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Abstract

Modern platforms increasingly display “usual price / was price”
statistics that shape demand through reference effects. The recent
ARM model (Agrawal & Tang, 2024) shows long-memory references
can make fixed pricing highly suboptimal and can incentivize high ini-
tial prices followed by markdowns—strategies that may resemble de-
ceptive reference pricing. We study a platform-mediated alternative:
the displayed reference is an outcome-weighted (sales- or engagement-
weighted) average of transacted prices rather than an unweighted av-
erage of posted prices. We formalize this as a dynamic mechanism
where the platform commits to an update rule and the seller best-
responds. Our first result is a “no-free-anchoring” identity: the next
reference moves toward today’s posted price in proportion to realized
sales weight; if sales are negligible, the reference barely moves (and does
not move at all if sales are zero). This directly blocks the pathologi-
cal incentive to post extreme prices solely to inflate future references.
We then analyze a tractable linear-demand model with symmetric ref-
erence effects and show that dynamic incentives become small once
the cumulative sales weight grows, implying near-stationarity of opti-
mal pricing and near-optimality of a fixed price up to polylogarithmic
additive loss. We discuss platform design tradeoffs (manipulation-
resistance vs reference volatility) and extensions where asymmetric
reference effects or nonlinear demand require numerical dynamic pro-
gramming.
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1 Introduction: reference-price displays, deceptive
anchoring, and the role of platform-mediated rules

By 2026, reference-price displays have become a routine component of online
retail interfaces: a current posted price is juxtaposed with a “was” price, a
“typical” price, or a “recommended” benchmark that implicitly frames the at-
tractiveness of the offer.1 This design choice is not innocuous. A large body
of evidence in behavioral IO and marketing suggests that consumer willing-
ness to buy depends not only on the level of the current price, but also on
how that price compares to a displayed reference. In practice, the platform—
rather than the seller—often determines how that reference is computed and
presented (e.g., “lowest price in last 30 days,” “median price,” “recent av-
erage,” or proprietary “deal” metrics). The central premise of this paper is
that how the platform computes the reference statistic is itself a policy lever:
it can either facilitate deceptive anchoring strategies or discipline them by
tying reference movements to realized economic activity.

The motivating concern is a familiar one. Sellers may attempt to cre-
ate the appearance of a discount by inflating a reference benchmark and
then posting a lower “sale” price relative to that benchmark, even when the
sale price is not meaningfully low in any economic sense. In the starkest
form, a seller posts an extreme price briefly, generates little or no demand
at that price, yet mechanically raises the platform’s displayed reference for
subsequent periods. The seller then posts a moderate price and benefits
from increased conversion due to the now-elevated reference point. When
such strategies are profitable, reference-price displays can drift away from
informative summary statistics and become instruments of persuasion. This
tension is now sufficiently salient that platforms face pressure from regulators
and consumer advocates to ensure that reference-price claims are not mis-
leading, while sellers simultaneously seek flexibility in promotional pricing
and merchandising.

To see why the computation rule matters, it is useful to contrast two
broad classes of reference updating that appear implicitly or explicitly in
platform practice. A first class consists of posted-price based rules, where
the platform aggregates posted prices regardless of whether they generated
sales. Two common variants are (i) a simple average over recent posted
prices, which we refer to as an averaging rule (ARM), and (ii) exponentially
weighted smoothing over posted prices (ESM), where recent posted prices
receive more weight but even short-lived, low-traffic postings can shift the
displayed reference. Such rules may look reasonable if one thinks of the
reference merely as a summary of the seller’s announced prices. However,
they create a mechanical vulnerability: because the reference reacts to posted

1We use “reference price” in the behavioral sense: a salient benchmark against which
the current price is evaluated, not necessarily a legally defined MSRP.
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prices even when those prices are not transacted, a seller can “buy” a higher
reference cheaply by posting high prices in periods with low demand, low
visibility, or deliberately curtailed inventory. In other words, under purely
posted-price aggregation, the platform unintentionally subsidizes anchoring.

A second class of rules, which we advocate and analyze, are outcome-
weighted rules: the reference statistic reacts primarily to transacted prices
(or more generally, realized outcomes such as sales or engagement). The ba-
sic intuition is straightforward and precedes any formalism. If a platform’s
reference display is meant to summarize what consumers actually pay (or
what the market clears at), then a period in which a seller posts an ex-
treme price but makes no sales should not move the benchmark. Conversely,
if a seller truly sells substantial quantity at a higher price, then it is less
problematic—and arguably informative—for the reference to adjust upward,
because the higher price reflects real transactions rather than a cheap, purely
nominal signal.

This shift in perspective recasts the platform’s design problem. The ques-
tion is not whether reference dependence exists; we take it as a behavioral
demand feature that sellers and platforms must navigate. The question is
whether the platform can commit to a reference computation that preserves
the informational content of the display while attenuating manipulative in-
centives. Outcome-weighted updating does precisely this by imposing a dis-
cipline: to move the future reference, the seller must generate outcomes at
the price that is intended to become the anchor. When demand is down-
ward sloping, selling more at a higher price is costly, so anchoring becomes
endogenously expensive rather than mechanically free.

We emphasize that this discipline is distinct from, and complementary to,
traditional policy responses. One approach is disclosure or labeling: requir-
ing that a “was” price reflect a minimum duration, a minimum sales volume,
or a verifiable historical price. Another is ex post enforcement against de-
ceptive claims. Our approach is architectural: embed the relevant discipline
directly into the platform’s aggregation rule so that the displayed statistic is
mechanically insensitive to price postings that do not generate transactions.
Importantly, this does not require the platform to infer seller intent or police
every promotion. It requires only that the reference computation condition
on realized outcomes—information the platform typically already observes.

Of course, outcome-weighting is not a panacea; it changes the nature of
reference dynamics rather than eliminating dynamics altogether. In particu-
lar, it shifts attention to a different set of edge cases. High-volume promotion
events (e.g., major holidays, influencer campaigns, or platform-driven traffic
shocks) may place substantial weight on a short interval of transactions, po-
tentially producing noticeable jumps in the reference. From the platform’s
perspective, this is a genuine tradeoff: rules that strongly downweight low-
volume periods are more manipulation-resistant, but they may amplify the
influence of high-volume bursts on the reference. A theme of this paper is
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that such tradeoffs can be made explicit and analyzable once we model the
reference as an outcome-weighted moving statistic.

Our framework also clarifies a subtle incentive issue for sellers. Even
when the platform uses outcome-weighted updating, a forward-looking seller
might still attempt to invest in raising future references, because higher fu-
ture references can increase demand at any given future price if consumers
exhibit reference dependence. However, the crucial difference is that this
“investment” must be made through actual sales at the chosen price, not
through costless posted-price manipulation. As a result, dynamic incen-
tives to manipulate the reference are naturally limited by demand curvature
and by the platform’s accumulated history (the mass of past outcomes al-
ready embedded in the reference). This logic suggests a practical implication:
platforms can make references harder to game by increasing the effective his-
torical weight (e.g., longer lookback windows or larger baseline mass) and
by choosing outcome-weight functions that are relatively insensitive to very
small quantities.

We organize these ideas in a parsimonious dynamic model that places the
platform’s reference update rule at the center. The seller chooses a posted
price each period, consumers are myopic but reference-dependent, and the
platform updates a displayed reference statistic using a rule that averages
prices with weights determined by realized sales (or engagement). While the
formal analysis appears in the subsequent sections, the key conceptual ob-
jects are already visible in the introduction: the posted price pt, the displayed
reference Rt, and an outcome weight w(qt) that governs how much influence
period t has on future references. The platform’s commitment is embodied
in the choice of this weight function (and the initial historical weight), which
is naturally interpretable as an interface and measurement design decision.

The first message that emerges—and that we view as a useful “sanity
check” for any reference rule advertised as transaction-based—is a no-free-
anchoring property: periods with negligible outcomes should have negligible
influence on the future reference, and periods with zero outcomes should have
exactly zero influence. This property formalizes the idea that one cannot
manipulate the benchmark merely by posting a number; one must actually
transact at that number. The second message is dynamic: as the platform’s
accumulated weight grows, the reference becomes increasingly stable, and
the seller’s optimal pricing policy becomes close to a stationary (or fixed-
price) benchmark. In practical terms, when the reference statistic is built on
a sufficiently deep base of realized transactions, it becomes difficult for any
single seller to steer it quickly, and the seller’s incentives look more like those
in a static problem. This helps rationalize why outcome-weighted reference
displays can be both robust to manipulation and operationally stable.

Our contribution is thus twofold. Substantively, we provide a microfoun-
dation for a class of platform reference rules that are increasingly relevant
for consumer protection and marketplace integrity. Methodologically, we of-
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fer a tractable dynamic program in which the platform’s update rule can be
varied and evaluated, making it possible to compare manipulation-resistance
and volatility within a unified framework. We also acknowledge what the
model does not attempt to do: consumers are modeled as myopic (capturing
reference dependence but not strategic learning), the platform is assumed
able to commit to its rule, and we treat the reference statistic as a reduced-
form driver of demand rather than modeling the full cognitive process behind
reference formation. These limitations are deliberate, because they isolate
the mechanism of interest: the mapping from realized outcomes to future
displayed references.

