that many systems can record by construction (and it is statistically the
cleanest source of identification).
On these rounds we form the VAPE pseudo-outcome

% = 2By<0f—%), i€,

which satisfies the key identity E[z; | 2F] = (zF)"0 under uniform random
pricing. We then run a ridge regression on (7, z;):

Vo = I+ Z zEahT, 6y = V(f1 Z xkz.
€Ly, 1€y,

Two features are worth emphasizing. First, the effective sample size is |Z,,| ~
pn, so overlap directly controls the tightness of the warm start. Second,
Vb is not merely a computational artifact: it is the initial “geometry” that
will govern online uncertainty via norms of the form ”xHV(;L In particular,
directions in feature space that were well-covered by logged randomization
will be treated as less uncertain online.

Step 2: Seeding increment-demand estimates on a price grid. VAPE
learns demand through increments 6 = p — 2 ', so we discretize the incre-
ment space with a grid {0 }rex, where 0y = ke and ¢ will match the online
resolution. Using éo, we map each randomized log observation to an esti-
mated increment

Si = piL — (xiL)Téo, 1 € Iy,



and assign &; to its nearest grid point 0y (ties broken arbitrarily). For each
bin k£ we define the offline count and purchase-rate estimate

R ~ 1 X
Nk’,O = Z 1{(51 — 5k}7 Dk70 = Nio Z 1{52 — 5k}0iLa
1€Ly €D,

whenever Nj o > 1. This produces a warm-started estimate of D(dy,) for all
increments that are sufficiently represented in the randomized slice.

The economic logic is simple: conditional on x, purchase is exactly the
event {£ > p—xTQ}, So once we can place observations on the increment axis,
learning demand becomes a one-dimensional nonparametric estimation prob-
lem. Statistically, two biases enter and are controlled by our assumptions:
discretization creates an O(e) approximation error, and using 6 instead of 0
shifts increments by (z ' (Ap—0)), which translates into demand error via Lip-
schitzness of D. These are precisely the terms we later carry into confidence
radii for elimination in the online phase.

Step 3: Offline evaluation of the baseline and a lower confidence
bound. If we want baseline safety online, we need a conservative bench-
mark for the baseline per-round value

Ry = Eg[n(z,m(z))] = Eu[mo(z) D(mo(x) —mTG)]

Because pg is known, we can estimate Ry using standard off-policy tools.
A particularly transparent construction is a doubly robust (DR) estimator
built from (i) an importance weight that selects rounds on which the logger
actually played the baseline price and (ii) a plug-in reward model 7(z,p)
derived from (éo, ]_A)k,o). Concretely, define

#(x,p) = pDo(p— "),

where ZA)O(‘) denotes the grid-based interpolation induced by {Dk,0}~ For
each log row, set the baseline indicator a; = 1{p} = mo(x})} (or, in imple-
mentation, equality up to a known pricing tick), and define the propensity of
that action under the mixture logger as pio(mo(xY) | zF) = 1—p (the uniform

component contributes no point mass). The DR estimate is then

. 1/, a; .
Ropr = EZ(ﬂ<x5,m(x5))+1_Zp(rf_ﬂ(mf,pf))), rit =pjoj €10, By).
=1

We then form a scalar lower confidence bound
Ry = RDR —rad(n,9),

where rad(n, d) is chosen via a bounded-difference concentration inequality
(e.g., Hoeffding or an empirical Bernstein bound) to ensure P(Ry > R) >

10



1—4§/2. The practical point is that, for safety, we only need a one-sided guar-
antee on a single number. This is far less demanding than fully learning D(-)
everywhere, but it does hinge on correct propensities; if yo is misspecified, R,
may be over-optimistic unless we add robustness or sensitivity adjustments.

Taken together, (Vp, 0o, {Nk,0, bk’()}kejc, R,) summarize what the log con-
tributes to the online phase: less initial uncertainty in high-coverage direc-
tions, nontrivial prior counts that reduce early demand-learning variance,
and (optionally) a certified baseline floor that can be enforced by a conser-
vative wrapper.

