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Abstract

Classic principal–agent models benchmark outcomes by a Stackel-
berg/commitment value U⋆ under a best-responding agent. Lin and
Chen (2025) show that when the agent has no private information,
contextual no-swap-regret learning essentially restores this benchmark:
the principal cannot exploit a learning agent beyond U⋆+o(1). In mod-
ern 2026 settings, however, agents are often user-side AI assistants with
private context (type) θ, raising the question of whether stronger learn-
ing guarantees can again prevent manipulation by adaptive platforms.

We introduce a repeated Bayesian generalized principal–agent model
with privately informed agents and define a type-conditional contex-
tual no-swap-regret property against deviations d(s, a, θ). Our main
result shows that under i.i.d. types and standard regularity (linearity
in decisions, bounded/Lipschitz payoffs, and uniform inducibility gap),
type-conditional no-swap-regret is sufficient to cap the principal’s long-
run payoff at U⋆ + O(CSReg(T )/T ), even when the principal moves
after observing the agent’s policy and can adapt over time. The proof
generalizes Lin–Chen’s joint-signal reduction while carefully using the
fact that the agent’s within-round randomization is conditionally in-
dependent of the state given (s, θ), so the joint signal (s, a, θ) does not
expand the agent’s information beyond (s, θ).

We also provide sharp separations: if the regret guarantee is not
type-conditional (deviations cannot condition on θ), or if types are per-
sistent so the principal can learn and price-discriminate across rounds,
the cap fails and the principal can exceed U⋆ by a constant despite van-
ishing swap regret. The results provide a clean criterion for “manipulation-
resistant” AI assistants and clarify when learning-theoretic guarantees
are sufficient (or insufficient) to recover classical economic benchmarks
in the presence of private context.
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1 Introduction and motivation

Delegated decision-making is increasingly mediated by user-side AI assis-
tants: systems that summarize options, negotiate on a user’s behalf, or se-
lect among actions (purchases, content filtering, scheduling) after receiving
a platform-provided interface or message. A central feature of this delega-
tion environment is that the assistant is privately informed. It conditions its
behavior on private context—the user’s preferences, constraints, and goals—
that the platform does not directly observe and may not be able to infer
reliably from a single interaction. At the same time, the platform is often
adaptive: it can run experiments, personalize messages, and change decision
rules over time in response to observed outcomes. This combination raises
a natural concern for both mechanism design and AI governance: can an
adaptive platform manipulate a learning assistant into taking actions that
increase platform payoff, beyond what would be achievable if the platform
were forced to commit up front to a policy?

A useful benchmark comes from work that studies repeated principal–
agent interaction when the agent is a no-regret learner. In particular, in
models without private information, one can show a striking “cap”: if the
agent’s learning dynamics satisfy an appropriate no-swap-regret guarantee,
then even a fully adaptive principal cannot extract more than the one-shot
commitment value, up to an error that vanishes with average regret. In-
tuitively, swap regret is the right behavioral notion because it enforces ap-
proximate obedience: the realized play looks like the agent is (approximately)
best-responding to the principal’s induced incentives, so the principal cannot
profit from repeatedly steering the agent through systematically suboptimal
responses.

However, delegated AI assistants are precisely settings in which private
information is first-order. The assistant observes the user’s type (or context)
each round, and this type may vary across interactions. The platform, by
contrast, chooses its policy without observing the type, and in many appli-
cations it cannot even condition within a round on the action the assistant
ultimately takes (e.g., the interface is chosen before downstream choices are
observed). These information constraints change what “obedience” should
mean and, consequently, what sort of regret guarantee is sufficient to immu-
nize the agent from manipulation. A regret bound that is appropriate in a
public-information model may be too weak once types enter, because it may
fail to control deviations that target particular types.

We therefore study a repeated Bayesian generalized principal–agent prob-
lem in which, in each round, Nature draws a state and a type, the principal
chooses a policy that generates a signal and a decision, and the agent chooses
an action after observing the signal and its type. The principal’s objective is
to maximize its expected average payoff across rounds, and it may use any
adaptive strategy, including one that is aware of the agent’s learning algo-
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rithm. The agent is modeled as a learning algorithm that guarantees a form
of type-conditional contextual no-swap-regret : for each realized type, and for
each deviation mapping that may depend on the signal, the agent’s realized
action, and the type, the cumulative gain from switching to that deviation is
small. This learning guarantee is natural for assistants that explicitly condi-
tion on user context and can internally post-process their own recommended
actions (for instance, by re-mapping outputs of an underlying model into a
smaller action set).

Our first contribution is to show that, under i.i.d. types and standard
boundedness/regularity conditions (including an inducibility gap that rules
out uniformly dominated actions), type-conditional contextual no-swap-regret
restores a cap analogous to the one in the no-private-information setting. In
words: even though the principal can adapt its policy over time, it cannot
increase its expected average payoff beyond the one-shot Bayesian commit-
ment value U⋆, except by a term that scales linearly with the agent’s average
swap regret δ = CSReg(T )/T . This provides a simple economic interpreta-
tion of strong learning guarantees for user-side assistants: when the assistant
is “sufficiently obedient” conditional on the user’s private context, dynamic
platform manipulation collapses to the classical one-shot design problem.

The technical obstacle is that swap regret is naturally phrased in terms
of the agent’s own history and internal recommendations, whereas Bayesian
obedience constraints are phrased conditional on the information available
at the moment of choice, here (s, θ). Our reduction bridges this gap by
treating (s, a, θ) as a joint signal and translating contextual swap regret
into an approximate obedience condition for the empirical distribution of
play. A key ingredient is a conditional independence property: because the
agent’s learning algorithm does not observe the state beyond the principal’s
signal, the realized action does not reveal additional information about the
state once we condition on (s, θ). This allows us to “collapse” approximate
obedience from the augmented signal (s, a, θ) back down to the economically
relevant signal (s, θ), and then to compare the principal’s adaptive value
to the one-shot benchmark using perturbation arguments in the spirit of
Lin–Chen.

Our second contribution clarifies when such caps fail, and why the depen-
dence on θ in the deviation class is not a technicality. We provide a separation
showing that if the learning guarantee only controls deviations that cannot
condition on type—for example, deviations d(s, a) that ignore θ—then there
exist two-type instances where the principal can obtain U⋆ +Ω(1) while the
reported swap regret still vanishes. Economically, the platform can concen-
trate distortions on a minority type: it can induce systematic mistakes that
are profitable in expectation yet invisible to type-agnostic deviations. This
is a cautionary message for evaluation and auditing practices that report
aggregate regret-like metrics without stratifying by user context: such met-
rics can certify “good learning” while permitting significant exploitation of
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particular user segments.
Our third contribution highlights a distinct failure mode that arises when

types are persistent. If θ is fixed for an individual across rounds and the
principal can observe actions or outcomes, then repeated interaction becomes
a screening instrument. Even if the agent satisfies type-conditional no-swap-
regret ex post over the realized sequence, the principal may be able to run
an exploration phase that elicits informative behavior and then switch to
type-tailored policies, achieving U⋆ + Ω(1). This separation underscores
that our cap is not a generic impossibility result about manipulation; it is a
statement about a particular informational regime (fresh i.i.d. private types)
in which the principal cannot effectively learn the type before choosing the
within-round policy.

Beyond its theoretical interest, the i.i.d. regime is a reasonable approx-
imation in many practical deployments. Users’ immediate contexts (time
constraints, current objective, risk tolerance) vary across sessions; platforms
often must commit to an interface or set of options before observing down-
stream user-side actions; and assistants can be designed to guarantee strong
regret properties conditional on observed context. In such settings, our re-
sults suggest a concrete design principle: to limit platform manipulation, it
is not enough that the assistant be no-regret “on average.” The guarantee
must be robust to deviations that target the user’s private context, i.e., it
must be type-conditional.

At the same time, our analysis has limitations that inform both mod-
eling and practice. The cap relies on regularity assumptions (boundedness,
Lipschitz dependence on the principal’s decision, and a uniform inducibility
gap) that rule out knife-edge instances where tiny incentive perturbations
cause discontinuous action changes. It also relies on the principal’s inabil-
ity to condition within a round on realized actions. In applications where
the platform can observe intermediate user-side behavior before finalizing
the decision, or where the assistant’s type is stable and actions are repeat-
edly observed, platforms may regain leverage, and additional defenses (cryp-
tographic commitment, randomized response, or structural restrictions on
platform policies) may be required.

