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Abstract

Modern pricing systems condition on high-dimensional embeddings
of users, queries, and products. Existing nonparametric regret guaran-
tees for contextual dynamic pricing typically scale exponentially with
the ambient dimension because they rely on Euclidean coverings of
the context space. Building on the VAPE framework (Valuation Ap-
proximation–Price Elimination), which separates learning the valua-
tion function from learning a transferable demand curve over price
increments, we develop an intrinsic-complexity version that replaces
fixed coverings with adaptive partitions driven by the metric struc-
ture of contexts. We model contexts as points in a metric space
with doubling dimension m and assume the expected valuation g is
Hölder-continuous in that metric, while valuations are distorted by
bounded i.i.d. noise with Lipschitz CDF. Our algorithm combines (i)
zooming-style adaptive sampling to estimate g only where needed and
(ii) a global successive-elimination routine over price increments that
shares demand information across contexts as in VAPE. We prove a
high-probability regret bound of order Õ

(
T (m+2β)/(m+3β)

)
, replacing

ambient dimension by intrinsic dimension. The analysis highlights a
distinctive challenge of pricing relative to standard bandits: accurate
demand estimation is needed over a wide range of increments because
optimal markups vary with g(x). We formalize how adaptive valuation
learning can be coupled with cross-context demand learning without
losing transfer benefits, providing a theory aligned with embedding-era
(2026) pricing pipelines.
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1 Introduction

Digital platforms increasingly set prices in environments where the seller
observes rich, high-dimensional signals before quoting a take-it-or-leave-it
offer. A marketplace sees a vector of browsing events; a mobility platform
sees a spatio-temporal state, weather, and supply indicators; a subscription
service sees a learned embedding summarizing a user’s history. From an
econometric viewpoint, these signals are “contexts” that shift willingness to
pay; from a systems viewpoint, they are features produced by upstream
machine-learning models. In both cases, the practical promise is the same:
better targeting should improve revenue relative to uniform pricing.

The theoretical bottleneck is that the standard nonparametric route to
contextual pricing—treating the valuation function as Lipschitz (or Hölder)
in an ambient Euclidean space and then covering that space uniformly—
scales poorly with the raw feature dimension. If the context lives in Rd and
we insist on guarantees that hold uniformly over the space, the number of
regions required to localize the valuation at resolution ϵ is on the order of
ϵ−d/β . Even in moderately sized embeddings, this curse of dimensionality
makes the implied sample requirements astronomical. The mismatch with
practice is stark: modern representations are often intentionally overparam-
eterized, but the induced data geometry is typically low-dimensional in an
intrinsic sense (for instance, because behavior concentrates near a manifold,
or because only a few latent factors matter). A theory that takes the em-
bedding dimension d at face value therefore risks being pessimistic precisely
in the regimes where practitioners most rely on representation learning.

This paper develops a regret analysis for contextual dynamic pricing
that depends on intrinsic complexity of the context space rather than its
ambient description. Our organizing hypothesis is that the seller should
be able to learn as quickly as the metric geometry permits: if the arrival
sequence of contexts explores only a low-dimensional subset, the algorithm
should refine only there; if the metric space itself has bounded growth (in
the sense of a doubling condition), then adaptive partitioning should exploit
that structure. This viewpoint is not merely aesthetic. It aligns the model
with how platforms actually deploy personalization: they do not attempt to
learn a separate price for every point in a huge feature space, but instead
generalize across “nearby” contexts defined by a similarity metric (often the
one implicitly used by the embedding).

Two additional features of the pricing problem sharpen the need for a
geometry-aware approach. First, the seller typically observes only binary
feedback : whether the buyer purchased at the posted price. In contrast to
contextual regression, the valuation is never directly observed, and in con-
trast to standard stochastic bandits, the “reward” is censored and endogenous
to the price. Second, there are (at least) two unknown objects interacting:
a context-dependent valuation level and a context-invariant noise distribu-
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tion (equivalently, a demand curve). A seller who conflates these sources
of uncertainty may learn slowly even in low-dimensional settings, because
the same data must simultaneously support cross-context generalization and
price-response estimation.

Our starting point is a structural idea introduced in the VAPE line of
work: separate the problem into (i) learning the valuation level g(x) that
shifts with context, and (ii) learning a one-dimensional demand curve over
price increments that is shared across contexts. Intuitively, even if buyers
differ systematically across contexts, the seller can view each transaction as:
“value equals a baseline determined by x plus a noise shock,” so the purchase
decision depends on the increment δ = p−g(x). When this decomposition is
valid, data collected at different contexts can be pooled to estimate demand
at the same increment, which is substantially easier than learning a separate
demand curve for each context.

Yet implementing this decomposition in a regret-minimizing algorithm
raises a subtle difficulty that we refer to as the wide increment range chal-
lenge. In an idealized world where g(x) were known, the seller could choose
an increment δ and post p = g(x)+δ, thus generating a clean Bernoulli obser-
vation with success probability D(δ). In reality, the seller replaces g(x) by an
estimate ĝ(x) and posts p = ĝ(x) + δ. The resulting purchase probability is
then D(δ+ĝ(x)−g(x)), so the demand observation is biased by the valuation
error. This bias is not a mere nuisance term: if increments are chosen from
a wide grid (which they must be, ex ante, because the optimal increment is
unknown), then even a modest valuation error can shift the effective incre-
ment enough to blur the algorithm’s comparisons among candidate prices.
Put differently, the seller is trying to learn a one-dimensional curve D(·),
but the covariate noise induced by mis-estimating g(·) can destroy the very
pooling that makes the approach attractive.

VAPE addresses this tension by interleaving two modules. The first is a
valuation approximation routine that occasionally posts randomized prices
to obtain an unbiased signal for g(x) from one-bit feedback. The second is
a price increment elimination routine that treats the residual problem as
a one-dimensional bandit over a discretized increment set, pooling demand
estimates across contexts whenever the same increment is played. The con-
ceptual appeal is clear: valuation learning is “local” in context space, while
demand learning is “global” and therefore statistically efficient. The limi-
tation of the original ambient-dimension analysis is also clear: making val-
uation errors uniformly small requires a covering of the context space at
resolution ϵ1/β , and the number of cells scales with the ambient dimension.

Our main contribution is to show that this architecture can be upgraded
from ambient-dimension coverings to intrinsic adaptive partitions in a gen-
eral metric space. Concretely, we replace a fixed ϵ-net by a zooming-style
hierarchical tree whose refinement is governed by the doubling structure of
the metric. When contexts concentrate in a low-complexity region, the tree
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expands primarily there; when the metric admits small covers at fine scales,
the total number of active cells grows like ϵ−m/β , where m is the doubling
dimension. This delivers regret bounds that scale with m rather than the
ambient embedding dimension, thereby reconciling theory with the empir-
ical reality that many high-dimensional representations have low intrinsic
complexity.

A second contribution is analytical: we formalize how valuation error
propagates into demand estimation under adaptive data collection. The
wide increment range challenge is inherently sequential: the algorithm’s in-
crement choices depend on past outcomes and on the current valuation es-
timates, which themselves depend on past randomized probing. We develop
a coupling argument showing that, on a high-probability event where valua-
tion errors are controlled, the induced bias in demand estimation is Lipschitz
in that error and can be absorbed into the confidence bounds used for elim-
ination. This result clarifies why cross-context pooling remains valid even
though each demand observation is generated at an effective increment that
is slightly perturbed by estimation error. Economically, it says that if the
demand curve is not too steep, then small mis-calibrations of the valuation
level do not fundamentally undermine learning about price sensitivity.

The resulting algorithm, which we call Intrinsic-VAPE, inherits the de-
sirable modularity of VAPE while adapting to the geometry of contexts. At
a high level, it (i) maintains a context tree and triggers additional valuation-
approximation probes only when the current cell is too large to guarantee
sufficiently small valuation bias, and (ii) runs a global elimination proce-
dure over a grid of increments using pooled purchase outcomes. The regret
bound decomposes into interpretable pieces: a discretization term from ap-
proximating the continuous increment choice by a grid, an estimation term
from learning demand over that grid, and a valuation-approximation term
whose magnitude is controlled by the intrinsic covering growth. Optimizing
the discretization level yields a rate governed by the intrinsic dimension m
and the Hölder smoothness parameter β, capturing the natural tradeoff be-
tween how fast valuation varies across contexts and how complex the context
space is.

We also view the analysis as offering guidance for practice. When a plat-
form adopts a new embedding or similarity metric, the question is not only
predictive accuracy but also learnability under feedback constraints. Our re-
sults suggest that what matters for dynamic pricing is the metric’s doubling
behavior (or related intrinsic complexity measures), because it controls how
many distinct “pricing neighborhoods” must be explored to calibrate valu-
ations. Moreover, the decomposition into valuation and increment learning
highlights a design principle: invest exploration budget in a way that sta-
bilizes the mapping from price to increment (i.e., keep |ĝ(x) − g(x)| small
enough), and then exploit pooling to learn the demand curve quickly. This is
especially relevant when experimentation is costly or constrained by policy,
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since one-bit feedback already limits information per interaction.
At the same time, the model deliberately abstracts from several real-

world complications. We assume an additive valuation structure with a
context-invariant noise distribution, which rules out heteroskedasticity or
context-dependent price sensitivity beyond a location shift. We focus on
static regret relative to the best context-dependent posted price, rather than
dynamic benchmarks that would allow the policy to react to latent state
variables. We also rely on regularity of the demand curve (Lipschitzness)
to control the bias induced by valuation errors. These assumptions are mo-
tivated by tractability and by the goal of isolating how intrinsic geometry
affects learning, but they should be revisited when applying the approach to
domains with strong nonstationarities, strategic behavior, or richer feedback.

Roadmap. Section 2 formalizes the interaction protocol, the valuation
model, and the regret benchmark, and clarifies which objects are and are
not identified from binary outcomes. Section 3 develops the structural de-
composition that motivates learning demand over increments and pooling
across contexts. Section 4 presents Intrinsic-VAPE, emphasizing the inter-
face between the adaptive context tree and the global increment elimina-
tion. Section 5 provides the regret analysis, including the intrinsic-dimension
bound on valuation approximation complexity and the coupling argument for
demand estimation under adaptive valuation error. We conclude with ex-
tensions and discussion of when intrinsic-geometry guarantees are likely to
be informative in applied pricing systems.

2 Model

2.1 Contextual posted-price interaction

We study a seller who repeatedly posts take-it-or-leave-it prices to a sequence
of myopic buyers over a finite horizon of T rounds. In round t ∈ {1, . . . , T},
the seller first observes a context xt—a feature vector, state, or embedding
produced by an upstream system—and then chooses a price pt from a known
feasible interval. After the price is posted, the buyer either purchases or not;
the seller observes only this binary outcome and the realized revenue.

Formally, contexts take values in a metric space (X , ρ) with bounded
diameter,

diam(X ) ≤ Bx.

