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Abstract

Classic principal-agent models (Stackelberg games, contract de-
sign, Bayesian persuasion) compare the principal’s performance to a
commitment benchmark U* with a best-responding agent. Lin and
Chen (2025) show that in stationary environments without agent pri-
vate information, a no-swap-regret learning agent effectively restores
this benchmark: the principal cannot exploit adaptivity beyond U* +
O(SReg(T)/T), while a fixed principal strategy guarantees U*—O(+/Reg(T)/T).

This paper modernizes the theory for the 2026 setting where pay-
offs and constraints drift over time due to model updates, demand
shocks, and changing regulations. We study repeated generalized prin-
cipal-agent problems with time-varying utility primitives and feasibil-
ity sets. We introduce an economically interpretable dynamic bench-
mark—defined as the Stackelberg value of an averaged (or restricted-
policy) one-shot problem—and derive sharp additive decompositions of
the principal’s performance into (i) strategic learning error (agent re-
gret) and (ii) environmental drift (variation/mixing). Our main results
show that no-swap-regret learning continues to immunize the agent
against principal exploitation, but only up to an explicit drift penalty;
conversely, a principal can secure near-benchmark performance with a
fixed strategy against a no-regret agent, again up to drift. We provide
specializations to dynamic Bayesian persuasion with drifting priors and
to Markov environments, yielding closed-form finite-horizon rates and
condition-number dependence on interiority of constraints. When ex-
act benchmarks require computation (e.g., large state spaces), we flag
the convex programs/LPs needed and provide approximation-aware
statements.
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1 Introduction

Nonstationarity is no longer a technical nuisance that we can relegate to
robustness checks; it is the operating condition of most principal-agent and
persuasion settings that motivate modern applications. In 2026, platforms it-
erate product designs and ranking rules weekly, regulators update compliance
regimes on short notice, macro conditions move demand and outside options,
and learning systems retrain on data whose composition shifts endogenously
with the very policies being deployed. Even when the underlying strate-
gic interaction is stable, the mapping from decisions to realized outcomes
drifts because the environment (users, suppliers, competitors, measurement
pipelines) drifts. In such settings, treating the game as stationary—a sin-
gle payoff matrix with a fixed feasible set—is often descriptively wrong and,
more importantly for theory, can be normatively misleading about what
commitment power and information design can achieve.

Classical Stackelberg and Bayesian persuasion analyses obtain sharp bench-
marks by solving a one-shot commitment problem: the principal commits to
a scheme, the agent best-responds, and equilibrium outcomes are charac-
terized by concavification or linear programming arguments. These tools
implicitly rely on primitives that do not change between the commitment
stage and the response stage. When payoffs and constraints vary across
rounds, the object “commit to a scheme” becomes ambiguous: commit to
what, exactly, when the mapping from messages to outcomes evolves? One
can attempt to define a dynamic mechanism with history-dependent mes-
sages and decisions, but then the benchmark ceases to be a transparent
object tied to welfare or implementation and becomes a moving target that
conflates adaptation with exploitation. Conversely, if we insist on a fixed
benchmark (for interpretability and policy relevance), we must confront the
fact that any such benchmark is necessarily approximate in a drifting world.

A second difficulty is behavioral: even if the principal is fully strategic,
the agent is often not a textbook best-responder to the principal’s hidden
randomization. In online marketplaces, workers, advertisers, or consumers
adapt using heuristics or learning algorithms with limited feedback. In or-
ganizational settings, the “agent” may be a team following a playbook that
updates slowly. This means that the principal’s effective leverage is mediated
by how the agent learns from the realized sequence of interactions. Station-
ary persuasion predictions—which hinge on exact best responses to posteri-
ors or recommendations—can fail quantitatively when the agent is instead
minimizing some form of regret. Crucially, what the principal can extract
depends not merely on whether the agent learns, but on which no-regret
guarantee the agent satisfies: external-regret learning supports convergence
to coarse correlated behavior, while swap-regret learning pushes the realized
play toward correlated equilibria and sharply limits manipulability.

These observations motivate a simple organizing question: in a repeated



principal-agent interaction with drifting primitives, how should we decom-
pose performance into a strategic component (what is enabled or disabled
by the agent’s learning rule) and a statistical/drift component (what is un-
avoidable because the world changes)? Our results answer this by isolating
two additive terms that appear throughout: a strategic-regret term that
vanishes when the agent’s regret is sublinear (e.g., CSReg(T) = o(T) or
CReg(T') = o(T)), and a drift term that vanishes when primitives are stable
(e.g., Vu = 0, and analogously for other sources of change). The point is
not that nonstationarity is “small” in practice, but that it is conceptually
distinct from strategic sophistication, and the theory becomes clearer when
we measure them separately.

At a high level, we proceed by defining a transparent benchmark that
remains meaningful under drift: the Stackelberg value of a single one-shot
problem constructed from time averages of the primitives. This benchmark
captures what a principal could achieve if it had to commit to a stable policy
and faced a stable response problem, with the averaging step reflecting the
fact that only long-run performance is being evaluated. The main question
then becomes: how far can an adaptive principal push the realized average
payoff above (or below) this averaged benchmark, given that the agent learns
from experience? The answer depends sharply on whether the agent satisfies
a no-swap-regret condition or merely a no-regret condition. When the agent
has no-swap-regret, we show an anti-exploitation upper bound: regardless
of how informed or adaptive the principal is, its average payoff cannot ex-
ceed the averaged Stackelberg benchmark by more than an additive term
of order CSReg(T")/T plus a drift penalty proportional to the magnitude of
nonstationarity (e.g., BY,) and a conditioning penalty tied to time-varying
feasibility.