5 Offline-to-Online VAPE: warm start, prior counts,
and an optional conservative wrapper

We now describe the actual offline-to-online procedure that consumes the
offline summary

(V07 00, { N0, Dr.o} rexc E())

and produces online prices {pt}thl. The goal is to preserve VAPE’s basic
logic—separating the (high-dimensional) problem of tracking =6 from the
(one-dimensional) problem of learning D(-)—while using logs to reduce early
uncertainty. The only substantive change relative to a cold start is that we
treat the offline quantities as “pseudo-observations” at time ¢ = 0: the online
design begins at V{y rather than I, the online ridge estimate begins at 6, and
each increment bin begins with count N o and mean lA)kyo.

Online state variables. Online we maintain (i) a ridge state for the linear
index and (ii) binned statistics for increment demand. Concretely, we keep
a design matrix V; and score vector b; such that ét = Vt_lbt, initialized at
Vo and by = Zz‘eIu xiLzZ- so that éo = Vo_lbo. In parallel, for each increment
index k € K we keep an online count Vi, ; and empirical mean ZA?M, initialized
at Nj o and ﬁk,o (and interpreted as a prior mean computed from data, not
a Bayesian prior).

To map increments into prices we use the projection operator o, B, (u) =
min{B,, max{0,u}}, and define the candidate price associated with incre-
ment 0 as .

pie = o p, (2] 01 + 01).

Given Nj o + Nj ;—1 observations in bin k, we form a confidence interval for
D(d,) using a Hoeffding-style radius (augmented by the same e-discretization
and index-shift terms that appear in the offline analysis). We denote generic
upper and lower bounds by

UCBk,t € [07 1]’ LCBk,L‘ € [Oa 1]7

11



with LCBy+ < D(6;) < UCBy, on the high-probability event. The warm
start enters only through the effective sample size Ny o + Ny ¢—1.

When do we “query” valuation? VAPE does not update the linear
index on every round; instead, it triggers a valuation-approximation step
only when the current context is insufficiently covered by the design. A
convenient rule is to define a threshold x4 > 0 and declare round ¢ a valuation
round if

||y - .
| tHVt -1 > p
On valuation rounds we post a uniformly random price (or any symmetric

randomization with the VAPE identity), observe o, and update the ridge
state using the pseudo-outcome z; = 2B, (0; — %) On non-valuation rounds

we treat 0,1 as accurate enough for purposes of choosing among increment
candidates, and we focus learning effort on D(-).

Warm-started online VAPE (with optional baseline safety). The
full procedure is summarized below.

Input: Vp, 6o, {Nk.0, ]_A)kyo}ke;c, grid {0y}, confidence «, threshold pu.
Optional input: baseline 7y, LCB R, slack £, initial budget B; > 0.

Initialize V < Vo, b < Voo; set Ny < Ny and Dy < Dy for all k.
Fort=1,...,T:
Observe ;.
(Safety wrapper, optional) if B; < 0 then set p; < mp(x;) and go to “Update budget”.
(Valuation approximation) if ||2¢||y—1 > p then
Draw p; ~ Unif([—By, By|), post Ijg g |(pt), observe o;.
Set z; = 2By (o — %), update V < V + x| b+ b+ 242
Set § < Vb
else (Demand learning / exploitation):
For each k € K, compute pt = Iljg ] (%;I'é + 0)) and an optimistic value 7ty = pyj - UCE
Choose k; € argmaxy, Tk, set p; < Py k,, observe o;.
(Ng,—1) Dy, +oy

Update bin statistics for ki: Ni, <= Ng, + 1, ﬁkt — N
t

Update budget (optional): set r, = pio; and By < By + 1 — (1 — B)R,.
End for.

Two remarks clarify the economic role of the safety wrapper. First,
the budget recursion enforces an intertemporal participation constraint rel-
ative to the offline-certified baseline floor: when the algorithm has “banked”
enough surplus, it can experiment; when it falls behind, it temporarily re-
verts to mg. Second, the wrapper is modular: it does not change how we
compute candidate prices or confidence bounds, only when we are allowed
to deploy them.