We allow the context sequence (xt)
T
t=1 to be arbitrary, and in particular not

drawn i.i.d.; the seller’s learning guarantee is therefore meaningful in settings
where the platform faces shifting traffic patterns, targeted experimentation,
or other forms of nonstationary arrivals. The seller’s policy maps the current
context and the past interaction history into a price,

pt ∈ [0, By], pt = ϕt

(
xt; (xs, ps, os)s<t

)
,
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where os ∈ {0, 1} denotes whether a purchase occurred at round s. The
seller then observes

ot = 1{pt ≤ yt}, rt = ptot,

where yt is the buyer’s valuation and rt is the realized revenue.
The restriction to binary feedback is central. It captures the common

operational situation in which the platform observes whether a transaction
occurred but not the buyer’s willingness to pay, and it emphasizes the in-
formational bottleneck: each interaction provides at most one bit about de-
mand at the quoted price. This differs from contextual regression or auction
settings, where richer price–quantity variation (or bids) may be available.

2.2 Additive valuations and intrinsic regularity

We assume valuations follow an additive, context-shifted structure:

yt = g(xt) + ξt. (1)

The unknown function g : X → R represents the systematic component of
willingness to pay that varies with context, while ξt captures idiosyncratic
dispersion around that level. We impose the boundedness condition

|g(x)| ≤ Bg for all x ∈ X ,

and we assume the noise terms are i.i.d., centered, and bounded:

E[ξt] = 0, |ξt| ≤ Bξ a.s.,

independent of (xs, ps, os)s<t and of xt. Consequently valuations are bounded
as |yt| ≤ By with By := Bg + Bξ, and it is without loss to restrict prices to
[0, By].

The additive structure in (1) can be viewed as a location-shift model for
heterogeneity: context changes the “baseline” valuation through g(x), while
the distribution of deviations is stable across contexts. This assumption is
common in empirical demand modeling and often a reasonable approxima-
tion when contexts are engineered to summarize buyer type. At the same
time, it deliberately rules out context-dependent slopes (e.g., different price
sensitivities in different segments) and heteroskedastic dispersion. We return
to this limitation in the discussion below; for now, we emphasize that our
goal is to isolate a setting where cross-context pooling is in principle possi-
ble and to study how geometry of contexts affects learnability under one-bit
feedback.

To capture regularity of the systematic component across similar con-
texts, we assume g is Hölder continuous with respect to the metric ρ. That
is, for parameters Lg > 0 and β ∈ (0, 1],

|g(x)− g(x′)| ≤ Lg ρ(x, x
′)β for all x, x′ ∈ X . (2)
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When β = 1 this is the familiar Lipschitz condition. Economically, (2) for-
malizes that small changes in context imply small changes in willingness to
pay, a premise that underlies most personalization systems. Importantly, we
do not assume X is Euclidean; ρ can be an application-driven similarity met-
ric (for example, a distance between embeddings). This flexibility is critical
because, in practice, the relevant geometry is often induced by representation
learning rather than by raw covariates.

Finally, we will measure the intrinsic complexity of (X , ρ) via a doubling
condition. We say X has doubling dimension m if every ball of radius r
can be covered by at most 2m balls of radius r/2. We use this property
only as a structural assumption on the space—it expresses that the number
of “distinct neighborhoods” does not explode too quickly as we zoom in.
The algorithmic consequences of doubling structure, and the contrast with
Euclidean coverings, are developed in the next section.

2.3 Noise, demand, and the role of Lipschitzness

Let F denote the cumulative distribution function of ξt. The purchase deci-
sion under price p and context x is

o = 1{p ≤ g(x) + ξ}.

Equivalently, purchases occur when the noise shock exceeds the increment
δ := p− g(x). This motivates defining the demand function over increments

D(δ) := P(ξ ≥ δ) = 1− F (δ).

We assume F is Lipschitz with constant Lξ, which is equivalent to D being
Lipschitz with the same constant:

|D(δ)−D(δ′)| ≤ Lξ|δ − δ′|. (3)

This regularity plays a dual role. First, it is economically interpretable: de-
mand should not change discontinuously with a small perturbation of price
relative to the valuation level. Second, and more technically, it controls how
errors in estimating g(x) translate into errors in interpreting observed pur-
chase outcomes as information about D(·). Because the seller will typically
post p using an estimate ĝ(x) rather than the truth, Lipschitzness is what
allows us to bound the resulting “increment miscalibration” effect.

The centered-noise assumption E[ξ] = 0 is a normalization that pins
down g(x) as the conditional mean valuation level in (1). Without some
normalization, (g, F ) is not uniquely parameterized: shifting g by a constant
and shifting ξ by the negative of that constant leaves y unchanged. We
emphasize, however, that even with centering, the seller does not observe
yt, so g(x) is not directly identifiable from a single context without price
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variation. Identification in this environment is inherently tied to experimen-
tation: learning requires posting prices that induce informative accept/reject
outcomes.

A deeper identification issue concerns the extent to which one can disen-
tangle g(·) from F using only binary purchases. In our model, such disentan-
glement is possible in principle because contexts shift valuations while the
noise distribution is stable, so variation across contexts can be used to learn
the shape of D(·) once levels are controlled. But this is precisely where the
feedback constraint bites: the seller must simultaneously (i) localize g(x) well
enough that posted prices correspond to known increments, and (ii) sample
enough increments to recover the revenue-relevant features of D. Our regret
analysis is designed to make this tradeoff explicit.

2.4 Expected revenue and the regret benchmark

Given context x and posted price p, the seller’s expected revenue is

π(x, p) := E
[
p1{p ≤ y} | x, p

]
= pP(p ≤ g(x) + ξ)

= pD
(
p− g(x)

)
. (4)

The dependence on x is entirely through the shift g(x); the demand curve
D(·) is shared across contexts. This representation clarifies what the seller
is trying to do. For each x, the seller would like to choose a price that
balances a higher margin against a lower purchase probability, but it can
do so efficiently only if it can map the observed context into an accurate
valuation level, thereby converting prices into increments at which demand
information is comparable across rounds.

Let
p∗(x) ∈ arg max

p∈[0,By ]
π(x, p)

denote an optimal context-dependent posted price. We evaluate performance
by static regret relative to this oracle that knows g and D:

RT :=
T∑
t=1

(
π(xt, p

∗(xt))− π(xt, pt)
)
. (5)

This benchmark is natural for two reasons. First, it corresponds to the best
myopic posted-price policy under the assumed stationary valuation model;
it is therefore the right target if we view each round as an independent
selling opportunity with no intertemporal constraints. Second, it isolates
the learning problem created by one-bit feedback: even achieving the static
optimum requires exploration because the seller does not know which prices
are profitable at which contexts.

We stress what this benchmark does not capture. It does not reward
dynamic price discrimination that conditions on latent state beyond xt, nor
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does it incorporate forward-looking buyer responses or strategic waiting. It
also does not allow the oracle to choose randomized prices that might be
optimal under alternative objectives (e.g., information acquisition). Our
focus is the canonical online-learning goal: compete with the best feasible
deterministic price as a function of observed context, under a stationary but
unknown demand environment.

2.5 Discussion: what the model captures, and what it ab-
stracts from

The combination of (1), (2), and (3) is intended to reflect a pragmatic view of
personalization in platforms. Contexts are high-dimensional but organized
by a similarity metric; valuation varies smoothly in that metric; and residual
heterogeneity is stable enough across contexts that pooling is meaningful
once we account for level shifts. Under these conditions, the fundamental
obstacle is not the absence of structure but rather the scarcity of information
per interaction. Binary feedback forces the seller to “probe” the valuation
level to calibrate increments, and it must do so while also learning where the
demand curve makes revenue highest.

At the same time, we view these assumptions as a disciplined start-
ing point rather than as a complete description of applied pricing systems.
Context-dependent dispersion (heteroskedasticity), context-dependent slopes
(non-parallel demand shifts), and time variation in F would all break the
clean separation implicit in (4). In such environments, cross-context pooling
can become biased in a way that does not vanish with finer partitions. Our
analysis therefore should be read as characterizing when pooling is justified
and when geometry-aware exploration can yield meaningful gains—not as
claiming that all personalization problems reduce to this structure.

With the model and benchmark in place, we next develop the geometric
perspective that motivates our algorithmic design: rather than covering a
high-dimensional ambient space uniformly, we exploit intrinsic properties of
(X , ρ) that control how many distinct “valuation neighborhoods” must be
explored to make increment-based demand learning reliable.

3 From Euclidean coverings to intrinsic complexity

The regret rates in contextual pricing problems are often stated in terms
of an ambient dimension: one discretizes a d-dimensional covariate space
at resolution h, and the number of regions to explore scales like h−d. This
viewpoint is natural when X ⊂ Rd with a standard norm and when d is
modest. But it is a poor guide for modern applications, where contexts are
typically high-dimensional embeddings, sparse vectors, or composite objects
(queries, baskets, user histories) for which the relevant similarity geometry
is neither Euclidean nor low-dimensional in the coordinate sense. In such
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settings, the key empirical fact is that local neighborhoods may still be small
and well-structured even when the ambient representation is huge. Our goal
in this section is to formalize this idea through intrinsic covering growth, and
to explain why it directly governs the number of rounds needed to “calibrate”
valuations well enough for increment-based demand learning.

Why coverings enter: valuation approximation as localization. Re-
call that the seller never observes yt; it only observes whether a posted price
clears. To interpret a purchase outcome as information about the increment
δ = p − g(x), the seller must know g(x) to reasonable accuracy. If we were
willing to ignore geometry, we could treat each context as unrelated and
attempt to learn a separate valuation level for each distinct xt, but this is
hopeless when X is large or continuous. The Hölder condition (2) is the
bridge: if two contexts are close in ρ, then their valuations are close, and we
can share information locally.

A convenient way to operationalize local sharing is to partition X into
regions (cells) whose ρ-diameter is at most h, estimate g(·) on each cell, and
then extend the estimate to all points in that cell. The approximation error
decomposes into a bias term and a statistical term. If rad(u) denotes a scale
parameter for a cell u (for instance, an upper bound on its diameter), then
Hölder continuity implies that within that cell,

sup
x,x′∈cell(u)

|g(x)− g(x′)| ≤ Lg rad(u)β.

Thus, even with infinite data, using a single “representative” valuation for the
whole cell induces a bias on the order of Lgrad(u)β . On the other hand, given
only one-bit outcomes, estimating the representative valuation requires re-
peated probing (as in VAPE-style uniform pricing), and concentration yields
a statistical error that scales like n−1/2

u after nu probes in that cell (up to log-
arithmic factors). A canonical target is therefore to choose nu large enough
that

(statistical error) ≲ (geometric bias) ≈ Lg rad(u)β,

since pushing statistical error below the intrinsic cell bias yields diminishing
returns. The central question becomes: how many cells must we maintain at
each scale, and hence how many total valuation-probing rounds are needed
to achieve a uniform approximation accuracy?