This upper bound is economically interpretable. Swap regret controls
deviations that depend on the realized recommendation and action pair,
which is exactly the leverage an adaptive principal would like to use to
“reshuffle” the agent’s behavior across contexts in its favor. When the agent
prevents such profitable reshufflings, the principal is effectively constrained
to outcomes consistent with an approximate correlated equilibrium of an
averaged interaction, even though the principal may be changing policies
round by round. Environmental drift then enters as a separate term: even if
strategic incentives are tightly regulated by the agent’s learning, the realized
payoffs u; can differ from their time-average u along the realized path, and
this mismatch scales with how fast the environment moves. In other words,
no amount of learning stability can make a moving payoff landscape behave
like a fixed one.

Complementing the upper bound, we provide a matching achievability
statement under the weaker assumption of contextual no-regret. Here the
conclusion is existential rather than universal: there exists a fized principal
strategy (chosen once, in hindsight from the averaged one-shot benchmark)



such that, if the agent has low external regret, the principal’s realized av-
erage payoff is close to the averaged Stackelberg value up to a term that
typically scales like \/CReg(T')/T and the same drift penalties. The eco-
nomic content is that when the principal restrains itself to a stable policy,
the agent’s external-regret learning is enough to ensure approximate best
responding in the long run. Thus, while swap-regret is needed to immunize
against a potentially manipulative principal, external regret suffices to guar-
antee that stable commitment policies achieve the appropriate benchmark.
Taken together, the two results identify the “value of adaptivity” in repeated
principal-agent problems as being bounded by (i) the agent’s swap-regret
slack and (ii) the world’s nonstationarity.

Time-varying feasibility constraints add a subtle but practically impor-
tant wrinkle. Many applications impose per-period resource, safety, or com-
pliance constraints: budgets reset, inventories fluctuate, and acceptable ac-
tion sets shift with policy. A naive averaging argument can fail near the
boundary of the decision space, where small perturbations in feasible sets
require large “repairs” to restore feasibility. For this reason, our guaran-
tees include a condition-number-like factor that depends on an interiority
parameter such as dist(C,0X). Economically, this reflects a simple stabil-
ity principle: organizations that operate with slack (interior feasibility) can
smooth shocks cheaply, while organizations that run at the edge of capacity
pay a high price for the same volatility. This dependence is not an artifact
of proof technique; it captures a real fragility that should inform how one
interprets theoretical benchmarks in tightly constrained systems.

We also show how the general drift term specializes to familiar stochastic-
process primitives in dynamic persuasion. When payoffs are induced by an
ergodic Markov state, nonstationarity over a finite horizon is governed by
mixing: empirical averages converge to stationary expectations at a rate
controlled by 7yix. In this case, the drift penalty can be instantiated as an
explicit finite-horizon term on the order of Bryix/T, separating transient
dynamics from strategic learning effects. This specialization is important
in applications where the “environment” is best modeled as a slowly mixing
demand or preference state: the theory predicts that even with extremely
sophisticated learning (vanishing regret), finite-horizon outcomes can sys-
tematically differ from stationary persuasion benchmarks whenever mixing
is slow.

From a policy and practice perspective, the decomposition into a strategic-
regret term and a drift term has two immediate implications. First, limiting
manipulation is not only about restricting the principal’s information or
commitment power; it is also about the agent’s learning guarantees. Agents
who use swap-regret-minimizing procedures (or institutions that approxi-
mate them) effectively cap the gains a principal can extract from adaptive,
history-dependent schemes. Second, even perfect strategic discipline does
not eliminate performance gaps in a drifting world; the drift term quantifies



how much benchmark comparisons must be discounted when the system it-
self is changing. This is particularly relevant when one evaluates algorithmic
policies against static “optimal” baselines: apparent outperformance may re-
flect favorable drift rather than genuine strategic advantage, and apparent
underperformance may be mechanically forced by volatility.

Finally, we emphasize what our results do not claim. We do not assume
that nonstationarity is small, only that it can be measured in a way that
yields interpretable bounds; if the environment changes adversarially and
rapidly, any stationary benchmark becomes less meaningful, and our drift
terms correctly become large. We also abstract from several dimensions that
may matter in applications: private information on the agent side, multi-
ple agents with strategic interactions, and principals who themselves must
learn the primitives rather than observe them contemporaneously. These
extensions are important, but we view them as complementary: the present
analysis isolates a clean tradeoff between strategic learning and environmen-
tal drift, and clarifies which aspects of stationary persuasion logic survive
when the world is moving.

2 Dynamic generalized principal-agent model

We study a repeated interaction over rounds ¢ € {1,...,T} between a princi-
pal (leader, sender, or platform) and an agent (follower, receiver, or decision
maker). The distinguishing features of the model are (i) a generalized deci-
sion instrument for the principal—a continuous decision vector z € X C R?
that can encode prices, allocations, ranking weights, or policy parameters—
and (ii) nonstationary primitives, allowing payoffs and feasibility constraints
to drift across rounds. Our focus is on how the principal’s ability to adapt
over time interacts with the agent’s learning guarantees.

