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Abstract

Platforms increasingly set incentive weights algorithmically while
facing endogenous worker participation (opt-in/opt-out, multi-homing)
and noisy performance telemetry. Building on recent work that treats
the posted contract as an instrument to correct measurement error
in multitask contracting, we show that endogenous participation fun-
damentally breaks the contract-as-instrument logic: when unobserved
agent quality affects outcomes and is correlated with participation,
contracts shift the composition of observed agents, inducing selection
bias and invalidating naive moment conditions. We propose a minimal
‘safe experimentation’ design—post-participation mean-zero random-
ization of contract slopes (or quasi-exogenous audits)—that restores
instrumental validity without requiring parametric selection models.
We characterize identification via conditional moment restrictions, give
finite-sample error bounds for IV/GMM with selected samples, and
provide an online learning algorithm with sublinear regret. The results
provide a tractable blueprint for learning interpretable linear incentive
rules in modern platforms where participation and composition effects
are first-order.
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1 Introduction

Digital platforms routinely pay agents—drivers, sellers, creators, curators,
moderators—through contracts that are both multitask and adaptive. Mul-
titask because compensation is tied to a vector of measurable signals (ac-
ceptance rates, response times, content formats, customer ratings, delivery
completion, and so on), and adaptive because the platform continuously
updates these incentives as it learns which behaviors generate downstream
value. A central practical complication is that the data the platform uses to
learn are themselves endogenously generated: when incentives change, not
only do participating agents adjust effort, but the set of participating agents
changes. The platform therefore faces a selection problem that is insepara-
ble from the incentive problem. Our objective is to formalize this interaction
and to isolate a simple design principle that restores valid learning while pre-
serving the operational attractiveness of linear, signal-based pay.

The starting intuition is straightforward. Suppose the platform raises the
slope on some measured activity (say, “on-time delivery”), and then estimates
the activity’s causal contribution to platform value using the observed rela-
tionship between outcomes and measured activity under the new contract. If
the higher slope disproportionately attracts agents who are intrinsically more
productive, better informed, or better matched to the platform (captured in
the model by an unobserved shifter), then outcomes rise even holding effort
fixed. A naive estimator will attribute this composition-driven improvement
to the measured activity itself, overstating its value and leading the platform
to further amplify the wrong incentive. Importantly, this failure persists even
if the platform is otherwise careful and uses the posted contract as an instru-
ment for activity. The reason is that the contract shifts participation, so the
sample in which outcomes are observed is missing not at random: the distri-
bution of unobserved determinants of outcomes changes with the instrument.
In short, the very lever used to induce variation for identification also moves
the selection mechanism, invalidating standard IV logic when applied to the
observed (participating) sample.

This selection problem is not merely a technical nuisance; it is a first-
order design constraint for online contracting. Many platforms can observe
rich activity telemetry only after an agent opts in, logs on, or accepts a task,
and they observe downstream value only for those who complete the activ-
ity. As a consequence, learning is inherently “on-policy” and filtered through
participation. When participation is sensitive to incentives—as it typically
is in flexible labor markets and creator ecosystems—a platform that ignores
selection can be systematically misled even in large samples. Moreover, the
direction of the bias is economically meaningful: if higher-powered incentives
attract higher-quality agents, the platform may overpay for measured activ-
ity; if they attract lower-quality agents (for instance, because the contract
appeals most to those with weaker outside options), the platform may under-
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incentivize valuable behavior. Either way, the platform confounds behavioral
responses with composition responses.

We show that this confounding admits a clean remedy that is imple-
mentable within the same linear-contract architecture. The key idea is to
separate the contract component that drives participation from the contract
component used for identification. Concretely, the platform posts a baseline
contract that agents can evaluate when deciding whether to participate, and
then introduces a mean-zero randomized perturbation to the contract after
participation is chosen. Because the perturbation is realized only after the
selection decision, it does not affect who enters; yet, once realized, it moves
incentives and therefore generates exogenous variation in effort and signals
among participants. This “post-participation randomization” restores or-
thogonality between the instrument and unobserved outcome shifters within
the selected sample, yielding valid moment conditions and consistent esti-
mation of the platform’s underlying task values. In operational terms, the
perturbation can be interpreted as a surprise bonus schedule revealed only
after opt-in, a randomized weighting of score components, an audit-like ad-
justment that conditions on realized actions, or a randomized “experiment
flag” that changes the mapping from telemetry to pay while keeping the
posted baseline unchanged in expectation.

Why does timing matter so much? If randomization is applied before par-
ticipation, then participation becomes a function of the realized contract, and
conditioning on observing outcomes (which requires participation) induces
correlation between the randomized contract and unobserved determinants
of outcomes. This is the familiar collider logic of selection: even independent
shocks become dependent once we condition on an event that both shocks in-
fluence. By postponing the random draw until after participation, we break
this collider channel. The platform still conditions on participation because it
only observes outcomes for participants, but participation no longer depends
on the realized perturbation. The perturbation therefore remains indepen-
dent of the unobserved shifter within the participating sample, and IV/GMM
moment conditions become valid conditional on participation. The resulting
identification requirement is the usual rank condition, but evaluated on the
selected sample: the perturbation must generate sufficiently rich variation
in observed signals among participants.

Our analysis emphasizes that the platform’s experimentation problem
is inseparable from its revenue problem. Randomized perturbations are
not free: they distort incentives away from the profit-maximizing baseline
and may reduce contemporaneous surplus. This creates a precision–revenue
tradeoff that the platform must manage over time. The model helps clarify
how this tradeoff depends on the strength and geometry of the randomiza-
tion (captured by its covariance) and on the endogenous participation rate.
Intuitively, more variance strengthens the instrument and accelerates learn-
ing, but it also increases short-run distortion; similarly, higher participation
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increases the effective sample size and improves learning speed, but partici-
pation itself is influenced by the baseline contract and by agents’ outside op-
tions. These forces are familiar in experimentation, but the selection channel
changes their relative importance: a platform that chases short-run partici-
pation through aggressive baselines may inadvertently weaken identification
if participation becomes concentrated among types with low responsiveness
along certain task dimensions.

Contributions. We make four main contributions. First, we formalize the
selection bias that arises when a platform uses its posted contract (baseline
or realized) as an instrument for measured activity in the presence of en-
dogenous participation. Even when measurement error in the activity signal
is classical and effort is chosen optimally given the contract, the IV moment
generally fails because unobserved outcome shifters vary with the contract
through composition. This result clarifies a conceptual pitfall in interpreting
contract variation as quasi-experimental variation in effort when participa-
tion is flexible.

Second, we provide a simple sufficient condition for selection-robust iden-
tification: a mean-zero contract perturbation that is realized after partici-
pation and is independent of agent types and outcome noises. Under this
condition, the perturbation is orthogonal to the residual in the platform’s
outcome equation within the participating sample, yielding a valid condi-
tional moment restriction. Identification then follows from a selected-sample
relevance (rank) condition requiring that the perturbation move observed
signals among participants in a nonsingular way.

Third, we translate this identification logic into an estimator and finite-
sample learning guarantees. Using the participating rounds only, the plat-
form can run a standard linear IV/GMM regression with the post-participation
perturbation as the instrument. Under subgaussian noise and mild regular-
ity ensuring the instrument is not weak on the selected sample, we obtain
an error bound that mirrors classical IV rates but with an effective sam-
ple size equal to the number of participants. This explicitly quantifies how
participation scarcity slows learning even when selection bias is eliminated.

Fourth, we connect learning to online contract design. We study a policy
that updates baseline incentives as a function of the evolving IV estimate
while maintaining persistent post-participation randomization to preserve
identification. Under local curvature conditions on the platform’s objective
and a participation rate bounded away from zero, we obtain sublinear regret
relative to the best fixed baseline contract in hindsight. The result highlights
a general message: in environments with endogenous participation, safe ex-
ploration is not merely about limiting incentive distortion; it is also about
structuring randomness so that it survives the selection filter.
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Design principles and interpretation. The post-participation pertur-
bation suggests concrete guidance for practitioners. First, commitment is
essential: agents must know the perturbation distribution ex ante (so par-
ticipation decisions are well-defined) even though the realization is revealed
only after opt-in. Second, timing is the source of robustness: to insulate
identification from selection, the experiment must not affect the participa-
tion margin. Third, span matters: perturbations must vary incentives across
tasks in a way that generates full-rank covariance in the induced signal vari-
ation among participants; otherwise, some task values remain weakly identi-
fied. Fourth, calibration matters: the scale of randomization should decline
with accumulated information if short-run distortion is costly, yet it must
remain large enough to avoid weak-instrument problems, especially when
participation is low or concentrated. These principles also connect to audit
regimes: one can view the perturbation as a randomized “audit weight” ap-
plied after participation, which preserves fairness in expectation while still
generating quasi-experimental variation for learning.

Limitations and scope. We deliberately work within a stylized but widely
used linear-contract framework. The analysis abstracts from risk aversion
and from dynamic participation decisions beyond the round-by-round en-
try choice; in practice, surprise randomization can interact with perceived
volatility, trust, and long-run platform–agent relationships. We also treat the
perturbation as observable and enforceable, whereas real implementations
may be constrained by regulation, transparency requirements, or strategic
manipulation of telemetry. Finally, our identification relies on a form of
independence between the perturbation and unobservables; if the platform
targets randomization based on rich observables, one must verify that the
targeting does not reintroduce selection-like dependence. We view these as
important directions for extension, but they do not undermine the central
lesson: when outcomes are observed only after endogenous participation, the
platform must engineer variation that is realized inside the selected sample
rather than before selection occurs.

The remainder of the paper develops these points formally and situ-
ates them within the broader literature on multitask incentives, econometric
identification with selection, and online experimentation in platforms and
marketplaces.

2 Related literature

Our setting sits at the intersection of three canonical themes: multitask in-
centives under linear contracts, econometric identification with noisy proxies
and endogenous sampling, and online learning when feedback is censored
by participation. The common thread is that a platform wants to infer the
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value of behaviors it can measure only imperfectly, using data generated
by agents who can opt out. We briefly situate our approach relative to
these literatures and clarify what is standard versus what is specific to the
participation-timing issue emphasized here.