The Euclidean benchmark and its limitations. If X ⊂ Rd and ρ is
induced by a norm, a standard construction is an h-net (or grid) of X : a
set of points whose h-balls cover the space. The size of a minimal h-cover
is governed by the covering number N(X , ρ, h), which in Euclidean settings
behaves like h−d up to constants. If we wish to ensure a valuation bias at
most ϵ, we choose h ≍ (ϵ/Lg)

1/β , producing N(X , ρ, h) ≍ ϵ−d/β regions.
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If each region requires Õ(ϵ−2) one-bit probes to estimate its representative
valuation to accuracy ϵ, the valuation-approximation budget scales like

Õ
(
ϵ−d/β ϵ−2

)
,

which is precisely the kind of dimension dependence that becomes prohibitive
when d is large.

Two practical points make this benchmark even less appealing. First, in
embedding-based systems, Euclidean distances in the ambient coordinates
often exaggerate degrees of freedom: many directions correspond to noise or
are rarely explored by arriving contexts. Second, fixed covers are wasteful
when contexts arrive non-uniformly. A uniform grid pays for cells that are
never visited, yet in online pricing the seller only receives feedback along the
realized context trajectory. These observations motivate a geometry that
captures intrinsic neighborhood growth and an algorithmic mechanism that
refines space only where data arrive.

Doubling metrics: intrinsic neighborhood growth. The doubling
condition provides a succinct, representation-invariant way to encode that
“balls do not explode” as we zoom in. Formally, (X , ρ) has doubling di-
mension m if every ball of radius r can be covered by at most 2m balls of
radius r/2. Iterating this property implies polynomial (rather than exponen-
tial) growth of covering numbers: there exist constants (depending on the
doubling constant) such that for all 0 < h ≤ Bx,

N(X , ρ, h) ≤ C

(
Bx

h

)m

.

Thus, if the intrinsic doubling dimension is m ≪ d, then the number of
h-scale regions needed to control the Hölder bias is on the order of h−m,
not h−d. Substituting h ≍ (ϵ/Lg)

1/β yields the intrinsic analogue of the
Euclidean complexity:

N(X , ρ, (ϵ/Lg)
1/β) ≲

(
L
1/β
g Bx

ϵ1/β

)m

≍ ϵ−m/β.

This is the first place where intrinsic dimension enters our analysis: it con-
trols how many distinct “valuation neighborhoods” must be separately cali-
brated to guarantee a uniform ϵ-accurate approximation to g.

Economically, one can interpret m as a bound on the effective richness
of segmentation induced by the similarity metric. When m is small, a finite
number of localized experiments can, in principle, calibrate valuation levels
across the entire population of contexts. When m is large, personalization
is intrinsically expensive: the platform faces many locally distinct valuation
regimes and must spend more of its horizon learning them.
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Hierarchical nets and trees: organizing multiscale exploration. Covering-
number bounds are informative, but to convert them into an online learning
algorithm we need a data structure that supports (i) multiscale localization,
(ii) refinement where needed, and (iii) efficient updates along the realized
context path. Hierarchical nets provide such a structure. At a high level,
we build a sequence of nets at scales r0 > r1 > r2 > · · · (typically geo-
metrically decreasing, e.g. rℓ = 2−ℓBx). At each scale rℓ, we select a set of
centers Cℓ ⊂ X such that (a) Cℓ is an rℓ-cover (every point is within rℓ of
some center), and (b) centers are well-separated (a packing property). The
doubling assumption ensures that each center at scale rℓ has only a bounded
number (on the order of 2m) of descendants at the next finer scale, yielding
a tree-like refinement graph.

This construction induces a context tree T whose nodes correspond to
cells cell(u) at various radii rad(u). Each round, the observed context xt is
assigned to a leaf at the finest active scale by descending the tree along the
unique chain of cells containing xt. Crucially, we do not need to materialize
the full tree down to a target resolution everywhere. We can create and refine
nodes only when contexts actually arrive in their vicinity, which is how we
avoid paying for unvisited regions.

From an implementation viewpoint, such trees are not exotic: they are
closely related to cover trees and navigating nets used in nearest-neighbor
search, and they align naturally with the way platforms already bucket users
or queries at multiple granularities. The mathematical role of the tree is
simply to make the doubling geometry operational for learning.

Zooming versus doubling: data-dependent refinement and worst-
case guarantees. It is useful to distinguish two notions of intrinsic com-
plexity that appear in related bandit literatures. The doubling dimension
m is a uniform property of the entire space, providing worst-case control
on covering growth. A “zooming” notion, by contrast, is data-dependent : it
measures the effective dimension of the subset of contexts (or near-optimal
regions) actually explored by the algorithm. In stochastic settings where con-
texts are drawn from a fixed distribution, or in Lipschitz bandits where the
learner focuses on near-optimal actions, zooming-type quantities can yield
sharper rates than uniform covering bounds.

In our setting, however, contexts may be arbitrary, and the seller must
guarantee regret control even under adversarial arrivals. This pushes us
toward a worst-case geometry: we cannot assume the sequence concentrates
on a low-dimensional subset, and we must be prepared to refine wherever
traffic goes. The doubling dimension is therefore the appropriate baseline:
it is weak enough to apply to non-Euclidean spaces, yet strong enough to
yield finite-sample complexity bounds that do not blow up with the ambient
representation. That said, our tree-based approach is inherently adaptive,
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and in benign instances it effectively behaves like a zooming algorithm by
refining only the regions that are visited frequently. The formal regret bound
we state later is thus a conservative guarantee; in practice, one should expect
better performance when arrivals are concentrated.

Implications for valuation-approximation sampling. We now con-
nect these geometric ideas to the number of rounds needed to estimate g(·)
sufficiently well for increment-based demand learning. Fix a target uniform
valuation accuracy ϵ > 0. A natural design is to ensure that whenever we
treat two contexts as belonging to the same cell, the cell radius satisfies

Lg rad(u)β ≲ ϵ,

so that geometric bias is at most ϵ. Under doubling structure, the number of
active cells at this radius scale is on the order of ϵ−m/β . Within each such cell,
we need enough binary probes to estimate the cell’s representative valuation
up to statistical error ϵ. Because the feedback is one-bit, the variance per
probe is bounded and concentration yields a sample requirement of order
Õ(ϵ−2) per cell (the logarithmic factors account for uniform control over
times and cells). Putting the pieces together gives the intrinsic valuation-
approximation budget

TVA(ϵ) ≈ Õ
(
ϵ−m/β ϵ−2

)
,

which replaces the Euclidean ϵ−d/βϵ−2 with its intrinsic counterpart. This
term is not yet a regret bound, but it already captures the core economic
tradeoff: finer personalization (smaller ϵ) reduces the bias with which we
interpret purchases as demand information at particular increments, but it
requires more localized experiments to calibrate g across the context space.

A practical interpretation is that the platform must spend a nontrivial
fraction of its horizon performing “calibration” experiments that may not be
immediately revenue-maximizing, especially when the intrinsic segmentation
complexity m is large or when g is rough (small β). Conversely, when m is
small and g is smooth, calibration can be amortized across many nearby
contexts, enabling the seller to quickly enter a regime where most rounds
can be devoted to optimizing increments rather than learning levels.

Limitations and what geometry does not solve. Doubling structure
addresses where valuation experiments need to occur (how many distinct
neighborhoods exist), but it does not remove the one-bit bottleneck: even
in a single cell, estimating a valuation level to precision ϵ requires on the
order of ϵ−2 probes. Moreover, doubling assumptions are only as meaning-
ful as the metric ρ. If ρ fails to reflect true similarity in valuations (for
example, if embeddings are misaligned with willingness-to-pay), then small
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doubling dimension may not translate into small valuation variation, and any
geometry-aware method will suffer. This is not merely a technical caveat: it
points to a systems-level complementarity between representation learning
(choosing ρ) and pricing experimentation (learning g and D).

With these geometric tools in hand, we are ready to describe our algorith-
mic construction. The key idea is to couple a tree-based valuation module,
which uses the intrinsic metric structure to decide when and where to probe,
with a global increment-learning module, which pools demand information
across contexts once increments are properly calibrated.

4 Intrinsic-VAPE: adaptive calibration with pooled
increment learning

Our algorithmic construction has two separable objectives that must be co-
ordinated online. First, we need a local procedure that decides when a region
of contexts has been “calibrated” well enough that purchase outcomes can
be interpreted as information about the increment δ = p − g(x). Second,
conditional on that calibration, we need a global procedure that learns the
one-dimensional demand curve over increments, and then translates that
knowledge into context-dependent prices via the identity p = g(x) + δ.
Intrinsic-VAPE implements this separation explicitly through (i) an adap-
tive valuation-approximation module organized on a context tree T , and (ii)
a pooled increment-learning module over a grid K, equipped with successive
elimination and time-varying feasibility constraints.

A two-mode view of each round. At round t we observe xt and then
place the round into one of two modes:

1. Calibration mode (valuation approximation): we post a price chosen
solely to sharpen our estimate of g(xt) (more precisely, of the local
valuation level within the cell containing xt).

2. Optimization mode (increment learning/selection): we post a price of
the form pt = ĝt(xt) + δ with δ chosen to learn or exploit the global
demand curve D(·).

The conceptual discipline is that calibration rounds are charged to the “TVA”
term, while optimization rounds are where pooled learning of D occurs. In
benign instances, the algorithm quickly transitions to optimization mode for
most contexts; in worst-case instances, the doubling geometry controls how
many distinct neighborhoods must be calibrated before this can happen.
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4.1 Module I: adaptive valuation approximation on a context
tree

Tree representation and active cells. We maintain a hierarchical net/tree
T over (X , ρ). Each node u corresponds to a cell cell(u) ⊆ X and carries a
radius parameter rad(u), typically on a geometric scale rad(u) ∈ {2−ℓBx :
ℓ ≥ 0}. A context x is associated with a unique active leaf by descending the
tree along the chain of cells containing x until no finer active child exists. We
emphasize that T is maintained lazily : a node is created (and later refined)
only when contexts arrive in its vicinity, so the data structure grows with
the realized trajectory rather than with an ex ante cover.

A one-bit valuation signal via uniform probing. During calibration,
we use a VAPE-style randomization to extract an unbiased (or clipped-
unbiased) signal about the latent valuation yt = g(xt) + ξt from a single
purchase bit. Concretely, we draw a probing price Pt ∼ Unif[0, By] indepen-
dent of the past, post pt = Pt, and observe ot = 1{Pt ≤ yt}. Define the
pseudo-observation

Zt = By ot.