Decision and message spaces. The principal’s decision space is a convex
compact set X C RY The agent chooses from a finite action set A (e.g.,
accept/reject, bid levels, effort choices). Communication is mediated by a
finite signal set S with |S| > |A|. The requirement |S| > |A| is without
loss in most applications: signals can be interpreted as recommendations or
menus rich enough to label each agent action, while still allowing additional
“informational” messages when needed.

Round structure and strategies. Each round proceeds in the following
order.

1. The agent selects a response map (policy) p; : S — A(A), potentially
as a function of past observations. Thus, upon receiving a signal s € .S,
the agent draws an action a ~ p(s).



2. The principal selects a (possibly randomized) scheme

Ty = {(Wt,sy xt,s)}séSa

where m; ¢ > 0, Zses ms = 1, and x5 € X is the decision imple-
mented if signal s is realized.

3. A signal s; ~ m; is realized, the principal implements x; := x¢,, and
the agent draws a; ~ p¢(s¢).

4. Payoffs ui(xy, a;) and vy (x4, a;) are realized.

We allow the principal to be adaptive: m may depend on the full history
and on contemporaneous observations of the environment. In contrast, the
agent does not observe 7y directly; it only experiences the realized sequence
(s¢, x4, ar) and whatever payoff feedback is available.

Time-varying feasibility constraints. A key modeling ingredient is that
the principal faces a per-round convex feasibility constraint on its average
implemented decision under its own randomization:

Zﬂt,sl‘t,s ceCy CX, (1)
sES

where each C} is convex and may vary with ¢. This captures resource or
compliance constraints that apply in expectation over randomized deploy-
ment. For instance, ) sy can represent average spending across user
segments in an advertising platform, average risk exposure in a credit set-
ting, or average distortion in a ranking policy; C; then captures a budget,
safety, or regulatory region that can shift with external conditions.

Because the constraint is imposed on the expectation over the princi-
pal’s own randomization, it naturally accommodates mixed policies (e.g.,
A /B tests) while preventing the principal from “hiding” infeasibility in low-
probability branches. We will later aggregate these time-varying constraints
through the Minkowski average set

1 I
C:= T g ct:c €Cyp,
t=1
which is convex whenever each C; is convex.

Payoffs, linearity, and boundedness. In each round ¢, the principal’s
payoff is u;(x, a) and the agent’s payoff is v(x, a). We maintain two standard
regularity conditions. First, payoffs are bounded:

lug(z,a)| < B, lve(x,a)| < B, Vi, v € X, a € A.



Second, payoffs are linear in x (equivalently, affine since X is compact), and
in particular u(+,a) is L-Lipschitz under a chosen norm || - || on R%:

|ug(z,a) — up(2',a)| < Lljz — 2/, Vz,r' € X, a € A.

Linearity is natural when x represents a vector of weights or transfers, and it
is technically convenient because it allows us to reason about expected util-
ities under the principal’s randomization using simple averaging arguments.

Nonstationarity and drift measures. The primitives {(us, v, Cy)}l,
may drift arbitrarily over time. To quantify the magnitude of this drift in a
way that is both interpretable and compatible with worst-case analysis, we
measure total variation in payoffs by

= =

V= T Z sup  |upy1(x, a)—ui(z, a)l, Vy = T Z sup  |veyi(x, a)—ve(z, a)l.
=1 rzeX,a€A —1 rzeX,acA

The interpretation is direct: V, (resp. V,) is the average per-round worst-
case change in the principal’s (resp. agent’s) payoff function across the joint
action space. When constraints drift, we measure it via the average Hausdorff
variation
=
Vo = = Z dr (Cr1, Ct),

T
t=1
where dy denotes Hausdorff distance under the norm induced by X. These
metrics are agnostic about why the world is changing—seasonality, policy
shocks, endogenous market response—and are therefore suited to an eco-
nomic objective that evaluates long-run average performance without com-
mitting to a full parametric model of dynamics.

It is also useful to keep in mind an equivalent “state” representation. One
can posit an exogenous process w; generating (ug, v, Ct); the general model
makes no probabilistic assumptions on {w;}, but later specializations (e.g.,
ergodic Markov states) provide sharper instantiations of the drift term.

Information structure. We impose an asymmetric information assump-
tion that reflects many platform and organizational settings. The principal
is “informed” in the sense that at time ¢ it knows the current primitives wu;,
vy, and Cy (or observes the state w; from which they are derived). The agent
may not know these objects and, crucially, does not observe the principal’s
full scheme 7¢; it only sees the realized signal s; (and potentially the realized
x¢), and it receives feedback sufficient to run a regret-minimizing procedure.

We deliberately leave the feedback model flexible. In full-information
variants, after choosing a; the agent might observe v;(x¢,a) for all a € A; in
bandit variants it may observe only vi(z¢, a;); intermediate feedback (e.g.,



partial monitoring) is also possible. The only requirement we will use is
that the agent’s learning rule achieves a stated regret bound relative to an
appropriate comparator class, defined below.

Agent learning as contextual regret minimization. Because the agent
conditions its behavior on the realized signal, the relevant notion of learning
is contextual regret. We consider two increasingly strong guarantees.