Multitask principal–agent models and linear contracting. The eco-
nomic motivation for tying pay to multiple observable signals originates in
the multitask agency literature, where agents allocate effort across dimen-
sions that differ in social value and measurability. Classical analyses empha-
size that when the principal observes only imperfect performance measures,
optimal incentives generally distort effort toward measurable tasks and away
from hard-to-measure but valuable activities; see, among many others, ? and
the broader discussions in ?. A key analytical convenience in this literature
is the linearity of contracts in observed performance signals, which can be
justified either as a tractable approximation or via stronger assumptions such
as CARA preferences with normal uncertainty (?). Our model adopts the
linear-contract architecture, not as a claim of literal optimality, but because
it reflects common platform practice and because it makes transparent how
incentive slopes map into effort choices through first-order conditions.

Relative to the classic principal–agent benchmark, the central complica-
tion in platform contexts is that the principal does not observe the relevant
signals for non-participants. Traditional agency models typically take the
agent as given (or treat participation as a static constraint) and focus on
moral hazard and risk-sharing. By contrast, in gig-economy and creator set-
tings, participation is an active margin: agents can log off, multi-home, or
select into tasks. This adds a composition channel absent from a fixed-agent
analysis: changing the contract changes who shows up, and those composi-
tional shifts can be first-order for both profits and inference. Participation
constraints do appear in agency theory, but they are often imposed as a
static individual rationality condition pinned down at the optimum. Here,
participation is repeatedly realized and interacts with experimentation: the
platform learns from those who participate, and the contract both induces
effort and filters the sample.

Measurement error, proxies for effort, and IV/GMM. A second
strand of related work concerns identification when the econometrician ob-
serves a noisy proxy for the endogenous choice variable. In our environment,
effort is the latent object of interest, while the platform observes a signal
that is an unbiased but noisy measure of effort. This resembles the clas-
sical measurement-error problem in linear models, where naive regressions
are attenuated and the use of instruments or multiple measurements restores
identification; see, e.g., ?. In platform applications, telemetry is often pre-
cisely of this form: it is abundant and high-dimensional, but it is not a
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perfect measure of the behavioral construct that enters the platform’s value
function.

Instrumental-variables and GMM methods provide the standard toolkit
for learning causal effects in the presence of endogeneity and measurement
noise. Our technical statements mirror familiar IV logic: one needs an in-
strument that shifts the endogenous regressor (relevance) while remaining
orthogonal to the unobserved determinants of outcomes (exogeneity). The
novel friction here is not the presence of noise per se, but that the instrument
candidate is itself part of the contract, hence can influence selection into the
observed sample. This is the sense in which “contract-as-IV” can fail even
when the signal noise is classical. Put differently, the standard IV condition
is not violated because the contract is correlated with the effort shock (it is
not), but because conditioning on participation induces dependence between
the contract and unobserved outcome shifters.

Selection, missing-not-at-random, and endogenous sampling. The
fact that outcomes are observed only for participants places our model squarely
in the literature on sample selection and missing data. The econometric
lesson is that conditioning on sample inclusion can create bias whenever
inclusion depends on unobservables that also affect outcomes. This theme
runs from the classic selection model of ? to subsequent work on selection
corrections and partial identification under weaker assumptions (?). In our
context, participation depends on the agent’s private cost and outside option,
and unobserved productivity enters the outcome equation. If productivity is
correlated with participation-relevant components of type, then the observed
sample is missing not at random: the distribution of unobserved outcome
shifters among participants varies with incentives.

Our focus differs from the traditional selection-correction agenda in two
ways. First, rather than proposing a parametric correction based on an ex-
plicit selection equation, we design the platform’s experimental variation so
that it remains orthogonal to unobservables within the selected sample. This
is conceptually closer to designing an instrument that survives selection than
to modeling selection for correction. Second, the timing of information and
randomization is central. Many selection models treat the regressor variation
as exogenous in the full population and then examine what happens under
conditioning. Here, the platform chooses the contract, the agent chooses
participation, and only then is the experimental variation realized. This se-
quencing allows the platform to create exogenous variation after selection,
thereby avoiding the collider channel that would otherwise correlate the in-
strument with unobservables once we condition on observing outcomes.

This timing-based perspective also complements recent discussions in em-
pirical IO and labor economics on endogenous sampling in platform data.
When the platform only sees transactions that occur, and transactions oc-
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cur only when agents and consumers select in, naive causal interpretation of
observed variation can be badly misleading. Our framework provides a clean
abstraction of this concern, isolating a minimal assumption—post-selection
randomization independent of private types—under which standard moment
restrictions become valid on the observed sample.

Bandits, censored feedback, and learning under participation con-
straints. A fourth related literature studies online learning when feedback
is partial, censored, or filtered through actions. In multi-armed bandits, the
learner observes outcomes only for chosen arms; in more complex partial-
monitoring models, the learner observes only a signal correlated with payoffs.
A growing body of work considers censored or self-selecting feedback, where
rewards are observed only if an acceptance event occurs, as in dynamic pric-
ing with demand censoring or procurement with bidder participation. These
problems emphasize that exploration is constrained by the data-generating
process: to learn, one must induce observations, but the act of inducing
observations changes who appears and what is observed.

Our environment shares the “learning from those who show up” con-
straint, but with a distinctive economic structure: participation is controlled
by agents, not by the learner, and the learner’s action (the contract) simulta-
neously affects incentives and selection. This creates a two-layer endogeneity
absent from standard bandits: the platform does not directly choose which
data points to observe, and the distribution of observed types depends on
the policy. Our results can be interpreted as providing a form of safe ex-
ploration tailored to this structure: by shifting randomization to occur after
participation, the platform ensures that exploration happens inside the ob-
served sample without altering the selection margin at the realization level.
In bandit terms, the exploration shock affects the reward-relevant behavior
conditional on being “pulled” into the sample, but does not affect the event
that a sample is observed.

There is also a conceptual connection to work on bandits with constraints
and strategic responses, where a learner must maintain feasibility (e.g., par-
ticipation or individual rationality) while learning. In our formulation, the
baseline contract plays the role of a policy lever that governs participation,
while the perturbation plays the role of an exploration device whose distri-
bution is committed to ex ante but realized after selection. The separation
of these roles is precisely what prevents exploration from contaminating se-
lection.

Platform experimentation, randomized audits, and mechanism de-
sign practice. Finally, our design is motivated by how platforms run ex-
periments when they cannot fully randomize at the participation stage. In
many settings, platforms can commit to a payment rule or scoring rule that is
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publicly described, but can also introduce randomized components that are
only revealed after an agent opts in: surprise bonuses, randomized weight-
ings of score components, lottery-like incentives, or audit-based adjustments.
Such features are often discussed in operational terms (fairness in expecta-
tion, budget control, robustness to gaming), but they also have a statisti-
cal role: they can create quasi-experimental variation in incentives among
participants without changing who participates in response to the realized
shock.

This interpretation connects our perturbation to audit regimes in mech-
anism design and regulation, where random audits create incentives for com-
pliance while preserving tractability and limiting manipulation. Randomized
audits are typically justified as a deterrence device; here, the same logic yields
identification, because audit randomness is exogenous and can be arranged
to be realized conditional on participation. Relatedly, there is a practi-
cal tension between transparency and experimentation: platforms may need
to disclose the distribution of incentive schemes while keeping realizations
unpredictable to prevent gaming. Our framework makes clear why such
commitment matters for participation decisions (agents evaluate expected
pay) and why unpredictability at the realization stage can be valuable for
learning.

Summary of our contribution relative to prior work. Across these
literatures, two facts are well understood: (i) selection can invalidate naive
inference, and (ii) exogenous randomization can restore identification. The
contribution here is to highlight a specific and implementable way to reconcile
these facts in repeated contracting environments with endogenous participa-
tion. By separating the contract component that determines entry from the
randomized component that generates identifying variation, and by placing
the random draw after participation, we obtain a selection-robust instrument
while remaining within the linear-contract paradigm commonly used in prac-
tice. This positions the subsequent model section: we formalize the timing,
information, and payoff primitives under which the proposed randomization
delivers valid conditional moments on the participating sample and can be
embedded in an online learning-and-contracting policy.

3 Model: contracting with endogenous participa-
tion and post-entry randomization

We study a repeated contracting environment over rounds t = 1, . . . , T in
which a platform (the principal) interacts with a stream of short-lived agents.
Each round features a fresh agent whose private type is

τt = (ct, u
0
t , ωt).
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Here ct : Rd
+ → R+ is the agent’s cost of effort, u0t ∈ R is an outside-option

utility, and ωt ∈ R is an agent-specific outcome shifter (interpretable as
latent quality, match value, or composition). The key econometric friction
is that ωt affects the platform’s realized outcome but is not observed, and
may be correlated with participation-relevant components of type.

Effort, telemetry, and outcomes. If the agent participates, it chooses
an effort (or action) vector at ∈ Rd

+ across d tasks. Effort is not directly
observed by the platform; instead the platform observes a noisy proxy xt ∈
Rd (telemetry, measured behaviors, performance metrics) of the form

xt = at + εt, E[εt | at] = 0, (1)

where εt is a mean-zero measurement error (typically taken to be subgaussian
to support concentration later). The platform’s economic outcome (revenue,
value created, or some downstream KPI) is

yt = ⟨θ⋆, at⟩+ ωt + ηt, E[ηt | at, ωt] = 0, (2)

where θ⋆ ∈ Rd
+ is an unknown task-value vector that we wish to learn, and

ηt is an outcome noise term (also typically subgaussian). The maintained
structure in (1)–(2) is deliberately minimal: effort enters the outcome linearly
via θ⋆, the platform observes only a noisy proxy for effort, and an unobserved
shifter ωt affects outcomes but is not recorded.

Linear contracts with baseline slopes and randomized perturba-
tions. In each round t, before the agent decides whether to participate,
the platform posts a linear contract based on the observed telemetry xt.
The contract is parameterized by a slope vector in Rd: if the agent partici-
pates, it is paid ⟨βt, xt⟩ for some realized slope βt. The platform controls βt
through two components:

1. a baseline slope vector bt ∈ B ⊆ Rd
+, where B is a feasible set (e.g.,

convex and compact, reflecting business rules, fairness constraints, or
budget/market-compatibility limits); and

2. a random perturbation Zt ∈ Rd with a distribution committed to ex
ante, satisfying E[Zt] = 0 and E[ZtZ

⊤
t ] = ΣZ ≻ 0.