When valuations lie in [0, By], we have E[Zt | yt] = yt; more generally, Zt

is an unbiased signal for yt after truncation at 0, which is sufficient for our
purposes because negative valuations optimally map to near-zero prices in
the feasible set. Since ξt is centered and independent, E[Zt | xt] tracks
g(xt) up to the same truncation, and the boundedness |Zt| ≤ By yields
sub-Gaussian concentration for cell averages.

Cell-wise estimators and resolution criteria. Each node u maintains
a count n(u) of calibration probes assigned to it and an empirical mean

ĝ(u) =
1

n(u)

∑
s≤t:xs∈cell(u), s calibration

Zs,

with the convention that ĝ(u) = 0 when n(u) = 0, and with clipping to
[−Bg, Bg] if desired. To decide whether a cell is “resolved,” we track a con-
fidence radius that mirrors the bias–variance decomposition:

conft(u) = c1

√
log(T )

n(u) ∨ 1
+ Lg rad(u)

β.

The first term is statistical (one-bit concentration), and the second is ge-
ometric (Hölder bias within the cell). We declare u calibrated at time t if
conft(u) ≤ ϵu for a target tolerance ϵu at that scale; in the simplest uniform-
accuracy implementation, we take ϵu ≡ ϵ for all active leaves.
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When to probe and when to refine. Given xt, let ut be its active
leaf. If ut is not calibrated, we enter calibration mode and post a probing
price Pt. The resulting Zt is used to update statistics along the visited
path (either only at ut, or at all ancestors as a variance-reduction device).
Refinement is triggered when a coarse cell has accumulated enough probes
that its statistical uncertainty is already below its geometric bias, i.e.,

c1

√
log(T )

n(u)
≤ c2 Lg rad(u)

β,

at which point further probing without splitting would be inefficient. We
then create children of u at radius rad(u)/2 (or the next net scale), and
subsequently route future contexts to these finer cells. The doubling property
ensures that each node has only a bounded number of children (on the order
of 2m up to constants), so the total number of active nodes at a given finest
radius is controlled by intrinsic rather than ambient dimension.

4.2 Module II: pooled increment grid and demand estima-
tion

Increment discretization and feasibility. In optimization mode, we
restrict attention to an increment grid

K = {δk = kϵ : k ∈ Z, |δk| ≤ By + 1},

and translate an increment into a price through the current valuation esti-
mate:

pt = clip[0,By ]

(
ĝt(xt) + δk

)
.

The feasibility constraint is time-varying because ĝt(xt) evolves and because
clipping can distort the intended increment. Operationally, we define the
feasible increment set at (t, xt) as

Kt(xt) = {δk ∈ K : 0 ≤ ĝt(xt) + δk ≤ By} ,

and we only play increments in Kt(xt) during optimization rounds. This
detail matters both computationally (we avoid meaningless arms) and ana-
lytically (we preserve the structural identity π(x, g(x)+ δ) = (g(x)+ δ)D(δ)
up to controlled estimation error).

Pooled demand statistics. For each grid point δk, we maintain global
counters:

Nt(k) =
∑
s≤t

1{round s played δk}, St(k) =
∑
s≤t

1{round s played δk} os,
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and the pooled estimator D̂t(δk) = St(k)/(Nt(k) ∨ 1). The key economic
reason pooling is valid is that D(·) depends only on the noise distribution
and not on x. The key statistical caveat is that when we post pt = ĝt(xt) +
δk, the purchase probability is D(δk + ĝt(xt) − g(xt)), not exactly D(δk).
Lipschitzness of D converts this into a bias term of order Lξ|ĝt(xt)− g(xt)|,
which is precisely why the calibration module is a prerequisite for reliable
demand learning.

Revenue confidence bounds for increment selection. On an opti-
mization round in cell ut, we use the calibrated estimate v̂t = ĝ(ut) and its
associated tolerance ϵut to form an interval for the valuation level,

v ∈ [v̂t − ϵut , v̂t + ϵut ].

For each feasible increment δk ∈ Kt(xt) we also maintain a confidence band
for demand,

D(δk) ∈
[
D̂t(δk)− bt(k), D̂t(δk) + bt(k)

]
, bt(k) = c3

√
log(T )

Nt(k) ∨ 1
+Lξϵut ,

where the second term is the calibration-induced bias cushion. Combining
these, we obtain conservative upper and lower bounds on the expected rev-
enue of increment δk at the current context:

UCBt(k) = (v̂t+ϵut+δk)
(
D̂t(δk)+bt(k)

)
, LCBt(k) = (v̂t−ϵut+δk)

(
D̂t(δk)−bt(k)

)
,

with the understanding that negative prices are excluded by feasibility. These
bounds formalize the sense in which uncertainty about g and uncertainty
about D enter multiplicatively in revenue.

4.3 Module III: successive elimination with a time-varying
active set

Why elimination rather than plain exploration. A naive approach
would pick k via an upper-confidence rule each round. We instead use suc-
cessive elimination because it cleanly separates “learning to the current tol-
erance” from “shrinking the decision set,” and because it interfaces naturally
with our calibration tolerances: once all surviving increments have demand
confidence width at most the cell-specific bias scale, further demand explo-
ration is not economically valuable in that cell.

Elimination rule and phase structure. We maintain an active set
At ⊆ K of increments that have not yet been ruled out. Periodically (e.g.
when all k ∈ At have been sampled enough that c3

√
log(T )/Nt(k) falls below
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a phase threshold), we compare increments using the current revenue confi-
dence bounds. Given xt and its calibrated valuation interval, we eliminate
any k ∈ At ∩ Kt(xt) such that

UCBt(k) < max
j∈At∩Kt(xt)

LCBt(j),

since such an increment cannot be optimal at this context within the current
uncertainty. Importantly, elimination is context-conditional : an increment
may be infeasible or dominated at one valuation level and yet remain poten-
tially optimal at another, so we eliminate only when the confidence bounds
imply dominance at the valuation levels that actually arise. This is where
the intrinsic tree matters: by restricting attention to calibrated cells, the
valuation range relevant for elimination is narrow, which speeds up pruning
in practice.

Choosing which increment to play. On optimization rounds, we select
an increment from At ∩ Kt(xt) that balances exploitation and information
acquisition. One implementable rule is to pick the maximizer of UCBt(k);
another, closer to textbook successive elimination, is to cycle through incre-
ments whose Nt(k) is below a phase quota. Both variants ensure that in-
crements with large uncertainty are sampled often enough to be eliminated
(or confirmed) quickly, while increments that are already well-estimated are
played primarily when they are plausibly revenue-maximizing at the current
v̂t.

4.4 Computational complexity and implementable variants

Per-round cost and data structures. The tree module requires updat-
ing statistics only on the path from the root to the active leaf containing
xt, which has depth O(log(Bx/radmin)) and is O(log T ) under geometric
scaling. Each node update is constant time, so valuation maintenance is
polylogarithmic per round. The increment module maintains (Nt(k), St(k))
for active grid points and can support UCB/LCB queries with either (i) a
linear scan over the currently feasible active set, or (ii) a priority queue keyed
by UCBt(k) when At is large. Since Kt(xt) is an interval in k (feasibility
is a price-range constraint), we can also maintain active increments in an
ordered structure and query maxima in logarithmic time.

Practical variants. Several implementation choices do not affect the con-
ceptual separation of modules. First, one can replace an explicit hierarchical
net with standard metric trees (cover trees, navigating nets) that support
approximate nearest-center assignment in O(log |active nodes|) time. Sec-
ond, one can batch elimination checks at dyadic times to avoid constant
recomputation of UCB/LCB; this changes only logarithmic factors. Third,
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when By is large and clipping becomes frequent, it is often preferable to
shrink Kt(xt) by a safety margin (e.g. enforce pt ∈ [η,By − η]) so that the
intended increment is realized without truncation; economically, this corre-
sponds to avoiding boundary prices where revenue sensitivity is dominated
by feasibility rather than demand.

What the algorithm does and does not buy us. Intrinsic-VAPE lever-
ages geometry only to reduce the number of distinct valuation neighborhoods
that require calibration; it does not circumvent the fundamental one-bit na-
ture of the feedback. In particular, if contexts arrive so that many fine cells
must be activated (large intrinsic complexity along the realized path), cali-
bration will consume a substantial fraction of the horizon. Conversely, once
calibration is achieved, the increment module enjoys strong cross-context
sharing: every optimization round contributes to learning the same function
D(·), so incremental improvements in demand estimation are immediately
usable across the entire space. The next section formalizes this tradeoff in
the regret bound by combining the tree-controlled calibration budget with
high-probability confidence events for demand estimation and elimination.

5 Main theorems: intrinsic-dimension regret and
how to read it

We now state the performance guarantees for Intrinsic-VAPE and clarify
the roles of the intrinsic dimension m, the Hölder smoothness (Lg, β), and
the one-bit nature of feedback. The main message is that the algorithm
pays for learning the valuation surface only through the number of context
neighborhoods that must be resolved along the realized trajectory, and this
number is governed by doubling geometry rather than any ambient embed-
ding dimension. Once valuations are locally calibrated, demand learning over
increments becomes a one-dimensional problem with global data sharing.

Regret bound in tunable form. Fix a target uniform valuation accuracy
parameter ϵ ∈ (0, 1] and an increment grid resolution of the same order.1

Consider the event on which (i) every active cell u declared calibrated indeed
satisfies supx∈cell(u) |ĝ(x)− g(x)| ≲ ϵ, and (ii) the pooled increment-demand
estimates satisfy simultaneous concentration with a bias term proportional to
the contemporaneous valuation error. On this event, the regret of Intrinsic-

1One can decouple these choices; we keep them comparable to simplify the statement
since both ultimately trade off a linear-in-T approximation loss against inverse-polynomial
estimation costs.
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VAPE admits the decomposition

RT ≤ C
(
Tϵ + ϵ−2 polylog(T )︸ ︷︷ ︸

increment identification

+ TVA(ϵ)︸ ︷︷ ︸
valuation calibration

)
, (6)

where C depends polynomially on (By, Lξ, Lg) and

TVA(ϵ) = Õ
(
ϵ−m/β ϵ−2

)
. (7)

The term Tϵ is the discretization/approximation loss: even with perfect
knowledge of D(·) on the grid, restricting to increments spaced at ϵ (and
allowing residual valuation uncertainty of order ϵ) can cost at most order ϵ
revenue per round. The ϵ−2 term is the statistical cost of learning a one-
dimensional demand curve from binary outcomes at grid points (up to log-
arithms and constants). The TVA term is the total number of calibration
rounds needed to make the bias in demand observations uniformly smaller
than ϵ in all regions that become active.

Main regret theorem (optimized rate). Optimizing the upper bound
in (6) over ϵ yields the intrinsic-dimension rate.

Theorem (Intrinsic-VAPE static regret). Under the standing assump-
tions on (X , ρ), g, and ξt, there exists an implementation of Intrinsic-VAPE
and absolute constants c, C > 0 such that with probability at least 1− c/T ,

RT ≤ Õ
(
T

m+2β
m+3β

)
.