First, the agent satisfies contextual external no-regret if there exists a sub-
linear function CReg(T") = o(T') such that for every deterministic mapping
d:S— A,

T
E Z(Ut(wtv d(st)) — ve(wy, at)) < CReg(T). (2)

t=1

Here d is a fixed “policy” mapping signals to actions, evaluated on the realized
sequence of contexts (s;) and principal decisions (z¢). Economically, (2)) says
that the agent learns a near-best fixed response rule to the principal’s induced
signal process, even when the environment drifts.

Second, the agent satisfies contextual no-swap-regret if there exists CSReg(7T') =
o(T) such that for every mapping d : S x A — A,

T
E Z(vt(xt, d(St, CLt)) — ’Ut(l‘t, at)) S CSReg(T) (3)
t=1

Swap regret is stronger because the comparator can condition not only on
the signal s; but also on the action actually taken a;, thereby capturing
profitable “action relabelings” within each context. This is precisely the
deviation structure that characterizes correlated equilibrium, and it is the
relevant notion when we ask whether an adaptive principal can manipulate
the agent by shaping correlations between recommendations and realized
responses.

In both definitions, expectations are taken over the internal randomiza-
tion of the principal and the agent (and over any exogenous randomness
generating ug, v, Cy, when present). We emphasize that the bounds are re-
quired to hold on the realized sequence induced by the principal’s (possibly
adaptive) strategy; that is, the agent’s guarantee is robust to the principal’s
endogeneity.

No dominated actions and an inducibility gap. Following Lin—Chen,
we assume the agent has no weakly dominated actions. This mild regular-
ity condition rules out degenerate cases in which the principal can create
arbitrarily small payoff perturbations that swing the agent between payoft-
equivalent actions in a way that is discontinuous and thus exploitable. Under
no dominated actions, one can define an inducibility gap G > 0 that lower



bounds the separation between best and strictly suboptimal actions in terms
of the agent’s payoff; informally, G is a margin parameter ensuring that if an
action is not optimal for the agent under a given decision z, then it is worse
by at least G under a suitably constructed “joint-signal” representation. We
treat G as an environment-dependent constant that affects the quantitative
strength of the principal’s ability to induce behavior, but not the qualitative
decomposition into regret and drift terms.

Economically, G > 0 can be read as a discipline or responsiveness pa-
rameter: when the agent’s incentives are sharply separated, approximate
best responses (as delivered by no-regret learning) translate cleanly into pre-
dictable behavior; when incentives are nearly flat, small drift or noise can
produce large behavioral variation, and any benchmark comparison becomes
correspondingly less informative.

Averaging and interiority for drifting constraints. Since we evaluate
the principal by its expected average payoft,

T
Z Ut($t7 Cbt)] )
t=1

it is natural to compare dynamic play to a one-shot benchmark constructed
from time averages of the primitives. The appropriate feasibility region for
such a benchmark is the Minkowski average C'. However, turning per-round
feasibility into stable control of averaged feasibility typically requires a
quantitative interiority condition. We therefore assume

1
=K
T

dist(C,0X) > 0,

so that C lies a positive distance away from the boundary of X. This assump-
tion has a clear operational meaning: the principal can implement averaged-
feasible policies with some slack in X, making “repairs” for time-varying
constraints stable. Without slack, even small changes in C; can force the
principal to make large compensating changes in the implemented decisions,
and bounds that scale with V¢ necessarily deteriorate.

Discussion and limitations. Two remarks clarify what this model is and
is not designed to capture. First, we do not assume that the agent observes
or understands the principal’s objective; all strategic discipline is encapsu-
lated in the regret inequalities 7. This is consistent with the view that
many agents are algorithmic learners optimizing their own payoff stream
rather than solving a full equilibrium problem. Second, we allow the prin-
cipal to be fully strategic and informed; thus, any performance limitation
we obtain under swap regret reflects a genuine constraint imposed by the
agent’s learning rule, not by informational frictions on the principal.

10



At the same time, we abstract from several important extensions. We
do not model private information on the agent side, we consider a single
agent rather than a population with externalities, and we do not require
the principal to learn the primitives. These extensions can change the ap-
propriate benchmark and, in some cases, the relevant notion of regret. Our
purpose here is narrower: to isolate, in the cleanest possible setting, how
nonstationarity (captured by V,, V,, Vo) and learning guarantees (captured
by CReg(T'), CSReg(T)) jointly determine what a principal can and cannot
achieve in repeated generalized principal-agent environments.

3 Benchmarks: what we compare dynamic play to

Our welfare statements require a reference point: a benchmark that is (i) eco-
nomically interpretable, (ii) well defined under time variation in payoffs and
constraints, and (iii) compatible with the agent-facing learning guarantees in
f. In nonstationary environments there is no single canonical choice.
We therefore distinguish two benchmarks that serve different purposes. The
first is an averaged-game Stackelberg value, which is deliberately “static” and
is the right baseline for impossibility (anti-exploitation) results. The second
is a restricted-policy dynamic benchmark, which is closer to an operations or
algorithm-design objective when the principal itself is constrained (by policy,
engineering, or regulation) to a structured family of time-varying schemes.