The realized contract slope is then

βt = bt + Zt.

The role of bt is economic and operational: it is the predictable part of
incentives that agents can plan against and that the platform uses to tar-
get profitability. The role of Zt is statistical: it injects exogenous variation
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in incentive slopes among participants to support identification of θ⋆ from
selected-sample data. The covariance condition ΣZ ≻ 0 ensures that the
perturbation spans all directions in the d-dimensional task space, ruling out
degenerate experimentation that would leave some components weakly iden-
tified.

Timing and information: participation before randomization. The
sequencing of moves is central. Each round proceeds as follows.

1. The platform observes its past history (formalized below as a filtration
Ft) and chooses a baseline slope bt ∈ B. It also commits to the distri-
bution of the perturbation Zt (we take this distribution as fixed across
rounds, with known mean zero and covariance ΣZ).

2. The agent observes bt and the distribution of Zt (but not its realization)
and chooses whether to participate, pt ∈ {0, 1}.

3. If pt = 1, then Zt is drawn and revealed, and the realized slope becomes
βt = bt + Zt.

4. The agent chooses effort at after seeing βt.

5. Signals xt and outcome yt realize according to (1)–(2). The platform
observes (xt, yt) only if pt = 1.

Two observability conventions will be useful later. First, we allow the plat-
form to observe pt always (it sees whether an agent shows up). Second,
we allow the platform to observe βt whenever pt = 1, and in our baseline
formulation we also allow it to observe the realized slope even when pt = 0
(since the platform can always record its own random draw); what matters
for identification, however, is that (xt, yt) are observed only on participating
rounds. The platform never observes the type τt nor the shifter ωt.

Agent payoff, effort choice, and best response. If the agent partici-
pates, its utility is linear in the contract payment and quasilinear in cost:

UA
t = ⟨βt, xt⟩ − ct(at) = ⟨βt, at⟩+ ⟨βt, εt⟩ − ct(at).

Because εt has mean zero conditional on at, the agent’s effort problem is
equivalent (in expectation) to choosing at to maximize ⟨βt, a⟩ − ct(a). We
assume ct(·) is strictly convex and differentiable on (R+)

d, which delivers a
unique interior best response when the optimum lies in the interior:

at ∈ arg max
a∈Rd

+

⟨βt, a⟩ − ct(a), ∇ct(at) = βt. (3)

It is useful to view (3) as defining an effort mapping a(βt; ct): higher realized
incentives βt tilt effort toward the dimensions with larger slope, and strict
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convexity prevents corner solutions from being knife-edge. We do not impose
separability across tasks; allowing general convex ct accommodates cross-task
substitution and complementarity.

If the agent does not participate, it receives the outside option utility
u0t . Thus, participation is an individual rationality decision made before the
perturbation is realized. Writing the agent’s (ex ante) participation value as
the expected optimized utility under the known distribution of Zt, we can
represent participation as

pt = 1
{
EZ

[
max
a∈Rd

+

⟨bt + Z, a⟩ − ct(a)
]

≥ u0t

}
. (4)

This formulation captures a salient feature of platform settings: agents de-
cide whether to log on based on the posted compensation rule and their
expectations about earnings, rather than on the realized shocks that occur
only after they have entered.

Platform payoff and the learning problem. When the agent partic-
ipates, the platform receives outcome yt but pays ⟨βt, xt⟩ according to the
contract. We write the platform’s per-round payoff as

UP
t = pt

(
yt − ⟨βt, xt⟩

)
− κ∥Zt∥22, (5)

where κ ≥ 0 is an (optional) experimentation cost that penalizes large per-
turbations.1 The first term in (5) emphasizes the central tradeoff: increasing
βt can increase effort and thus yt, but it also increases the payment through
xt; moreover, changing the baseline bt affects participation (4), and therefore
the set of observed outcomes.

The platform does not know θ⋆ a priori, so it cannot directly choose bt to
maximize long-run profit. Instead it must learn θ⋆ from the data it observes.
Crucially, data are available only on the set of participating rounds

T1 = {t ∈ {1, . . . , T} : pt = 1}.

This censoring is endogenous: which rounds enter T1 depends on the posted
baseline bt and on the distribution of Zt through the agent’s expected utility,
as well as on the unobserved type sequence.

Filtration and what is observable to the platform. Let Ft denote
the platform’s information before choosing bt in round t. At a minimum, Ft

contains past choices and realized data on participating rounds:

Ft = σ
(
{(bs, ps, βs,1{ps = 1}xs,1{ps = 1}ys)}s<t

)
.

1One interpretation is that volatile incentives are costly: they may harm agent trust,
increase churn, or create fairness concerns. Setting κ = 0 isolates the statistical role of Zt.
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This makes explicit that the platform learns from a history in which some
covariates are systematically missing when ps = 0. Our policies will be Ft-
measurable mappings into B: the platform chooses bt based on past observed
outcomes and signals, anticipating how bt influences future participation and
effort.

Benchmark and regret. To evaluate an online policy, we compare its
cumulative payoff to that of the best fixed baseline slope in hindsight. Con-
cretely, fix the perturbation distribution (hence ΣZ) and consider any b ∈ B
used as a constant baseline across time, with the same timing, participation
rule (4), effort best response (3), and payoff (5). We define the (pseudo-
)regret of a policy π = {bt}Tt=1 as

Regret(T ) = max
b∈B

E
[ T∑
t=1

UP
t (b)

]
− E

[ T∑
t=1

UP
t (bt)

]
,

where the expectation is taken over the perturbations and noise terms (and,
when appropriate, over any randomness in the policy). This notion isolates
the learning component: even if the optimal baseline is not implementable
without knowing θ⋆, a good policy should approach its performance as data
accumulate. At the same time, the regret criterion respects the participation
constraint embedded in the environment, because payoffs and observations
are generated only when agents choose pt = 1 under the posted baseline and
the known perturbation distribution.

The object of interest in the next sections is how to learn θ⋆ and opti-
mize bt in this censored-feedback environment. The central challenge is that,
while linear contracts naturally suggest using contract variation to identify
the effect of effort on outcomes, the baseline contract also shifts participa-
tion and hence the composition of observed types. The post-participation
perturbation Zt is designed to disentangle these forces by creating within-
participant variation that is orthogonal to the unobserved shifter ωt even
after conditioning on pt = 1.

4 Failure of contract-as-IV under selection

A natural first impulse in linear contracting models is to treat contract vari-
ation as an instrument for effort. In our setting the platform observes (xt, yt)
only when pt = 1, and it is tempting to estimate θ⋆ by IV on the participat-
ing sample using either the posted baseline bt or the realized slope βt as an
instrument for the endogenous regressor xt. Formally, one might hope that
θ⋆ satisfies a moment restriction of the form

E
[
qt
(
yt − ⟨θ⋆, xt⟩

)
| pt = 1

]
= 0, (6)
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where qt ∈ {bt, βt} (or some function thereof). This section explains why
(6) typically fails under endogenous participation, even though (i) the mea-
surement error εt is mean-zero and (ii) the platform sets incentives before
observing any round-t shocks. The core issue is that bt shifts who enters,
and the unobserved outcome shifter ωt can move with entry in ways that
correlate with the instrument in the selected sample.

4.1 A two-type example: composition shifts generate spuri-
ous “first-stage–residual” correlation

We illustrate the failure most transparently in a one-dimensional specializa-
tion (d = 1) with no perturbation. Let Zt ≡ 0, so βt = bt ≡ b. Suppose
effort is chosen after observing β = b and costs are quadratic:

c(a) =
1

2
a2, a ∈ R+.

Then the agent’s best response is interior and given by a = b, yielding
optimized (expected) participation value

max
a≥0

{ba− 1
2a

2} =
1

2
b2.

Consider two types indexed by k ∈ {L,H}, arriving i.i.d. across rounds with
Pr(k = H) = π ∈ (0, 1). Types differ in both outside option and latent
quality:

u0L = u, u0H = u, u > u, ωL = 0, ωH = ∆ > 0.

Thus the high-quality type also has a higher outside option. Participation is
determined before any outcome noise is realized, and in this simple case it
is deterministic given b:

p = 1
{
1
2b

2 ≥ u0k
}
.

Let b =
√
2u and b =

√
2u, so that for b ∈ [b, b) only low types participate,

while for b ≥ b both types participate.
Now consider the platform’s outcome and telemetry:

x = a+ ε = b+ ε, y = θ⋆a+ ω + η = θ⋆b+ ω + η,

with E[ε | a] = 0 and E[η | a, ω] = 0. The structural residual at the truth is

y − θ⋆x = ω + η − θ⋆ε.

Unconditionally (i.e., absent selection) the moment E[b(y − θ⋆x)] would be
driven by E[bω], and could be zero if b were independent of ω and E[ω] = 0
or if ω were mean-zero noise. But we do not observe unconditionally; we
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observe only when p = 1. Conditioning on p = 1 changes the distribution of
ω as a function of b:

E[ω | p = 1, b] =

{
0, b ∈ [b, b),

π∆, b ≥ b,

because the high type appears in the participating sample only when b is
high enough to clear its outside option. Consequently, on the participating
sample the naive IV moment with instrument b satisfies

E
[
b
(
y − θ⋆x

)
| p = 1, b

]
= bE[ω | p = 1, b] + bE[η | p = 1, b] − θ⋆bE[ε | p = 1, b]

= bE[ω | p = 1, b], (7)

where the last equality uses mean-zero assumptions for η and ε together
with the fact that participation is decided before η and ε are realized. By
the expression above, (7) is strictly positive whenever b ≥ b:

E
[
b
(
y − θ⋆x

)
| p = 1, b

]
= b π∆ > 0.

Thus θ⋆ does not solve the selected-sample moment restriction (6) when q =
b. Econometrically, the instrument is correlated with the residual through a
composition channel: raising b mechanically improves the latent quality mix
among participants, so the outcome residual increases with b even when the
structural relationship between a and y is correctly specified.

The same logic shows why using the realized contract slope β as the
instrument is not a remedy when β contains a baseline component that
shifts participation. In the current example β = b, so nothing changes.
More generally, even when we later add mean-zero perturbations, the realized
slope βt = bt+Zt inherits the selection-induced correlation coming from the
predictable component bt.