12



Computational complexity. The dominant per-round cost is scanning
the increment grid. Since |K| < By /e, computing {p k, 7k } ke costs O(|K])
arithmetic operations per non-valuation round, i.e.,

T
(@) <) overall,
€

up to constant factors from projection and confidence-radius evaluation.
Ridge updates are needed only on valuation rounds. Using Sherman—Morrison,
each update of V=1 costs O(d?), so the total linear-algebra cost is

O(IGon| d%),

where G,, is the (random) set of valuation-approximation rounds. Storage
is O(d? + |K|) for V=1 (or a Cholesky factor) plus the per-bin counts and
means. In particular, the offline warm start reduces computation in the same
place it reduces regret: by shrinking |G,,| through a larger initial design Vj.

6 Comparative statics and design guidance

Our theory highlights a simple economic logic: logged randomization buys us
credible early information about the valuation index and the demand curve,
and that information substitutes for disruptive online experimentation. The
comparative statics therefore run through two summary objects—the initial
design volume det(Vp) for the high-dimensional index, and the initial bin
counts {Ny o }rex for the one-dimensional increment demand.

Overlap p: why even small randomization matters. When po(p |
r) = pUnif([~By, By]) + (1 — p)dr,(z) has p > 0, the uniform component
produces unbiased VAPE signals and hence a genuine linear-regression “sam-
ple size” of order |Z,| &~ pn. This affects online learning through (i) a smaller
initial estimation radius for § (Proposition 1) and (ii) a larger initial determi-
nant det(V}), which shrinks the bound on valuation-approximation rounds
(Proposition 3). A convenient back-of-the-envelope relation is

d
logdet(1o) ~ Y log(1+2;) S dlog(1+252),
j=1

where {)\;} are eigenvalues of >, ., ¥ (2F)T. Because the dependence is
logarithmic, we get diminishing returns: increasing p from 0 to a small posi-
tive value can be qualitatively important (it restores identifiability and warm-
start feasibility), while pushing p from, say, moderate to large yields more

modest improvements.
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In practice, the policy implication is that if we control logging, it is often
worth paying a small short-run revenue cost to ensure nontrivial random-
ization, since it reduces the future need for online random prices that are
typically more salient (and potentially more costly) than offline experimen-
tation.

Log size n: more data helps, but with diminishing returns. Hold-
ing p fixed, increasing n raises both det(Vp) and the demand-bin counts
Ni.0. The first reduces the frequency of valuation rounds; the second tight-
ens confidence intervals for D(d;) immediately, which reduces the “demand-
elimination” component of regret and accelerates reliable exploitation. The
diminishing-returns logic is again important: because the valuation-side ben-
efit enters via log det(V}), doubling n does not halve experimentation, but it
can still noticeably reduce the early, high-variance phase when V; is small.
This suggests a clear operational guidance: if one anticipates a short online
horizon T', investing in a larger offline log can be particularly valuable, be-
cause it front-loads information that would otherwise need to be acquired
online.

Grid precision ¢: a bias—variance tradeoff with an offline “variance
subsidy.” The VAPE decomposition makes the role of € transparent: finer
grids reduce discretization loss but increase the statistical burden of learning
demand at many increments. In the initialized regret bound, the terms

Te and e 21og(T)

represent, respectively, discretization and learning complexity (up to con-
stants and lower-order logarithms), while the warm start primarily reduces
the constant factors inside the demand-confidence radii through Nj . Eco-
nomically, the offline counts act like a variance subsidy: when N o is large
for the increments that matter, we can afford a somewhat finer £ (and hence
less price-discretization bias) without paying as much online exploration.

A practical tuning rule is therefore:

e Use the theoretical default e = (d?log? T/T)"/? as a safe baseline.

e If logs are large and well-spread so that many bins have substantial
Ni.0, consider decreasing € until the smallest “relevant” bins still have
enough effective samples (offline + expected online) to keep Hoeffding
radii small.

o If logs are sparse in the tails of 4, avoid overly fine uniform grids;
instead, truncate K to increments that are empirically populated, or
use coarser bins in regions with few observations (at the cost of local
discretization bias).
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This is also where we should acknowledge a limitation: the binning analysis
uses Lipschitzness of F' to translate increment errors into demand errors;
if D(:) has sharp changes, the practical value of very fine grids may be
constrained by model misspecification rather than sample size.