(a) The averaged-game Stackelberg benchmark U*. Because our ob-
jective evaluates average payoff over time, it is natural to compress the non-
stationary primitives into their empirical averages,

1 & 1<
u(x,a) = T Zut(m,a), v(z,a) = th(l‘,a),
t=1 t=1

=l

and to aggregate feasibility via the Minkowski average set

_ 1 &
C = {thlct: CtGCt}.

We then define U* as the one-shot generalized Stackelberg value of the av-
eraged instance (u, v, C):

U* .= max Ts max u(xs,a). (4)

T geg Mss€C ses acargmax ¢ o U(xs,a’")

This object should be read as follows. Imagine a counterfactual world in
which the principal faces a single generalized principal-agent problem with

11



payoffs equal to time averages and a feasible region equal to the time-
averaged constraint set. The principal commits to a randomized signal—
decision scheme {(7s,7s)}scs whose average decision lies in C, the agent
best-responds to each realized decision x; according to the averaged agent
payoff v, and the principal receives the corresponding averaged payoff u.

The economic appeal of is that it captures the long-run commaitment
value of persuasion or policy design when the analyst refuses to privilege any
particular time period. In stationary or ergodic settings, 4 and v approxi-
mate the population primitives, and C' approximates the long-run constraint
region; in that case U* aligns with the textbook persuasion benchmark. In
adversarially drifting environments, by contrast, remains well defined
and places discipline on what we can guarantee uniformly over all sequences:
it depends only on empirical averages and is therefore immune to “cherry-
picking” favorable subperiods.

A second, more technical, reason for using U* is that it matches the in-
formational structure of contextual regret. The inequalities f compare
the agent’s realized play to deviations that are themselves time-invariant
mappings (from S to A, or from S x A to A). Thus, when we translate these
inequalities into restrictions on the long-run joint distribution of (s, x4, a),
the natural induced object is an occupation measure and its average payoffs,
precisely the ingredients that define @, v, and C. In this sense, U* is the
benchmark that is “dual” to the agent’s learning guarantee: it is the value
that would obtain if the agent were exactly best-responding to the average
incentives that its own regret bound forces it to respect.

That said, U* is not meant to represent what a fully informed, fully
rational principal could necessarily achieve in a genuinely dynamic world.
When payoffs drift, an adaptive principal can sometimes do better than any
time-averaged one-shot policy by exploiting periods in which the mapping
from z to payoffs is temporarily favorable. Our results will make this pre-
cise: the gap between realized performance and U* is controlled by explicit
drift terms (e.g., BV, and conditioning penalties from V), so U* is best
interpreted as a stable baseline rather than an upper envelope on dynamic
possibilities.

(b) A restricted-policy dynamic benchmark U};. In many applica-
tions, the principal cannot (or should not) implement arbitrary history-
dependent schemes. Product teams limit “policy churn” to preserve user
experience; regulators may require stability or explainability; and opera-
tional constraints often induce a small set of admissible parameter updates.
In such cases, the relevant comparator is not the full-information, fully adap-
tive principal, but rather the best policy inside a structured class II.

We formalize this by fixing a nonempty family II of principal policies,

12



where each policy specifies a feasible scheme each roundE Given such a
class, we define the corresponding dynamic benchmark as

T
. 1
Uf; := sup T Z Z Tt max ut(xt,s’ a), (5)

{m}ell =1 ses acargmax,irc 4 vt(xt,s,a’)

subject to per-round feasibility > 7 21, € Cy for each t. The interpre-
tation of is a clatrvoyant or planning benchmark: within class II, what
is the best average payoff the principal could obtain if, in each round, the
agent played a myopic best response to the decision actually implemented
in that round? This benchmark is common in mechanism and policy design
because it isolates the principal’s design capacity from the agent’s learning
dynamics.

Two examples illustrate the kinds of restrictions that lead to useful Up;
benchmarks.

Stationary Markov policies. In dynamic persuasion problems with an exoge-
nous state wy generating (u¢, vy, Cy), a natural restriction is that the princi-
pal may condition only on the current state and must use a stationary rule.
Writing 7(w) for a state-contingent scheme, the class

Iy := { m = 7(wt) for some fixed map 7(-) }

yields a benchmark Ul’l‘ISM that corresponds to an implementable operating
policy: “given the current market/regulatory state, deploy the correspond-
ing scheme.” In an ergodic environment, Uf"[SM is closely related to the
stationary-prior value U*(u«), while still allowing the principal to react
to state realizations rather than to time averages.

Bounded-variation (low-churn) policies. Another salient restriction is that
the principal may update its scheme, but only gradually. One way to capture
this is to endow the space of schemes with a metric (e.g., total variation on
m¢,. plus a norm on the implemented decisions) and to restrict cumulative
movement:

T-1
gy (V) := { {mL, Z dist(myq1,m) <V } .

t=1

This benchmark reflects organizational practice: policies can adapt, but fre-
quent or abrupt changes are disallowed. When V is small relative to T,
UFIBV ) is a dynamic benchmark that still rules out aggressive intertempo-
ral manipulation.

!Formally, an element of II can be taken to be a measurable map from the principal’s
information at time ¢ (history and possibly w;) to a scheme m¢ = {(7s,s, @1,s) }ses satisfying
> Teste,s € Cr. We keep the definition abstract because different applications restrict
different objects: the support of 7, the allowable x; s, or the dynamics of how 7 may
change.