4.2 General bias decomposition: where the naive moment
fails

We now isolate the general mechanism in the full d-dimensional model. Fix
a candidate θ ∈ Rd and define the regression residual

rt(θ) = yt − ⟨θ, xt⟩. (8)

Substituting xt = at + εt and yt = ⟨θ⋆, at⟩+ ωt + ηt yields

rt(θ) = ⟨θ⋆ − θ, at⟩+ ωt + ηt − ⟨θ, εt⟩. (9)

At the truth θ = θ⋆,
rt(θ

⋆) = ωt + ηt − ⟨θ⋆, εt⟩. (10)
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Consider an instrument qt that is measurable with respect to the platform’s
information at the contracting stage (e.g., qt = bt or qt = βt). On the selected
sample we would like

E[qt rt(θ⋆) | pt = 1] = 0. (11)

Using (10), we can decompose the left-hand side as

E[qt ωt | pt = 1] + E[qt ηt | pt = 1] − E[qt ⟨θ⋆, εt⟩ | pt = 1] . (12)

Under our maintained assumptions, the second and third terms are benign:
ηt and εt are mean-zero conditional on primitives determined before their
realization, and participation is chosen prior to these noises. In particular,
for any qt measurable before ηt is drawn, E[qt ηt | pt = 1] = 0; similarly,
E[qt εt | pt = 1] = 0 when E[εt | at] = 0 and qt is measurable prior to εt.2

The problematic term is therefore

E[qt ωt | pt = 1] . (13)

If we had full participation (pt ≡ 1), then (13) would reduce to E[qtωt], which
can be made zero under standard exogeneity assumptions (e.g., qt random-
ized independently of ωt). Under endogenous participation, however, we are
conditioning on an event whose probability depends on both qt (through in-
centives) and the agent’s type (through costs and outside options), and ωt

may be statistically linked to those participation-relevant type components.
Applying iterated expectations makes the channel explicit:

E[qt ωt | pt = 1] = E[qt · E[ωt | pt = 1, qt] | pt = 1] . (14)

Unless E[ωt | pt = 1, qt] is constant in qt, the inner conditional mean varies
with the instrument, and the product in (14) generally does not average to
zero. The two-type example above produces exactly such variation: higher
incentives expand participation to include higher-ω agents.

This highlights the precise sense in which “contract-as-IV” fails. Even
if the instrument is set without observing ωt, the instrument changes the
composition of ωt in the observed data because selection depends on the
contract. Put differently, the exclusion restriction must hold after condition-
ing on being observed, and the conditioning event is itself a function of the
contract.

4.3 When do the source moment conditions hold, and when
do they fail?

The moment conditions used in standard linear IV arguments implicitly pre-
sume that the instrument is orthogonal to the structural residual in the

2One can make this argument formal by conditioning on (at, pt, qt) and applying iter-
ated expectations. The key is that the selection event pt = 1 is decided before εt and ηt
are realized, so selection does not induce nonzero means in these noise terms.

17



estimation sample. In our environment the estimation sample is endoge-
nous, so orthogonality must be assessed conditional on pt = 1. The naive
moment (6) can hold in special cases, each corresponding to the failure of at
least one link in the selection channel:

1. No selection / full participation: if pt ≡ 1 (e.g., outside options are
always low enough), then the selected-sample and population moments
coincide.

2. No latent shifter: if ωt ≡ 0, then selection affects observability but
does not create omitted-variable correlation with the instrument.

3. Latent shifter independent of participation-relevant type components:
if ωt is independent of (ct, u0t ) (or more generally independent of the
agent’s participation decision given the posted contract), then the con-
ditional mean E[ωt | pt = 1, qt] does not vary with qt.

4. Instrument does not affect entry: if qt shifts incentives within the par-
ticipant pool but does not change the participation event, then condi-
tioning on pt = 1 does not induce correlation between qt and ωt. This
is exactly the logic we exploit later by drawing certain randomizations
after participation.

Outside these knife-edge or design-driven cases, however, the selection term
(13) is present. In particular, using bt as an instrument is typically invalid
precisely because bt is posted before participation and is the primary driver
of entry. Using βt as an instrument does not generally fix the issue either:
βt contains bt, and hence inherits the component that moves composition.
Formally, writing βt = bt + Zt and taking qt = βt in (13) yields

E[βtωt | pt = 1] = E[btωt | pt = 1] + E[Ztωt | pt = 1],

and even if the perturbation part is orthogonal, the baseline part need not
be.

Finally, it is worth emphasizing a distinct failure mode that motivates
our timing restriction. If randomization were realized before the participa-
tion decision (so that pt depended on the realized slope rather than only on
its distribution), then even a mean-zero perturbation could become corre-
lated with ωt in the selected sample, since the selection event would depend
directly on the realized random draw. The lesson is that exogeneity of the
instrument must be evaluated conditional on the realized sample, and the
timing of randomization determines whether conditioning on pt = 1 induces
correlation.

Taken together, these observations motivate the need for instruments
that generate within-sample variation in incentives while being insulated
from the participation margin. In the next section we describe designs that
satisfy this requirement and deliver valid conditional moments despite en-
dogenous entry.
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5 Safe instruments under endogenous participation

Our diagnosis in Section 4 points to a design principle: the instrument must
generate variation in incentives within the observed (participating) sample
while remaining insulated from the participation margin. Because partici-
pation is itself a function of the posted contract, any object realized prior to
entry is a potential driver of composition and hence can inherit correlation
with the unobserved outcome shifter ωt in the selected sample. In contrast,
randomizations realized after the agent commits to participate do not af-
fect who enters, and therefore can remain orthogonal to latent quality even
though the observed sample is selected.

We describe two concrete families of such “safe” instruments. The first is
the post-participation slope perturbation Zt already built into our baseline
model. The second implements the same logic using randomized audits or
repeated measurements, which can be useful when operational constraints
limit how we can randomize the primary contract slope on the main teleme-
try.

5.1 Post-participation slope randomization

The platform posts a baseline slope bt ∈ B and commits to a distribution for
a mean-zero perturbation Zt with covariance ΣZ ≻ 0. The timing restric-
tion is that the agent chooses participation based on (bt,L(Zt)), while the
realization of Zt is drawn and revealed only after pt is chosen. If pt = 1, the
realized linear payment slope is βt = bt + Zt, effort is chosen as

at ∈ arg max
a∈Rd

+

{⟨βt, a⟩ − ct(a)},

and the platform observes (xt, yt) with xt = at+εt and yt = ⟨θ⋆, at⟩+ωt+ηt.
The key property is that, conditional on pt = 1, the perturbation remains

exogenous with respect to unobservables that enter the outcome equation.

Exogeneity condition. We require that, for each t, the random vector Zt

is independent of (τt, εt, ηt) and hence of (ct, u0t , ωt, εt, ηt), and that E[Zt] = 0.
Because pt is measurable with respect to (bt,L(Zt), τt) and is chosen before
Zt is realized, the selection event {pt = 1} depends on τt and the distribution
of Zt but not on its realization. As a result, conditioning on pt = 1 does not
create dependence between Zt and ωt (or any other shock), and mean-zero
is preserved:

E[Zt | pt = 1] = E[Zt] = 0, E[Zt ωt | pt = 1] = E[Zt] · E[ωt | pt = 1] = 0.

To translate this into an estimable moment, define the residual at a
candidate parameter θ by rt(θ) = yt − ⟨θ, xt⟩. At the truth, rt(θ⋆) = ωt +
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ηt − ⟨θ⋆, εt⟩, so for participating rounds,

E[Zt rt(θ
⋆) | pt = 1] = E[Zt ωt | pt = 1] + E[Zt ηt | pt = 1]− E[Zt ⟨θ⋆, εt⟩ | pt = 1]

= 0, (15)

where the last line uses (i) Zt ⊥ ωt even after conditioning on pt = 1, (ii)
Zt ⊥ ηt and E[ηt | at, ωt] = 0, and (iii) Zt ⊥ εt and E[εt | at] = 0.

Relevance condition. Exogeneity alone is not enough; we also need Zt

to move xt in the selected sample. The corresponding rank condition is that
the cross-moment matrix

M ≡ E[Ztx
⊤
t | pt = 1]

is nonsingular. Since xt = at + εt and εt is independent of Zt with mean
zero, we have

E[Ztx
⊤
t | pt = 1] = E[Zta

⊤
t | pt = 1]. (16)

Thus relevance is governed by how the agent’s best response a(β; c) co-moves
with the realized perturbation Zt. In many canonical cases relevance is
immediate: for example, with separable quadratic costs ct(a) = 1

2∥a∥
2
2, we

obtain at = βt = bt + Zt, and hence M = E[Zt(bt + Zt)
⊤ | pt = 1] = ΣZ ,

which is invertible by assumption.
More generally, strict convexity and differentiability of ct imply that the

(interior) best response satisfies ∇ct(at) = βt, so at is a (typically monotone)
transformation of βt = bt + Zt. If this mapping is sufficiently responsive in
all directions and the support of Zt spans Rd (captured by ΣZ ≻ 0), then
the matrix in (16) is generically full rank on the participating sample. The
substantive failure mode is weak instruments: if ΣZ is nearly singular, or if
costs are such that actions are insensitive to some coordinates of βt, then
some components of θ⋆ will be weakly identified.

5.2 Randomized audits and repeated measurements as in-
strument generators

In some applications it is operationally difficult to add random perturbations
directly to the main performance slope (e.g., due to fairness constraints,
regulatory limits on pay variance, or product constraints on the displayed
formula). A useful alternative is to create exogenous, post-participation vari-
ation in marginal incentives via an auxiliary measurement or audit channel
whose realization is randomized after participation. The underlying econo-
metric logic is the same: the instrument must (i) be realized after entry so
it does not shift composition, and (ii) affect the agent’s chosen effort so it is
relevant for xt.
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A generic audit design. Suppose that if pt = 1 the platform can (with
some probability) conduct an audit that produces an auxiliary signal x̃t ∈ Rd

satisfying
x̃t = at + ε̃t, E[ε̃t | at] = 0,

with ε̃t independent of (εt, ηt) and of the agent type. After participation,
the platform draws a randomized audit bonus slope Wt with E[Wt] = 0 and
announces that the total payment will be

⟨bt, xt⟩+ ⟨Wt, x̃t⟩. (17)

The agent then chooses effort after observing Wt (together with the realized
audit signal rule), so the realized marginal incentives become bt + Wt on
the audited channel. Importantly, the random variable Wt is drawn after
participation, so it does not affect pt and does not induce composition shifts.