Safety slack (§: calibrating conservatism to evaluation quality. The
conservative wrapper guarantees (with high probability) that cumulative rev-
enue does not fall below (1 — )T R,. Comparative statics are immediate:
a larger 8 weakens the required floor and therefore reduces forced-baseline
plays, typically improving regret. But the economically relevant object is
not 3 alone; it is 3 relative to the tightness of R,. If offline evaluation is
sharp (good overlap, correct propensities, stable context distribution), then
R, is close to Ry and we can choose a smaller $ while still permitting mean-
ingful online learning. Conversely, if propensity knowledge is uncertain or
contexts drift between log and deployment, then R, may be conservative or
even invalid, in which case a seemingly “strict” safety guarantee may be mis-
leading; in such settings we recommend either (i) increasing offline overlap
p and re-estimating R, with more robust methods, or (ii) choosing a larger
B to reduce reliance on a potentially brittle lower bound.

Putting the knobs together. Design is easiest to think of sequentially:
first ensure overlap (choose p > 0 if logging is under our control), then decide
how much offline data n is worth given the intended online horizon, then se-
lect € to balance discretization against (offline-subsidized) demand learning,
and finally calibrate 8 to the credibility of offline baseline evaluation and
the institution’s tolerance for short-run revenue drawdowns. This ordering
mirrors the model’s message: the algorithm illuminates the tradeoff between
experimentation and revenue protection, and offline information shifts that
frontier outward by making learning less disruptive.

7 Comparative statics and design guidance

The main design lesson from the offline-to-online analysis is that the “cost”
of learning can be summarized by a small set of information objects that
practitioners can often influence: (i) how much randomized overlap the logs
contain, (ii) how large and how diverse the logged contexts are, and (iii) how
finely we discretize the one-dimensional increment axis used to learn demand.
We emphasize intuition first: offline randomization makes experimentation
less visible and often cheaper (it is already “paid for”), and its value is greatest
precisely when the online horizon is short or when conservative deployment
constraints limit aggressive online probing.
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Logged overlap p: turning identifiability on, and reducing online
disruption. When the logging propensity has a uniform component with
weight p > 0, the log contains rounds in which price variation is exoge-
nous relative to . This matters twice. First, it delivers unbiased valuation-
index signals for estimating 0, effectively yielding an offline regression sample
size on the order of pn. Second, those same rounds enlarge the initial de-
sign matrix Vj, which shrinks the geometry-driven uncertainty that triggers
valuation-approximation (“exploration”) behavior online. A useful way to see
diminishing returns is through the log-determinant:

10gdet(Vo)=logdet(f+lgwf(w5)T) < dlog(1+2871) ~ dlog(14+227).

Because the right-hand side grows only logarithmically in pn, increasing
p from 0 to a small positive value is often qualitatively transformative (it
makes the warm start feasible and reduces the earliest, most uncertain online
phase), whereas increasing p from moderate to large yields more incremental
gains. In operational terms, if we can choose the logging policy, a small
amount of persistent randomization can be viewed as an investment that
lowers future experimentation intensity in deployment, where random prices
may be more salient to users and stakeholders.

Log size n: value comes from coverage, not just volume. Scaling up
n improves both sides of the learning problem. On the valuation side, larger
n (at fixed p) increases det(Vp) and thus reduces the number of online rounds
in which we must “spend” on valuation approximation. On the demand side,
more logs raise the bin counts Nj ¢ used to initialize ﬁk’(% tightening early
confidence bands and accelerating elimination of dominated increments. The
economically relevant nuance is that effective log size is about coverage: if
contexts are concentrated in a low-dimensional subspace or if the randomized
component occurs primarily in a narrow segment of the price range, then 1}
may be ill-conditioned and many increment bins may remain empty. Hence,
when logs are collected intentionally, we recommend prioritizing (i) broad
context diversity (to avoid weak directions in Vj) and (ii) nontrivial price
support (to populate bins across the increments that are likely to be relevant
for optimal pricing).