The hidden constants depend polynomially on (Bx, Bg, Bξ, Lg, Lξ), and Õ(·)
hides polylogarithmic factors in T and in the doubling-covering constants.

The exponent arises by balancing the linear approximation term Tϵ
against the dominant estimation burden ϵ−m/β−2 coming from calibration
plus demand learning. Setting

ϵ ≍ T−β/(m+3β)

gives
Tϵ ≍ T

m+2β
m+3β , ϵ−m/β−2 ≍ T

m+2β
m+3β ,

up to logarithmic factors, which is precisely the claimed scaling.

High-probability events and why they are the right ones. Because
our feedback is binary and our actions are adaptive, the proof is organized
around a single global good event E on which all confidence statements used
by the algorithm are simultaneously valid. Concretely, E is the intersection
of three types of statements.
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First, for valuation calibration, we require that for every active node u
and every time t at which u is used for optimization, the node-level estimator
is uniformly accurate:

sup
x∈cell(u)

|ĝ(u)− g(x)| ≤ c1

√
log(T )

n(u) ∨ 1
+ Lg rad(u)

β. (8)

The right-hand side matches the statistical uncertainty from bounded one-bit
probing and the deterministic Hölder bias within the cell. Importantly, (8)
is time-uniform and node-uniform, so that once a cell is declared calibrated,
it remains safe to use its estimate as contexts revisit that region.

Second, for pooled demand estimation, we require concentration of the
empirical purchase rates at each increment δk, but centered at the correct
conditional mean given adaptive valuation error. Writing the purchase indi-
cator on a round that plays increment δk as os, we have

E[os | Fs−1, xs, δk] = D
(
δk + ĝs(xs)− g(xs)

)
,

so the natural martingale difference is os − E[os | ·]. On E we require that
for all k and all t,

∣∣∣D̂t(δk)−D(δk)
∣∣∣ ≤ c2

√
log(T )

Nt(k) ∨ 1
+ Lξϵt, (9)

where ϵt upper bounds the valuation error on rounds contributing to Nt(k).
The second term is not an artifact: it is the explicit price of using ĝt to
implement increments. The Lipschitz property of D makes this bias linear
in the valuation error; without Lipschitzness, pooling across contexts would
generally break.

Third, for elimination correctness, we require that the revenue confidence
bounds computed from (8)–(9) simultaneously bracket the true expected rev-
enue for every increment that remains feasible. This ensures that elimination
never discards an increment that could be optimal at the relevant valuation
levels, and that when an increment is eliminated, it is genuinely dominated
within the current tolerance. Formally, E implies that for every t and every
feasible k,

LCBt(k) ≤ (g(xt) + δk)D(δk) ≤ UCBt(k),

with the understanding that feasibility is enforced so that g(xt)+δk ∈ [0, By]
up to the same tolerance.

How parameters enter and what must be known. The algorithm uses
(By, Lξ) to scale probing ranges and demand confidence widths, and (Lg, β)
to decide when further calibration within a cell is no longer cost-effective
relative to refinement. Knowledge of m is not required to run the procedure;
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m enters only in the analysis through doubling-covering bounds that control
how many cells are activated at a given radius along the realized context
sequence. If (Lg, β) are unknown, one can replace the refinement rule by a
more conservative schedule (or run parallel instances over a grid of candidate
smoothness levels and aggregate via a standard doubling trick), at the cost
of additional logarithmic factors; the rate exponent is driven primarily by
the bias–variance balancing and thus remains the same in typical adaptive
variants.

Interpreting the exponent m+2β
m+3β . Two limiting cases are helpful. When

m is small (contexts effectively lie on a low-dimensional manifold or trajec-
tory), the exponent approaches 2/3 as m → 0:

lim
m→0

m+ 2β

m+ 3β
=

2

3
,

reflecting that even with essentially no geometric complexity, we still face
one-bit feedback and must learn a demand curve sufficiently well to choose
near-optimal increments. At the other extreme, as m → ∞ (or, more re-
alistically, as the realized sequence activates many fine neighborhoods), the
exponent approaches 1, indicating that calibration dominates and sublinear
regret becomes harder because we must essentially relearn valuations in too
many distinct places.

The role of smoothness is equally transparent. Larger β (smoother g)
improves the exponent by making coarse cells informative for larger regions,
which reduces the number of calibration samples needed before optimiza-
tion becomes reliable. In particular, with β = 1 (Lipschitz valuations) the
exponent becomes (m + 2)/(m + 3), matching the familiar pattern in non-
parametric bandits where one pays m degrees of geometric freedom plus the
statistical cost of estimation.

What hides in the logarithms. The Õ(·) notation conceals three sources
of polylogarithmic factors. The first is time-uniform concentration (union
bounds over t ≤ T ) for both calibration statistics and pooled demand es-
timates. The second is uniformity over increments k (a union bound over
|K| ≍ ϵ−1 grid points). The third is uniformity over active tree nodes;
here the doubling structure is crucial, because the number of nodes at scale
rad(u) ≈ r grows like r−m rather than depending on an ambient dimen-
sion. Taken together, these effects contribute multiplicative factors of order
log(T ) log(1/ϵ) (and metric-dependent constants), which are secondary to
the polynomial dependence on T captured by the exponent.

Economic interpretation and limitations. From a pricing perspective,
the theorem quantifies a concrete tradeoff: we must spend rounds to calibrate
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what different contexts mean in terms of valuation, but once calibrated,
every subsequent interaction refines a single demand curve shared across the
market. The intrinsic-dimension dependence formalizes the idea that what
matters for learning is not how contexts are represented, but how many
meaningfully different valuation neighborhoods appear. At the same time,
the rate does not escape the fundamental informational constraint of binary
feedback: even with perfect geometric structure, identifying near-optimal
prices requires enough experimentation to pin down purchase probabilities,
and this necessity is what keeps the exponent bounded below by 2/3 in the
best geometric case. The next section shows how these ingredients combine
in the proof via an explicit regret decomposition and a coupling argument
that controls demand-learning bias induced by imperfect valuation estimates.

6 Proof sketch: why intrinsic geometry and one-
dimensional pooling suffice

We sketch the argument behind the bound by isolating the two distinct
learning problems that are intertwined by binary feedback: (i) local valuation
calibration—we must infer g(xt) well enough to know what it means to post a
given increment above (or below) the valuation level—and (ii) global demand
learning over increments—once increments are implemented correctly, the
purchase process depends on δ = p−g(x) only through the context-invariant
demand curve D(δ). Intrinsic-VAPE is designed so that these two tasks
interact in only one direction: valuation error can bias demand observations,
but the algorithm allocates explicit rounds to reduce this bias, and then
reuses the (nearly) unbiased demand information everywhere.

Step 0: a single “good event” controls all adaptivity. Because prices
and cells are chosen adaptively, we organize the analysis around a global
high-probability event E on which all confidence statements needed by the
algorithm hold simultaneously for all t ≤ T , all active tree nodes u, and all
increments δk ∈ K. Concretely, E is the intersection of: (i) node-uniform
valuation accuracy bounds of the form

sup
x∈cell(u)

|ĝ(u)− g(x)| ≤ radg(u) ≡ c

√
log T

n(u) ∨ 1
+ Lg rad(u)

β, (10)

(ii) increment-uniform demand concentration bounds with a bias term driven
by valuation error (formalized below), and (iii) correctness of the revenue
confidence bounds used for elimination (i.e., the true revenue at every feasible
increment lies within the algorithm’s LCB/UCB). Standard union bounds
over times, nodes, and increments (together with Freedman/Hoeffding in-
equalities for bounded outcomes) give P(E) ≥ 1 − Õ(T−1). We then bound
regret on E and add a negligible O(By) contribution from Ec.
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Step 1: decompose regret into valuation-approximation rounds
and price-elimination rounds. Intrinsic-VAPE alternates between two
modes. In calibration mode, it posts randomized prices within the currently
active cell to estimate g to the accuracy required at that cell’s scale; these
rounds may be locally suboptimal but are counted explicitly. In optimization
mode, it posts a price of the form

pt = ĝt(xt) + δkt ,

where the increment index kt is chosen by a global elimination routine that
uses pooled data at each δk.

This yields a transparent decomposition. Let C denote the set of calibra-
tion rounds and O the set of optimization rounds. Then

RT =
∑
t∈C

(
π(xt, p

∗(xt))−π(xt, pt)
)
+
∑
t∈O

(
π(xt, p

∗(xt))−π(xt, pt)
)
. (11)

On C, we simply upper bound per-round regret by O(By) and focus on
controlling |C| via intrinsic covering arguments; this is the TVA term. On
O, regret is driven by whether the elimination routine has already removed
clearly suboptimal increments; this is the price-elimination term.

Step 2: control valuation error by tree confidence radii (intrinsic
zooming). The valuation module maintains a hierarchical partition tree
T adapted to the doubling metric. Each node u corresponds to a region
cell(u) with radius proxy rad(u). The key design choice is the stopping rule:
we stop refining a cell once its valuation uncertainty is no larger than the
granularity at which the optimization module operates. Operationally, a
node u is declared calibrated once radg(u) ≲ ϵ, where ϵ is the target uniform
valuation accuracy (typically matched to the increment grid step).

The bound (10) has two components with distinct economic interpreta-
tions. The term Lg rad(u)

β is a deterministic heterogeneity penalty: even
with infinite data, if we treat the cell as having a single valuation level, we
incur a mismatch across heterogeneous contexts within the cell. The term√
log T/n(u) is the statistical penalty from one-bit feedback. In calibra-

tion mode we choose probing prices so that the induced binary outcomes
yield an (approximately) unbiased signal for the local valuation level; then
n(u) = Õ(ϵ−2) samples suffice to drive the statistical term down to O(ϵ).

To bound the total number of calibration rounds, we sum the sample
requirements across all nodes that become active along the realized context
sequence. Here doubling geometry enters: the number of disjoint cells of
radius r that can be activated in a metric space of doubling dimension m
scales like O(r−m) (up to constants depending on the doubling cover). Since
we refine until rad(u) ≈ (ϵ/Lg)

1/β , the number of active cells at the finest
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relevant scale is Õ(ϵ−m/β). Multiplying by Õ(ϵ−2) samples per cell yields
the TVA bound

TVA(ϵ) = Õ
(
ϵ−m/βϵ−2

)
,

which is precisely the intrinsic-dimension replacement for ambient ϵ−d/β cov-
erings.

Step 3: a coupling lemma converts valuation error into controlled
demand-estimation bias. The demand module pools observations across
contexts at each increment δk. The subtlety is that we never play the true
increment relative to g(xt); we play it relative to ĝt(xt). If we set pt =
ĝt(xt) + δk, then the purchase indicator satisfies

ot = 1{pt ≤ g(xt) + ξt} = 1{ξt ≥ δk + (ĝt(xt)− g(xt))}.