The remainder of the paper begins by formalizing the seller’s problem,
the platform’s outcome-weighted update rule, and definitions of anchoring
and manipulation metrics (Section 2). We then derive general properties of
outcome-weighted updating, illustrate how and when dynamic pricing devi-
ates from myopic pricing, and discuss the platform design tradeoffs implied
by different choices of the weight function.

2 Model: seller pricing, reference-dependent de-
mand, and outcome-weighted reference updating

We study a finite-horizon environment in which a seller chooses posted prices
while a platform displays and updates a reference statistic that affects de-
mand. The goal of this section is to formalize (i) the seller’s dynamic pricing
problem under reference-dependent demand and (ii) the platform’s outcome-
weighted reference update rule. We also define the objects we will later use to
operationalize “anchoring” and “manipulation” in a way that is tied directly
to the mechanics of the update rule.

2.1 Time, actions, and state variables

Time is discrete with periods t ∈ {1, . . . , T}. In each period, the seller posts
a price pt ∈ [0, p̄], where p̄ < ∞ is a feasibility bound (e.g., an interface
constraint or an economically meaningful maximum). The platform displays
at the start of period t a reference price Rt ∈ [0, p̄] and a cumulative weight
Wt ≥ W1 > 0, where W1 summarizes pre-existing transaction history or a
platform-chosen baseline mass.2

A period proceeds as follows. First, the platform displays (Rt,Wt). Sec-
ond, the seller chooses pt. Third, sales (or a more general outcome such as
engagement) realize according to a demand function qt = D(pt, Rt) ≥ 0 that
depends on the posted price and the current displayed reference. Finally, the

2Allowing W1 = 0 is possible but creates uninteresting knife-edge sensitivity of the
reference to early periods. We treat W1 > 0 as capturing the idea that reference displays
typically have some historical basis when the horizon we analyze begins.
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platform updates (Rt+1,Wt+1) as a deterministic function of (Rt,Wt, pt, qt)
according to the outcome-weighted rule described below.

The seller observes (Rt,Wt, t) when setting pt. Consumers are myopic
and summarized by D(·): they observe (pt, Rt) and respond within period t,
but we do not model forward-looking consumer inference about future Rt′ .
The platform is assumed able to commit ex ante to its reference computation
rule (equivalently, to a choice of the weight function and initialization), and
then implement it mechanically each period.

2.2 Reference-dependent demand

We keep demand reduced-form to focus on how platform design shapes the
incentives to influence the reference. The baseline assumptions are mono-
tonicity and feasibility:

D(p,R) ≥ 0,
∂D(p,R)

∂p
≤ 0,

∂D(p,R)

∂R
≥ 0, (1)

with weak inequalities allowing for kinks and truncation at zero demand. The
second inequality captures downward-sloping demand in own price, while the
third captures a reference effect: a higher displayed benchmark increases con-
version at a given posted price (or, equivalently, makes a given posted price
feel like a “gain” relative to the benchmark). The analysis below accommo-
dates piecewise linear or otherwise non-smooth demand, which is natural
when gains and losses relative to the reference have different salience.

For concreteness (and to connect later to tractable comparative statics),
a workhorse specification we return to is a kinked linear form:

D(p,R) = max
{
0, b− ap+ η+(R− p)+ − η−(p−R)+

}
, (2)

where a > 0 is the own-price slope, b > 0 is baseline demand, and η+, η− ≥ 0
govern the strength of gain and loss reference effects. When η+ = η− ≡ η,
the reference effect is symmetric and (2) reduces to D(p,R) = max{0, b −
(a + η)p + ηR} in the interior region. When η− > η+, demand is more
sensitive to “losses” (p > R) than to “gains” (p < R), generating the familiar
kink at p = R that will later matter for optimal pricing and for the shape of
the value function.

2.3 Platform rule: outcome-weighted reference updating

The platform computes the displayed reference as a moving statistic of past
posted prices, but crucially it weights periods by realized outcomes rather
than by mere postings. Let w : R+ → R+ be an increasing outcome-weight
function with w(0) = 0. The platform updates the cumulative weight by

Wt+1 = Wt + w(qt), (3)
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and updates the reference price by an outcome-weighted average:

Rt+1 =
WtRt + w(qt) pt

Wt + w(qt)
. (4)

Thus, period t affects the future reference only through the weight assigned
to its realized outcome. The mapping (4) is deliberately mechanical: it can
be interpreted as a “typical transacted price” statistic where each period
contributes proportionally to the amount of economic activity realized at
that period’s price.

Two remarks motivate this specification. First, (4) nests several common
platform choices through w. When w(q) = q, the reference is a quantity-
weighted average of posted prices (equivalently, a revenue-weighted average
divided by total quantity if each unit has the same price). When w(q) = qγ

with γ > 1, the platform downweights low-volume periods more aggressively,
which intuitively increases resistance to low-sales “probing” while concentrat-
ing influence on high-volume events. Second, the state variable Wt matters
economically: it measures the depth of accumulated history embedded in the
reference. When Wt is large, a single period’s weight w(qt) is small relative
to history, so the reference becomes locally stable and the scope for dynamic
steering shrinks.

2.4 Seller’s objective and dynamic program

The seller receives per-period revenue ptqt and maximizes total expected
revenue over the horizon:

Π :=

T∑
t=1

ptqt, qt = D(pt, Rt). (5)

In the baseline model, demand is deterministic conditional on (pt, Rt), so the
seller’s problem is a deterministic dynamic program with state (Rt,Wt, t).
Let Vt(R,W ) denote the maximal continuation revenue from period t onward
given state (R,W ). Then

Vt(R,W ) = max
p∈[0,p̄]

{
pD(p,R) + Vt+1(R

′,W ′)
}
, VT+1(·) = 0, (6)

where (R′,W ′) is the next-period state induced by p through (3)–(4) with
q = D(p,R). When D is smooth and the maximizer is interior, the first-
order condition takes the familiar form: the seller trades off current marginal
revenue against the marginal continuation value generated by shifting the
future state:

∂

∂p

(
pD(p,R)

)
+ Vt+1,R(R

′,W ′) · ∂R
′

∂p
+ Vt+1,W (R′,W ′) · ∂W

′

∂p
= 0. (7)
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In kinked specifications such as (2), Vt may be non-differentiable at loci where
the optimal price crosses R or where demand hits zero; in those regions the
appropriate optimality conditions are in terms of subgradients. Our results
will not rely on global differentiability; instead, we will emphasize identities
and bounds that follow directly from the update rule.

Finally, while we focus on a deterministic D to keep the core logic trans-
parent, it is straightforward to add noise (e.g., qt = D(pt, Rt) + εt truncated
at zero). In that case (6) becomes an expectation over εt, and the same state
variables remain sufficient because the platform rule depends on realized qt
only through w(qt).

2.5 Anchoring, influence, and manipulation metrics

To connect the model to the practical concern of “fake discounts,” we dis-
tinguish between influence on the displayed reference and economic cost of
generating that influence. Outcome-weighting is designed precisely to align
these two: moving the reference should require real outcomes.

We formalize “anchoring” as the act of increasing (or decreasing) the fu-
ture reference relative to a counterfactual path. Fix a platform rule (w,W1, R1)
and consider two seller price sequences {pt} and {p̃t} generating state paths
{(Rt,Wt)} and {(R̃t, W̃t)} from the same initial condition. The period-t
anchoring effect on the next reference is

∆Rt(pt; p̃t) := Rt+1 − R̃t+1, (8)

and cumulative anchoring over a window can be measured by
∑

t∈T (Rt+1 −
R̃t+1) or by maxt∈T (Rt − R̃t) depending on the application (e.g., sustained
elevation versus a one-time spike). In many comparisons we will take {p̃t}
to be a myopic benchmark that ignores the effect of pt on future references,
so that anchoring captures purely dynamic steering incentives.

To operationalize “manipulation,” we need a notion that captures the idea
of disproportionate reference movement generated by negligible real activity.
A convenient period-by-period metric is a normalized influence ratio:

It :=
|Rt+1 −Rt|
max{qt, ϵ}

, (9)

for a small ϵ > 0 used only to avoid division by zero in empirical implemen-
tations. Under posted-price-based rules, It can be arbitrarily large because
a seller may move Rt+1 while generating qt ≈ 0. Under outcome-weighting,
by contrast, the platform mechanically links the numerator to the realized
outcome through w(qt), which will yield sharp restrictions on It and, in the
limit qt → 0, eliminate the possibility of moving R at all.

A closely related “deception pressure” metric is the sensitivity of the next
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reference to the posted price at low sales:

St :=
∂Rt+1

∂pt

∣∣∣∣
(Rt,Wt)

, evaluated at the realized qt = D(pt, Rt). (10)

This object is directly interpretable as the platform’s mechanical pass-through
from a seller’s chosen posted price to the displayed benchmark. A rule is more
manipulation-resistant when St is small precisely in those states where the
seller can cheaply engineer low outcomes (e.g., by setting very high prices or
limiting inventory). Outcome-weighting aims to make St endogenous in qt:
low qt implies low weight and hence low sensitivity.