Under the analogue of the independence and mean-zero conditions im-
posed on Zt, we obtain the same selected-sample orthogonality:

E
[
Wt

(
yt − ⟨θ⋆, xt⟩

)
| pt = 1

]
= 0.

Relevance is again a rank condition, now involving E[Wtx
⊤
t | pt = 1]. The

practical advantage of (17) is that, when the main slope bt must remain
stable, one can still inject experimentally useful variation through the au-
dit bonus while keeping expected payments (and hence entry incentives)
unchanged in expectation.

Repeated measurements. A closely related variant replaces “audit” with
repeated measurement: conditional on participation the platform obtains
K ≥ 2 independent proxies

x
(k)
t = at + ε

(k)
t , k = 1, . . . ,K,

and randomizes (after participation) a weight vector (λ
(1)
t , . . . , λ

(K)
t ) with

mean (1, 0, . . . , 0) (or any fixed baseline allocation) and
∑

k λ
(k)
t = 1. The

realized payment depends on
∑

k λ
(k)
t x

(k)
t , which the agent observes before

choosing effort. The deviation λ
(k)
t − E[λ(k)t ] plays the role of a mean-zero

instrument that shifts the marginal incentive placed on each measurement
realization without changing the expected contract. This design can be at-
tractive when each individual measurement channel is noisy or manipulable,
yet the platform can vary which channel is “paid on” without altering entry
decisions.

Across these implementations the common requirement is that the ran-
domization is (i) realized after participation and (ii) independent of latent
quality and shocks, so that conditioning on pt = 1 does not contaminate the
exclusion restriction.
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5.3 Identification from selected-sample moments

We summarize the preceding discussion as an identification result stated
directly on the selected sample, since (xt, yt) are observed only when pt = 1.
Let Wt denote any post-participation randomized instrument (e.g., Wt = Zt

in the baseline model, or an audit-bonus randomization as above) such that
E[Wt] = 0 and Wt is independent of (τt, εt, ηt), with the additional timing
requirement that pt is chosen before Wt is realized.

Theorem (Selected-sample IV identification). Suppose (i)Wt is drawn
after participation and is independent of (τt, εt, ηt) with E[Wt] = 0, and (ii)
the relevance matrix E[Wtx

⊤
t | pt = 1] is nonsingular. Then θ⋆ is the unique

solution to the conditional moment restriction

E
[
Wt

(
yt − ⟨θ, xt⟩

)
| pt = 1

]
= 0. (18)

Discussion. To see uniqueness, expand (18) as

E[Wtyt | pt = 1]− E[Wtx
⊤
t | pt = 1]θ = 0,

so nonsingularity yields the closed-form solution

θ =
(
E[Wtx

⊤
t | pt = 1]

)−1
E[Wtyt | pt = 1],

and exogeneity ensures that θ = θ⋆ satisfies the equation. The substantive
content is that the orthogonality is asserted after conditioning on participa-
tion; this is exactly where baseline contracts fail as instruments and where
post-participation randomization succeeds.

Finally, we emphasize the tradeoff implicit in designing Wt: stronger
randomization improves relevance (and hence statistical precision) but can
reduce contemporaneous surplus by distorting incentives away from the base-
line optimum, and may depress participation if agents are sufficiently risk
averse or face downside risk in the realized slope. These considerations be-
come central once we turn to estimation and online policy design, where the
platform must choose the magnitude of randomization to balance learning
speed against short-run welfare and participation.

5.4 Estimation on selected samples: IV/GMM, finite-sample
guarantees, and design diagnostics

Having established the selected-sample moment condition (18), we now turn
to estimation using only the rounds in which the agent participates. This step
is not merely a technicality: selection affects the effective sample size, and
(through action responsiveness) it also affects the strength of the instrument,
both of which enter directly into finite-sample performance.
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Sample moments and the IV/GMM estimator. Let T1 ≡ {t ≤ T :
pt = 1} denote the set of participating rounds and n ≡ |T1| its cardinality.
For any post-participation instrument Wt satisfying the conditions of the
preceding subsection, the identification moment is

E
[
Wt

(
yt − ⟨θ, xt⟩

)
| pt = 1

]
= 0.

A natural estimator replaces this conditional expectation by its empirical
analogue on T1:

1

n

∑
t∈T1

Wt

(
yt − ⟨θ, xt⟩

)
= 0. (19)

When Wt ∈ Rd (as in slope perturbations or audit-bonus vectors), (19) yields
d equations in d unknowns. Writing X ∈ Rn×d for the matrix with rows x⊤t ,
W ∈ Rn×d for the matrix with rows W⊤

t , and Y ∈ Rn for the vector with
entries yt, the just-identified IV estimator is the familiar closed form

θ̂ =
(
W⊤X

)−1
W⊤Y, (20)

provided W⊤X is nonsingular.3

In settings with more instruments than regressors (e.g., if we stack mul-
tiple audit realizations, multiple perturbations, or interaction terms), we can
adopt standard GMM on the selected sample. Let mt(θ) ≡Wt

(
yt−⟨θ, xt⟩

)
∈

Rq with q ≥ d. The selected-sample GMM estimator solves

θ̂GMM ∈ arg min
θ∈Rd

∥∥∥∥∥∥ 1n
∑
t∈T1

mt(θ)

∥∥∥∥∥∥
2

Ω̂−1

, ∥v∥2
Ω̂−1 ≡ v⊤Ω̂−1v,

where Ω̂ is a consistent estimate of the selected-sample covariance of mt(θ
⋆).

The conceptual message is unchanged: all moments and weighting are com-
puted within the participating sample, because that is where the orthogo-
nality is guaranteed and where data exist.

Finite-sample error: what drives statistical precision under selec-
tion. Define the true residual (at θ⋆) by

Γt ≡ yt − ⟨θ⋆, xt⟩ = ωt + ηt − ⟨θ⋆, εt⟩, (pt = 1).

For the just-identified estimator (20), a single algebraic rearrangement yields

θ̂ − θ⋆ =
(
W⊤X

)−1
W⊤Γ, (21)

where Γ ∈ Rn stacks Γt over t ∈ T1. Equation (21) isolates two objects that
determine finite-sample performance:

3Equivalently, we may write sums with the indicator pt as
∑

t≤T ptWtx
⊤
t and∑

t≤T ptWtyt, which makes explicit that nonparticipating rounds contribute neither sig-
nals nor outcomes.
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1. the noise term W⊤Γ =
∑

t∈T1 WtΓt, which is well-behaved because
Wt is mean-zero and independent of the shocks entering Γt even after
conditioning on pt = 1; and

2. the instrument strength matrix W⊤X =
∑

t∈T1 Wtx
⊤
t , which can be

ill-conditioned if the perturbations are too small, too collinear, or if
actions are insufficiently responsive in some dimensions.

Under standard subgaussian/boundedness conditions on Wt and Γt (condi-
tional on the principal’s filtration and on pt = 1), martingale concentration
tools yield high-probability bounds of the schematic form

∥θ̂ − θ⋆∥2 ≤ C

√
dn log(dn/δ)

σmin(W⊤X)
(22)

with probability at least 1−δ, for a constant C depending on tail parameters.
Two implications are immediate and economically meaningful. First, selec-
tion enters only through n = |T1|: lower participation slows learning because
it literally reduces the number of usable moments. Second, selection also en-
ters through σmin(W

⊤X): even if participation is high, an instrument that
fails to generate within-sample incentive variation (or generates variation in
only a few directions) yields weak identification and large error.

In practice, we often prefer a regularized version of (20) to guard against
near-singularity:

θ̂λ =
(
W⊤X + λI

)−1
W⊤Y, λ > 0, (23)

which trades small bias for stability when W⊤X is ill-conditioned. This
is especially useful early in the horizon, when n is small and the realized
perturbations may not yet span Rd in a numerically robust way.

Weak-instrument diagnostics in the selected sample. Because our
identification argument hinges on relevance within the participating sample,
weak-instrument concerns must also be assessed within that sample. Op-
erationally, we recommend tracking diagnostics that are direct functions of
W⊤X (or its normalized analogue). The simplest is the minimum singular
value σmin(W

⊤X) appearing in (22); a closely related scale-free quantity is
the condition number

κ(W⊤X) ≡ σmax(W
⊤X)

σmin(W⊤X)
.

When σmin(W
⊤X) is small or κ(W⊤X) is large, inference can be unsta-

ble and confidence intervals can be misleading if one relies on asymptotic
approximations.

24



Two features of our environment deserve emphasis. First, weak instru-
ments can arise even when ΣZ ≻ 0 in the design, because relevance is me-
diated by behavior: if costs make some components of at nearly insensitive
to incentives, then xt will not load on those components of Wt. Second,
weak instruments can be endogenous to policy : if the baseline bt is chosen so
that participants concentrate in a region where actions saturate (e.g., cor-
ner solutions due to nonnegativity constraints or technological limits), then
within-sample responsiveness can collapse, again degrading W⊤X.

When diagnostics indicate weakness, the natural remedies mirror classical
IV practice but must respect our timing constraint. We can increase the
variance of post-participation perturbations, adjust their covariance to better
span under-identified directions, enrich the instrument set (e.g., multiple
independent perturbations), or adopt weak-IV-robust inference procedures
(such as Anderson–Rubin-type tests) computed on T1. The key point is that
all such interventions are feasible without reintroducing selection bias so long
as the randomization is realized after participation.

Choosing the randomization variance: a precision–welfare tradeoff.
The ability to tune the distribution of Wt (or Zt in the baseline model)
creates a design problem: more randomization strengthens identification,
but it can reduce contemporaneous surplus by distorting incentives away
from the baseline and may impose explicit experimentation costs (e.g., the
−κ∥Zt∥22 term).