Hence the conditional mean is shifted:

E[ot | Ft−1, xt, δk] = D(δk + et) , et ≡ ĝt(xt)− g(xt). (12)

If we were to ignore et, pooling would mix observations from different effec-
tive increments and generally break identification. The key observation is
that D is Lξ-Lipschitz, so small valuation errors only cause small bias:

|D(δk + et)−D(δk)| ≤ Lξ|et|.

On the event E we ensure |et| ≤ ϵt whenever increment δk is used, with
ϵt controlled by the cell’s calibration radius. Define the pooled estimator
D̂t(δk) as the empirical average of purchase indicators over rounds up to t
in which increment k was played. Then we decompose

D̂t(δk)−D(δk) =
(
D̂t(δk)− D̄t(δk)

)︸ ︷︷ ︸
martingale noise

+
(
D̄t(δk)−D(δk)

)︸ ︷︷ ︸
bias from et

,

where D̄t(δk) is the average of the shifted means D(δk+es) over those rounds.
The first term is controlled by Freedman or Hoeffding for bounded martingale
differences, giving

∣∣∣D̂t(δk)− D̄t(δk)
∣∣∣ ≤ c

√
log T

Nt(k) ∨ 1
uniformly in t, k.

The second term is bounded by Lipschitzness:∣∣D̄t(δk)−D(δk)
∣∣ ≤ 1

Nt(k) ∨ 1

∑
s≤t: ks=k

Lξ|es| ≤ Lξ ϵt,
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where ϵt can be taken as an upper bound on the valuation error over all
contributing rounds (or, more carefully, a maximal error across the relevant
cells). This yields the coupling statement used by the algorithm:∣∣∣D̂t(δk)−D(δk)

∣∣∣ ≤ c

√
log T

Nt(k) ∨ 1
+ Lξ ϵt, (13)

uniformly over t and k on E . Economically, (13) formalizes the idea that
inaccurate “context calibration” does not destroy cross-context pooling; it
merely acts like an additional noise term whose magnitude is proportional
to how miscalibrated the valuation scale is.

Step 4: successive elimination over increments and a counting ar-
gument. In optimization mode, the algorithm maintains an active set of
increments and eliminates those whose upper confidence bound on revenue is
below the lower confidence bound of some competitor. Using the structural
decomposition π(x, g(x)+ δ) = (g(x)+ δ)D(δ), the only context dependence
enters through g(x), while D(δ) is common. On E , we have a calibrated es-
timate ĝt(xt) with error at most ϵ, and an estimate of D(δk) satisfying (13).
Combining these yields revenue confidence intervals of width on the order of

widtht(k) ≈ By

(
c

√
log T

Nt(k)
+ Lξϵ

)
+ ϵ,

where the final ϵ captures the effect of replacing g(xt) by ĝt(xt) in the multi-
plicative term (g+δk). The elimination rule ensures that as soon as widtht(k)
is smaller than the suboptimality gap (up to the grid resolution), increment
k is removed.

The counting step is standard in elimination analyses: each increment k
must be sampled until its confidence radius drops below a target threshold.
Since the stochastic part scales as 1/

√
Nt(k), this yields a sample require-

ment of order Õ(ϵ−2) per relevant scale, and summing across the |K| ≍ ϵ−1

grid points while noting that many are eliminated quickly produces an ag-
gregate contribution of order Õ(ϵ−2) to regret (up to polylog factors). Intu-
itively, despite having ϵ−1 candidate increments, one-dimensional structure
plus elimination prevents paying ϵ−3: the algorithm concentrates samples on
the handful of increments near the optimum, and the rest are discarded after
O(log T ) evidence.

Step 5: put the pieces together. On E , calibration rounds contribute at
most O(By)·TVA(ϵ), while optimization rounds incur at most O(ϵ) per round
from discretization and residual bias, plus the elimination-driven learning
cost summarized above. Plugging these bounds into (11) yields the tunable
form

RT ≤ Õ
(
Tϵ+ ϵ−2 + ϵ−m/βϵ−2

)
,
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and optimizing ϵ recovers the intrinsic-dimension rate. The conceptual take-
away is that intrinsic geometry governs how many distinct valuation neigh-
borhoods must be calibrated, while global pooling and elimination ensure
that learning demand over increments remains a one-dimensional statistical
task even under adversarial context sequences.

7 Extensions and limitations: beyond a fixed met-
ric and fully shared demand

The analysis above is deliberately modular: one component learns the context-
dependent level g(x) at a resolution dictated by the geometry of (X , ρ),
while a second component treats demand over increments D(δ) as a one-
dimensional object that can be pooled globally. This modularity makes it
straightforward to adapt the framework to settings that practitioners often
face—where geometry is inherited from an ambient embedding, where the
“right” metric is itself learned, or where pooling across all contexts is too
strong an assumption. We discuss three natural extensions and then sum-
marize the main limitations that remain.

7.1 (a) Manifold structure in an ambient space

A common modeling choice is that contexts are observed as vectors in Rd

(customer covariates, product embeddings, text/image features), yet the ef-
fective variability lies on or near a lower-dimensional surface. Formally, sup-
pose X ⊂ Rd lies on a compact, smooth m0-dimensional submanifold M with
bounded curvature and reach, and take ρ to be either the ambient Euclidean
metric or the geodesic distance on M. Under standard regularity conditions,
(M, ρ) has doubling dimension m = Θ(m0) (up to constants depending on
curvature and diameter). In this case our regret rate becomes

RT ≤ Õ

(
T

m0+2β
m0+3β

)
,

which formalizes a simple economic message: the difficulty of valuation cal-
ibration is driven by the intrinsic degrees of freedom in the population of
contexts, not by the number of raw features recorded by the platform.

Two practical subtleties matter here. First, the choice between Euclidean
and geodesic distance affects constants and, at fine scales, the effective Hölder
smoothness of g. If g is β-Hölder with respect to geodesic distance but we
build the tree using Euclidean distance, the distortion is typically controlled
on compact manifolds, so the same rates continue to hold with adjusted
constants. Second, manifold structure motivates a concrete implementation
of the tree: instead of an abstract hierarchical net, one can build covers using
approximate nearest-neighbor routines in Rd, refining only around observed
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contexts. This is attractive empirically because it avoids constructing global
covers of a high-dimensional ambient space while still exploiting the intrinsic
covering growth.

From a policy perspective, the manifold view provides a rationale for
investing in richer embeddings (large d) without necessarily incurring a sta-
tistical penalty, provided the embedding is “well-behaved” and collapses onto
a low-dimensional locus for the relevant traffic. It also clarifies when such
optimism is unwarranted: if the embedding scatters contexts in many inde-
pendent directions (high intrinsic dimension), then the valuation calibration
burden necessarily grows.

7.2 (b) Learned representations and online metric refine-
ment

In many applications the platform does not begin with a trusted metric ρ.
Instead, it has raw covariates z ∈ Z and a learned representation ϕ : Z → Rq

(or a learned similarity kernel) that is updated over time. This raises a
conceptual challenge: our guarantees rely on Hölder smoothness of g with
respect to the metric used to build the adaptive partition, yet the platform
may only have access to an evolving proxy ρt.

One way to extend the framework is to posit a latent metric space (X , ρ⋆)
on which g is (Lg, β)-Hölder, and assume we observe a sequence of data-
dependent metrics ρt that converge to ρ⋆ in the sense that

sup
x,x′∈X

∣∣ρt(x, x′)− ρ⋆(x, x′)
∣∣ ≤ ηt, ηt ↓ 0.

If the partition tree is constructed using ρt, then the heterogeneity term in
the valuation radius effectively becomes

Lg radρ⋆(u)
β ≲ Lg

(
radρt(u) + ηt

)β
,

so metric error enters additively at the scale level. Economically, this says
that representation error behaves like additional within-cell heterogeneity:
even if we probe many prices, we cannot extrapolate valuations across con-
texts that the learned metric mistakenly deems “close.”

Algorithmically, this suggests a two-timescale design. On the fast timescale,
Intrinsic-VAPE proceeds as before using the current metric ρt to decide
whether a cell is calibrated and which cell to refine. On the slow timescale,
the platform updates ρt using auxiliary objectives (supervised learning from
downstream outcomes, self-supervised similarity learning, or metric learning
informed by observed purchase signals). The analysis would then separate
(i) regret due to statistical uncertainty conditional on ρt from (ii) regret due
to representation drift. A sufficient condition for preserving the headline rate
is that ηt decreases quickly enough that the induced extra bias is dominated
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by the target valuation accuracy ϵ at the time when fine-scale refinement is
needed.

We emphasize a limitation: making this extension fully rigorous typi-
cally requires numerical assumptions that go beyond the bandit model (e.g.,
stability of representation updates, bounded sensitivity of ϕt to single ob-
servations, or explicit regularization). Without such conditions, the tree can
“chase” a moving metric, repeatedly recalibrating regions that shift under ρt.
In practice, a conservative implementation would freeze the representation
over long epochs, rebuild or adjust the tree only between epochs, and treat
representation learning as an outer loop.

7.3 (c) Partial pooling across segments: relaxing fully shared
demand

The baseline model assumes that the increment demand curve D(δ) is com-
mon across all contexts. This is a powerful pooling device, but it can be
too strong in environments with heterogeneous price sensitivity: different
product categories, customer segments, geographies, or traffic sources can
exhibit meaningfully different noise distributions. A natural compromise is
partial pooling : we retain the structural idea that each segment has a one-
dimensional demand curve over increments, but we allow a small family of
curves indexed by a segment label s ∈ {1, . . . , S}.

One simple formulation is

yt = g(xt) + ξ
(st)
t , Ds(δ) = P(ξ(s) ≥ δ),

where the seller observes st along with xt. Then we can run the same
increment-elimination routine within each segment, obtaining regret bounds
that replace the global ϵ−2 demand-learning cost by roughly S copies (up to
the fact that some segments may be rare). The economic tradeoff is transpar-
ent: more segmentation reduces model bias (wrongly pooling unlike buyers)
but increases variance (fewer observations per segment).

A more flexible alternative is to impose structure across segments, such
as a parametric family Ds(δ) = D(δ; θs) with θs lying in a low-dimensional
set, or a hierarchical prior that shrinks θs toward a global mean. In that
case, the elimination step can be replaced by a multi-task confidence pro-
cedure that shares information across segments while still guarding against
negative transfer. Importantly, the valuation-calibration module need not
change: it still targets g(x) locally in (X , ρ), while the demand side be-
comes “one-dimensional per segment.” From the standpoint of deployment,
this extension is attractive because segmentation is often dictated by busi-
ness constraints (fairness considerations, regulation, category management),
and partial pooling provides a principled way to trade statistical efficiency
against robustness.
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7.4 Limitations and open directions

Several assumptions are doing real work, and relaxing them would require
new ideas.