The remainder of the paper develops these points systematically. In Sec-
tion 2 we formalize the one-shot Bayesian benchmark with private types
and define the commitment (Stackelberg) value U⋆, including convenient
convex/linear program formulations in common special cases (Bayesian per-
suasion and Stackelberg decision problems). We then analyze the repeated
game, establish the swap-regret-to-obedience reduction, and prove the cap
theorem. Finally, we present the two separations that delineate the bound-
ary of the cap: (i) omitting type from the deviation class, and (ii) allowing
persistent types and learning-by-screening over time.
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2 One-shot benchmark with private types

We begin by fixing the one-shot Bayesian generalized principal–agent prob-
lem that serves as our commitment benchmark. Nature draws a pair (ω, θ) ∈
Ω × Θ from the common prior µ0. The principal observes the state ω (but
not the type θ) and, having committed ex ante to a policy, produces an
observable signal s ∈ S and a decision x ∈ X. The agent observes (s, θ)
and then chooses an action a ∈ A. Payoffs are given by u(x, a, ω, θ) for the
principal and v(x, a, ω, θ) for the agent, with the maintained linearity-in-x
structure

u(x, a, ω, θ) = ⟨x, Ua,ω,θ⟩, v(x, a, ω, θ) = ⟨x, Va,ω,θ⟩.

A principal commitment policy can be represented as a pair (π, {xs}s∈S),
where π(· | ω) ∈ ∆(S) is a signaling scheme and xs ∈ X is the decision
implemented upon sending signal s.1 Given (π, {xs}), Bayes’ rule yields the
agent’s posterior over states:

µ(ω | s, θ) = µ0(ω, θ)π(s | ω)∑
ω′∈Ω µ0(ω′, θ)π(s | ω′)

,

whenever the denominator is positive. Conditional on (s, θ), the agent
chooses a best response

a⋆(s, θ) ∈ argmax
a∈A

E
[
v(xs, a, ω, θ) | s, θ

]
= argmax

a∈A

∑
ω∈Ω

µ(ω | s, θ) v(xs, a, ω, θ).

The principal anticipates this behavior and chooses (π, {xs}) to maximize
its expected payoff. We define the commitment (Stackelberg) value as

U⋆ := sup
π,{xs}

E(ω,θ)∼µ0, s∼π(·|ω)

[
u
(
xs, a

⋆(s, θ), ω, θ
)]
. (1)

Because Ω,Θ, A are finite and X is compact, the benchmark is well defined
under mild regularity; when best responses are not unique, we interpret (1)
using any measurable selection a⋆(s, θ) (our upper bounds later are robust to
tie-breaking, and our separations can be constructed under strict incentives).

Two aspects of (1) are worth emphasizing because they reappear in the
repeated-game analysis. First, the agent best responds conditional on private
type: the relevant obedience constraints are indexed by (s, θ), not merely s.
Second, the principal must choose π without observing θ, so the only way in
which the principal can tailor incentives across types is indirectly, through
the correlation structure in µ0 and through the fact that different types
interpret the same public signal s differently via Bayes’ rule.

1Allowing the principal to randomize over decisions conditional on (ω, s) does not
change the benchmark in our linear setting: by linearity, only conditional expectations
matter, and any lottery can be folded into an enlarged signal alphabet. In the simplex
special cases below, this reduction yields an explicit linear program.
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A distributional (obedience) formulation. It is often convenient to
phrase the benchmark in terms of distributions over outcomes that satisfy
Bayes plausibility and obedience constraints. Fix a finite signal alphabet S.
A policy (π, {xs}) induces a joint distribution over (ω, θ, s) via

Pr(ω, θ, s) = µ0(ω, θ)π(s | ω),

and then a type-contingent action rule (s, θ) 7→ a⋆(s, θ). The induced out-
come is obedient if, for every (s, θ) that occurs with positive probability and
every deviation action a′ ∈ A,∑

ω∈Ω
Pr(ω, θ, s)

(
v(xs, a

⋆(s, θ), ω, θ)− v(xs, a
′, ω, θ)

)
≥ 0. (2)

Multiplying by Pr(s, θ) removes the posterior normalization and makes (2)
the natural one-shot analogue of the approximate obedience conditions we
will obtain from swap regret in the repeated model.

Linear/convex programs in common special cases. While (1) is con-
ceptually simple, its computation can be clarified by two canonical instanti-
ations of the decision space X. In both cases, the key simplification is that
we can absorb the principal’s randomization into a joint distribution over
(ω, “message”), after which both the objective and the obedience constraints
become linear inequalities.

(i) Bayesian persuasion: X = ∆(Ω). In Bayesian persuasion, the
principal’s “decision” is an information structure about the state. A conve-
nient reduced-form is to let signals directly encode posteriors: each s ∈ S
corresponds to a posterior xs ∈ ∆(Ω), and Bayes plausibility requires that
the average posterior equals the prior marginal on Ω,∑

s∈S
αsxs = µΩ

0 , where αs := Pr(s), µΩ
0 (ω) :=

∑
θ

µ0(ω, θ). (3)

With private types, the agent conditions on θ as well, so the posterior relevant
for a type θ upon seeing s is the “tilted” belief

µ(ω | s, θ) ∝ xs(ω)µ0(θ | ω).

If we specialize payoffs to depend on ω and a only through expectations
under the induced posterior (as is standard in persuasion), the linear-in-x
representation is immediate: for baseline payoffs ū(a, ω, θ), v̄(a, ω, θ), set

u(x, a, θ) =
∑
ω∈Ω

x(ω) ū(a, ω, θ), v(x, a, θ) =
∑
ω∈Ω

x(ω) v̄(a, ω, θ).
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A fully linear formulation is obtained by working with joint variables qω,s :=
Pr(ω, s). The feasible set is

qω,s ≥ 0,
∑
s∈S

qω,s = µΩ
0 (ω) ∀ω,

and Bayes’ rule is implicit in the normalization qω,s/
∑

ω′ qω′,s. If we enrich
the signal to specify a type-contingent recommendation profile r ∈ AΘ (so
that, upon seeing r, type θ is “recommended” to play r(θ)), then the one-shot
persuasion benchmark can be written as the linear program

max
{qω,r}

∑
ω∈Ω

∑
θ∈Θ

∑
r∈AΘ

qω,r µ0(θ | ω) ū
(
r(θ), ω, θ

)
(4)

s.t.
∑
r∈AΘ

qω,r = µΩ
0 (ω) ∀ω, (5)

∑
ω∈Ω

qω,r µ0(θ | ω)
(
v̄
(
r(θ), ω, θ

)
− v̄(a′, ω, θ)

)
≥ 0 ∀r, ∀θ, ∀a′ ∈ A.

(6)

Constraints (6) are precisely obedience constraints of the form (2), writ-
ten without posterior normalization. Importantly, allowing recommendation
profiles r ∈ AΘ is without loss: the principal need not observe θ to send
a signal that contains a full contingency plan; the privately informed agent
simply conditions on its realized θ when interpreting the recommendation.

(ii) Stackelberg decision problems: X = ∆(B). In a broad class
of Stackelberg models, the principal chooses a lottery over a finite set B of
concrete moves (prices, allocations, contracts, or actions), and then the agent
chooses a ∈ A. Taking X = ∆(B) and using linearity, we can equivalently
let the principal randomize directly over pure moves b ∈ B as part of the
signal. Concretely, we let a “message” be m = (b, r) ∈ B × AΘ, where
b is the realized principal move and r is a recommendation profile. Let
qω,m := Pr(ω,m) denote the joint distribution. The commitment benchmark
becomes the linear program

max
{qω,m}

∑
ω∈Ω

∑
θ∈Θ

∑
m=(b,r)

qω,m µ0(θ | ω)u
(
b, r(θ), ω, θ

)
(7)

s.t.
∑
m

qω,m = µΩ
0 (ω) ∀ω, (8)∑

ω∈Ω
qω,m µ0(θ | ω)

(
v
(
b, r(θ), ω, θ

)
− v(b, a′, ω, θ)

)
≥ 0 ∀m = (b, r), ∀θ, ∀a′ ∈ A,

(9)

where we have slightly abused notation by writing u(b, a, ω, θ) for the payoff
associated with the degenerate lottery on b. As in persuasion, the incentive
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constraints (9) are linear because we work with joint variables qω,m and be-
cause deviation comparisons are evaluated in expectation without requiring
explicit posterior computations.