13



When is each benchmark appropriate? The choice between U* and
Uf; depends on what question we ask.

If we are interested in limits on exploitation of a learning agent—for ex-
ample, whether a platform can systematically extract more value by correlat-
ing recommendations with actions in a way the agent does not anticipate—
then U* is the right reference point. It is deliberately conservative with re-
spect to temporal structure, and it is the benchmark that emerges from the
occupation-measure perspective implied by contextual (swap) regret. Put
differently, U* is the quantity we can hope to upper bound the principal
by uniformly over all adaptive principal strategies once the agent satisfies a
strong enough equilibrium-selection property (swap regret) and the environ-
ment does not drift too violently.

If instead we are evaluating performance of a constrained principal design
or learning pipeline, then Uf; is often the more meaningful comparator. Here
we want to know whether a particular implementable policy class can track
a moving environment and how much value is lost due to restrictions such
as stationarity, Markovian dependence, or bounded policy churn. This is es-
pecially relevant for policy optimization: even if an unconstrained principal
could in principle exploit nonstationarity, such exploitation may be infea-
sible, undesirable, or illegal; a restricted benchmark makes explicit what is
being optimized.

Finally, it is important to acknowledge a limitation common to both
benchmarks. Neither U* nor Uj; is an “equilibrium value” of the full re-
peated game with forward-looking strategic behavior by both sides. We use
them because our maintained behavioral assumption on the agent is learning-
theoretic rather than equilibrium-theoretic: the agent is disciplined by regret
bounds on realized play, not by common knowledge of rationality. The role
of the next section is to show that, under drift, these benchmarks can still be
connected to realized outcomes through a reduction that (i) converts regret
inequalities into approximate optimality in an averaged one-shot problem
and (ii) isolates exactly where time variation produces additive error terms.

4 Core reduction under drift: from repeated play
to an averaged one-shot instance

Our main theorems rest on a single organizing idea: even though the interac-
tion is genuinely dynamic and the principal may be adaptive, the agent-side
guarantees in f only compare realized play to time-invariant devia-
tions. This restriction is not a weakness; it is precisely what lets us “com-
press” the repeated game into an averaged one-shot object. The technical
challenge under drift is that the compression must (i) keep track of feasibility
when C; changes over time and (ii) quantify, in a modular way, how much
we lose when we replace u;, v; by their averages u,v. We now spell out the
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reduction and isolate the two places where drift enters.

Step 1: an occupation-measure view of the repeated interaction.
Fix an arbitrary (possibly adaptive and informed) principal strategy se-
quence {m¢}}_; and an arbitrary agent response sequence {p;}- ;. Taking
expectations over the internal randomization of both players, the expected
average principal payoff can be written without reference to histories as

T T
Suea)| =3 Y menla| ). (6
t=1

1
T E
t=1 seS acA
The right-hand side makes it natural to define the round-t occupation weights

mt(s,a) = 7-‘-t,slolf(a | S) € [07 1]7 th(saa) = 15
S,a
and their time average m(s,a) = %Zle my(s,a). Intuitively, m(s,a) is

the empirical (expected) frequency with which the interaction visits signal—
action pair (s,a). The virtue of this view is that all regret inequalities are
linear in these same weights, so we can translate learning guarantees directly
into linear constraints on an averaged distribution.

Feasibility also becomes transparent. Let ¢; := ses Tt,sT,s € Cy denote
the principal’s round-t average decision. Then

1 & _ 1 &
C:= T th eC and c= T Z Zﬂtsxt#‘ (7)
t=1

t=1 seS

Thus, no matter how violently C; moves within X, averaging across rounds
produces an exactly feasible point for the Minkowski average constraint set
C. The conditioning issues associated with dist(C,0X) do not arise here;
they arise later, when we ask whether a fized averaged feasible point can be
implemented round-by-round under the varying sets {C}}.

Step 2: the joint-signal lift (Lin—Chen) and why it still works with
drift. In a static persuasion/Stackelberg problem, we typically require that
the agent best-responds signal-by-signal. In a repeated setting with contex-
tual swap regret, however, the agent is disciplined against deviations that
can depend on both the observed signal and the realized action, i.e., maps
d: SxA— Aasin . Lin—Chen’s key trick is to build an auxiliary
one-shot instance whose “signals” are precisely these joint realizations.

Formally, define an augmented signal set S := S x A, with elements
5 = (s,a). We now construct a time-averaged joint-signal scheme T =
{(7s,75)} ;.5 as follows:

T

~ 1

Tsa :=m(s,a) = 7 Zmﬁpt(a | s),
t=1
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and, whenever 75, > 0,

T
- 1
Tsq = T7 Zwmpt(a | s)ars € X, (8)

with an arbitrary zs, € X if 75, = 0. The inclusion Z5, € X uses only
convexity of X.
This construction preserves feasibility exactly at the averaged level:

T
SN Fralon = 3D mris =€ C. (9)

s€ES acA t=1 seS

It also preserves expected payoffs whenever we evaluate them under time-
averaged primitives. Because (-, a) and o(-,a) are linear in z, we have the
exact identities

T
- 1 _
Z Ts,a U(l's,a’ CL) = T Z Z 71-t,spt(a ’ ‘9) u(xt,sv a)7 (1())

t=1 s,a

and the analogous equality with © in place of @. In words: once we replace
ug, vy by their empirical averages, the joint-signal lift converts the dynamic,
time-varying scheme into a one-shot randomized signal-decision plan over S
with no loss.