We will sometimes aggregate these period metrics into a platform-level
objective that trades off consumer surplus, seller revenue, and manipulation
exposure. One parsimonious reduced-form representation is

Uplat :=

T∑
t=1

(
CS(pt, Rt) + ptqt

)
− λM

(
{pt, qt, Rt}t≤T

)
, (11)

where M can be instantiated as
∑

t 1{qt ≤ ε} |Rt+1 − Rt| (reference move-
ment during low-sales periods), or as

∑
t It, or as

∑
t St1{qt ≤ ε}. We do

not need to take a stand on the unique “correct” manipulation functional;
the point is that outcome-weighting is naturally evaluated by how strongly
it suppresses reference movement when outcomes are negligible.

This completes the model. The next section derives a simple identity
implied by (4) that formalizes the central discipline of outcome-weighting:
posted prices without outcomes do not move the reference, and more gen-
erally the magnitude of reference movement is governed by the share of
cumulative weight contributed by current realized activity.

3 A No-Free-Anchoring Identity

Outcome-weighted updating delivers a simple but powerful restriction on
how much a seller can steer the platform’s displayed benchmark. The re-
striction is entirely mechanical: it comes from the algebra of the update rule
and does not require any assumption about optimal behavior, smoothness
of demand, or the horizon. Because it holds path-by-path, it is also robust
to stochastic demand as long as the platform updates using the realized
outcome.

Proposition 1 (No-Free-Anchoring Identity). For any period t, any
outcome-weight function w with w(0) = 0, and any realized outcome qt ≥ 0,
the reference update (4) satisfies

Rt+1 −Rt = αt (pt −Rt), αt :=
w(qt)

Wt + w(qt)
∈ [0, 1). (12)
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Equivalently,
Rt+1 = (1− αt)Rt + αtpt, (13)

so the next reference is a convex combination of the current reference and the
current posted price with a mixing weight determined by realized activity.
In particular, if qt = 0 then αt = 0 and hence Rt+1 = Rt for any posted
price pt.

Proof. Starting from (4),

Rt+1 −Rt =
WtRt + w(qt)pt
Wt + w(qt)

−Rt =
w(qt)

Wt + w(qt)
(pt −Rt),

which is (12). Since Wt ≥ W1 > 0 and w(qt) ≥ 0, we have αt ∈ [0, 1), and if
qt = 0 then w(qt) = 0 so αt = 0. □

Identity (12) clarifies what outcome-weighting does and what it does not
do. It does not eliminate anchoring incentives in general: if the seller can
profitably generate real activity at a price above the current reference, then
the seller can indeed push Rt+1 upward. What it eliminates is “free” anchor-
ing driven by posted prices that do not correspond to realized outcomes. Put
differently, the platform rule implements a hard accounting principle: only
activity gets counted.

Implication 1: extreme posted prices without outcomes are ir-
relevant. Under posted-price-based rules (e.g., an unweighted average of
posted prices), a seller can post an extreme price for one period, generate
essentially no sales, and nevertheless move the displayed reference by a large
amount. Under (12), that logic fails exactly. If an extreme price drives de-
mand to zero, then qt = 0 and the reference does not move. More generally,
if an extreme price yields negligible sales, then w(qt) is small relative to Wt

and αt is small, so the induced movement is negligible even if |pt − Rt| is
large:

|Rt+1 −Rt| = αt|pt −Rt| ≤
w(qt)

Wt + w(qt)
p̄. (14)

The bound (14) makes transparent that the “leverage” of any attempted
anchoring episode is limited by the period’s weight share αt, not by the
posted price alone.

Implication 2: anchoring is proportional to weight share. The ob-
ject αt has a natural interpretation as an anchoring leverage share: it is the
fraction of total cumulative weight (history plus current period) contributed
by current realized activity. When Wt is large, history is deep and even
substantial current activity has limited leverage; when Wt is small, early pe-
riods can matter more. This is precisely why the initialization W1 matters
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for manipulation exposure: larger legacy mass makes αt smaller in every
early period, mechanically stabilizing Rt.

Equation (13) also implies monotonicity and sign restrictions that are
often convenient. If pt ≥ Rt then Rt+1 ≥ Rt; if pt ≤ Rt then Rt+1 ≤ Rt.
Thus the seller cannot “overshoot” the posted price in a single step: Rt+1 ∈
[min{Rt, pt},max{Rt, pt}]. In this sense, outcome-weighting enforces a tight
and intuitive geometry for reference paths.

Implication 3: “fake discounts” lose their mechanical channel. A
common concern motivating reference regulation is a pattern in which a
seller posts a high “list price” to elevate the displayed benchmark and then
advertises a discount relative to that elevated benchmark. The identity (12)
pinpoints the crucial vulnerability in naive rules: if merely posting a high
price raises the benchmark, then the seller can create an inflated Rt+1 even
when consumers never transact at that price. Under outcome-weighting,
the benchmark moves only insofar as consumers actually buy (or otherwise
generate the platform’s measured outcome) at the high posted price. Thus,
the seller must either (i) sell meaningful volume at the high price—which
is costly under downward-sloping demand—or (ii) accept that the reference
will barely change.

This does not mean a seller can never raise the reference; it means raising
the reference cannot be decoupled from generating the very economic activity
that would justify a higher “typical price” statistic. In practical terms, the
platform is no longer rewarding empty list prices; it is rewarding transacted
prices.

Implication 4: quantitative discipline for influence and sensitivity
metrics. The period-by-period manipulation metrics defined earlier are
naturally controlled by (12). First, the normalized influence ratio (9) satisfies

It =
|Rt+1 −Rt|
max{qt, ϵ}

≤ w(qt)

Wt + w(qt)
· p̄

max{qt, ϵ}
. (15)

When w(q) = q, the right-hand side becomes qt
Wt+qt

· p̄
max{qt,ϵ} , which is

uniformly bounded by p̄/Wt once qt ≥ ϵ and, crucially, does not explode
as qt ↓ 0 (indeed, Rt+1 − Rt → 0 as qt → 0). This sharply contrasts with
posted-price-based rules in which the numerator can remain large while qt
becomes arbitrarily small.

Second, the mechanical “pass-through” from pt to Rt+1 can be read off
directly when we condition on the realized outcome. Holding qt fixed, (4) is
affine in pt with slope αt. When we account for the fact that qt = D(pt, Rt)
typically changes with pt, the total derivative includes an additional term
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reflecting the endogenous change in weight:

dRt+1

dpt
= αt + (pt −Rt)

d

dpt

(
w(D(pt, Rt))

Wt + w(D(pt, Rt))

)
. (16)

If D is differentiable in p at the relevant point, then

dαt

dpt
=

Wtw
′(qt)Dp(pt, Rt)

(Wt + w(qt))2
, (17)

so Dp ≤ 0 implies dαt
dpt

≤ 0. Thus, when the seller raises price above the
current reference (pt > Rt), the second term in (16) is weakly negative:
increasing pt tends to reduce demand, reduce weight, and thereby dampen
the impact on Rt+1. This is exactly the intended discipline: attempts to
elevate the benchmark through high prices become self-limiting because they
reduce the activity that grants influence in the first place.

Implication 5: outcome-weighting converts anchoring into a real-
sales requirement. Identity (12) can be inverted to express a necessary
weight share for achieving a targeted reference movement. Fix any desired
one-step increase δ > 0. If the seller posts pt ≥ Rt and wants Rt+1−Rt ≥ δ,
then necessarily αt ≥ δ/(pt −Rt), hence

w(qt) ≥ δ

(pt −Rt)− δ
Wt, whenever pt −Rt > δ. (18)

Condition (18) makes precise the idea that meaningful anchoring requires
contributing a nontrivial fraction of the accumulated history. When Wt is
large, a one-step movement of size δ requires very large realized weight (and
thus, under standard demand primitives, nontrivial sales). This immediately
suggests why dynamic incentives attenuate over time in our environment: as
history accumulates, marginal steering power decays.

Practical interpretation and limitations. Outcome-weighted updat-
ing addresses a narrow but important vulnerability: it breaks the purely
posted-price channel of manipulation. That said, it does not by itself solve
every practical concern about reference integrity. A seller might attempt
to generate “outcomes” strategically (e.g., self-purchases, coordinated buy-
ing, subsidized transactions) to obtain weight at an inflated price. From the
platform’s perspective, this shifts the problem from “fake postings” to “fake
outcomes,” which is often a more familiar enforcement domain: platforms
can audit transactions, exclude refunded orders from qt, require verified pur-
chases, or define w(·) in terms of harder-to-game outcomes (e.g., completed,
non-returned orders).

A second limitation is volatility around genuine high-volume events. If
a promotion generates an unusually large qt, then αt can be large and Rt+1
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can jump toward the promotional price (or away from it), especially un-
der convex weighting rules such as w(q) = qγ . This is not a failure of the
no-free-anchoring logic; it is the counterpart of giving real activity real influ-
ence. The platform’s design problem, which we return to later, is therefore
not whether to discipline manipulation—(12) already does that—but how
to choose w (and the effective history mass W1) to balance manipulation-
resistance against responsiveness to genuinely informative high-volume price
episodes.