These LP formulations are not merely computational conveniences: they
make explicit that the benchmark U⋆ is the optimal value over obedient
outcome distributions induced by a policy that can condition on ω but not
on θ. In the repeated game, our cap theorem will compare the principal’s
adaptive value to U⋆ by showing that no-swap-regret learning forces the
empirical distribution of play to be approximately obedient in essentially
the same sense as (2).

3 Repeated interaction without commitment

We now turn to the repeated interaction in which the principal does not
commit ex ante to a single policy. Instead, the principal may adapt its
behavior across rounds as a function of past play, and may even be fully
“algorithm-aware” in the sense of knowing the agent’s learning rule. Our
goal in this section is to make precise (i) the within-round timing restriction
that prevents the principal from conditioning on the agent’s realized action
when choosing a policy, (ii) the information available to each side, and (iii)
the learning guarantees we impose on the agent.

Timing and strategies. Fix a horizon T ∈ N. In each round t ∈ {1, . . . , T},
Nature draws (ωt, θt) ∼ µ0 i.i.d. across rounds. The principal observes ωt

but not θt, and the agent observes θt but not ωt (beyond what is conveyed
by the principal’s signal). We model the play within round t as follows:

1. The agent, after observing its current type θt and the public history,
chooses a (possibly randomized) response map

ρt : S ×Θ → ∆(A),

which specifies, for each possible signal s and type θ, a mixed action
to be used if that signal and type occur.2

2. The principal then chooses a (possibly randomized) policy πt as a
function of the public history and the observed state ωt. Formally,
πt(· | ωt) ∈ ∆(S × X) induces a joint distribution over the signal
st ∈ S and the decision xt ∈ X conditional on ωt.

3. The principal samples (st, xt) ∼ πt(· | ωt) and publicly sends st (and
implements xt).

2This “choose a response map” representation is purely notational: it is equivalent to
allowing the agent to choose an action after observing st; we write it this way to emphasize
that the agent is committing, within the round, to a contingent plan and that the learning
guarantees apply to the realized mapping from contexts to actions.
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4. The agent observes (st, θt) and draws an action at ∼ ρt(st, θt).

5. Payoffs u(xt, at, ωt, θt) and v(xt, at, ωt, θt) are realized, and the agent
receives feedback sufficient to support the regret guarantee stated be-
low.

The critical restriction is that the principal chooses πt before at is realized.
Thus, even though the principal may be adaptive across rounds, it cannot
implement within-round screening rules that condition on the agent’s realized
action.

We allow the principal’s strategy to be fully history-dependent. Con-
cretely, letting ht−1 denote the public history up to (and including) round
t− 1, a principal strategy is a sequence of mappings ht−1 7→ πt, where each
πt may depend on the principal’s entire past observation stream (including
past states ω1:t−1 and past realized actions a1:t−1 if these are observable ex
post). The agent’s strategy is likewise history-dependent, but is constrained
by the learning property we impose.

Information and observables. We keep the informational asymmetry
from the one-shot benchmark: the agent privately observes θt, while the
principal does not. The principal may observe ωt each round, reflecting
platform-side observability of the relevant “state” (e.g., content quality, mar-
ket conditions, or the sender’s own private information). The agent’s only
within-round information about ωt is through the realized signal st (and
through the realized payoff, if payoffs are observed).3

It is important to distinguish what is observable to the principal before
choosing πt versus after the round concludes. We impose no restriction on
what the principal may learn after round t (e.g., the principal might observe
at, outcomes, or even the agent’s realized payoff). Our cap theorem will be
robust to such observations because they cannot be used for within-round
conditioning on at, and because types are drawn i.i.d. (so past actions do not
directly reveal the current type). Later, we will show that if types persist,
ex post observation of actions can restore the principal’s leverage.

Utilities and the repeated objective. The within-round payoffs are as
in Section 2, with the maintained linearity-in-x property

u(x, a, ω, θ) = ⟨x, Ua,ω,θ⟩, v(x, a, ω, θ) = ⟨x, Va,ω,θ⟩.
3In many applications, the agent naturally observes a realized utility (click-through,

reward signal, or task success) without directly observing the underlying state. Standard
bandit-style algorithms can be used in such settings; we do not fix a particular feedback
model, and instead assume the stated regret bound holds under the realized sequence of
payoff functions.
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We evaluate performance via expected average utility:

UT :=
1

T
E
[ T∑
t=1

u(xt, at, ωt, θt)
]
, VT :=

1

T
E
[ T∑
t=1

v(xt, at, ωt, θt)
]
,

where the expectation is over the prior draws, both players’ randomization,
and any algorithmic randomness.

Type-conditional contextual regret. Because the agent observes (st, θt)
before acting, the natural deviation classes are allowed to condition on both
the public signal and the private type. This is precisely the sense in which
private types enter obedience constraints in the one-shot benchmark (cf.
(2)). In the repeated setting, we accordingly define a type-conditional con-
textual no-regret property as the requirement that, for every deviation rule
d : S ×Θ → A,

E

[
T∑
t=1

(
v
(
xt, d(st, θt), ωt, θt

)
− v(xt, at, ωt, θt)

)]
≤ CReg(T ). (10)

The key feature of (10) is that the deviation is allowed to “target” differ-
ent types: it can prescribe distinct actions for the same signal s depending
on θ. This is not merely a technical strengthening. If the deviation class
cannot condition on θ, then the guarantee may fail to control behavior on
small-probability types, and an adaptive principal can exploit precisely those
hidden degrees of freedom; we formalize this in Separation 1.

Type-conditional contextual swap regret. Our main cap result relies
on the stronger notion of swap regret, again with deviations allowed to de-
pend on type. Informally, swap regret asks whether, after seeing the action
the algorithm actually played, the agent could have improved by systemati-
cally “swapping” that action for a different one as a function of the context.
Formally, for every deviation d : S ×A×Θ → A, we require

E

[
T∑
t=1

(
v
(
xt, d(st, at, θt), ωt, θt

)
− v(xt, at, ωt, θt)

)]
≤ CSReg(T ). (11)

We will write δ := CSReg(T )/T for the corresponding average swap-regret
rate. Relative to (10), the deviation class in (11) is strictly richer: it may
condition on (st, θt) and on the agent’s own realized action at. This richer
deviation class is exactly what yields approximate obedience of the empirical
distribution of play, in the same sense as the one-shot constraints (2) but
now only approximately (up to δ).
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Why type-conditional guarantees are implementable. From a learn-
ing perspective, allowing deviations to depend on θ is natural because θt is
part of the agent’s observed context. If Θ is finite, one simple implementa-
tion is to run an independent contextual (swap-)regret learner for each type
θ ∈ Θ, updating only on rounds in which θt = θ. More abstractly, the agent
can run a single contextual learner on the augmented context space S×Θ. In
either view, the learning problem faced by the agent is a standard repeated
decision problem with finite action set A and context (st, θt), where the per-
round payoff function is induced endogenously by the principal’s choice of xt
(and by the realization of ωt). Our analysis treats the principal’s behavior
as potentially adaptive and adversarial from the learner’s perspective; the
assumption is that the algorithm nonetheless guarantees (11) (or, for the
lower-bound direction, (10)).

What the principal can and cannot condition on. We emphasize
that our model permits the principal to be extremely powerful along two
dimensions: it may choose πt adaptively based on the entire public history,
and it may know the agent’s learning algorithm (and even observe ρt if one
interprets the “response map” as a public commitment). What the principal
cannot do is condition πt on the realized at within the same round. This
restriction is precisely what rules out within-round screening and will un-
derwrite the key conditional-independence step in the next section: since
the agent does not observe ωt beyond st, its action cannot carry additional
information about ωt once we condition on (st, θt).

Preview: from learning to obedience. The definitions above are de-
signed to make the repeated game comparable to the one-shot benchmark.
In Section 4 we show that (11) implies that the empirical joint distribution
over outcomes induced by play is δ-approximately obedient, with obedience
indexed by (s, θ) as in (2). This reduction is the main bridge between online
learning dynamics and the static commitment value U⋆.

4 From learning to approximate obedience

Our cap theorem will be proved by reducing the repeated interaction to a
single (random) round in which the induced distribution of play is approx-
imately obedient. Intuitively, type-conditional contextual swap regret says
that, retrospectively, the agent cannot improve by applying any systematic
“action-relabeling” rule that is allowed to depend on the information the
agent actually had when it acted (namely (st, θt), and also the action it
drew). That is exactly the content of an obedience constraint—except that,
because we only control regret up to CSReg(T ), obedience will hold only up
to δ = CSReg(T )/T .
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A random-round representation and the induced joint distribution.
Let τ be a uniform random index in {1, . . . , T}, independent of all play.
Consider the random tuple

(ωτ , θτ , sτ , xτ , aτ ),

generated by the repeated interaction. We write P̂T for its induced distribu-
tion (which is itself a mixture over histories and the principal’s adaptivity).
With this notation, the swap-regret condition (11) is equivalently

∀d : S×A×Θ → A, EP̂T

[
v
(
xτ , d(sτ , aτ , θτ ), ωτ , θτ

)
−v(xτ , aτ , ωτ , θτ )

]
≤ δ.