Binary feedback and bounded noise. One-bit outcomes make calibra-
tion costly: the ϵ−2 sample requirement per active region is intrinsic to
estimating a mean from Bernoulli data. If richer feedback is available (e.g.,
noisy willingness-to-pay signals, multiple units, or censored quantities), the
valuation module could be substantially faster. The boundedness assump-
tions (|ξt| ≤ Bξ, |g(x)| ≤ Bg) mainly simplify concentration and ensure
prices lie in a compact interval; heavy-tailed valuations would call for robust
estimators and typically slower rates.

Lipschitz demand over increments. The coupling argument hinges on
D being Lξ-Lipschitz, converting valuation error into controlled bias. If D
has sharp jumps (e.g., point masses in valuations), small calibration errors
can cause large demand shifts, and pooling becomes fragile. In practice, this
is precisely the regime where very fine price discrimination is difficult; our
theory makes that difficulty explicit.

Stationarity and context invariance. We treat g and the noise distri-
bution as time-invariant. Many markets exhibit drift (seasonality, learning
buyers, competitive shocks). A pragmatic extension is to use sliding-window
or discounted estimators for both ĝ and D̂, but proving tight regret bounds
would require a dynamic-regret formulation with variation budgets. Like-
wise, the assumption that D is common across contexts is a modeling choice;
partial pooling addresses some heterogeneity, but fully context-dependent de-
mand would forfeit the one-dimensional reduction and reintroduce the curse
of dimensionality.

Tuning and constants. While the rate depends on m and β in a clean
way, implementation requires choices of grid resolution ϵ, confidence levels,
and refinement thresholds. Adaptive tuning (e.g., doubling tricks over ϵ) is
possible, but constants can be large when Lg or Lξ is large, reflecting genuine
economic hardness: steep demand curves and highly irregular valuations
amplify the cost of miscalibration.

These extensions clarify where the framework is most useful: settings
with strong cross-context commonality in price response and low intrinsic
geometric complexity in valuations. The next section turns to simulation
designs that make these tradeoffs visible and benchmark Intrinsic-VAPE
against fixed-cover baselines.
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8 Simulations and empirical protocol

We use simulations for two complementary goals. First, we want to ver-
ify that the adaptive partitioning in Intrinsic-VAPE behaves as the theory
suggests: refinement should concentrate on the subset of the context space
actually visited, and the number of active regions should scale with the
intrinsic covering growth rather than an ambient dimension. Second, we
want to translate the regret decomposition into operational diagnostics that
are meaningful in pricing deployments—calibration error for the valuation
module, and bias/variance tradeoffs for the pooled demand estimator over
increments.

Common experimental scaffold. Across all environments, we fix a hori-
zon T (typically between 2×104 and 2×105), and we simulate rounds using
the same timing: observe xt, post pt, draw yt = g(xt) + ξt, observe the pur-
chase indicator ot = 1{pt ≤ yt}, and record revenue rt = ptot. Since the
focus is static regret, we benchmark performance against the oracle policy
that knows both g and D, i.e.,

p⋆(x) ∈ arg max
p∈[0,By ]

pD(p− g(x)), RT =
T∑
t=1

(
π(xt, p

⋆(xt))− π(xt, pt)
)
.

To isolate algorithmic effects from numerical edge cases, we use bounded
noise with a Lipschitz CDF; a convenient default is ξ ∼ Unif[−Bξ, Bξ], for
which D(δ) = P(ξ ≥ δ) is piecewise linear and Lξ = 1/(2Bξ). This choice
makes it easy to compute the oracle revenue curve and to check that observed
differences are not artifacts of poorly conditioned demand estimation.

Environment class I: synthetic doubling-metric contexts without
an ambient embedding. To stress-test the “intrinsic geometry” claims
directly, we generate contexts in spaces where the natural access model is
distance queries rather than coordinates. Concretely, we sample a finite set
{x(1), . . . , x(N)} and define ρ via shortest-path distance on a random geo-
metric graph built on [0, 1]m0 (with m0 small), then expose to the algorithm
only (xt, ρ(xt, ·)) rather than the latent coordinates. With standard connec-
tivity parameters, the resulting metric has doubling dimension m = Θ(m0)
up to constants, while still allowing irregular local density (a feature that
matters for adaptive refinement). We choose g to be β-Hölder with respect
to ρ by constructing it as a smooth function on the latent coordinates and
then composing with the graph embedding; in practice we take

g(x) = Bg ·
(
2σ(h(z(x)))− 1

)
,

where z(x) ∈ [0, 1]m0 is the latent coordinate, h is a low-frequency Fourier se-
ries, and σ is the logistic map to enforce boundedness. We vary β by control-
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ling the smoothness of h (for β < 1, we additionally apply a coordinate-wise
transformation u 7→ uβ before h, which yields a controlled Hölder exponent
at small scales).

In this class, Intrinsic-VAPE builds its hierarchical net using only ρ, while
the main baseline is a fixed-cover version of VAPE that partitions the space
at a pre-chosen resolution (equivalently, a fixed-radius cover constructed once
at the beginning). Because fixed covers require specifying the scale ex ante,
we report performance both at an “oracle-tuned” scale (chosen to minimize
regret in hindsight over a grid of candidate scales) and at a practically tuned
scale (chosen by a doubling trick over the resolution parameter). This com-
parison isolates the value of adaptivity even when one is generous to the
fixed-cover approach.

Environment class II: embedding-like contexts with low-dimensional
structure in high ambient dimension. To mirror modern pricing sys-
tems that rely on large embeddings, we also simulate contexts as vectors in
Rd with d ∈ {20, 50, 100}, while restricting the data-generating variation to
an m0-dimensional factor. A simple and transparent construction is

x = Au+ σnuis ε, u ∼ Unif([0, 1]m0), ε ∼ N (0, Id),

where A ∈ Rd×m0 has orthonormal columns and σnuis controls how much
irrelevant variation contaminates distances. We then define ρ as Euclidean
distance in Rd (the common practitioner choice) and set g(x) = g̃(u) to
depend only on the intrinsic coordinates. When σnuis is small, Euclidean
distances remain approximately bi-Lipschitz to the intrinsic distances on
the locus, and the tree should refine at a rate governed by m0 rather than
d; when σnuis is large, this becomes a diagnostic for representation quality,
since “nearby” points in ρ are no longer economically similar.

In this setting we compare (i) Intrinsic-VAPE using Euclidean distance;
(ii) Intrinsic-VAPE using an approximate geodesic distance computed from a
k-NN graph (to mimic manifold-aware similarity); and (iii) fixed-cover VAPE
implemented as an axis-aligned grid in Rd (which becomes infeasible quickly
as d grows, forcing coarse resolutions). The last baseline is intentionally
harsh: its purpose is to visualize the curse of dimensionality that motivates
intrinsic adaptation, rather than to serve as a practical competitor in very
high dimension.

Baselines and ablations. Beyond fixed-cover VAPE, we include two di-
agnostic variants that help interpret where gains come from. The first is a
“no pooling” ablation: we keep the same adaptive tree for valuation calibra-
tion but estimate a separate demand curve D̂u(·) within each active cell u.
This removes the one-dimensional global sharing and should degrade sharply
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as the number of active cells grows. The second is a “no refinement” abla-
tion: we keep global pooling over increments but replace the tree module by
a global valuation estimator that does not localize (e.g., a single ĝ fit with
the same one-bit probing logic). This variant is useful when contexts are
nearly homogeneous; it should fail when g varies meaningfully across X .

Implementation details and reporting choices. To keep the compari-
son faithful, we align algorithms on the same increment grid K and the same
confidence level (e.g., δ = 1/T 2), and we enforce the same price bounds
[0, By]. For Intrinsic-VAPE, we implement the tree as a cover tree / navi-
gating net variant that supports insertion of new contexts online and returns
the path of active nodes covering xt; empirically, this makes per-round cost
close to logarithmic in the number of visited contexts. For the fixed-cover
baselines, we precompute the cover (or grid) and map each xt to a cell by
nearest center.

We report not only regret but also module-level diagnostics that corre-
spond to the theoretical decomposition:

1. Calibration frequency: the fraction of rounds spent in valuation-approximation
mode.

2. Empirical valuation error: for simulated data where g is known, we
compute |ĝt(xt)− g(xt)| and also a cell-level proxy supx∈cell(u) |ĝ(x)−
g(x)| by Monte Carlo sampling within the cell (where applicable).

3. Demand estimation error: maxδk∈K |D̂t(δk)−D(δk)| evaluated at check-
points.

4. Active tree size: number of active nodes, and distribution of radii
rad(u) among active nodes.

These quantities let us check whether observed regret differences are driven
by discretization, by demand learning variance, or by miscalibration bias
leaking into pooled demand estimates.

Sensitivity to intrinsic dimension m0. We vary m0 ∈ {1, 2, 4, 8} while
holding fixed d (in embedding-like contexts) and holding fixed the noise
distribution and bounds. The main predicted pattern is a smooth deteri-
oration in the log-log slope of RT versus T , consistent with the exponent
(m+2β)/(m+3β). In practice, finite-sample slopes are noisy, so we use two
complementary summaries: (i) for each (m0, β) we fit a line to logRT against
log T over a range of T and report the fitted slope; (ii) we plot the normal-
ized regret RT /T

(m0+2β)/(m0+3β) to see whether curves flatten as T grows.
The most informative diagnostic tends to be active tree size: Intrinsic-VAPE
should increase the number of active cells roughly like a covering number at
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the finest explored scale, while fixed-cover methods either explode (if fine)
or incur persistent discretization regret (if coarse).

Sensitivity to smoothness β and heterogeneity scale Lg. We vary
β ∈ {1, 0.75, 0.5} and separately scale Lg by multiplicative factors. Holding
all else fixed, decreasing β should cause the tree to refine more aggressively
to achieve the same valuation bias control; empirically this appears as (a)
a larger share of calibration rounds, and (b) smaller typical rad(u) among
active nodes. Because demand learning is pooled, the demand estimation
curves D̂t(·) should look similar across β once calibration error is controlled;
when they do not, it is evidence that valuation error is dominating the cou-
pling term. Increasing Lg has a similar qualitative effect but is primarily
visible in constants: the same regret slope with an upward shift, and a de-
layed transition from coarse to fine cells.

Embedding distortion and “representation quality” stress tests.
To connect back to practice, we interpret σnuis (or, alternatively, random
feature rotations that scramble intrinsic neighborhoods) as a proxy for repre-
sentation error. As σnuis grows, Euclidean distance becomes less informative,
and Intrinsic-VAPE will either (i) over-refine because it cannot pool effec-
tively within a cell that now contains heterogeneous intrinsic types, or (ii)
under-refine because true neighbors are far in the learned metric, reducing
reuse. Both effects increase calibration cost and ultimately regret. Using
k-NN geodesic distances partially mitigates this when the intrinsic locus re-
mains locally connected, and the comparison between Euclidean and geodesic
versions provides an empirical analogue of the metric-misspecification dis-
cussion in the extensions section: representation error behaves like extra
within-cell heterogeneity.