Finally, we emphasize that Proposition 1 is purely an accounting identity.
It does not require downward-sloping demand, symmetry of reference effects,
or optimal seller behavior. Its role is foundational: it isolates the exact lever
through which a seller can influence the benchmark—the realized-weight
share αt—and thereby turns the analysis of “fake discounts” into an analysis
of how costly it is to acquire weight at manipulated prices. The next step is to
embed this mechanical discipline into the seller’s intertemporal problem and
characterize best responses via a dynamic program in the state (Rt,Wt, t).

4 Seller Best Response as a Dynamic Program

Having isolated the purely mechanical restriction on how posted prices can
affect future references, we now embed the platform’s updating rule into the
seller’s intertemporal problem. Conceptually, the key point is that outcome-
weighting makes the seller’s problem genuinely dynamic only through the
two state variables carried forward by the platform: the current displayed
reference Rt and the accumulated history mass Wt. Once we condition on
(Rt,Wt, t), the past matters only through these sufficient statistics, and the
seller faces a standard finite-horizon control problem on a compact action
set.

State, action, and law of motion. Fix a horizon T and feasible prices
p ∈ [0, p̄]. In period t, given state (R,W ), the seller chooses a posted price
p, inducing realized activity

q = D(p,R) ≥ 0.

The platform then updates the weight and reference according to

W+(R,W, p) = W+w(D(p,R)), R+(R,W, p) =
WR+ w(D(p,R)) p

W + w(D(p,R))
.

(19)
We emphasize that (19) is well-defined for all W ≥ W1 > 0 because W+w(·)
is strictly positive. The restriction w(0) = 0 implies that periods with zero
realized activity leave the state unchanged.
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Bellman equation and existence of optimal Markov policies. Let
Vt(R,W ) denote the seller’s maximal continuation revenue from period t
onward given state (R,W ) at the start of period t. The seller’s dynamic
program is

Vt(R,W ) = max
p∈[0,p̄]

{
pD(p,R)+Vt+1

(
R+(R,W, p), W+(R,W, p)

)}
, VT+1(·) ≡ 0.

(20)
Under mild regularity—for instance, D(·, ·) continuous and bounded on [0, p̄]×
[0, p̄] and w(·) continuous and increasing—the maximand in (20) is contin-
uous in p and the choice set is compact, so an optimal policy exists by the
Weierstrass theorem. Because the state evolution (19) depends on history
only through (R,W ), we can restrict attention (without loss) to Markov
policies pt = πt(Rt,Wt) obtained by backward induction on (20). This is the
sense in which the platform’s outcome-weighted statistic turns the seller’s
strategic problem into a two-dimensional dynamic pricing problem.

A convenient “geometry”: the next reference lies between R and p.
A recurring simplification is that, for any p and induced q = D(p,R), the
update rule implies

R+(R,W, p) = (1−α(R,W, p))R+α(R,W, p) p, α(R,W, p) :=
w(D(p,R))

W + w(D(p,R))
∈ [0, 1).

(21)
Thus R+(R,W, p) is always trapped in the interval with endpoints {R, p}.
In the dynamic program, this means that current pricing cannot “jump” the
benchmark past the posted price, and any attempt to move the benchmark
must pay for movement through the realized weight share α. While this
observation is algebraic, it has a structural implication for (20): the con-
tinuation value is evaluated only at references that lie on a one-dimensional
segment indexed by p, rather than at arbitrary points in the (R,W ) plane.

Monotonicity in the reference. When demand is weakly increasing in
the reference (our maintained assumption), the seller weakly benefits from a
higher current benchmark, both contemporaneously (through D(p,R)) and
dynamically (because a higher R makes future demand higher for any future
prices). This yields a useful order property.

To make the statement precise, suppose D(p,R) is weakly increasing in
R for each p, and w is increasing. Fix any (W, t) and two reference levels
R ≤ R̃. For any price p, we have D(p,R) ≤ D(p, R̃), hence W+(R,W, p) ≤
W+(R̃,W, p). Moreover, holding p fixed, the next reference R+(R,W, p) is
weakly increasing in R because it is an average of R and p with nonnegative
weights and because the endogenous weight w(D(p,R)) is weakly larger at
R̃. By induction on t in (20), these monotonicities imply

R ≤ R̃ =⇒ Vt(R,W ) ≤ Vt(R̃,W ). (22)
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Economically, (22) formalizes that the seller never dislikes a higher bench-
mark in this environment: reference effects act like an intertemporal demand
shifter.

Influence is uniformly bounded and vanishes with large history
mass. The state variable W plays a distinct role: it does not directly enter
the current-period demand D(p,R), but it governs how “sticky” the reference
is. For each fixed (R, p), the leverage share in (21) is decreasing in W , so
the mapping p 7→ R+(R,W, p) becomes flatter as W grows. This converts
naturally into bounds on how much the seller can affect future states.

Assume that demand is uniformly bounded on the relevant domain: there
exists q̄ < ∞ such that 0 ≤ D(p,R) ≤ q̄ for all p ∈ [0, p̄] and R ∈ [0, p̄]. (In
applications, this can be interpreted as a market size bound or a bound on
engagement.) Then, for any state (R,W ) and any feasible price p,

0 ≤ α(R,W, p) ≤ α(W ) :=
w(q̄)

W + w(q̄)
. (23)

Combining (21)–(23) with |p−R| ≤ p̄ yields the uniform one-step movement
bound

|R+(R,W, p)−R| ≤ α(W ) p̄. (24)

Inequality (24) is the dynamic-programming counterpart of the no-free-anchoring
logic: even if the seller is optimizing strategically, the set of attainable next
references from (R,W ) shrinks mechanically as W grows. In particular, early
periods (small W ) are the only periods in which the seller can have mean-
ingful “state leverage”; later periods are dominated by the current-period
revenue term in (20). This observation is what ultimately underpins near-
stationarity results in tractable specifications.

A Lipschitz bound for continuation values and a “small dynamic
term” heuristic. To connect (20) to pricing behavior, it is useful to quan-
tify how much the continuation value can change when the seller marginally
perturbs the reference. Suppose D(p,R) is Lipschitz in R uniformly in p:
there exists LD such that

|D(p,R)−D(p, R̃)| ≤ LD |R− R̃| for all p ∈ [0, p̄], R, R̃ ∈ [0, p̄].

Then the single-period revenue pD(p,R) is Lipschitz in R with constant at
most p̄ LD, and backward induction on (20) yields the bound

|Vt(R,W )− Vt(R̃,W )| ≤ Lt |R− R̃|, Lt ≤ (T − t+ 1) p̄ LD. (25)

Heuristically, (25) means the seller’s marginal value of the benchmark is finite
and grows at most linearly with remaining horizon. Combining this with the
movement bound (24) suggests a simple discipline on dynamic incentives: the
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maximal continuation-value gain achievable through steering R in one step
is on the order of Lt+1α(W )p̄, which decays like 1/W for large W when w(q̄)
is bounded. This is the sense in which large legacy mass W1 (or simply the
passage of time as Wt accumulates) makes strategic anchoring less attractive,
even before we impose any functional-form structure.

First-order conditions and kinked demand. When D and w are differ-
entiable, an interior optimizer for (20) satisfies an Euler-type condition bal-
ancing current marginal revenue against the discounted (here undiscounted,
given the finite horizon) effect of price on future states:

∂

∂p

(
pD(p,R)

)
+ Vt+1,R(R

+,W+)
∂R+

∂p
+ Vt+1,W (R+,W+)

∂W+

∂p
= 0. (26)

In our environment, however, it is important not to over-invest in differen-
tiability: empirically relevant reference-dependent demand often has kinks
(e.g., different slopes above and below R), and platform weight functions
may also be piecewise or capped. The dynamic program (20) remains valid
without smoothness, and the appropriate optimality conditions are then ex-
pressed using subgradients and one-sided derivatives. Practically, this is not
merely a mathematical caveat: kinks are precisely where “loss” versus “gain”
reference effects can induce bunching of optimal prices at p = R, and any
characterization must accommodate that possibility.

Interpretation for platform design. The dynamic program highlights
a policy-relevant distinction between incentives and mechanisms. The seller
may still have an incentive to raise R (because Vt is increasing in R), but the
mechanism by which R can be raised is tightly constrained by the transition
(19): the seller must generate realized outcomes that earn weight. From a
platform’s perspective, this means that concerns about “fake discounts” move
from being a problem of posted-price bookkeeping to being a problem of out-
come integrity (e.g., whether qt represents genuine transactions). The virtue
of the outcome-weighted design is that it aligns the displayed statistic with
economically meaningful activity; the residual vulnerability, if any, is the
possibility of strategically created activity, which is typically more auditable
than empty postings.

Where we go next. Section 4 provides the general-purpose dynamic-
programming foundation: a two-dimensional Markov state, a compact pric-
ing action, and mechanical bounds showing that state influence shrinks as
history mass grows. To obtain sharper behavioral predictions—in particu-
lar, near-stationarity and fixed-price near-optimality—we next specialize to
a tractable linear specification in which we can quantify the marginal value
of R and translate the “small influence” heuristic into explicit pricing bounds.
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5 A Tractable Linear–Quadratic Benchmark

We now specialize the primitives to a linear reference-dependent demand and
a linear outcome weight, which together yield a “linear–quadratic” structure
in the seller’s objective. The benefit of this benchmark is not that it is
literally quadratic everywhere (demand is truncated at zero), but that on the
economically relevant interior region the seller’s dynamic problem becomes
a smooth concave control problem with transparent comparative statics. In
particular, we can (i) write the myopic best response in closed form, (ii)
bound the marginal continuation value of the reference, and (iii) formalize the
near-stationarity heuristic from the previous section: once Wt is moderate,
the optimal dynamic price is extremely close to the myopic price, and the
incremental value of dynamically “steering” Rt is at most polylogarithmic in
the effective history mass.