A useful way to formalize this tradeoff is to separate statistical and eco-
nomic effects of scaling. Consider, for simplicity, a homoscedastic design
Zt = σξt with E[ξt] = 0 and E[ξtξ⊤t ] = I. In many smooth environments the
relevance matrix scales approximately linearly in σ:

E[Ztx
⊤
t | pt = 1] ≈ σ E[ξta⊤t | pt = 1],

so the “first-stage” strength σmin(E[Ztx
⊤
t | pt = 1]) is (locally) increasing

in σ. Holding n fixed, (22) then suggests an estimation error that shrinks
roughly like 1/σ. On the other hand, the contemporaneous payoff loss from
randomization typically grows like σ2 under a second-order approximation:
since E[Zt] = 0, the first-order effect of perturbing the slope cancels, while
curvature generates a quadratic welfare cost. If we also include the explicit
experimentation penalty, then E[κ∥Zt∥22] = κσ2E∥ξt∥22.

This back-of-the-envelope calculus yields a familiar shape: the marginal
benefit of increasing σ (in estimation precision) diminishes, while the marginal
cost (in distortion and experimentation expense) increases. In finite hori-
zons, this suggests policies that randomize more early on (when learning
is valuable) and reduce randomization later (when exploitation dominates),
subject to the additional constraint that randomization must not endanger
participation. Although our baseline model abstracts from risk aversion, in
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many applications agents face risk or downside constraints, and large real-
ized slopes can depress entry even if E[Zt] = 0. Thus, beyond variance,
the support and tail behavior of the perturbation distribution matter for
feasibility.

A practical design rule is therefore to (i) choose the shape (covariance) of
Zt to target directions where responsiveness is empirically weak, (ii) cap tails
to respect operational constraints and participation stability, and (iii) select a
scale σ that keeps the observed instrument-strength diagnostics comfortably
away from degeneracy while limiting short-run distortion. This empirical
tuning sets the stage for the online learning problem: once we repeatedly
update bt based on accumulating selected-sample IV estimates, we must
jointly manage learning, payoff, and participation constraints over time.

5.5 Online learning with safe post-participation randomiza-
tion

We now integrate the selected-sample IV estimator into an online contract
policy. The economic challenge is that the baseline slope bt affects both (i)
the contemporaneous payoff through the induced effort choice and (ii) the
future quality of statistical information by changing which agents participate.
The statistical challenge is that we only observe (xt, yt) on the endogenous
subset T1, so learning rates must be expressed in terms of the realized number
of participants and the realized strength of the within-sample first stage.

A learning objective and regret benchmark. Let the platform’s one-
round payoff be

UP
t (bt, Zt) ≡ pt

(
yt − ⟨bt + Zt, xt⟩

)
− κ∥Zt∥22,

and define the conditional expected payoff of a baseline b (given the policy’s
filtration Ft) by

µt(b) ≡ E
[
UP
t (b, Zt) | Ft

]
,

where the expectation is taken over the arriving agent and all contempora-
neous shocks, including Zt drawn after participation. We evaluate a policy
against the best fixed feasible baseline in hindsight,

b⋆ ∈ arg max
b∈Bsafe

T∑
t=1

µt(b),

where Bsafe ⊆ B is a subset of baselines that preserve participation feasibility
in the sense described below. The (pseudo-)regret is

Reg(T ) ≡
T∑
t=1

(
µt(b

⋆)− µt(bt)
)
.
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This benchmark is intentionally modest: it holds the baseline fixed and
does not credit policies for tracking nonstationarity in types. Nonetheless it
captures the core learning–exploitation tension while remaining compatible
with endogenous participation and partial observability.

A concrete policy: “estimate θ⋆, then plug in.” We consider policies
with two coupled components: (i) an estimator θ̂t built only from partici-
pating rounds, using the post-participation perturbations Zs as instruments;
and (ii) a baseline update rule bt = ϕt(θ̂t) that maps beliefs about θ⋆ into a
contract.

A simple instantiation is the following.

1. Experiment design (fixed shape, time-varying scale). Fix a covariance
shape ΣZ ≻ 0 and draw Zt = σtξt where ξt is mean-zero with E[ξtξ⊤t ] =
ΣZ and is independent of (τt, εt, ηt). The scalar σt can be scheduled
(e.g., decreasing) to manage the precision–distortion tradeoff.

2. Selected-sample IV update. Let T1,t−1 = {s < t : ps = 1} and nt−1 =
|T1,t−1|. Form the regularized estimator

θ̂t =

 ∑
s∈T1,t−1

Zsx
⊤
s + λI

−1 ∑
s∈T1,t−1

Zsys

 , λ > 0. (24)

3. Baseline update with projection/safety. Choose

bt = ΠBsafe

(
ϕ(θ̂t)

)
, (25)

where ϕ(·) is a smooth, Lipschitz map (e.g., ϕ(θ) = θ/k for a scaling
constant k > 0) and Π denotes Euclidean projection.

The policy is deliberately modular: (24) isolates the statistical step (which
is robust to selection because Zt is realized after entry), while (25) isolates
the economic step of translating task values into incentives.

Participation feasibility and “safe” baselines. Endogenous participa-
tion is not merely a nuisance: if a learning rule drives entry to zero, the
platform loses both payoff and data, and the IV estimator stops updating.
We therefore impose a feasibility notion that rules out such pathological
trajectories.

Because the platform does not observe the agent’s cost function ct or
outside option u0t , we cannot directly enforce the participation constraint

EZ

[
max
a∈Rd

+

⟨b+ Z, a⟩ − ct(a)

]
≥ u0t
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type-by-type. Instead, we work with a reduced-form participation regularity
condition and a conservative baseline set. One convenient sufficient condition
for analysis is:

Pr(pt = 1 | bt) ≥ πmin > 0 for all t, (26)

which says that the induced participation rate is uniformly bounded away
from zero along the policy path. Operationally, (26) can be supported by
constructing Bsafe as a neighborhood of historically “high-entry” baselines,
by applying guardrails (e.g., coordinatewise lower bounds on bt), or by using
a fallback mixture

bt = (1− αt) b
cons + αtΠB

(
ϕ(θ̂t)

)
, αt ↑ 1,

where bcons is a conservative baseline known to yield acceptable participation.
Importantly, the post-participation perturbation Zt does not itself alter entry
in our timing, so “safe exploration” is feasible: we can randomize to identify
θ⋆ without directly endangering participation.

Estimation error under selection: self-normalized martingale con-
trol. Define the selected-sample moment noise Γt = yt−⟨θ⋆, xt⟩ on partic-
ipating rounds. Consider the matrix and vector processes

St ≡
∑

s∈T1,t−1

Zsx
⊤
s , gt ≡

∑
s∈T1,t−1

ZsΓs,

so that θ̂t− θ⋆ = (St+λI)
−1gt by construction. The key probabilistic fact is

that, conditional on the filtration and on ps = 1, the sequence (ZsΓs)s∈T1,t−1

is a martingale difference array: Zs is mean-zero and independent of Γs even
in the selected sample. This is precisely where post-participation random-
ization pays off; it restores orthogonality without requiring any assumptions
about the correlation between ωt and entry.

Under standard boundedness/subgaussian conditions on Zt and Γt (con-
ditional on Ft and pt = 1), self-normalized inequalities imply a bound of the
schematic form

∥θ̂t − θ⋆∥2 ≤ Õ

( √
d log(1/δ)

σmin(St + λI)

)
uniformly over t ≤ T, (27)

with probability at least 1−δ. Selection enters (27) only through the growth
and conditioning of St, which in turn are driven by (i) how many rounds par-
ticipate (via |T1,t−1|) and (ii) how strongly actions load on the randomized di-
rections (via the cross-moments between Zt and xt in the participating sam-
ple). In particular, if (26) holds and ΣZ is well-conditioned, then σmin(St)
typically grows on the order of |T1,t−1|, yielding the familiar 1/

√
|T1,t−1|

shrinkage in estimation error.

28



From estimation error to regret: stability of the baseline map. To
translate (27) into regret guarantees, we impose a local regularity condition
on the baseline choice problem. Let µ̄(b; θ) denote a smooth surrogate for
the platform’s expected payoff when the outcome model parameter is θ (for
instance, the platform’s expected value of induced effort net of payments,
under the model-implied best response). We assume:

1. (Local strong concavity) For θ in a neighborhood of θ⋆, the function
b 7→ µ̄(b; θ) is α-strongly concave on Bsafe.

2. (Lipschitz dependence) The gradient ∇bµ̄(b; θ) is L-Lipschitz in θ, uni-
formly over b ∈ Bsafe.

3. (Plug-in optimality) The update map ϕ in (25) approximates an op-
timizer of b 7→ µ̄(b; θ̂t) up to a controlled error, or is itself the exact
optimizer when tractable.

These conditions are standard in online estimation–optimization couplings:
they state that the baseline problem is well-behaved and does not amplify
small parameter errors into large contract mistakes. Under them, one obtains
a stability inequality of the form

∥bt − b⋆∥2 ≤ Cb ∥θ̂t − θ⋆∥2, (28)

for a constant Cb depending on (α,L) and on the Lipschitz properties of
ϕ and projection. Combining (28) with a second-order expansion of µt(b)
around b⋆ (using concavity) yields one-step regret bounded by a quadratic
in ∥bt − b⋆∥2, hence ultimately controlled by ∥θ̂t − θ⋆∥22.

A representative regret bound and its interpretation. Putting the
pieces together, we obtain a regret guarantee of the familiar “parametric” fla-
vor, but with two participation-sensitive modifiers. Under (26), the moment
validity conditions for Zt, and the stability assumptions above, a typical
bound is

Reg(T ) ≤ Õ

(
d

πmin

√
T

)
, (29)

where logarithmic factors depend on confidence and tail parameters, and the
constant depends on curvature and the conditioning of ΣZ as mediated by
behavior. The key economic content of (29) is not the specific

√
T rate—

which mirrors standard stochastic online learning—but rather the channels
through which selection enters:

• Data scarcity: a smaller participation rate effectively reduces the sam-
ple size of valid moments, slowing the decay of ∥θ̂t − θ⋆∥ and inflating
regret.
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• Behavioral relevance: even if ΣZ ≻ 0 by design, weak responsiveness
of effort in certain dimensions can make the effective first stage ill-
conditioned within T1, degrading both estimation and regret.

• Policy-induced composition: the baseline affects who shows up, which
changes the distribution of costs and thus the mapping from incen-
tives to actions. Our approach does not require this composition to
be stable; it requires only that the post-entry randomization remains
orthogonal to the residual, and that participation does not collapse.