Grid precision ¢: choosing where to pay bias, and where to pay
variance. The increment grid resolution € governs a classic bias—variance
tradeoff. Finer grids reduce discretization error in price optimization but
require more information per increment to learn D(d) with confidence. A
convenient way to organize tuning is to compare the magnitudes of the dis-
cretization term and the learning-complexity term in the regret decomposi-
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tion (suppressing logs and constants):

discretization ~ T, demand learning ~ =2

Offline initialization effectively subsidizes the second term: each bin begins
with Ny o pseudo-observations, so the algorithm enters the online phase with
narrower demand confidence intervals in well-populated regions. This sug-
gests a pragmatic refinement to the theoretical default & = (d?log? T/T)/?:
if the log is large and the randomized prices cover the relevant increment
range, we can reduce € modestly to lower discretization loss without suffer-
ing an equivalent increase in online exploration. Conversely, if many bins are
empty or near-empty, overly fine grids create a long tail of poorly estimated
increments; in that case, we prefer either (i) truncating K to the empirically
supported region, or (ii) using nonuniform bin widths (coarser where Ny, ¢ is
small), accepting local bias in exchange for stable inference.

Safety slack (3: conservatism should track evaluation credibility.
When we wrap learning with a baseline-safety budget rule, the parameter
B controls how much short-run revenue drawdown we are willing to toler-
ate relative to the baseline lower bound R;,. Mechanically, larger /3 relaxes
the constraint and reduces forced baseline plays; smaller 8 enforces stricter
protection but can slow learning. The deeper point is that 8 should be cal-
ibrated to the trustworthiness of R, which depends on overlap quality and
propensity correctness. If propensity models are misspecified, or if the con-
text distribution shifts between logging and deployment, then an apparently
conservative R may not be a valid floor. In such environments we should
either strengthen the evidence behind R, (e.g., increase p, improve propen-
sity logging, use more robust evaluation) or choose a larger 8 to reduce
dependence on a potentially brittle certificate.

Actionable tuning checklist. We recommend the following workflow.
First, ensure overlap: if logging is under our control, enforce p > 0 and
monitor realized randomized coverage. Second, assess whether V{ is well-
conditioned (or equivalently whether log det(V}) is substantial) and whether
bins with relevant d; have adequate Njo. Third, start from the default
and adjust based on empirical bin support, preferring truncation or adaptive
binning to extremely fine uniform grids. Finally, set § in light of institu-
tional risk tolerance and the reliability of offline evaluation, recognizing that
stricter guarantees can be counterproductive if the baseline certificate is it-
self uncertain. This sequencing reflects the model’s central tradeoff: offline
information shifts the feasible frontier by making online learning less disrup-
tive, but only to the extent that the logs provide genuine overlap and stable
measurement.
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8 Simulations and empirical template (optional)

The regret bounds and comparative statics above are most interpretable
when we can see how the warm start changes the algorithm’s early behavior.
A minimal simulation template therefore focuses on two observables that the
theory highlights: (i) cumulative revenue (or regret) and (ii) the incidence
of “disruptive” learning events, i.e., valuation-approximation rounds G, and
(when enabled) forced baseline plays under the conservative wrapper. Our
goal in this subsection is not to optimize performance, but to provide an
empirical checklist that mirrors the model’s primitives and makes the role of
logged overlap p operational.

Synthetic, drift-free environment. We recommend starting with a sta-
tionary instance exactly matching the analysis. Fix (d, T, B, By, Bg, B, L¢)
and choose a context distribution P, with ||x¢||2 < B almost surely (e.g.,
xy ~ Unif({£1}%) rescaled, or a truncated Gaussian normalized to radius
B;). Draw 0 once with ||f||2 < By. For the noise, pick a bounded distribu-
tion with a Lipschitz CDF, e.g. & ~ Unif([—Bg¢, B¢]) (then L¢ = 1/(2B¢)) or
a truncated logistic; generate valuations y; = m: 0 4+ & and binary outcomes
o = Hp: <y}
Offline logs are generated by the known mixture propensity

/-L(J(p | ZL‘) = pUnif([_Byv By]) + (1 - p) 57r0(a:)7

so that we can identify Z, and compute (Voaéo,]:)k,O,Nk,o)- For my, we
suggest a simple, intentionally imperfect policy to make improvement vis-
ible (e.g. a constant price, or a linear heuristic clipped to [0,B,]). On-
line, run (i) cold-start VAPE and (ii) offline-initialized VAPE with the same
e = (d?log? T/T)"/? and confidence v = T—%.