(12)
Thus, without yet committing to any structural interpretation, we may view
the repeated play as generating a one-shot Bayesian instance in which the
“signal” observed by the agent is the triple (sτ , aτ , θτ ), and inequality (12)
asserts that the realized action aτ is an approximate best response relative
to this joint signal.

Joint-signal obedience from swap regret. To connect (12) to the fa-
miliar obedience constraints from Section 2, it is helpful to make explicit the
conditional averaging over the principal’s decision x. Let Z := S × A × Θ,
and for each z = (s, a, θ) ∈ Z define the conditional average decision

yz := EP̂T

[
xτ | sτ = s, aτ = a, θτ = θ

]
∈ X,

with an arbitrary value in X on zero-probability conditioning events.4 By
the maintained linearity-in-x of v, we can replace the random xτ by its
conditional mean inside expected utilities. Concretely, for any fixed action
a′ ∈ A and any z = (s, a, θ),

E
[
v(xτ , a

′, ωτ , θ) | z
]
= E

[
⟨xτ , Va′,ωτ ,θ⟩ | z

]
= E

[
⟨yz, Va′,ωτ ,θ⟩ | z

]
= E

[
v(yz, a

′, ωτ , θ) | z
]
.

Substituting this identity into (12) yields the following interpretation: under
P̂T , after observing z = (s, a, θ), the agent cannot gain more than δ by
applying any mapping d(z) to replace the realized action a with a different
action. This is precisely a δ-approximate obedience condition, now written
for deviations that condition on the joint signal (s, a, θ) rather than on (s, θ)
alone.

We record this as a proposition because it will be the first input to the
cap theorem.

4Because X is convex and compact, conditional expectations are well-defined and re-
main in X.
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Proposition 4.1 (Reduction to δ-obedience on the joint signal). If the agent
satisfies type-conditional contextual no-swap-regret (11) with δ = CSReg(T )/T ,
then for every deviation d : S ×A×Θ → A,

EP̂T

[
v
(
xτ , d(sτ , aτ , θτ ), ωτ , θτ

)
− v(xτ , aτ , ωτ , θτ )

]
≤ δ.

Equivalently, writing zτ = (sτ , aτ , θτ ) and yzτ = E[xτ | zτ ], we have

EP̂T

[
v
(
yzτ , d(zτ ), ωτ , θτ

)
− v

(
yzτ , aτ , ωτ , θτ

)]
≤ δ.

At this point, we have an obedience statement, but it is indexed by
(s, a, θ) rather than the economically natural information set (s, θ). The
remaining step is to show that, in our timing model, conditioning on the
realized action a provides no additional information about the state beyond
(s, θ). This is the conditional-independence fact that ultimately prevents the
principal from exploiting within-round learning “mistakes.”

A conditional-independence lemma. The key observation is that the
agent’s action is generated by an algorithm that does not observe ωt beyond
the principal’s signal st, and the principal must choose (st, xt) before at is
realized. As a result, once we condition on what the agent actually observed,
namely (st, θt) (and, if desired, the public history and the agent’s internal
randomness), the realized action cannot carry further information about ωt.

Lemma 4.2 (No additional state information in actions). For each round t,
under the timing described in Section 3, we have the conditional independence

ωt ⊥ at | (st, θt).

Equivalently, for every bounded function g : Ω → R,

E
[
g(ωt) | st, θt, at

]
= E

[
g(ωt) | st, θt

]
.

The proof is a direct application of the within-round timing restriction. Con-
ditional on (st, θt), the distribution of at is determined entirely by the agent’s
response map ρt(st, θt) and the agent’s own randomization. Since ρt is cho-
sen without observing ωt and the agent receives no within-round information
about ωt other than st, the randomness that generates at is independent of
ωt given (st, θt). Importantly, this argument does not require any restriction
on the principal’s adaptivity across rounds: even if πt is chosen adversarially
based on the full public history and knowledge of the learning algorithm,
once st is fixed, the agent’s subsequent randomization cannot “depend back”
on the realized ωt.
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Collapsing joint-signal obedience to (s, θ)-obedience. Lemma 4.2 al-
lows us to convert Proposition 4.1 into the form we need for comparison
with the one-shot benchmark. In the one-shot persuasion/Stackelberg prob-
lem, obedience constraints are indexed by the agent’s information (s, θ):
after observing (s, θ), the agent should not profitably deviate. Here, because
(s, a, θ) does not refine beliefs about ω beyond (s, θ), the richer deviation
class in swap regret does not give the agent any extra inferential power; it
merely allows us to state the constraint in a way that is directly implied by
the online learning guarantee.

Formally, fix any deviation rule d̃ : S×Θ → A that depends only on (s, θ).
Consider the swap deviation d : S×A×Θ → A defined by d(s, a, θ) = d̃(s, θ)
(i.e., ignore the realized action). Applying Proposition 4.1 to this d yields

E
[
v
(
xτ , d̃(sτ , θτ ), ωτ , θτ

)
− v(xτ , aτ , ωτ , θτ )

]
≤ δ.

Using Lemma 4.2, we may interpret this as an approximate obedience con-
straint relative to the information set (sτ , θτ ): conditioning further on aτ
cannot change the posterior over ωτ , and hence cannot increase the value
of a deviation that is allowed to condition only on (sτ , θτ ). In particular,
writing

ys,θ := E
[
xτ | sτ = s, θτ = θ

]
,

linearity again implies that, conditional on (s, θ), the agent evaluates actions
against ys,θ.

We summarize the outcome as the promised reduction.

Corollary 4.3 (δ-approximate obedience on (s, θ)). Under the hypotheses of
Proposition 4.1, the induced distribution P̂T is δ-approximately obedient with
respect to the agent’s information (s, θ): for every deviation d̃ : S ×Θ → A,

EP̂T

[
v
(
xτ , d̃(sτ , θτ ), ωτ , θτ

)
− v(xτ , aτ , ωτ , θτ )

]
≤ δ.

Equivalently, for each (s, θ), the realized mixed action L(aτ | sτ = s, θτ = θ)
is a δ-approximate best response to the induced conditional decision ys,θ and
the posterior over ω given (s, θ).

Discussion and limitations. Corollary 4.3 is the central bridge from on-
line learning to our static benchmark: regardless of how the principal adapts
over time, the empirical distribution of play is constrained (up to δ) by the
same obedience inequalities that define feasibility in the one-shot commit-
ment problem. The conditional-independence step is also where our timing
and i.i.d.-types assumptions enter in an essential way. If the principal could
condition πt on the realized at within the round, then at would become part
of the principal’s information set when selecting (st, xt), breaking the argu-
ment. Likewise, if types were persistent and actions informative about type,
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then past actions could help the principal predict future types and effectively
implement type-contingent policies across rounds, invalidating the reduction
that treats each round as a fresh Bayesian instance. These are exactly the
channels exploited in Separation 2, and they clarify why our cap theorem
is tightly tied to the combination of (i) within-round non-observability of
actions and (ii) i.i.d. private types.

5 A cap theorem for adaptive principals

We now turn the approximate-obedience reduction of Section 4 into an upper
bound on what any principal can extract in the repeated interaction. The
economic content is simple: once the agent is (approximately) behaving as
if it were best-responding to the information it actually has, the principal
is effectively facing the same constraint set as in the one-shot commitment
benchmark. Any additional “dynamic” degrees of freedom in choosing πt—
including conditioning on the full public history and even knowing the agent’s
learning algorithm—matter only insofar as they change the induced distri-
bution over (s, θ, x, a), but they cannot relax the obedience inequalities by
more than the agent’s swap-regret rate.

Benchmark and the role of approximate obedience. Recall that U⋆

is the commitment value of the corresponding one-shot Bayesian problem:
the principal commits to a policy π (mapping ω to a distribution over (s, x)),
the agent observes (s, θ), and then best-responds. In that one-shot prob-
lem, the feasible set of outcome distributions is characterized by (Bayesian)
obedience constraints indexed by (s, θ), together with the implementabil-
ity constraints coming from the signaling scheme and the decision space X.
Corollary 4.3 tells us that, in the repeated game under type-conditional con-
textual no-swap-regret, the random-round outcome distribution P̂T satisfies
the same obedience constraints up to an additive δ = CSReg(T )/T .