Design implications and limitations. The preceding analysis highlights
a practical design principle: we can decouple validity from relevance. Validity
is guaranteed by timing—randomize after entry—whereas relevance must be
engineered by choosing the covariance (and scale) of Zt so that, among par-
ticipants, Zt generates sufficiently rich variation in xt. This is precisely why
instrument-strength diagnostics computed on the selected sample are not
merely inferential conveniences but genuine control variables in the learning
loop.

At the same time, we emphasize what this framework does not solve.
First, participation feasibility is modeled through reduced-form stability con-
ditions (such as (26)) or conservative safe sets; a fully structural treatment
would require learning about the joint distribution of (ct, u

0
t ) and solving

a dynamic mechanism design problem. Second, our regret benchmark is
against a fixed baseline; when the environment is nonstationary, one may
prefer adaptive benchmarks, at the cost of additional assumptions. Third,
risk aversion or downside constraints would make the distributional shape
of Zt (not only its variance) central for feasibility; heavy tails can generate
rare but severe realizations that reduce entry in practice even though entry
is ex ante. These considerations motivate the extensions we discuss next.

5.6 Extensions: covariates, fairness, competition, delays, and
nonstationarity

The analysis above isolates a simple but powerful idea: by randomizing after
participation, we obtain moment conditions that remain valid in the selected
sample. In practice, however, platforms rarely face a homogeneous stream of
agents, immediate outcomes, or a monopolistic environment. We therefore
briefly sketch several extensions that preserve the same logical separation
between (i) economic forces that govern entry and effort and (ii) statisti-
cal validity of the instrument, while clarifying where new modeling work is
genuinely required.

Observed covariates and contextual contracts. Suppose that, before
posting the baseline, the platform observes a vector of context variables
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wt ∈ Rm (e.g., market conditions, seller experience, product category, time of
day). A natural generalization is to allow both the contract and the outcome
model to depend on wt. One convenient formulation is a linear-in-features
outcome model

yt = ⟨θ⋆, at⟩+ ⟨ψ⋆, wt⟩+ ωt + ηt,

or, more flexibly, θ⋆ itself may vary with context via a known feature map
φ(wt), e.g.,

yt =
〈
Θ⋆φ(wt), at

〉
+ ωt + ηt,

where Θ⋆ is an unknown matrix. On the contract side, we can allow bt =
b(wt) for some policy class, with the perturbation still realized post-entry:
βt = b(wt) + Zt.

The key observation is that the selection-robust moment condition con-
tinues to hold conditionally on covariates:

E
[
Zt

(
yt − ⟨θ⋆, xt⟩ − ⟨ψ⋆, wt⟩

) ∣∣ pt = 1, wt

]
= 0,

under the same timing and independence assumptions on Zt. This immedi-
ately suggests a standard strategy: instrument not only with Zt, but with
interactions Zt ⊗ φ(wt) to identify heterogeneous task values. Estimation
becomes a selected-sample analog of contextual IV, with the usual rank con-
dition replaced by nonsingularity of the conditional (or feature-augmented)
cross-moment matrix E[(Zt ⊗ φ(wt))x

⊤
t | pt = 1]. Economically, contextual

baselines are attractive precisely because they can keep participation feasible
by tailoring incentives to the observable environment; statistically, they can
also strengthen the first stage by targeting contexts where effort responds
more elastically.

A limitation is that if wt affects not only the level of yt but also the
distribution of unobserved ωt in ways correlated with the policy, then the
platform may wish to explicitly condition its safe-set construction on wt (e.g.,
ensuring Pr(pt = 1 | wt, bt) ≥ πmin(wt)). This is not a failure of validity—the
instrument remains orthogonal—but rather a practical requirement to avoid
“contextual data deserts” in which certain covariate regions never generate
participants.

Group fairness and constrained contract updates. Platforms may
face normative or regulatory constraints that require contracts to satisfy
fairness criteria across protected groups. Let gt ∈ {1, . . . , G} denote an
observed group label (or a coarse proxy), and consider fairness constraints
that operate either on participation (e.g., demographic parity of entry) or on
treatment intensity (e.g., bounds on differences in expected payments).

Our framework accommodates such constraints most naturally at the
baseline-update stage. For example, if the policy class is group-conditional
bt = b(gt), one can impose constraints of the form∣∣Pr(pt = 1 | gt = g, b(g))− Pr(pt = 1 | gt = g′, b(g′))

∣∣ ≤ ∆,
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or, more conservatively, group-wise feasibility bounds Pr(pt = 1 | gt =
g, b(g)) ≥ πmin,g. Alternatively, one may require that the baseline itself
satisfy Lipschitz or bounded-disparity constraints ∥b(g)− b(g′)∥2 ≤ δ.

Crucially, the post-participation instrument Zt remains valid within each
group:

E
[
Zt

(
yt − ⟨θ⋆, xt⟩

) ∣∣ pt = 1, gt = g
]
= 0,

so one can estimate either a common θ⋆ pooling all groups, or group-specific
parameters θ⋆g when heterogeneity is substantively important. The policy im-
plication is that fairness constraints need not force the platform to abandon
identification; instead, they change the feasible set over which the plug-in
optimizer operates and can reduce effective sample size for some groups.
In turn, regret guarantees become group-sensitive, scaling with the smallest
group participation rate and with the weakest within-group first stage. This
highlights a tension that is easy to miss in purely static analyses: fairness
constraints can be binding precisely in the regions where learning is hardest,
so auditing and monitoring should include instrument-strength diagnostics
at the group level (e.g., σmin(E[Zx⊤ | p = 1, g])) rather than only aggregate
metrics.

Multi-homing and platform competition (reduced form). Many
marketplaces face multi-homing: agents can participate on multiple plat-
forms, or choose among competing contracts posted elsewhere. A reduced-
form way to incorporate this is to reinterpret the outside option u0t as an
equilibrium value that depends on competitors’ terms, macro conditions, and
agent-specific switching costs. Then pt = 1 becomes a market-share event
rather than a pure participation decision.

Two issues arise. First, the baseline bt may now affect not only selection
on unobservables but also the competitive equilibrium, potentially changing
the distribution of arriving types (e.g., high-quality agents sort to the plat-
form offering better incentives). Second, competitors may respond strategi-
cally over time, inducing correlation between the platform’s policy and the
environment.

For identification of θ⋆ from within-platform data, the timing logic still
helps: conditional on the event that an agent chose this platform (i.e., condi-
tional on pt = 1 as defined by “arrived and accepted here”), a post-entry per-
turbation Zt that is independent of the agent and contemporaneous shocks
continues to satisfy

E[Zt(yt − ⟨θ⋆, xt⟩) | pt = 1] = 0.

Thus, even if competition makes selection more severe, it does not by itself
invalidate the instrument. What it does change is the feasibility problem:
the safe set Bsafe must now ensure a lower bound on equilibrium partic-
ipation/share, and this may require explicit guardrails tied to observable
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competitor signals (when available). Moreover, the platform’s objective may
become explicitly game-theoretic, so regret relative to a fixed baseline in
hindsight may be less meaningful than regret relative to an equilibrium
benchmark or to a constrained best-response set. We view this as an impor-
tant direction for future work: extending “safe randomization” to strategic
settings where the environment endogenously reacts to the baseline, while
preserving post-entry orthogonality.

Delayed outcomes and asynchronous updating. In many applica-
tions, xt is observed immediately (telemetry, intermediate outputs) but yt
arrives with delay (chargebacks, retention, long-run quality). Let yt be ob-
served only at time t+ℓt, with possibly random lag ℓt. The estimator (24) can
be adapted by updating only when the corresponding ys becomes available:

θ̂t+1 =

(∑
s∈Ot

Zsx
⊤
s + λI

)−1(∑
s∈Ot

Zsys

)
,

where Ot indexes participating rounds whose outcomes have arrived by time
t. Validity is unchanged because it is a within-round statement: Zs remains
independent of the residual in round s, regardless of when that residual is
observed.

What does change is the online control problem: the baseline updates be-
come “stale” because they are driven by delayed information. Under bounded
delays, standard arguments for online learning with delayed feedback sug-
gest regret inflation that depends on the maximum delay, reflecting the fact
that the policy makes more decisions before incorporating new data. Sub-
stantively, delayed outcomes strengthen the case for maintaining persistent
(but safe) randomization: without it, long feedback loops can easily lead
to premature lock-in to poorly identified baselines. In settings with very
long delays, it may be valuable to use xt-only diagnostics (e.g., first-stage
strength, compliance) to adapt the scale σt in real time, even before yt ar-
rives.

Nonstationarity: drifting values and evolving populations. Finally,
both θ⋆ and the type distribution may evolve over time. Some changes are
predictable (seasonality) and can be absorbed into covariates; others reflect
genuine drift (changing user tastes, policy shocks, product-market fit). A
pragmatic extension is to replace the full-sample estimator with a discounted
or sliding-window version, for example,

θ̂t =

 ∑
s∈T1,t−1

ρt−1−sZsx
⊤
s + λI

−1 ∑
s∈T1,t−1

ρt−1−sZsys

 , ρ ∈ (0, 1),
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or with a window of the last W participating observations. Here, post-
participation randomization again ensures that the moment condition is cor-
rect at each date (relative to the contemporaneous θ⋆t ), while the discounting
controls the bias–variance tradeoff induced by drift.

The economic message is that nonstationarity primarily re-enters through
relevance and feasibility. Drift can move the system into regions where par-
ticipation is fragile or where responsiveness to incentives weakens, thereby
shrinking the effective information rate even if the formal IV moment re-
mains unbiased. This suggests that safe-set design and instrument scaling
should be treated as adaptive control knobs, not static assumptions. It also
suggests more demanding benchmarks: rather than competing with the best
fixed baseline, one may compare to a slowly varying sequence of baselines,
paying a variation budget. Establishing sharp regret bounds in such environ-
ments is feasible but requires explicit drift controls and is beyond our scope
here.

Summary. Across these extensions, the common theme is modularity. Ob-
served covariates and fairness constraints primarily alter how we map esti-
mates into baselines and how we define feasibility; competition alters what
participation means and may change the appropriate benchmark; delays al-
ter the information pattern but not instrument validity; and nonstationarity
alters the target and thus the estimator design. In all cases, the central “safe
randomization” insight remains: when perturbations are realized after entry
and are exogenous, selection can distort who we observe without corrupting
the orthogonality of the instrument in the observed sample. This prepares
the ground for our discussion of what the approach implies for platform
implementation, auditing, and policy.