Primary outcome plots: what the warm start changes. We find the
following plots most diagnostic:

e Cumulative regret proxy: since maxy, m(x¢,p) is known in simulation,
report Y-, (maxyepo,,) PD(p — z0) — pD(py — x/ 0)) as a function
of s.

e FEzploration incidence: plot the running count ), 1{t € G, } for cold
vs warm start. This figure directly visualizes Proposition 3: warm-start
curves should be uniformly below cold-start curves, with the largest gap
early in time.

e Demand learning coverage: histogram the offline bin counts {Njo}x
and, optionally, the total counts after 7" online rounds. This connects
performance to whether the increment grid is supported where the
algorithm searches.
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The qualitative pattern consistent with the theory is that warm starts com-
press the “uncertain” initial phase: the policy reaches stable pricing sooner,
and the reduction in |G, | is largest when 7' is modest (when early mistakes
are relatively more costly).

Ablations: isolating mechanisms and the role of p. To attribute
improvements to specific offline objects, we recommend three ablations.

1. Valuation-only warm start: initialize (Vg,éo) but set f)k,o uninfor-
mative (e.g. Nyo = 0). This isolates exploration reduction through
log det(Vp).

2. Demand-only warm start: keep Vo = I but initialize (f)k,me,o) from
logs using an oracle 6 (or using 6o while not feeding Vpy to the online
estimator). This isolates whether early demand confidence drives most
of the gain.

3. Vary p at fized n: run a sweep over p € {0,0.01,0.05,0.1,0.2} (or
feasible values in the application). The central empirical prediction is
a sharp change between p = 0 and small p > 0 (identifiability and warm
start “turn on”), followed by diminishing returns as p grows, consistent
with the logarithmic growth of log det(Vp).

Conservative wrapper: safety—learning tradeoffs in a controlled
setting. To illustrate the safety mechanism, compute an offline lower con-
fidence bound R for the baseline value (IPS or DR is straightforward here
because pg is known), then run initialized VAPE (a) without the wrapper
and (b) with the budget recursion. Report: (i) the realized minimum of the
budget process ming<7 By, (ii) the number of forced baseline plays, and (iii)
realized revenue shortfall relative to (1 — 5)sR, over time. In stationary
simulations with correct propensities, we typically see that modest slack
eliminates most forced plays after a short transient, making safety nearly
costless once uncertainty contracts; aggressive safety (small 3) visibly slows
early learning.

Mild-drift stress test: robustness diagnostics rather than guaran-
tees. Finally, because deployment rarely matches the logging distribution
exactly, we recommend a “mild drift” variant as a stress test. Two simple
perturbations are: (i) parameter drift 6, = 6 + A - 1{t > tp} with small
I|Al|2, and (ii) context shift where x; changes distribution after ¢y while pre-
serving ||z|| < B. These experiments typically show that warm starts still
reduce early disruption, but the conservative wrapper’s behavior becomes
more sensitive to whether R, remains a valid certificate under shift. This
motivates the next section: when propensities are unknown, overlap is weak,
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or stationarity fails, we generally need additional estimation and robustness
machinery beyond the clean offline-to-online template.

9 Limitations and extensions

The offline-to-online template above is intentionally clean: we assume the
logging propensities po(p | x) are known, overlap is controlled by an ex-
ogenous p > 0, and the offline and online environments share the same
stationary primitives. These assumptions let the model isolate a transparent
economic logic—we can “buy” safer and faster online learning with random-
ized historical experimentation—but they also mark the boundary beyond
which additional statistical and numerical machinery becomes essential.