At a high level, the cap theorem is then a perturbation statement: op-
timizing the principal’s expected payoff over δ-approximately obedient dis-
tributions yields at most U⋆ + O(δ). The O(δ) term becomes explicit once
we impose the same regularity conditions used by Lin–Chen to control how
sensitive the principal’s optimum is to small relaxations of the obedience
system.

Regularity assumptions (boundedness, Lipschitzness, and an in-
ducibility gap). We maintain the uniform boundedness condition |u|, |v| ≤
B. We also assume u is L-Lipschitz in the principal decision x (with respect
to a fixed norm ∥ · ∥ on the ambient space),∣∣u(x, a, ω, θ)− u(x′, a, ω, θ)

∣∣ ≤ L∥x− x′∥ ∀x, x′ ∈ X,
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and write diam(X) := supx,x′∈X ∥x−x′∥ < ∞. Finally, we assume a uniform
inducibility gap G > 0 that rules out near-ties in the agent’s best-response
problem: for every pair (s, θ) and every posterior over ω induced by some
principal policy, the (possibly set-valued) best-response correspondence has
a robust margin in the sense that any action a that is not a best response is
worse than the best-response value by at least G.5

Theorem 5.1 (Main cap theorem: i.i.d. types and type-conditional no-swap-re-
gret). Suppose the repeated interaction satisfies the timing and information
conditions of Section 3, types θt are drawn i.i.d. from µ0, and the agent
satisfies type-conditional contextual no-swap-regret with bound CSReg(T ).
Let δ := CSReg(T )/T . Under boundedness, Lipschitzness, and a uniform
inducibility gap G > 0, for every (possibly adaptive and algorithm-aware)
principal strategy,

UT ≤ U⋆ + K · δ,

where one may take, for instance,

K :=
2BL diam(X)

G
+ 2B,

and tighter constants are available under stronger conditioning assumptions
(e.g., away from the boundary of the feasible signaling/decision set).

Why adaptivity and algorithm knowledge do not help. Theorem 5.1
is deliberately stated for an arbitrary principal strategy, including strategies
that (i) choose πt as an arbitrary function of the full public history, (ii) are
designed with full knowledge of the agent’s update rule, and (iii) attempt to
correlate current signals with past play in order to “steer” future behavior.
None of these freedoms violate the cap because the only channel through
which they could matter is by producing an outcome distribution in which
the agent systematically takes actions that would be ruled out by obedience
in the one-shot benchmark. Type-conditional swap regret prevents exactly
that: whatever correlation structure the principal creates, the realized ac-
tions remain (approximately) optimal given the agent’s information (st, θt),
and the principal cannot condition within the round on at to exploit the
agent’s randomization in a state-dependent way.

Proof sketch. We describe the logic in three steps, emphasizing where
each assumption is used.

5This can be stated in several equivalent ways; the formulation above is convenient
for bounding the probability mass on suboptimal actions under δ-approximate obedience.
In persuasion-like models with constraints, an additional conditioning parameter may be
needed if feasibility lies near the boundary; see Lin–Chen for sharp variants.
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Step 1: From swap regret to approximate obedience on (s, θ). By Corol-
lary 4.3, the random-round distribution P̂T satisfies, for every deviation
d̃ : S ×Θ → A,

EP̂T

[
v
(
xτ , d̃(sτ , θτ ), ωτ , θτ

)
− v(xτ , aτ , ωτ , θτ )

]
≤ δ.

Thus, conditional on each information pair (s, θ), the realized mixed action
is δ-approximately optimal against the induced conditional decision ys,θ =
E[xτ | sτ = s, θτ = θ] and the posterior over ω.
Step 2: Using the gap G to control suboptimal play. Fix (s, θ) and let a⋆(s, θ)
be an exact best response in the corresponding one-shot problem. Approx-
imate obedience implies that the expected value loss (in the agent’s utility)
from the realized mixed action relative to a⋆(s, θ) is at most δ on aver-
age across (s, θ). The gap assumption then upgrades this utility statement
into a probability statement: any mass placed on actions that are not best
responses must be small, because each such action loses at least G in ex-
pected v relative to a⋆(s, θ). Concretely, if we write αs,θ for the conditional
probability (under P̂T ) of playing a non-best-response action at (s, θ), then
αs,θ ≤ δ/G after averaging (and, with a slightly more careful conditioning
argument, pointwise for almost every (s, θ)). This is the key quantitative
implication of inducibility: small δ forces the realized action distribution to
concentrate near the best-response set.
Step 3: Translating approximate best response into a principal-value bound.
We now compare the principal’s realized payoff to the payoff it would ob-
tain if the agent played the exact best response a⋆(s, θ) under the same
induced (s, θ, x) process. Since |u| ≤ B, replacing the agent’s actual action
by a⋆(s, θ) can change the principal’s payoff by at most 2B on the event
that the agent played a non-best-response action, yielding a loss bounded
by 2B · (δ/G) after Step 2. In addition, because the principal’s decision x
in the repeated game is itself generated endogenously and may vary with
history, we use Lipschitzness to argue that it is without loss to evaluate pay-
offs at the conditional averages ys,θ (as we already did on the agent side), at
a cost controlled by L diam(X). Putting these pieces together bounds the
repeated-game value by the value of an exactly obedient outcome distribution
plus an additive term of order (BL diam(X)/G)δ. Finally, the value of the
best exactly obedient outcome distribution is precisely U⋆ by definition of
the one-shot commitment benchmark. This yields the stated bound.

Implications. Theorem 5.1 formalizes a strong form of “no dynamic per-
suasion rent” under our information structure: if the agent runs a sufficiently
strong learning rule (type-conditional swap regret) and types are fresh each
round, then the principal cannot extract more than the commitment value
up to a vanishing error term. In particular, whenever CSReg(T ) = o(T ),
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we obtain lim supT→∞ UT ≤ U⋆. From a design perspective, the bound says
that improvements beyond commitment must come from precisely the chan-
nels excluded here (e.g., type persistence, action observability, or a weaker
deviation class), which we isolate in Section 6.

An optional matching guarantee from below under type-conditional
no-regret. While swap regret is the right notion for ruling out principal
gains, it is also natural to ask whether the principal can ensure performance
close to U⋆ when the agent only guarantees (type-conditional) contextual
external regret on contexts (s, θ). In that case, the principal can recover the
classical commitment value by simply not adapting.

Proposition 5.2 (Robust lower bound with a fixed principal policy). Sup-
pose the agent satisfies type-conditional contextual no-regret with bound CReg(T )
on contexts (s, θ), and let π⋆ be an optimal one-shot commitment policy at-
taining U⋆. If the principal plays πt ≡ π⋆ for all t, then

UT ≥ U⋆ − K̃ ·
√

CReg(T )

T
,

for an explicit K̃ depending on B,L,diam(X) and the same conditioning
parameters as in Lin–Chen.

The message of Proposition 5.2 is complementary to the cap: even if we
restrict attention to simple (non-adaptive) principal behavior, standard no-
regret learning by the agent drives outcomes toward the one-shot benchmark.
Thus, in our i.i.d.-type environment, the commitment solution is not only
an upper bound on what an adaptive principal can achieve against a swap-
regret learner, but also a natural target that a principal can approach by
committing to a fixed policy when facing a no-regret learner.

6 Failure modes and tight examples

The cap in Theorem 5.1 rests on a very specific alignment between (i) what
the agent can condition deviations on in its regret guarantee, and (ii) what
the principal can condition its policy on in real time. In this section we make
that dependence explicit by exhibiting three families of “failure modes” in
which the principal can recover an Ω(1) dynamic advantage even though
the agent is, in an appropriate sense, learning well. These examples are
not pathologies: each corresponds to a familiar channel of manipulation in
applied settings (targeting a subgroup, screening over time, and reacting to
behavior within a round).
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6.1 Omitting θ from deviations: how to exploit a minority
type

Our reduction from swap regret to approximate obedience crucially used
deviations of the form d(s, a, θ). If we only control deviations d(s, a) that
cannot condition on the agent’s private type, then the induced notion of
“approximate obedience” is pooled across types. This pooling leaves room
for a principal to concentrate violations on a subset of types, so long as those
violations are hard to detect by any single remapping d(s, a) that must apply
uniformly to everyone.