Specification. Fix parameters (a, b, η) with a > 0 and η ≥ 0, and impose
symmetric reference effects with linear weighting:

D(p,R) = max{0, b−ap+η(R−p)} = max{0, b+ηR−(a+η)p}, w(q) = q.
(27)

Write k := a + η for the effective own-price slope in the interior region.
When D(p,R) > 0, demand is affine with derivatives Dp = −k < 0 and
DR = η ≥ 0. We maintain an interiority/nonnegativity regime under which
(for the states we study) the relevant maximizers satisfy D(p,R) > 0 and
p ∈ (0, p̄), so that local first-order conditions are informative; when this fails
(e.g., low b or extreme R), the optimal policy may hit corners, but the same
“vanishing influence” logic continues to apply with one-sided derivatives.

Closed-form myopic pricing. Holding (R, t) fixed and ignoring future
effects, the seller solves

max
p∈[0,p̄]

pD(p,R) = max
p∈[0,p̄]

(
p(b+ηR)−kp2

)
on the region where D(p,R) > 0.

The unconstrained maximizer is

pmy(R) =
b+ ηR

2k
=

b+ ηR

2(a+ η)
. (28)

Thus the myopic price is increasing in the displayed benchmark: a higher
R relaxes the demand intercept and shifts the seller’s static best response
upward one-for-one at rate η/(2(a + η)). In this benchmark, the myopic
objective is strictly concave in p on the interior region because

∂2

∂p2
(
pD(p,R)

)
= −2k < 0, (29)

a property we will reuse to bound deviations of the dynamic optimum from
pmy(R).
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State transitions and an explicit leverage derivative. With w(q) = q
and q = D(p,R), the state update becomes

W+ = W +q, R+ =
WR+ qp

W + q
= R+α(p−R), α =

q

W + q
∈ [0, 1).

(30)
In the interior region (q > 0), the mapping p 7→ R+ is differentiable. Using
α = q/(W + q) and αp = qpW/(W + q)2, we obtain

∂R+

∂p
= α+ (p−R)αp =

q

W + q
+ (p−R)

qpW

(W + q)2
, qp = −k. (31)

The key implication is a uniform “flatness” bound for large W . If q is bounded
above on the relevant domain by q̄ (automatic here given truncation and
p ∈ [0, p̄]), then for all feasible (R,W, p) in the interior region,∣∣∣∣∂R+

∂p

∣∣∣∣ ≤ q̄

W
+

k |p−R|
W

≤ q̄ + kp̄

W
. (32)

Thus, even though the seller can always change p today, the ability of that
change to transmit into tomorrow’s displayed benchmark shrinks on the order
of 1/W .

Bounding the marginal continuation value of the benchmark. In
this linear specification, the marginal effect of a higher benchmark on current
revenue is particularly simple: since ∂D/∂R = η on the interior region,

∂

∂R

(
pD(p,R)

)
= p η ≤ ηp̄.

Backward induction then yields a crude but useful bound on the value gra-
dient:

0 ≤ Vt,R(R,W ) ≤ (T − t+ 1) ηp̄ whenever Vt,R exists, (33)

reflecting that the benchmark acts like an intercept shifter with per-period
marginal value at most ηp̄.

The derivative with respect to W is more subtle because W does not enter
contemporaneous demand; it only governs how sensitive future references
are to future posted prices. In the present benchmark, this makes Vt weakly
decreasing in W (a larger history mass makes steering harder) but with a
marginal effect that is second-order for large W . Intuitively, changing W by
a small amount perturbs α = q/(W + q) by order 1/W 2, and hence perturbs
future references—and thus future revenue—only at that rate. Formally, one
can show (under the same boundedness conditions used above) that there
exists a constant CV < ∞ such that

|Vt,W (R,W )| ≤ CV

W 2
for large W, (34)
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so the Vt+1,W term in the Euler condition is negligible relative to the Vt+1,R

term once W is moderate. The economic message is simple: W matters
only as a “friction” on reference manipulation, and frictions have diminishing
marginal bite as the friction becomes large.

Near-stationarity: the dynamic price is O(1/W )-close to myopic.
Consider a period t and state (R,W ) in the interior region, and let p∗t (R,W )
denote an interior optimizer of the Bellman problem. The first-order condi-
tion (26) specializes to

∂

∂p

(
pD(p,R)

)
︸ ︷︷ ︸

static marginal revenue

+Vt+1,R(R
+,W+)

∂R+

∂p
+Vt+1,W (R+,W+)

∂W+

∂p
= 0,

∂W+

∂p
= qp = −k.

(35)
At the myopic optimizer pmy(R), the static marginal revenue term vanishes.
Hence the wedge between the dynamic and myopic prices is governed by the
size of the two continuation terms. Using (29), we can bound the price de-
viation by dividing the maximal continuation wedge by the strong concavity
modulus 2k. Combining (32)–(34) yields the scaling

∣∣p∗t (R,W )−pmy(R)
∣∣ ≤ 1

2k

(
sup |Vt+1,R| · sup

∣∣∣∣∂R+

∂p

∣∣∣∣+ sup |Vt+1,W | · k
)

= O

(
1

W

)
,

(36)
uniformly over interior states. Economically, the seller’s dynamic incentive
to distort current price away from the static optimum is the product of
two terms: the marginal value of the benchmark Vt+1,R (bounded) and the
marginal ability to move the benchmark ∂R+/∂p (shrinking like 1/W ). This
is precisely the “small dynamic term” heuristic from the general analysis, now
made explicit in a parametric environment.

Fixed-price near-optimality and a polylogarithmic gap. Near-stationarity
implies that the incremental value of dynamic steering is small when aggre-
gated over time. A convenient way to see the polylogarithmic structure is to
connect leverage shares to the growth of history mass. With w(q) = q and
W+ = W + q, we can rewrite

αt =
qt

Wt + qt
= 1− Wt

Wt+1
. (37)

Summing (37) and using log x ≤ x − 1 (equivalently, 1 − 1/x ≤ log x for
x ≥ 1) gives the telescoping bound

T∑
t=1

αt =

T∑
t=1

(
1− Wt

Wt+1

)
≤

T∑
t=1

log

(
Wt+1

Wt

)
= log

(
WT+1

W1

)
. (38)
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Because one-step reference movement satisfies |Rt+1 − Rt| ≤ αtp̄, (38) im-
plies that even an optimally chosen, fully history-dependent pricing policy
can only “rotate” the benchmark by a total amount that grows at most log-
arithmically in the final history mass.

This logarithmic geometry translates into a polylogarithmic performance
bound for simple policies. One route (developed formally in Proposition 4) is
to compare the dynamic first-order condition to the myopic first-order condi-
tion and use (36) to show that the per-period gain from dynamic distortion is
at most on the order of 1/Wt. Summing and applying the same telescoping
logic as in (38) yields

Πdyn −Πmyopic Markov ≤ C

T∑
t=1

1

Wt
= O

(
log

(
WT+1

W1

))
, (39)

for a constant C depending on (a, b, η, p̄) but not on T . A second route is
to compare the dynamic optimum to the best fixed price p ∈ [0, p̄] directly:
since the only intertemporal benefit of nonstationarity is mediated by cumu-
lative benchmark movement, and cumulative movement is logarithmically
bounded, the maximal advantage of fine-tuned dynamic manipulation over
the best constant policy is likewise at most logarithmic in the total accumu-
lated mass. Either way, the economic conclusion is the same: with outcome-
weighted updating, the seller cannot extract a large intertemporal rent from
reference steering, and simple pricing heuristics are robustly near-optimal.

Discussion and limitations. The linear–quadratic benchmark is deliber-
ately conservative in one dimension and optimistic in another. It is conser-
vative because linear w(q) = q does not aggressively downweight low-sales
events; in Section 6 we will consider w(q) = qγ as a design lever to further
suppress low-volume anchoring. It is optimistic because symmetric reference
effects remove kinks at p = R; with asymmetric (η+, η−) the seller’s ob-
jective can develop nondifferentiabilities and bunching at p = R, requiring
piecewise arguments or numerical dynamic programming. Still, the bench-
mark illustrates the core mechanism we want to carry into platform design:
when the platform pegs displayed references to realized outcomes, dynamic
manipulation incentives fade mechanically with accumulated history mass,
and the remaining design question becomes how the choice of w(·) trades off
manipulation-resistance against reference volatility.

6 Platform Design: Choosing the Outcome-Weight
Function w(·)

Up to this point we have taken the platform’s reference computation rule as
given and studied how the seller responds. We now reverse the perspective
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and treat w(·) as a design choice. The central observation behind the “no-
free-anchoring” logic is that the displayed benchmark moves only through
realized outcomes; nevertheless, how much it moves after a given amount of
sales is pinned down by the leverage share

αt =
w(qt)

Wt + w(qt)
∈ [0, 1), Rt+1 −Rt = αt (pt −Rt).