5.7 Discussion: platform implementation, audit design, pol-
icy implications, and open problems

The preceding sections emphasize a conceptual separation: participation and
effort are governed by economic incentives and selection, while identification
can be recovered by a carefully timed source of exogenous variation. This
separation is attractive in platforms precisely because it maps onto how
systems are built. Participation decisions are typically made at an “offer
layer” (what terms are posted, what sellers see, whether a worker accepts a
job), whereas effort and performance are realized only after a match occurs.
Our view is that post-participation randomization is best interpreted as an
engineering principle for experimentation under endogenous observation: we
should randomize only along dimensions that are realized after the platform
has committed to observing the relevant data.
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How a platform would implement post-participation randomiza-
tion. Operationally, the platform needs to (i) publish a baseline slope vec-
tor bt and a distribution for Zt, (ii) draw Zt only after an agent has ac-
cepted/entered, and (iii) record the realized βt = bt +Zt alongside xt and yt
for estimation. A simple design is to take

Zt = σt ξt, E[ξt] = 0, E[ξtξ⊤t ] = I,

with σt ≥ 0 chosen by the platform (possibly time-varying) and ξt generated
by a centralized randomness service. The requirement that Zt be realized
after participation is not merely conceptual: it is a product requirement. In
particular, the user interface, API responses, and any pre-acceptance pre-
views must depend only on bt and on the distributional description of Zt

(e.g., “your per-unit bonuses may vary slightly around the posted rates”)
rather than on the realized draw. When this timing is respected, the event
pt = 1 cannot mechanically encode information about Zt, which is the core
reason the selected-sample moment remains valid.

Two practical constraints often matter. First, platforms typically require
nonnegativity or other monotonicity in incentives (e.g., bt ∈ [0, 1]d). This can
be handled by choosing a perturbation distribution supported on a set that
preserves feasibility, such as a truncated Gaussian, a Rademacher design
with small amplitude, or a “reflecting” scheme that redraws until βt ∈ B.
Second, payments implied by ⟨βt, xt⟩ may be subject to budgets, caps, or
risk controls. These constraints naturally enter through B and through an
explicit experimentation cost term (as in −κ∥Zt∥22), which provides a direct
knob to trade off short-run payment volatility against long-run learning.

Choosing the scale and shape of randomization. From an imple-
mentation standpoint, the most important design choice is not whether to
randomize but how much and in which directions. The variance ΣZ governs
instrument strength through the cross-moment E[Ztx

⊤
t | pt = 1] and there-

fore directly affects statistical power. At the same time, large perturbations
can create undesirable variability in realized incentives, which may harm
trust, increase churn, or distort effort away from what the baseline would
have elicited.

A useful way to think about tuning is to treat ΣZ as an exploration bud-
get allocated across tasks. If some coordinates of effort are already strongly
responsive to incentives (high “compliance”), then randomization in those di-
rections yields high first-stage strength at low variance; conversely, if certain
tasks are inelastic, randomization may need to be larger to identify their
value, or the platform may decide that those dimensions are effectively un-
learnable under acceptable perturbations. In practice, we recommend that
platforms monitor a rolling estimate of the smallest singular value of the
empirical first-stage matrix Z⊤

T1XT1 (or its regularized analog) and adapt σt
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to maintain it above a minimum threshold. This reframes weak-instrument
concerns as a control problem: we are not passively accepting weak rele-
vance; we are actively maintaining it subject to safety and user-experience
constraints.

Data logging and “separation of duties” in the system. Because
the identifying variation comes from a timing claim, the most fragile failure
modes are engineering failures. A robust implementation therefore bene-
fits from separation of duties: a service that decides eligibility/participation
should not have access to the realized Zt, and a service that draws Zt should
be triggered only after participation is irrevocably recorded. Moreover, the
platform should log (at minimum) (t, bt, Zt, βt, pt, xt, yt) with immutable
timestamps and stable identifiers, so that later audits can verify that the
realized perturbations were not leaked or retroactively modified.

We also emphasize that, in many products, the “signal” xt is itself a de-
rived telemetry object rather than raw behavior. When xt is constructed by
downstream pipelines, it is important that its construction be invariant to
Zt except through the agent’s behavior. Any direct dependence of measure-
ment on the instrument (e.g., changing logging intensity when incentives are
high) can reintroduce endogeneity in a way that is subtle but empirically
consequential. Treating the instrument as a protected variable in the data
schema—available for estimation but not for measurement logic—is therefore
a practical safeguard.

Estimation and decision pipelines in a selected sample. A virtue
of the selected-sample IV moment is that it matches how platform data are
naturally generated: xt and yt exist only when pt = 1. Estimation can thus
be implemented as a streaming two-stage least squares or GMM routine
that updates only on participating rounds, with regularization to handle
transitory weak relevance:

θ̂t =

 ∑
s≤t−1:ps=1

Zsx
⊤
s + λI

−1 ∑
s≤t−1:ps=1

Zsys

 .

The baseline-update policy then maps θ̂t into bt ∈ B, potentially via a smooth
optimizer or via a conservative projection rule. We find it helpful to make this
mapping explicit and auditable (e.g., “baseline is the solution to a constrained
surrogate problem with parameter θ̂t”), because it clarifies how incentives will
change as the estimate updates and allows internal stakeholders to reason
about stability.

Audit design: validating the timing assumptions and diagnosing
strength. In applied settings, the right question is not whether an as-

36



sumption is philosophically plausible, but whether it can be audited. The
core assumptions behind instrument validity are (a) post-participation real-
ization and (b) statistical independence of Zt from unobservables and noises.
Both admit concrete tests and monitoring.

First, one can run “balance” checks that should hold mechanically if
timing is correct: since Zt is drawn after pt is realized, we should have
Pr(pt = 1 | Zt) = Pr(pt = 1) up to sampling error, and likewise E[Zt |
pt = 1] = 0. While these are not sufficient to guarantee full independence,
they are sensitive to common implementation bugs (e.g., accidentally draw-
ing Zt before acceptance and using it in ranking/eligibility). Second, in-
strument strength diagnostics should be mandatory: the platform should
track the empirical covariance between Zt and xt among participants, re-
port weak-instrument flags, and condition confidence intervals on robust
(heteroskedasticity- and autocorrelation-robust) estimators when appropri-
ate. Third, when fairness or group constraints are present, these diagnostics
should be computed within groups, because weak identification can be con-
centrated precisely where participation is low.

Beyond these mechanics, we advocate for “placebo” outcome checks as an
ongoing audit tool. If there are outcomes that, by design, cannot respond to
contemporaneous effort (or cannot respond within the delay window), then
they should have zero reduced-form relationship with Zt. A statistically sig-
nificant relationship is then an actionable signal of leakage, measurement
dependence, or correlated shocks, even if the main outcome regression ap-
pears well-behaved.

Implications for policy and platform governance. Post-participation
randomization changes how we should think about experimentation in mar-
kets with selection. Standard A/B testing logic implicitly assumes that as-
signment is orthogonal to what is observed; here, what is observed depends
on participation, so naive experiments can generate misleading conclusions
even when assignment is randomized at the offer stage. Our framework sug-
gests a governance principle: to credibly learn about marginal returns to
effort, platforms should randomize incentives conditional on entry, not just
offers that affect entry.

For regulators and auditors, this yields a practical standard for acceptable
experimentation. The platform can commit to (i) a publicly documented
perturbation distribution, (ii) a maximum variance (protecting participants
from excessive volatility), and (iii) monitoring of participation and payment
impacts. This is analogous to how clinical trials codify dose randomization
within a safe range. Importantly, the approach also clarifies what cannot be
inferred from platform data alone: if certain populations never participate
under any feasible baseline, then no amount of post-entry randomization can
identify their counterfactual outcomes. In that sense, the method is not a
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substitute for access policies; it is a complement that makes inference within
the observed market more credible.

Limitations and open problems. Several limitations deserve emphasis.
First, we have treated each round as a one-shot interaction, but many plat-
forms face dynamic incentives and repeated participation by the same agents.
If agents learn over time about the distribution of Zt and update beliefs about
future baselines, participation and effort may become forward-looking, and
the effective timing assumptions can blur (e.g., an agent may anticipate that
accepting today affects future treatment). Extending selection-robust IV to
dynamic contracts is feasible but requires explicit modeling of state and be-
liefs, and may call for randomized policies that are conditionally independent
given states.

Second, we have assumed that Zt is independent of the agent type and
contemporaneous shocks. In practice, correlated shocks can arise from shared
infrastructure (e.g., outages) or from targeting logic that inadvertently cor-
relates Zt with contexts that also affect outcomes. This points to a design
desideratum: generate Zt from a centralized, context-agnostic random seed,
and treat any context-dependent scaling σt as part of the baseline decision
bt that is itself predictable from Ft. When such predictability fails, one
may need to condition on richer information sets or adopt randomization at
higher granularity.

Third, the outcome model itself may be misspecified. If yt depends non-
linearly on at, or if there are complementarities across tasks, the linear IV
estimator targets a local linear approximation rather than a structural prim-
itive. This is not necessarily a defect—platform decisions often only require
marginal values—but it does affect interpretation and optimal contract de-
sign. A promising direction is to combine post-entry randomization with
flexible outcome models (e.g., series or machine learning) while retaining or-
thogonality through moment restrictions, essentially moving from linear IV
to orthogonal score estimation in a selected sample.

Finally, there is an unresolved design question at the heart of implemen-
tation: how should a platform optimally choose ΣZ jointly with the baseline
policy to maximize long-run welfare subject to volatility, fairness, and par-
ticipation constraints? Our regret discussion provides one tractable bench-
mark, but real platforms optimize multi-objective criteria and face organiza-
tional constraints (communication, user trust, regulatory scrutiny) that are
not naturally captured by a single payoff function. Developing principled
“experimentation budgets” that translate these constraints into transparent
bounds on perturbations, while preserving identification, is an important
open problem for both economics and platform science.

Taken together, these considerations reinforce the main message. Safe
randomization is not merely a statistical trick; it is a disciplined way to
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align mechanism design with how data are generated under selection. When
implemented with explicit timing guarantees and audited for strength and
leakage, it offers a credible path to learning causal task values in environ-
ments where naive instruments and naive experiments fail.
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