A concrete way to see the issue is to consider two types, Θ = {θH , θL},
with Pr(θH) = ε small. Suppose there is a single public signal s (or the
principal uses the same s always), two actions A = {a0, a1}, and the principal
decision x can be interpreted as choosing a “recommendation intensity” in
X = [0, 1]. The agent’s payoff is type-dependent: type θH strongly prefers a1
when x is high, while type θL strongly prefers a0 regardless of x. Formally,
one can choose v(x, a, θ) so that

a⋆(s, θH) = a1, a⋆(s, θL) = a0

for the relevant posteriors induced by the principal. In the one-shot com-
mitment problem, the principal cannot condition on θ, so any policy trades
off these responses and yields some U⋆.

In the repeated game, however, an adaptive principal can interleave
“probing” policies that induce the learning algorithm to occasionally play
the wrong action for θH while leaving θL almost always playing its correct
action. The key point is that a deviation d(s, a) that flips a0 7→ a1 (or vice
versa) helps one type but harms the other; when ε is small, any uniform
remapping has negligible aggregate benefit even if it would be very valuable
for θH specifically. Thus the non-type-conditional swap-regret guarantee can
remain small:

∀d : S ×A → A,

T∑
t=1

(
v(xt, d(st, at), ωt, θt)− v(xt, at, ωt, θt)

)
is small,

even though there exists a type-targeted remapping d(s, a, θ) that obtains a
large improvement concentrated on θH rounds. In other words, the principal
can create an outcome distribution that is approximately obedient only after
averaging over types, while violating obedience substantially conditional on
θ.

Economically, this example captures a simple but important phenomenon:
if our behavioral guarantee does not allow the agent to “audit” its own perfor-
mance type-by-type, then a principal can profit by shifting mistakes onto a
subgroup (a minority preference segment, a vulnerable user group, or a rare
context) without triggering a large regret signal that is aggregated across
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the whole population. This is exactly why we require type-conditional con-
textual swap regret in the cap theorem: it enforces approximate obedience
within each (s, θ) cell rather than merely on average.

6.2 Persistent types: screening restores dynamic leverage

The i.i.d. type assumption is not merely a technical convenience; it is what
prevents the principal from using the repeated interaction as a screening
device. If each agent has a persistent type θ across rounds (or, more generally,
if θt is sufficiently correlated over time for an individual), then actions become
informative about θ and an adaptive principal can condition future policies
on past behavior. This is the standard logic of dynamic price discrimination
and sequential persuasion: early rounds are used to learn who the agent is,
and later rounds extract surplus accordingly.

A stylized construction is as follows. There are two types θ ∈ {θH , θL}
and two actions A = {reveal, hide}. The principal controls a decision x ∈
[0, 1] that determines how much value the agent gets from revealing (e.g.,
an “explanation” level, a discount, or an information disclosure). Type θH is
willing to reveal even at low x, while type θL reveals only when x is high. In
a one-shot problem where the principal cannot observe θ, the commitment
solution must pick a compromise x (or a lottery over x) and achieves U⋆.

Now suppose the principal observes realized actions (or any outcome
correlated with them) and types persist. The principal can run a two-phase
policy. In an exploration phase of length T0, choose an x that separates
types in the sense that θH reveals with high probability while θL hides with
high probability. Because each type is approximately best-responding (in-
deed, exact best-responding in the cleanest versions), the exploration phase
produces an informative statistic about θ:

Pr(reveal | θH) ≈ 1, Pr(reveal | θL) ≈ 0.

In the exploitation phase, the principal conditions on the inferred type and
switches to a type-tailored policy x(θ̂) that yields strictly higher expected
principal payoff than any single compromise policy can achieve ex ante. The
overall gain is Ω(1) because the exploration cost is O(T0/T ) and can be made
negligible by taking T0 = o(T ).

What is important for our purposes is that this leverage is compatible
with very strong learning guarantees on the agent side. Even if, ex post,
the agent has type-conditional no-swap-regret on the realized sequence, the
principal’s policy can still outperform U⋆ because the principal is no longer
solving a one-shot Bayesian persuasion problem; it is solving a dynamic
problem with an additional state variable given by its posterior about the
persistent θ. The cap fails because the feasible set expands: the principal
can condition future πt on a statistic that is informative about θ, whereas in
the i.i.d. model there is no such statistic beyond the prior.
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This example delineates a clear modeling lesson. If we want a cap theo-
rem that speaks to repeated interactions with the same user, then we must
either (i) incorporate persistence explicitly and accept that U⋆ is not the
right benchmark, or (ii) impose additional restrictions (e.g., privacy con-
straints that prevent the principal from conditioning on past actions, or
commitment to a stationary policy) that remove the screening channel.

6.3 Within-round observability: reacting to at breaks the
reduction

Our timing assumption that the principal chooses πt before at is realized
is not innocuous. It is exactly what supports the conditional-independence
step that collapses obedience on (s, a, θ) to obedience on (s, θ): informally,
the agent’s own randomization cannot convey additional information about
ωt (or about its private type) back to the principal within the same round.
If the principal can instead observe at before finalizing xt (or before sending
the payoff-relevant component of the signal), then the principal can use the
agent’s action as an extra message—one that is often highly informative
about θt.

To illustrate, consider a within-round two-stage variant: the principal
first sends a preliminary signal st, the agent chooses at, the principal ob-
serves at, and then the principal chooses a decision xt = x(st, at, ωt) that
determines payoffs. Even if the agent has vanishing swap regret relative to
deviations d(s, a, θ), the principal can design st so that different types take
different actions (because v depends on θ), thereby eliciting a type-revealing
at. The principal then conditions xt on at to implement a type-contingent al-
location. In effect, the principal has endogenously created a direct revelation
mechanism inside the round.

From the perspective of the commitment benchmark, this is a strict ex-
pansion of the principal’s instrument set. The classical U⋆ only allows the
principal to commit to a mapping ω 7→ ∆(S×X), after which the agent acts
and x is already fixed. Once x can depend on a, the principal can replicate
(approximately) the outcome of a mechanism that conditions on the agent’s
report of θ—even if the agent never explicitly reports θ.

A useful way to characterize when exploitation becomes possible in within-
round observability variants is to ask whether the principal can implement
a nontrivial correspondence a = a(s, θ) that is (approximately) incentive
compatible for the agent and sufficiently informative for the principal. If
such an a(·) exists and the principal can respond with x(s, a, ω), then the
relevant benchmark is no longer the persuasion/commitment value U⋆ but
rather the value of a richer mechanism-design problem in which the principal
can condition on an endogenous message. In that richer problem, “dynamic”
gains can appear even in a single round.
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6.4 Tightness and what the examples teach us

Taken together, the three failure modes identify the precise boundaries of the
cap theorem. If we keep i.i.d. types and the within-round nonobservability of
actions, then strengthening the agent guarantee from non-type-conditional
to type-conditional swap regret is exactly what blocks targeted exploita-
tion. If we instead keep type-conditional swap regret but allow persistence
or within-round observability, then the principal can recover a qualitatively
new channel—learning and reacting to type—that is absent from the one-
shot benchmark and can generate an Ω(1) gain.

Finally, these constructions also clarify why the O(δ) dependence in The-
orem 5.1 is the right scale under our regularity assumptions. When there is a
uniform gap G, any δ-approximately obedient play must place only O(δ/G)
probability on strictly suboptimal actions, and this is the only place where
the principal can earn additional surplus beyond U⋆ in the i.i.d. model. The
separations show that once we remove the structural reasons the principal
cannot screen (fresh types, no within-round reaction), the principal can do
better than U⋆ even when δ is essentially zero.

7 Applications and calibrations

The preceding theorems are intentionally abstract: they treat the principal
as an arbitrary adaptive optimizer, and they summarize the agent side by
a single behavioral primitive—type-conditional contextual no-swap-regret.
This abstraction is useful precisely because many applied environments can
be re-expressed in this template by choosing (i) what counts as the princi-
pal’s decision variable x ∈ X, (ii) what information the principal can encode
in a signal s ∈ S, and (iii) what we mean by the agent’s “type” θ ∈ Θ. In
this section we sketch three domains where the cap has immediate inter-
pretive value, and we explain how one can calibrate the O(δ) term, with
δ = CSReg(T )/T , into a concrete notion of “how much dynamic advantage
is left on the table.”