Unknown or misspecified propensities. In practice, platforms often
do not have perfectly reliable records of the randomization mechanism that
generated historical prices (or the mechanism itself may have evolved). If g
is unknown, then both (i) our ability to identify 6 from the uniform com-
ponent and (ii) the validity of IPS/DR baseline evaluation are threatened.
From an econometric perspective, the issue is classical: propensity misspec-
ification induces bias in off-policy evaluation, and a biased “lower confidence
bound” R can invalidate any safety guarantee. A pragmatic extension is to
explicitly estimate po(p | z) from logs (e.g., multinomial /continuous density
models for p | ) and then treat propensity estimation error as part of the
confidence radius. Doing so typically requires sample splitting or cross-fitting
to avoid overly optimistic concentration when the same data are used to fit
and evaluate propensities. When the price distribution has a discrete atom
at mo(z) plus a continuous component, the numerical implementation is also
delicate: one must fit a mixture model and enforce positivity constraints to
prevent exploding weights. In deployments, we view instrumentation (log-
ging the randomization seed and assignment probabilities) as a first-order
policy recommendation, because it substitutes an organizational control for
a statistical correction.

Weak overlap and partial identification. Our warm-start gains scale
with the “effective randomized sample size” |Z,| ~ pn. When p is very
small, det(Vp) may barely exceed 1, demand bins {Nj o} become sparse,
and the offline stage cannot materially reduce disruptive online exploration.
More fundamentally, if the logged prices concentrate on a narrow range, then
counterfactual revenues outside that range are not point-identified without
functional-form restrictions. In that regime, one typically moves from regret
analysis under point identification to robust or set-identified objectives: we
can optimize a pessimistic revenue criterion over a plausible model class, or
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impose a conservative constraint that only certifies improvements where over-
lap exists. Algorithmically, this leads to practices such as weight clipping,
pessimistic value iteration over confidence sets, or explicitly allocating new
randomized exploration online (a small “tax” on short-run revenue to restore
identifiability). Economically, the message is that a deterministic incumbent
policy mp without experimentation creates an informational externality: it
preserves short-run stability at the cost of learning opportunities that would
enable future surplus.

Nonstationary logs versus online environments. A second fault line
is distribution shift: the log-generating environment may differ from the on-
line environment due to seasonality, product changes, market entry, or simply
a different context distribution P,. Our regret analysis tolerates stochastic
contexts, but it does not protect against a structural break between the of-
fline and online regimes. The most direct consequence is that R, even if
valid offline, may no longer be a valid certificate online, so the conservative
wrapper can become either overly restrictive (if the baseline improves) or
unsafe (if the baseline deteriorates). Extensions here resemble the toolkit
for covariate shift and nonstationarity: one can (i) reweight offline obser-
vations by an estimated density ratio between online and offline contexts,
(ii) maintain a time-varying baseline certificate updated with online data,
or (iii) replace static regret with dynamic regret benchmarks that allow 6,
to drift. Each approach introduces nontrivial numerical steps (density-ratio
estimation, online change-point detection, or sliding-window estimation) and
typically weakens the clean O(TQ/ 3) guarantee into bounds that depend on
a variation budget such as ), ||6¢+1 — 6¢|2.

Context-dependent noise and richer demand heterogeneity. Our
model assumes &; is i.i.d. with a common Lipschitz CDF F, so the demand
increment function D(d) = P(§ > ¢) is context-invariant. In many markets,
however, uncertainty is heteroskedastic or systematically linked to z; (e.g.,
different customer segments have different dispersion). Formally, this corre-
sponds to F(- | z) and hence D(6). Once D becomes context-dependent,
the increment-binning step must be redesigned: the same d; no longer aggre-
gates comparable observations across contexts, and the offline histogram is
no longer estimating a single object. One extension is to posit a structured
family, such as a scale model £ = o(x)u or a generalized linear specifica-
tion for purchase probabilities, and to estimate nuisance functions o(-) or
a link function using flexible methods. This is precisely where doubly ro-
bust techniques become attractive: we can combine an estimated outcome
model (purchase probability) with propensity estimates to stabilize learning.
The price of flexibility is computational: fitting high-dimensional nuisance
models, tuning regularization, and propagating their uncertainty into valid
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confidence sets generally requires cross-fitting and careful finite-sample cali-
bration.

Takeaway. We see the present framework as a baseline: it illuminates
the safety—learning tradeoff when logged experimentation is available and
correctly recorded. Moving from this benchmark to production requires con-
fronting propensity uncertainty, overlap scarcity, and environmental drift,
and doing so typically shifts the bottleneck from analytic regret decompo-
sition to reliable numerical estimation of nuisance components and robust
certification under misspecification.
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