Step 3: translating swap regret into (approximate) obedience con-
straints for . The contextual swap-regret guarantee (3|) can be expanded,
taking expectation and conditioning on (¢, s, a), as

Vd: SxA— A, ZZm spe(a | s) (vt(a:ts, (s,a))—vt(xt,s,a)> < CSReg(T).

t=1 s,a
(11)
At this point the only obstacle to a clean one-shot statement is that the
payoff inside the sum is v, not v. The next lemma shows that the difference
is controlled by the drift measure V), and, importantly, does not depend on
how the principal correlates (z,) with time.

Lemma 4.1 (Drift-to-average for time-varying payoffs). Let {f;}_; be bounded
real-valued functions on a common domain Z, and let f := %Zthl ft. For
any (possibly adaptive) sequence z1,...,zp € Z,

T
Z’ft 2t) )}S

T-1

Z sup {ft+1 z) = ft(Z)|-

1 zEZ

’ﬂ\l\?



Applying Lemmawith Z=XxAand fi(-,-) = v(-,-) (and similarly
for the deviation payoff vy (-,d(+))) yields, after dividing by T', the averaged
incentive constraints

CSReg(T)

Vd: SxA - A, Z%s,a(a(fs,a,d(s,a))—a(@a,a)) < o(T)w(vv).

(12)
We read as an approzimate obedience condition in the auxiliary one-
shot problem on signals S: if the principal were to publicly reveal (s,a)
and implement decision z, ,, then the agent would have negligible incentive
(under o) to replace action a by any alternative rule d(s, a).

This is exactly where the assumption of no weakly dominated actions
enters via the inducibility gap G > 0. In the static Lin—Chen argument,
G is used to upgrade an approximate obedience inequality into a statement
that, on most of the probability mass, the realized action must be close to a
true best response (and hence the principal cannot extract unbounded gains
by inducing “nearly dominated” behavior). Under drift, the same logic goes
through with an additive slack given by the right-hand side of .

Step 4: translating principal payoffs back and forth between u; and
. Once we have reduced the agent-side behavior to approximate obedience
for the averaged utility v, we would like to compare the principal’s realized
payoff @ to the payoff of the induced averaged one-shot scheme, namely
Zsﬂ Ts,aUW(Ts,q,a). The only difference is again drift. Applying Lemma
to uy yields

1 T T

T ZZWt,Spt(a | 8) ui(zes,a) — %ZZWLSM(@ | s)u(zes,a)| < OWy).

t=1 s,a t=1 s,a
(13)

Combining with the exact identity shows that, up to an additive
O(V,) term, the principal’s dynamic payoff is the payoff of the averaged
joint-signal one-shot scheme. This is the second and final place where drift
in payoffs matters: it enters only through the generic replacement of u; by
% and v by v.

Step 5: where drifting constraints enter (and why conditioning
appears). The occupation-measure and joint-signal steps treat feasibility
at the averaged level, producing @ at no cost. However, our lower-bound
(achievability) statement will require a converse maneuver: starting from a
fized scheme that is feasible for C', we must implement a feasible scheme in
every round t under the moving set C;. This is where the geometry of X
and the interiority parameter dist(C,dX) become essential.

At a high level, we use a “repair” argument: given a target averaged de-
cision € € C, we select per-round decisions ¢; € C; whose average is ¢ and
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whose deviations ||¢; — ¢|| are controlled by the path variation of {C}} mea-
sured in Hausdorff distance. When C' lies strictly inside X, such a selection
is stable; near the boundary, small set movements can force large correc-
tions, and the resulting loss is amplified by a condition-number-like factor
proportional to diam(X)/dist(C,0X). Because u(-,a) is L-Lipschitz, any
such correction translates linearly into payoff loss, explaining the form of the
constraint-drift term that appears in the main bounds.

Summary of the reduction. Putting the pieces together, the reduction
produces the following conceptual pipeline.

1. We represent the repeated interaction by an averaged occupation mea-
sure over (s,a) and an averaged feasible decision ¢ € C.

2. Via the joint-signal lift, we convert this averaged object into a bona
fide one-shot scheme over S = S x A with decisions {Z;4}.

3. Contextual swap regret yields approximate obedience constraints for
the averaged agent payoff v, with an additive slack O(CSReg(T)/T') +
O(Wy).

4. Drift-to-average inequalities control the error incurred when we replace
ut, v¢ by @, v, contributing O(V,,) and O(V,) terms.

5. Constraint drift matters only when we move from averaged feasibility
in C' back to per-round feasibility in C}, introducing the conditioning
dependence on dist(C,0X) and the variation term V¢.

This modularity is valuable beyond our specific application. In practice,
platform policies and regulatory constraints often evolve slowly, while pay-
offs may be subject to seasonalities or market shocks. The reduction cleanly
separates (i) what learning rules prevent a principal from exploiting (the
incentive constraints driven by regret) from (ii) what nonstationarity in-
evitably obscures (the drift terms) and (iii) what geometry makes fragile
(constraint repair near the boundary). The next section instantiates this
pipeline into explicit upper and lower bounds, tracking the dependence on
B, L,G,diam(X), and dist(C, 0X).