Thus w(·) governs the platform’s exposure to two opposing desiderata. On
the one hand, we want manipulation-resistance: low-sales or “thin” periods
should have little influence on Rt+1, so that a seller cannot profitably steer
references using marginal, strategically chosen transactions. On the other
hand, we want informational responsiveness: when demand is genuinely high
(e.g., during a promotion that reflects real consumer willingness-to-pay), the
reference should not be so inert that it becomes stale or misleading. In
our language, the platform chooses how to map quantities into “mass” and
thereby chooses the time scale on which the reference adapts.

A simple design family: w(q) = qγ. A tractable and practically inter-
pretable design lever is the power family

wγ(q) = qγ , γ ≥ 1. (40)

The case γ = 1 corresponds to linear outcome weighting (each unit sold
contributes proportionally to the reference mass), while γ > 1 makes weights
convex and disproportionately emphasizes high-volume events. Within this
family, the leverage share becomes

αt(γ) =
qγt

Wt + qγt
=

(
1 +

Wt

qγt

)−1

. (41)

Two limiting regimes clarify the mechanism. When sales are small relative
to the accumulated history mass, qγt ≪ Wt, we have

αt(γ) =
qγt
Wt

(1 + o(1)) , (42)

so the mechanical reference movement scales like qγt /Wt. Increasing γ sharply
suppresses the ability of low-sales periods to move Rt+1. Conversely, when
sales are very large relative to history, qγt ≫ Wt, we get αt(γ) ≈ 1 and the
reference nearly jumps to the current posted price. Hence convex weighting
enhances robustness to thin trades but can create large reference updates
during high-volume bursts.
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Manipulation-resistance as a requirement on low-q leverage. A
natural operational target is to ensure that periods with “small” sales cannot
move the reference by more than a tolerable amount. Fix a sales threshold
qmin > 0 and a leverage tolerance ᾱ ∈ (0, 1). A sufficient condition for the
platform to guarantee |Rt+1 −Rt| ≤ ᾱ |pt −Rt| whenever qt ≤ qmin is

sup
q∈[0,qmin]

w(q)

Wt + w(q)
≤ ᾱ. (43)

For the power family and a conservative (worst-case) design at the smallest
history mass W1, this becomes

(qmin)γ

W1 + (qmin)γ
≤ ᾱ ⇐⇒ (qmin)γ ≤ ᾱ

1− ᾱ
W1. (44)

Equation (44) makes transparent that manipulation-resistance is jointly en-
gineered by (i) the convexity parameter γ and (ii) the initial mass W1 (a
“legacy” lookback stock). Platforms often have discretion over both: W1 can
be increased by expanding the lookback window or adding pseudo-counts,
while γ adjusts how quickly marginal sales translate into effective weight. Ei-
ther instrument reduces αt in thin periods, but they differ in their side effects:
raising W1 slows adaptation uniformly, whereas raising γ slows adaptation
primarily when qt is small.

Reference volatility under stochastic demand. Outcome-weighting is
especially attractive when we take seriously that observed qt is noisy. Sup-
pose realized sales take the form qt = D(pt, Rt) + εt with mean-zero shocks
and truncation at zero. Then the one-step reference movement is random
through αt =

w(qt)
Wt+w(qt)

, and a platform that overreacts to high realizations
risks producing a highly volatile benchmark. The key local statistic is the
sensitivity of leverage to realized outcomes:

∂α

∂q
=

w′(q)Wt(
Wt + w(q)

)2 . (45)

For w(q) = qγ , we obtain

∂α

∂q
=

γqγ−1Wt(
Wt + qγ

)2 . (46)

Holding (q,Wt) fixed, increasing γ reduces α for small q (as in (42)) but
can increase the curvature of α in the neighborhood of moderate-to-high q.
Intuitively, convex weighting concentrates influence on the upper tail of the
sales distribution: a high realization of qt (whether due to genuine demand
or a transitory shock) can generate a disproportionately large jump in the
benchmark. This provides a precise sense in which platform design is a
tradeoff between manipulation-resistance (attenuating low-q influence) and
reference volatility (amplifying high-q influence).
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Mitigating volatility: caps, thresholds, and hybrid weighting. The
power family (40) is deliberately parsimonious, but platforms are not re-
stricted to it. Several simple modifications can preserve the no-free-anchoring
property w(0) = 0 while tempering volatility:

• Capped weights: w(q) = min{qγ , w̄}, which bounds αt away from one
even in extreme volume events.

• Thresholded weights: w(q) =
(
(q − τ)+

)γ , which enforces that very
small sales do not move the benchmark at all (useful when micro-
transactions are easy to fabricate or are known to be uninformative).

• Winsorized outcomes: replace qt by a robust statistic (e.g., a trimmed
measure of verified transactions) before applying w(·), so that outliers
in recorded outcomes do not create benchmark jumps.

These modifications illustrate a broader point: the platform can separately
manage (i) what constitutes a valid “outcome” and (ii) how valid outcomes
translate into reference mass. In applications, the first is often as important
as the second.

A Stackelberg formulation for platform choice. To formalize design,
we can view the platform as moving first: it commits to w(·) (and possibly
to (W1, R1) as legacy parameters), anticipating the seller’s dynamic best re-
sponse. A generic objective that nests both efficiency and integrity concerns
is

max
w∈W

E

[
T∑
t=1

(
CS(pt, Rt) + ptqt

)
− λM

(
{pt, qt, Rt}t≤T

)]
, (47)

subject to the seller choosing {pt} to maximize Π =
∑

t ptqt under the in-
duced state transitions. Here W is a feasible class (e.g., power weights or
capped weights), and M is a manipulation/deception functional. While M
is inherently application-specific, the primitives in our model suggest natural
proxies. One example is a penalty on reference sensitivity to posted prices
in low-outcome states:

M =

T∑
t=1

1{qt ≤ q̃}
∣∣∣∣∂Rt+1

∂pt

∣∣∣∣ , (48)

which directly targets the mechanism by which inflated posted prices could
influence future references. Outcome weighting already forces ∂Rt+1

∂pt
= 0

when qt = 0; the remaining design question is how close to zero we want this
sensitivity to be when qt is merely small.

This Stackelberg framing is useful even if one does not literally compute
(47). It clarifies what the platform can and cannot do. Because w(·) affects
the seller only through state transitions, design primarily reshapes dynamic
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incentives (how profitable it is to sacrifice current revenue to steer future
Rt). It does not directly constrain the seller’s feasible prices, nor does it
require the platform to infer intent. In that sense, outcome-weighted design
is a structural alternative to intent-based enforcement.

Practical interpretation and policy levers. From a policy perspective,
one can interpret Wt as the platform’s “evidentiary burden”: a larger mass
means the benchmark is harder to move. Increasing W1 (longer lookback,
more historical transactions, or simply adding a baseline prior) makes an-
choring mechanically expensive from day one. Adjusting curvature (e.g.,
increasing γ) makes the benchmark depend more on periods where many
consumers actually transact, which aligns the displayed statistic with what
a typical consumer experiences rather than with what a seller posts in low-
volume states. At the same time, very aggressive curvature can make the
reference overly sensitive to promotion spikes, which may be undesirable if
those spikes are transient or themselves strategically induced.

One implication is that design should be context-dependent. Categories
with stable demand and frequent transactions can tolerate larger W1 (strong
inertia) without making the reference stale. Thin markets or new products
may require lower W1 or milder curvature so that the benchmark can “learn”
quickly from limited data. More broadly, the platform can rationally choose
heterogeneous w(·) across categories, or even adapt w(·) over a product’s life
cycle, so long as the updating rule remains interpretable and does not itself
become a channel for deception.

Limitations of purely mechanical design. Finally, we emphasize what
this approach does not solve. Outcome weighting eliminates the most bla-
tant form of anchoring via unsold posted prices, but it cannot prevent all
strategic behavior. A seller may still choose prices to trade off current rev-
enue against future demand through Rt, and if low-cost “real” purchases can
be engineered (e.g., through self-dealing, rebates, or collusive buying), then
even outcome-weighted references can be manipulated—the manipulation
simply becomes more costly and easier to conceptualize in terms of required
mass. Moreover, when demand is censored, kinked, or subject to significant
shocks, the platform’s optimal choice of w(·) may need to account explicitly
for statistical estimation error and for the possibility that the seller’s best
response is non-smooth. These considerations motivate the extensions in
the next section, where asymmetric reference effects, censoring, and noise
complicate both seller dynamics and platform design, and where numerical
methods become valuable complements to the analytic bounds developed
here.
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7 Extensions and Limits

Our baseline analysis is deliberately spare: the demand response to refer-
ence prices is summarized by a reduced-form function D(p,R), the plat-
form’s benchmark is updated mechanically from realized outcomes, and the
seller observes the relevant state. In practice, each of these ingredients
can fail in systematic ways. In this section we outline four extensions—
asymmetric reference effects, censored demand, stochastic shocks, and par-
tial observability—and explain where the analytic logic survives intact (often
through the same accounting identities) and where we should expect to rely
on numerical methods.