A recurring theme is that the cap is not a statement about benevolence.
It says that if the agent’s behavior is approximately obedient type-by-type
(in the precise internal-regret sense) and the principal cannot learn the type
within the round, then the principal’s additional leverage from repeated in-
teraction is quantitatively limited. Conversely, when applied settings violate
i.i.d. types or within-round nonobservability, the separation examples in Sec-
tion 6 should be read as a warning that repeated interaction itself becomes
a screening technology.
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7.1 Personalized disclosure and compliance warnings

A natural interpretation of our model is personalized disclosure: the principal
is a platform deciding how to present information about a risky choice, and
the agent is a user who chooses whether to comply with a recommended safe
action. Concretely, let A = {comply, ignore} and let x ∈ [0, 1] be a “warning
intensity” or “disclosure level” (e.g., salience, friction, or the specificity of
an explanation). The state ω captures the objective risk (or the platform’s
private assessment of harm), while the type θ captures user-side preferences
such as risk tolerance, impatience, or susceptibility to framing.

In the one-shot benchmark, the principal commits to a signaling scheme π
that maps ω to a joint distribution over (s, x), anticipating that the user best-
responds given (s, θ). The value U⋆ then represents the maximal expected
platform objective—which might be profit, engagement, or some blended
welfare criterion—subject to users responding optimally to the disclosed in-
formation and warnings. Our cap theorem implies that if each interaction
draws a fresh θt (e.g., heterogeneous users arriving i.i.d. each visit) and the
user-side decision rule satisfies type-conditional contextual no-swap-regret,
then even a sophisticated platform that adapts warnings to past outcomes
cannot exceed U⋆ by more than Kδ.

This has two practical readings. First, the relevant risk in repeated de-
ployments is not simply that users are “boundedly rational,” but that their
mistakes might be systematically targetable. The failure mode in Section 6.1
corresponds here to a platform that induces miscompliance disproportion-
ately among a small segment (say, a vulnerable subgroup) while aggregate
behavioral metrics look well-calibrated. Requiring type-conditional swap
regret—where θ indexes the segment or the user context of concern—is a
way to formalize an anti-targeting constraint: it forces approximate obedi-
ence within each (s, θ) cell rather than merely on average.

Second, the bound can be calibrated in operational terms. Suppose utili-
ties are normalized so |u|, |v| ≤ B and the platform’s decision-to-payoff map
is L-Lipschitz in x (e.g., small changes in warning intensity only gradually
change outcomes). Then any standard no-swap-regret rate (say, CSReg(T ) =
O(

√
T ) up to logarithmic factors in |A|) yields

UT ≤ U⋆ +O

(
1√
T

)
,

so that the maximal “dynamic premium” decays at the familiar statistical
rate. In deployments where the same disclosure policy is used millions of
times, this suggests that ensuring the user-side policy class actually satisfies
a type-conditional internal-regret guarantee may be more important than
squeezing constants: qualitatively, it is the difference between protection
against subgroup manipulation versus protection only in the aggregate.
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7.2 Platform pricing with ephemeral versus persistent pref-
erences

A second canonical application is platform pricing. Let A = {buy, no buy}
and let x encode a posted price or a menu (so X is a simplex over price
points, or a compact interval). The type θ is willingness-to-pay or outside
option, and the state ω can represent supply conditions, marginal cost, or an
inventory shock observed by the platform. The signal s can include coupons,
personalized messages, or product rankings that shift demand.

When preferences are ephemeral—for example, one-off visits drawn from
a population distribution µ0, or a setting where each round corresponds to
a different user—the i.i.d. type assumption is a reasonable approximation.
In that case, our cap theorem says that repeated interaction does not create
a large additional degree of freedom for the platform: even if the platform
is algorithm-aware and adaptively changes prices and messages, its expected
average payoff is close to what it could have committed to in a one-shot
mechanism, up to Kδ. In particular, if the buyer-side decision policy is the
output of a learning system that minimizes type-conditional internal regret
(with θ indexing user segments), then the platform cannot systematically
“shape” purchase mistakes beyond what is already achievable via commit-
ment.

The picture changes sharply under persistent preferences. If the same
user returns and has stable willingness-to-pay, then the platform can treat
early prices as a screening device, infer θ from purchase decisions, and later
tailor offers. This is exactly the dynamic price discrimination logic, and
it aligns with our Separation 2: even if the buyer’s behavior is near-best-
responding each round (hence has low swap regret), the platform may exceed
the one-shot commitment value because the feasible set expands to include
policies contingent on an endogenous estimate of θ.

This contrast helps interpret real-world policy interventions. Privacy
restrictions (limits on cross-round tracking, cookie expiration, data mini-
mization) can be seen as engineering the environment back toward the i.i.d.
benchmark by preventing the principal from conditioning future policies on
past actions. Likewise, commitments to stationary pricing rules, or to coarse
targeting, can restore a setting where U⋆ becomes a meaningful normative
baseline. From a calibration standpoint, the cap also provides a way to quan-
tify residual harm from “learning-induced” suboptimality: if we can bound
δ for the buyer-side decision system in each segment, then Kδ is an up-
per bound on the platform’s extra profit (or extra distortion) attributable
to deviations from segment-wise best response, holding fixed the platform’s
commitment problem.
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7.3 Delegation to AI assistants and auditing type-conditional
internal-regret

A third domain—and the one most directly connected to current practice—
is delegation to an AI assistant that acts on behalf of a user while inter-
acting with a strategic platform. Here the “agent” in our model is the as-
sistant’s action-selection module, at ∈ A could be a query reformulation, a
click/no-click decision, or acceptance of a recommendation, and the prin-
cipal is the platform that controls xt (ranking weights, pricing, disclosure,
or the allocation of attention) and the signal st (the content shown, expla-
nations, or interface cues). The assistant’s private type θt represents user
intent or preference—often partially observed by the assistant but not by
the platform—such as time sensitivity, political preference, or risk posture.

In this setting, type-conditional contextual no-swap-regret is not merely
a mathematical convenience; it is a candidate design requirement for the as-
sistant. Intuitively, the assistant should be robust not only to simple action
switches but also to context-dependent remappings that exploit the assis-
tant’s own stochastic recommendations. Technically, internal regret is what
prevents the platform from benefiting when the assistant sometimes “talks it-
self into” a suboptimal action in a way that can be targeted by the platform’s
choice of s and x.

This perspective suggests an auditing program. Fix a choice of contexts
(s, θ), where θ may be a coarse label available to the assistant (task category,
declared user goal, or a privacy-preserving segment). From logged interac-
tion data {(st, θt, at, xt)}Tt=1, one can estimate the left-hand side of the swap-
regret inequalities for a rich family of deviations d : S ×A×Θ → A. While
enumerating all such d is infeasible in general, two pragmatic relaxations are
common: (i) restrict to a parametric family of deviations (e.g., small action
remappings within a task class), and (ii) use duality-style certificates that
upper bound the worst-case deviation gain without searching over d explic-
itly. Either route yields an empirical upper bound on CSReg(T ), and hence
an interpretable bound Kδ on the principal’s potential dynamic advantage
under the assumptions of the cap theorem.

We emphasize two limitations that matter in deployments. First, many
assistant decisions are made under partial monitoring (bandit feedback): the
assistant may not observe counterfactual utilities v(xt, a, ωt, θt) for unchosen
actions. Swap-regret guarantees exist in such settings but typically require
explicit exploration, which can be costly or unsafe. Second, choosing the
right notion of type θ is itself a governance choice: if θ is too coarse, the
guarantee reverts to pooled obedience and becomes vulnerable to subgroup
exploitation; if θ is too fine, it may be unobservable, unstable, or privacy-
sensitive. Our framework does not resolve this tradeoff, but it clarifies what is
at stake: type-conditional internal-regret is precisely the property that blocks
a principal from concentrating harm (or surplus extraction) on identifiable
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subpopulations.
Across these applications, the unifying message is that learning guaran-

tees can function as a policy instrument. By specifying which deviations
the agent must control (in particular, allowing conditioning on θ) and by
restricting the principal’s ability to condition within-round on realized ac-
tions, we can make the commitment benchmark U⋆ a robust ceiling on strate-
gic advantage from repetition. The next section discusses how these ideas
extend—and where they break—in multi-agent environments, under richer
feedback models, and under computational constraints.