Takeaways we expect to be robust. Across these designs, the qualita-
tive lessons are stable. Intrinsic-VAPE tends to dominate fixed-cover base-
lines when (i) contexts have low intrinsic dimension relative to their ambient
description, and (ii) pooling demand over increments is approximately cor-
rect. The no-pooling ablation typically performs competitively only in the
easiest regimes (very small m0 and very smooth g), highlighting that the one-
dimensional demand reduction is not merely a technical convenience but a
primary source of sample efficiency. Conversely, when representation quality
is poor (large σnuis) or when g is highly irregular (small β, large Lg), Intrinsic-
VAPE still degrades gracefully but the constant factors become visible: more
rounds are spent calibrating valuations, and demand learning slows because
valuation error induces bias. In this sense, the simulations operationalize the
core tradeoff: we can share aggressively across contexts only to the extent
that we can certify that the valuation level g(x) has been locally calibrated

35



at the granularity implied by the metric geometry.

9 Conclusion: implications for 2026 pricing sys-
tems and open problems

Our central message is that geometry is an economically meaningful primitive
in contextual pricing with limited feedback. When the seller only observes a
purchase indicator, learning must proceed by carefully chosen perturbations
of price, and the value of those perturbations hinges on whether we can
treat nearby contexts as approximately substitutable. The main theorem
formalizes this idea in a way that is aligned with how modern pricing systems
are built: contexts are often represented as embeddings, similarity is encoded
by a metric, and the relevant complexity is not the ambient dimension of the
representation but the intrinsic growth of neighborhoods under that metric.
Intrinsic-VAPE makes this tradeoff explicit: we gain from global pooling of
the demand curve over increments, but we can only pool safely to the extent
that we can locally calibrate valuation levels g(x) at the granularity dictated
by the metric structure.

Implications for 2026 pricing stacks: learning should be representation-
aware. Many deployed pricing pipelines in 2026 rely on high-dimensional
user–item or user–market embeddings learned from historical interactions.
In such stacks, “contextual pricing” is frequently implemented by regressing
purchase probability on price and features, or by doing local bandit explo-
ration in embedding space. Our results suggest a more diagnostic posture.
If the metric induced by the embedding is well-aligned with economic sub-
stitutability, then an adaptive partition that refines only where the platform
actually operates can deliver the same qualitative benefit as hand-designed
segmentations, but with (i) explicit exploration guarantees and (ii) a com-
plexity bound governed by an intrinsic dimension proxy rather than the raw
embedding dimension. Conversely, if embedding distances are distorted (be-
cause nuisance variation dominates Euclidean neighborhoods, or because the
embedding collapses relevant heterogeneity), then the algorithm will reveal
this via operational metrics: it will either spend too many rounds calibrating
valuations (over-refinement) or fail to reuse information effectively (under-
refinement). In this sense, the learning problem itself becomes a stress test
for representation quality.

Operational interpretation of the regret decomposition. The de-
composition behind Intrinsic-VAPE has a natural engineering reading. The
term that scales like Tϵ corresponds to discretization and approximation:
how much revenue we lose by restricting attention to a finite increment grid,
and by acting on an approximate valuation estimate. The terms that scale
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like ϵ−2 and the tree complexity term reflect statistical effort : how many
random-price probes are needed to (i) pin down the local valuation level
using one-bit outcomes and (ii) estimate a one-dimensional demand curve
over increments with enough precision to eliminate suboptimal prices. In
practice, these pieces map onto familiar monitoring objects: a calibration
budget (fraction of exploration rounds), a stability/bias check for pooled de-
mand estimates, and a notion of “active segmentation” (how many distinct
regions the system effectively treats differently). This mapping matters be-
cause it tells a platform where to invest: better similarity metrics reduce
the calibration burden; better instrumentation (e.g., richer feedback than
binary purchase) reduces the ϵ−2 cost; and tighter operational constraints
(e.g., price-change limits) effectively impose a minimum feasible ϵ.

A limitation that is also a design principle: pooling is only as good
as invariances. A strong assumption in the model is that demand over
increments, D(δ), is context-invariant. The virtue of this assumption is con-
ceptual clarity: it isolates one dimension of variation (valuation level g(x))
that can be locally calibrated, and another dimension (the noise law) that can
be learned globally. But it also highlights a practical design principle: global
pooling is not a free lunch. In real markets, the distribution of idiosyncratic
shocks may vary by geography, device type, or acquisition channel, so the
appropriate object to pool may be a low-dimensional family {Dθ}θ∈Θ rather
than a single curve. One way to read Intrinsic-VAPE is as a template: when-
ever we can identify a context-invariant (or slowly varying) component of the
purchase process, we should pool it aggressively, and then spend calibration
effort on the remaining heterogeneity. The converse is also true: if invariance
fails, then pooling introduces systematic bias that no amount of exploration
can remove. This is why it is valuable that the coupling argument makes
the bias channel explicit through Lipschitz demand: it tells us what to mea-
sure (how much valuation error leaks into demand estimation) and what to
relax (introduce partially pooled, cluster-specific demand curves) when the
invariance is not credible.

From theory to practice: why intrinsic dimension is a useful knob.
The intrinsic dimension m is not merely a technical artifact; it provides a
language for capacity planning in pricing systems. In segment-based pric-
ing, teams often debate how many segments to maintain, which segments to
split, and how to justify the resulting complexity. The doubling dimension
offers a principled proxy: if the context metric has small doubling dimension
on the support of traffic, then a system can afford finer personalization be-
cause the number of “distinct” neighborhoods grows moderately as resolution
increases. If m is large, then aggressive personalization is sample-inefficient
under binary feedback, and the platform should either accept coarser policies
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or invest in richer signals (e.g., auction-style feedback, counterfactual logging
that improves variance, or additional covariates that render the metric more
informative). Put differently, our bound suggests an empirical workflow: es-
timate an intrinsic dimension proxy on the observed context stream, then
choose an exploration budget and a refinement policy consistent with that
complexity.

Open problem I: lower bounds in intrinsic dimension for one-bit
pricing. While our upper bound replaces ambient dimension by intrinsic
dimension, a complete story requires matching lower bounds. A natural
conjecture is that the exponent m+2β

m+3β is minimax-optimal (up to logarithms)
over doubling-metric context spaces and (Lg, β)-Hölder valuations, under
bounded one-bit feedback. Proving this would require constructing hard
instances that simultaneously (i) force local estimation of g at scale ϵ in about
ϵ−m/β distinct regions and (ii) force demand learning at the canonical ϵ−2

rate from binary outcomes. Technically, this is subtle because the difficulty is
shared between two coupled unknowns (g and D), and because the adversary
can choose the context sequence. A sharp lower bound would clarify which
part of the regret is information-theoretic and which part is an artifact of
algorithm design, and it would also guide whether further improvements
should target demand estimation (e.g., adaptive discretizations over δ) or
valuation calibration (e.g., more efficient probing schemes).

Open problem II: drift and nonstationarity (dynamic regret). Static
regret is the right starting point, but pricing systems increasingly operate in
environments with demand shocks, seasonality, and policy-driven disconti-
nuities. The model already separates a stable demand curve over increments
from a context-dependent valuation level; this suggests several drift regimes
worth formalizing. One regime is slow drift in gt(x): valuations shift over
time due to trend or competition, but remain Hölder in x at each t. An-
other regime is drift in Dt: the idiosyncratic noise law changes with macro
conditions. In both cases, the key question is how to trade off continual re-
calibration against exploitation, and how intrinsic dimension interacts with
a variation budget (e.g.,

∑
t supx |gt+1(x) − gt(x)| or a Wasserstein drift of

the noise distribution). Algorithmically, one expects windowed estimators
and tree nodes with “expiration” or time-decay; theoretically, one would like
dynamic regret bounds that interpolate between the intrinsic-dimension rate
in stationary settings and the unavoidable tracking cost under rapid drift.
From a deployment perspective, such results would support principled re-
sets and monitoring thresholds: when drift accelerates, the system should
admit higher exploration and temporarily coarsen personalization to avoid
compounding bias.
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Open problem III: fairness, constraints, and welfare objectives.
Pricing is increasingly constrained by fairness and compliance requirements.
In our framework, constraints can enter in at least three distinct ways.
First, one can constrain the policy class, e.g., enforce Lipschitz or bounded-
variation prices across similar contexts: |p(x)−p(x′)| ≤ Lpρ(x, x

′). This kind
of constraint aligns naturally with metric structure and may reduce effective
complexity, but it also changes the benchmark and can create nontrivial
tension with revenue maximization. Second, one can impose group fairness
constraints, such as bounding price dispersion across protected groups con-
ditional on observable context, or imposing constraints on acceptance rates.
With binary feedback, enforcing these constraints online while learning g and
D is nontrivial: naive exploration can violate constraints even if the long-run
policy is feasible. Third, one can broaden the objective beyond revenue to in-
clude consumer surplus or error costs (e.g., penalties for overpricing relative
to latent willingness to pay). Each direction raises new questions about what
can be learned from one-bit signals and how to certify constraint satisfaction
with high probability. A promising approach is to integrate constraint-aware
confidence sets into the elimination step, so that candidate increments are
pruned not only by revenue but also by worst-case constraint violation within
the confidence region.

Further directions: richer feedback, multiple products, and strate-
gic behavior. Two additional extensions are likely to matter in near-term
practice. The first is to relax the one-bit feedback assumption by incorporat-
ing partial refund signals, dwell time, or add-to-cart events; even modestly
richer feedback can change the ϵ−2 scaling and may reduce the calibration
burden. The second is to move from single-product pricing to multi-product
or inventory-constrained settings, where the “increment pooling” insight may
still apply but the relevant demand object becomes multi-dimensional. Fi-
nally, strategic buyer behavior (delayed purchases, reference price effects, or
learning by consumers) complicates the interpretation of D(δ) as an exoge-
nous noise law; understanding whether intrinsic-geometry methods remain
valid under such endogeneity is an open and practically important question.

Closing perspective. We view the model as illuminating a specific and
consequential tradeoff: personalization is valuable, but in binary-feedback
pricing it is only as feasible as the system’s ability to certify local calibration
and to exploit structural invariances for pooling. The intrinsic-dimension
lens turns a vague intuition—that “only a few directions matter”—into a
quantitative complexity measure that predicts when adaptive refinement is
worth its cost. At the same time, the open problems above emphasize that
the next generation of pricing theory must engage with the realities of drift,
constraints, and representation error. Progress on these fronts would not
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only sharpen our understanding of what is learnable, but also provide the
kind of interpretable diagnostics that modern pricing systems need to be
both profitable and accountable.
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