Asymmetric reference effects (η+ ̸= η−): kinks, inaction regions,
and piecewise policies. A common empirical regularity is that “losses”
relative to the reference are more salient than “gains.” In our notation, this
corresponds to η− > η+ in the piecewise-linear specification

D(p,R) = max
{
0, b− ap+ η+(R− p)+ − η−(p−R)+

}
.

Intuitively, asymmetry introduces a wedge in the seller’s incentives around
p = R. When η− > η+, raising price above the displayed reference can
sharply reduce demand, so the seller may optimally keep pt at or below
Rt even when a myopic monopoly price would exceed it. Conversely, when
pt < Rt the seller enjoys a “gain” effect that is weaker, so cutting price far
below Rt may not be as attractive as under symmetry.

Formally, asymmetry makes the seller’s objective non-differentiable at
p = R even before we account for censoring at zero demand. The Bellman
problem remains well-defined, but interior first-order conditions must be
replaced by subgradient or complementary-slackness statements. In a typical
period, the candidate optimizer belongs to one of three regions: (i) p < R
(gain region), (ii) p > R (loss region), or (iii) p = R (kink). The dynamic
component compounds this piecewise structure because the state transition
depends on qt = D(pt, Rt), so the mapping from pt to (Rt+1,Wt+1) inherits
the kink. While one can sometimes characterize thresholds (e.g., an “inaction
band” in which pt = Rt is optimal), such thresholds depend on continuation
values that are themselves endogenous and time-varying, making clean closed
forms rare outside very special parameterizations.

Two qualitative implications are robust. First, the no-free-anchoring logic
does not hinge on symmetry: the identity linking reference movement to
realized outcomes continues to hold whenever w(0) = 0, regardless of how
D depends on (p,R). Second, asymmetry tends to increase the prevalence
of boundary solutions and flat regions in policy functions, which is precisely
where purely local (FOC-based) arguments are least informative. For this
reason, even in otherwise linear environments, computing optimal policies
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with η+ ̸= η− is often best treated as a piecewise dynamic program evaluated
numerically.

Censored demand and stockouts: state transitions with corners.
Many markets exhibit censoring beyond the reference-effect kink. Our re-
duced form already allows for demand truncation at zero via max{0, ·}, but
in applications there may be additional constraints such as inventory limits,
capacity constraints, or platform-side throttling. A simple representation is

qt = min
{
q̄t, D(pt, Rt)

}
,

where q̄t is an exogenous (or endogenous) cap. Censoring matters because
the platform’s reference update is driven by realized outcomes, not latent
demand. If qt hits a cap, then the benchmark may fail to reflect high
willingness-to-pay states, and the seller’s incentive to “invest” in reference
manipulation can be muted or distorted.

Analytically, censoring introduces additional corners: changes in pt may
no longer move qt locally (when qt = 0 or qt = q̄t), which can create flat
segments in the transition map for (Rt+1,Wt+1). This is not merely a tech-
nical nuisance. If w is increasing, then the leverage share αt = w(qt)

Wt+w(qt)
may become locally insensitive to pt in censored regions, weakening the dy-
namic motive to steer Rt+1 precisely when the market is thin (at qt ≈ 0) or
constrained (at qt ≈ q̄t). In such environments, the seller’s optimal policy
can involve discrete jumps: a small price change that moves the system off
a censoring boundary can abruptly change the marginal return to pricing
through both current revenue and reference evolution.

Closed-form comparative statics are therefore fragile under censoring.
Nonetheless, the economic lesson is clear: outcome-weighted benchmarks
behave like data-driven filters. If the data are censored, the filter inherits
the censoring. This creates a practical design implication: platforms that
rely on outcome weighting should audit whether recorded outcomes are sys-
tematically truncated (by logistics, by ranking algorithms, or by inventory)
and interpret benchmark sluggishness accordingly.

Stochastic shocks: risk-neutral dynamic control with endogenous
volatility. A second departure from the baseline is randomness in realized
outcomes. Even if demand is stable in expectation, day-to-day sales are noisy
due to idiosyncratic traffic, competition, seasonality, and measurement error.
A parsimonious specification is

qt = max{0, D(pt, Rt) + εt}, E[εt | Ft] = 0,

with shocks εt conditionally independent given the seller’s information Ft.
The seller’s problem becomes a stochastic dynamic program:

Vt(R,W ) = max
p∈[0,p̄]

E
[
p qt + Vt+1(Rt+1,Wt+1)

∣∣Rt = R,Wt = W,pt = p
]
,
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where (Rt+1,Wt+1) are random through qt.
Two new issues arise. First, the platform’s benchmark becomes a stochas-

tic process with state-dependent volatility because αt is nonlinear in qt (es-
pecially under convex w). Thus, even when E[qt] is modest, the upper tail
of the shock distribution can generate large benchmark jumps. Second, the
seller internalizes that pricing affects not only the mean of qt but also the
distribution of next-period states; with nonlinear transitions, higher-order
moments can matter for expected continuation value. Under risk neutrality,
the criterion remains expected profit, but the expectation may depend sensi-
tively on tail behavior, which is precisely what closed-form methods handle
poorly.

In such settings, numerical methods are typically required for two rea-
sons: (i) the transition kernel for (Rt+1,Wt+1) is generally not available in
closed form once we impose truncation at zero and nonlinear weights w(·);
and (ii) the value function can be highly non-quadratic even when D is linear,
because the platform’s update rule embeds a ratio WR+w(q)p

W+w(q) . Simulation-
based value iteration (or policy iteration) becomes a natural tool: for each
state (R,W ) and candidate price p, we can approximate the expected con-
tinuation value by Monte Carlo draws of εt and then optimize over p.

Partial observability: hidden states and belief-based control. A
final complication is that the seller may not observe the platform’s state
variables. In many platforms, sellers see the displayed reference Rt but
not the mass Wt, and they may not know the precise weight function w(·),
the lookback window, or data-cleaning rules. Likewise, the platform may
observe only a noisy proxy of true transactions (e.g., verified purchases)
while the seller observes gross orders. These informational frictions change
the nature of the dynamic problem: the seller effectively controls prices
under incomplete information about how today’s outcomes translate into
tomorrow’s benchmark.

A tractable formulation treats (Wt) (and possibly the effective w) as la-
tent and assumes the seller maintains a belief µt over hidden states given ob-
served history (e.g., past R’s, own prices, and realized sales if available). The
seller’s control problem becomes a partially observed Markov decision pro-
cess (POMDP), where the sufficient state is no longer (Rt,Wt) but (Rt, µt).
Even when the platform’s update rule is known, belief updating can be non-
linear because Rt+1 is a ratio and because qt may be censored or noisy.

This extension highlights an important limit of purely mechanical bench-
mark design: even if the rule is manipulation-resistant in a full-information
sense, opacity can create perceived manipulability (or perceived futility),
which may distort seller behavior in unintended ways. Practically, this
pushes toward interpretable and auditable rules: if a seller can forecast how
Rt reacts to genuine sales, then the platform’s benchmark is more likely
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to guide pricing and promotion in predictable ways rather than inducing
guesswork-driven experimentation.

Where numerical methods become indispensable. Across these ex-
tensions, a common theme is that non-smoothness (kinks and censoring),
nonlinear transitions (ratio updates), and stochasticity (shock-driven tails)
interact to defeat closed-form analysis. Numerically, we have found three
approaches especially useful.

First, grid-based dynamic programming on (R,W ) can handle kinks
transparently: we can compute Vt on a discretized state space and maxi-
mize over a discretized price set, avoiding reliance on derivatives. Second,
simulation-based expectations are well-suited to stochastic shocks and com-
plicated truncations; the main computational burden is managing variance,
which can be reduced with common random numbers and antithetic sam-
pling. Third, for high-dimensional variants (e.g., latent states or multiple
products), approximate dynamic programming methods—parametric value-
function approximation, fitted Q-iteration, or policy gradient methods—can
provide scalable solutions, though at the cost of weaker guarantees and a
need for validation.

We also emphasize a modeling limit that is not merely computational.
Once we allow for self-dealing, rebates, or collusive transactions, the map-
ping from posted prices to “real” outcomes becomes endogenous in ways our
reduced form does not capture. Outcome weighting then remains concep-
tually appealing, but the relevant object is not sales per se but credible
sales. Incorporating credibility would require an additional layer (e.g., a
fraud-detection technology or verification friction) and would naturally link
benchmark design to enforcement.

Taken together, these extensions reinforce the main message while sharp-
ening its scope. Outcome-weighted reference computation removes a partic-
ularly stark loophole—moving the benchmark without transacting—but it
does not eliminate all strategic behavior, and it does not guarantee smooth or
easily characterizable dynamics in empirically realistic environments. The
next section therefore shifts from mechanism to implications: what these
models suggest that platforms and regulators can measure, audit, and ad-
just in practice.

8 Discussion and Policy Implications

Reference prices are not merely descriptive statistics: once displayed, they
become behavioral primitives that shape consumer response and, in turn,
seller incentives. This dual role creates a classic design problem. If the
reference is too responsive to posted prices, sellers can “manufacture” at-
tractive discounts by first inflating the reference using non-transactional (or
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near-non-transactional) price postings. If the reference is too inert, it can
cease to track meaningful market information and may mislead consumers
in the opposite direction (e.g., by anchoring them to stale, unusually high
past prices). The central lesson of our analysis is that outcome-weighted
benchmark computation is a particularly transparent way to target the first
failure mode: it ties benchmark movement to realized outcomes, so influence
requires transactions rather than mere announcements.