8 Discussion and future work

Our results isolate a stark but, we believe, practically relevant lesson: when
types are effectively i.i.d. across interactions and the principal cannot con-
dition within-round on realized agent actions, then the principal’s dynamic
leverage is largely exhausted by the one-shot commitment benchmark, up
to an explicit O(δ) slack with δ = CSReg(T )/T . The abstraction is delib-
erate: we compress the entire agent side into a single behavioral primitive
(type-conditional contextual no-swap-regret) and allow the principal to be
fully adaptive and algorithm-aware. This makes the cap robust, but it also
highlights where the next modeling choices matter most. We view the main
open directions as (i) extending from a single agent to populations of agents
and strategic interaction among them, (ii) handling partial monitoring and
the attendant exploration incentives, (iii) incorporating computational con-
straints on the principal, and (iv) treating learning guarantees themselves as
an object of mechanism and policy design.

8.1 Populations, interaction, and what replaces obedience

Many deployed settings are intrinsically multi-agent: a platform chooses
rankings or prices that affect many users in parallel; a sender broadcasts
a disclosure policy to a population; or a recommender system allocates at-
tention across a marketplace of buyers and sellers. A first extension of our
framework keeps the basic within-round timing but replaces a single agent
by a finite set of agents i ∈ {1, . . . , n}, each with type θit and action ait.
The principal chooses a joint policy πt that may generate individualized sig-
nals sit and decisions xit subject to feasibility constraints (e.g., capacity or
market clearing). If each agent runs a type-conditional no-swap-regret al-
gorithm with respect to its own context (sit, θ

i
t), then the natural analogue

of our reduction proposition is that the empirical joint distribution over
(s1, θ1, a1, . . . , sn, θn, an, x) approaches an approximate Bayes coarse corre-
lated equilibrium (or a Bayes correlated equilibrium when we track joint
signals) of the induced one-shot game. In other words, swap regret no longer
enforces “obedience to a best response” in isolation; it enforces approximate
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obedience to a best response given the correlation device represented by the
signal and the induced distribution of other agents’ play.

This change is not cosmetic. In a multi-agent environment the principal’s
objective may depend on coordination or externalities across agents (conges-
tion, matching quality, network effects), and the set of feasible outcomes
under commitment can be strictly larger or smaller depending on whether
the principal can correlate agents’ information. A cap theorem in this setting
would need to compare the principal’s dynamic payoff not to a single-agent
U⋆, but to the appropriate multi-agent commitment value under Bayes cor-
related equilibrium constraints. The encouraging part is that the same proof
architecture appears viable: swap regret controls deviations that remap ac-
tions after seeing the agent’s own recommendation, which is precisely the
obedience constraint defining correlated equilibrium-like objects. The hard
part is identifying the right “no within-round screening” assumption. When
users arrive sequentially within a round (or the principal can observe early
actions before choosing later allocations), the principal effectively regains the
ability to condition on endogenous information about types, and the multi-
agent analogue of Separation 2 becomes immediate: even with low internal
regret for each individual, the principal can implement dynamic screening
across the population by ordering, throttling, or selectively experimenting.

A related open question concerns heterogeneous notions of type. In pop-
ulation settings, θ may represent a protected attribute, a task class, or an
unobserved preference vector. Our separation showing that omitting θ from
the deviation class reintroduces exploitable slack suggests that the “right”
segmentation is not purely statistical; it is strategic. Characterizing the
coarsest partition of contexts that still blocks profitable targeting (i.e., the
coarsest θ for which type-conditional swap regret suffices) is a natural di-
rection, and it would connect our framework to literatures on algorithmic
fairness, subgroup robustness, and multi-calibration.

8.2 Partial monitoring, exploration, and manipulation of feed-
back

The auditing and design motivation for swap regret runs through the avail-
ability of feedback: the regret inequality is defined relative to counterfactual
payoffs v(xt, a, ωt, θt), but many assistants and users do not observe these
counterfactuals. In partial monitoring or bandit feedback, the agent may
observe only v(xt, at, ωt, θt) (possibly with noise), and the distribution of
contexts (st, xt) is itself chosen by an adaptive principal. Two issues arise.

First, obtaining swap-regret guarantees under partial monitoring typi-
cally requires explicit exploration. Exploration has a direct welfare cost and
may be unsafe (e.g., trying inferior medical advice to learn). In our setting it
also has a strategic cost: an adversarial principal may shape the context se-
quence to make informative exploration disproportionately costly precisely
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in the contexts where manipulation is profitable. This suggests that the
relevant learning primitive may need to be strengthened from “low regret
under realized play” to “low regret under strategically chosen information
structures,” perhaps by requiring uniform exploration or by bounding regret
conditional on each (s, θ) cell receiving sufficient mass. Formalizing such
conditions would sharpen the gap between what can be certified from logs
and what is required for a robust cap.

Second, partial monitoring blurs the line between obedience and identifi-
cation. In the full-information case, swap regret implies approximate obedi-
ence without requiring the agent to ever reveal its type. Under bandit feed-
back, however, the agent’s exploration policy can leak information (through
randomized actions) that a principal may aggregate across rounds, and this
again interacts with persistence: even if θt is i.i.d., the principal may in-
fer distributional properties of the agent algorithm that enable within-round
steering of the signal distribution. One promising direction is to combine our
conditional-independence logic (ωt ⊥ at | (st, θt)) with information-theoretic
caps that quantify how much extra information about θt can be transmit-
ted through exploration noise, and how that affects the achievable deviation
from U⋆.

8.3 Computationally bounded principals and algorithmic com-
mitment

Our cap theorem treats the principal as an arbitrary adaptive optimizer,
which is appropriate for an upper bound but can be pessimistic as a descrip-
tion of real systems. Computing U⋆ already subsumes nontrivial Bayesian
persuasion and Stackelberg problems; in many environments, optimizing over
π is NP-hard, and platforms deploy heuristics that are better interpreted as
online learning algorithms on the principal side as well. Introducing compu-
tational constraints raises two complementary questions.

On the one hand, bounding principal computation may tighten the cap:
even if additional dynamic advantage exists in principle, it may not be algo-
rithmically realizable without solving hard inference or planning problems.
This points toward “computational caps” where the benchmark is the best
efficiently computable commitment policy, and the additive term depends
not only on δ but also on the principal’s optimization error. On the other
hand, computational constraints may weaken protection if they force the
principal to rely on proxy objectives that correlate with manipulable be-
haviors. In such cases, the agent’s learning guarantee could be targeted at
the proxy rather than at true utility v, undermining the intended obedience
interpretation.

A technical direction we find particularly attractive is to place both play-
ers within a common online optimization template. If the principal itself
runs a no-regret or no-swap-regret algorithm over a tractable policy class,
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then the interaction may converge to an equilibrium object (e.g., a Bayes
coarse correlated equilibrium of a meta-game between policy classes). Un-
derstanding how our O(δ) cap composes with principal-side regret bounds
could yield sharper, more operational predictions for learning-to-rank and
pricing systems that are updated continually.

8.4 Learning guarantees as a policy instrument

Finally, we think the most immediately actionable implication of our frame-
work is that the choice of learning guarantee is itself a governance lever.
Standard discussions of “rationality” focus on whether the agent is optimiz-
ing; our results suggest that which deviations are ruled out matters just as
much. Requiring type-conditional contextual swap regret, rather than pooled
regret, is precisely what blocks the principal from concentrating gains (or
harms) on identifiable subpopulations while maintaining good average per-
formance.

This invites a design problem: choose a type system Θ (a segmenta-
tion), a deviation class (e.g., all d : S × A× Θ → A or a restricted family),
and an auditing procedure that together imply a meaningful bound on the
principal’s extra surplus from repetition. The companion enforcement levers
are environmental: privacy and logging restrictions can be interpreted as
engineering the nonobservability and i.i.d. conditions under which the cap
is valid, while interface design can limit within-round conditioning on ac-
tions. In settings where these conditions cannot be guaranteed (persistent
users, rich within-round observability, or sequential arrival), our separation
results suggest that guarantees on the agent side must be complemented by
institutional constraints on the principal’s ability to screen.

Several theoretical challenges remain before such “regret-based regula-
tion” is mature. We would like bounds that relax linearity in x (e.g., smooth
non-linear utilities), handle continuous action spaces, and replace the uni-
form inducibility gap with weaker margin conditions that are verifiable from
data. We would also like to characterize the minimal feedback requirements
under which type-conditional swap regret is achievable without excessive
exploration. More broadly, our cap should be read as a map of where dy-
namic manipulation can and cannot hide: it identifies the precise points—
type persistence, within-round observability, and the granularity of devia-
tion control—at which repeated interaction becomes a screening technology
rather than a mere repetition of a one-shot commitment problem.
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