A practical reading of the no-free-anchoring identity. The account-
ing identity

∆Rt ≡ Rt+1 −Rt = αt(pt −Rt), αt =
w(qt)

Wt + w(qt)
∈ [0, 1),

has a direct policy interpretation. It says that the platform can make the
displayed reference “hard to game” by choosing rules under which αt is small
whenever outcomes are negligible. In the baseline outcome-weighted update,
αt is mechanically small when either (i) the period’s realized outcome qt
is small (because w(qt) is small), or (ii) accumulated history Wt is large
(because the new observation has limited leverage). Put differently, the
platform is implementing a data-aggregation principle that many auditors
would find intuitive: if there is no credible mass behind a price, that price
should not move the reference.

This is the sense in which outcome weighting provides a clean, easily
communicable “anti-fake-discount” guarantee. A seller may post an extreme
price, but unless consumers transact (or otherwise engage in the outcome
being weighted), the posted price does not propagate into the benchmark.
For regulators focused on deception, this guarantee is meaningful because
it limits a specific channel of harm: displaying a reference that has been
inflated by non-credible price postings.

Design levers for platforms: choosing w(·) and effective history
mass. The platform’s design choices map naturally into two levers: the
shape of w(·) and the magnitude of the effective history mass Wt (which is
governed by initialization W1 and, in practice, by any lookback window or
discounting rule the platform implements).

First, the weight function w governs how rapidly leverage αt rises with
outcomes. Within the family w(q) = qγ , increasing γ makes the benchmark
less sensitive to small outcomes and more sensitive to large outcomes. This
is a tradeoff, not a free lunch. A larger γ improves manipulation-resistance
against low-volume “wash” activity or thin-market opportunism, but it also
amplifies benchmark jumps during large promotional events. In categories
where promotions are frequent and high volume (so that large qt are com-
mon), a highly convex w can generate reference volatility that consumers
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may interpret as instability or that sellers may experience as a moving target.
Conversely, in thin categories where low volumes are common and manip-
ulation risk is high, convex weighting may be desirable precisely because it
forces benchmark movement to be supported by substantial realized activity.

Second, W1 (and any operational analogue, such as an initial lookback
mass) regulates the overall “memory” of the benchmark. A higher W1 makes
the reference more inert early on, reducing strategic incentives to invest in
raising Rt, but it also slows adaptation for new products or new sellers.
This suggests a category- and lifecycle-dependent policy: a platform may
deliberately set smaller effective history for genuinely new items (to avoid
anchoring consumers to irrelevant legacy prices) while imposing larger effec-
tive history once an item has established stable volume (to reduce dynamic
incentives to manipulate). Importantly, our analysis predicts that dynamic
incentives to steer Rt decay like O(1/Wt) in tractable environments, so even
modest growth in Wt can quickly reduce the marginal value of benchmark
manipulation.

Guardrails beyond weighting: caps, trims, and “credible outcome”
definitions. Outcome weighting is only as good as the definition of the
outcome. If the platform weights orders that are easily reversed, or weights
clicks that can be purchased, then qt becomes an endogenous object that
can itself be manipulated. In such environments, a robust implementation
should combine outcome weighting with a credibility layer: verified pur-
chases, chargeback-adjusted sales, fraud-detected engagement, or other out-
comes that are costly to fake. Conceptually, the update rule should be driven
by a “credible quantity” q̃t, not raw activity.

Platforms can also add guardrails that preserve interpretability while
limiting extreme leverage. One approach is to cap per-period influence by
restricting αt ≤ ᾱ for some design constant ᾱ < 1, effectively limiting the
maximum one-step movement of the benchmark even under very large out-
comes. Another approach is trimming or winsorizing on the price dimen-
sion, so that the contribution of a period is based on a bounded function
of (pt − Rt); this can be useful in categories where pricing errors or out-
liers are common. These modifications preserve the core intuition of our
mechanism—benchmark movement requires credible mass—while reducing
sensitivity to rare but extreme events.

Transparency as a complement to manipulation-resistance. A sub-
tle implication of our partial observability discussion is that opacity can itself
be distortionary. If sellers do not understand how Rt responds to real out-
comes, they may engage in trial-and-error experimentation that creates un-
necessary volatility, or they may incorrectly infer that the benchmark is ma-
nipulable and attempt to manipulate it. For regulators, opacity also makes
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enforcement difficult because it blurs the line between a benign statistic and
a designed persuasion tool.

We therefore view transparency as a complement to outcome weight-
ing. At minimum, platforms can disclose (i) the relevant outcome used (e.g.,
verified units sold), (ii) the functional form class for weighting (e.g., “volume-
weighted average”), and (iii) the effective horizon or mass (e.g., a lookback
window or decay rate). This does not require revealing proprietary details at
a level that would enable gaming; indeed, the no-free-anchoring identity sug-
gests that when w(0) = 0, many common gaming attempts are neutralized
even when the rule is public.

Auditing the benchmark: simple tests implied by the model. Our
framework yields testable predictions that can be operationalized as audits.
The most direct is a “no-free-anchoring” test: in data, periods with negligible
realized outcomes should have negligible benchmark movement. A simple
diagnostic computes an implied leverage share

α̂t :=
Rt+1 −Rt

pt −Rt
(for pt ̸= Rt),

and examines whether α̂t is (i) near zero when qt is near zero and (ii) in-
creasing with qt in a manner consistent with the platform’s stated weighting
policy. Systematic benchmark movement in periods with qt ≈ 0 is a red
flag: it can indicate that the platform is not truly outcome-weighting (de-
spite claims), that qt is mismeasured, or that the platform is using additional
signals (e.g., posted prices) in ways that undermine the intended protection.

A second audit targets volatility and promotion sensitivity. Under convex
weighting, large-qt events receive disproportionate influence, so |Rt+1 − Rt|
should spike around promotions, featured placements, or other traffic shocks.
This is not necessarily undesirable, but it becomes a compliance issue if the
platform represents the reference as “typical” or “regular” while it is in fact
heavily shaped by short-lived events. An audit can therefore compare the
distribution of ∆Rt across ordinary periods and promotion-tagged periods;
unusually large and persistent shifts concentrated in promotions suggest that
the benchmark is effectively a “promotion-weighted” statistic.

A third audit focuses on cross-seller and lifecycle variation. Because
leverage falls with Wt, newly listed items (or items with short histories)
should exhibit greater benchmark responsiveness and, consequently, stronger
incentives for sellers to attempt steering. If manipulation complaints are
concentrated among new products, this is consistent with the mechanism
and suggests targeted safeguards: larger initial W1 in high-risk categories,
stricter verification for early transactions, or temporary caps on αt until
sufficient credible history accumulates.
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Enforcement and legal framing: when does a reference become de-
ceptive? From a regulatory standpoint, a key question is whether a dis-
played reference represents an informative statistic or a designed persuasion
instrument. Our model does not resolve the legal boundary, but it clari-
fies what is technically feasible and what can be verified. If a platform can
commit to a benchmark that (i) is mechanically linked to credible outcomes
and (ii) demonstrably exhibits negligible response to non-transactional post-
ings, then it is easier to argue that the reference reflects market experience
rather than strategic presentation. Conversely, if the benchmark responds
materially to posted prices absent credible outcomes, then the platform is ef-
fectively enabling sellers to create artificial “regular prices,” which is precisely
the pattern regulators often target in false-reference-price enforcement.

We also emphasize that enforcement should be aligned with the credi-
bility of qt. If the platform’s benchmark weights transactions that can be
cheaply faked (self-dealing, rebates that net out the price, or collusive pur-
chases), then an outcome-weighted rule can still be manipulated, but now
through the outcome channel. In that case, compliance requires not only an
aggregation rule but also monitoring and deterrence: anomaly detection for
unusual purchase patterns, verification frictions, and penalties that raise the
cost of fabricating credible outcomes.

Limitations and a pragmatic takeaway. Two limitations deserve em-
phasis. First, a benchmark that is manipulation-resistant is not automati-
cally welfare-optimal: the platform may care about consumer surplus, seller
revenue, and trust, and these objectives may trade off against benchmark
responsiveness. Second, real platforms are multi-product, algorithmic, and
subject to feedback loops (ranking affects sales, which affects Rt, which af-
fects demand, and so on). Our accounting logic survives these complications,
but precise welfare conclusions generally require richer modeling and, often,
quantitative calibration.

The pragmatic takeaway is nonetheless crisp. If platforms want a refer-
ence price that is both interpretable and hard to game, they should tie bench-
mark movement to credible realized outcomes, choose weighting schemes that
reflect category-specific risk (thin markets versus promotion-heavy markets),
and make the rule sufficiently transparent to support auditing. For regu-
lators, the same structure offers actionable tests: verify that low-outcome
periods have low benchmark impact, that stated weighting policies match
observed leverage patterns, and that the outcome being weighted is suffi-
ciently credible to support the reference’s consumer-facing claims.
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