5 Main theorems (general case): anti-exploitation
and achievability with explicit constants

We now instantiate the reduction in Section [4] into two quantitative state-

ments that together pin down the value of adaptivity in the repeated inter-

action. The first is an anti-exploitation upper bound: if the agent attains
contextual swap regret, then no principal—even one who is fully informed
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about (ug, vy, Cy) and who adapts arbitrarily over time—can exceed the av-
eraged one-shot Stackelberg benchmark U* by more than terms that are
proportional to (i) the agent’s swap-regret rate and (ii) the amount of drift.
The second is an achievability lower bound: if the agent attains contextual
(external) no-regret, then the principal can guarantee nearly U* using a fized
strategy, again up to regret and drift penalties.

Throughout we work with the norm used to define Lipschitzness and
Hausdorff distance. We summarize the geometry of the feasible region by
the diameter

diam(X) := sup |z — 2/
z,x'eX

and the (dimensionless) conditioning parameter

~ diam(X)
KX, C)i= —————. 14
( ) dist(C,0X) (14)
Interiority of C' ensures k(X,C) < co. Economically, (X, C) measures how
sensitive feasibility is to perturbations: when C' approaches the boundary
of X, small changes in constraints can force large changes in implementable
decisions, amplifying welfare losses by Lipschitzness of payoffs.

5.1 From approximate obedience to a quantitative cap (the
role of G)

The reduction produces an auxiliary one-shot scheme on joint signals S =
S x A satisfying approximate obedience inequalities for the averaged agent
utility o (cf. (12))). To turn such inequalities into a bound on the principal’s
value, we need a stability property of best responses. This is exactly what
the inducibility gap G > 0 (implied by the absence of weakly dominated
actions, as in Lin—Chen) provides: it prevents the principal from extracting
large gains by inducing behavior that is only nearly optimal for the agent.

We record the implication we use as a black box; its proof is standard
in this literature and follows Lin—Chen’s argument, combined with a simple
averaging step.

Lemma 5.1 (Gap-based stability of obedience). Fix the averaged primitives
(6,9,C) and suppose the inducibility gap is G > 0. Consider any one-shot
scheme {(Ns, Yo)toex with y» € X and average feasibility Y, noys € C.
Suppose that for some € > 0 the agent satisfies e-approximate obedience:

Vd:S =AY e (0(ys, d(9) = (Yo as)) <,
gEY

where a, denotes the action taken under signal o (or, equivalently, the rec-
ommended action in a direct scheme). Then the principal payoff under @ is
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bounded by

. 2B
> not(ye,a0) ST+ e (15)
ceY

Two comments clarify what Lemma [5.1] is doing. First, the dependence
on B/G is inevitable: if the agent can be made indifferent among actions up
to e, then the principal might be able to shift probability mass to actions
that differ in principal payoff by as much as 2B, and the gap G controls how
much mass can be moved without violating obedience. Second, the lemma is
compatible with our signal-size assumptions: while our reduction naturally
produces joint signals S = S x A, the one-shot benchmark U* is computed
over the original class of schemes with signal set S (and |S| > |A|). Under
linearity in z, standard “revelation” and signal-compression arguments imply
that allowing additional dummy signals does not increase the Stackelberg
value relative to U*, so ([15)) indeed compares to the intended benchmark.

5.2 Upper bound: anti-exploitation under contextual swap
regret

We can now state the anti-exploitation theorem. The proof is modular: (i)
apply the reduction to obtain an e-obedient one-shot scheme for v, where
e is controlled by CSReg(T)/T and the drift V, (Lemma [4.1)); (ii) invoke
Lemma to compare the induced principal payoff under @ to U*; (iii)
translate @ back to realized u; using the drift control for V,; and (iv) in-
corporate constraint drift through a feasibility-repair bound (stated below)
when we insist on comparing to a benchmark defined with the averaged
feasible set C' while the principal must satisfy the moving constraints C.

Theorem 5.2 (Anti-exploitation cap under drift). Suppose |us(z,a)|, |vi(x, a)| <
B for all t,x,a, and the agent satisfies contextual swap regret with bound
CSReg(T'). Assume no weakly dominated actions and inducibility gap G > 0.
Then for any (possibly adaptive and informed) principal strategy sequence
{m | satisfying Y Testes € Cy in each round,

1 T
*E Zut(:ct,at)
t=1

<U+— (CSR;('Z’()+2VU>+2BVU+4LK(X,C_’)VC.

(16)

In particular, if payoffs are stationary (V,, =V, = 0) and constraints do not

drift Vo =0), then

4B CSReg(T)
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Theorem formalizes the sense in which swap regret prevents dy-
namic exploitation. If the agent’s learning dynamics eliminate profitable
signal—action contingent deviations, then the principal’s additional degrees of
freedom—observing the environment each round, randomizing over signals,
correlating decisions with time—cannot create value beyond what could have
been attained by committing to the best scheme in the averaged environment,
except to the extent that (a) the agent’s swap regret is non-negligible and
(b) the environment itself is moving. The BV, and BV, terms are unavoid-
able: even a benevolent principal cannot predict the realized payoff of a fixed
averaged scheme when primitives drift, and a strategic principal can at most
take advantage of such drift linearly in its magnitude. The constraint term
highlights a different limitation: even if the principal’s objective and the
agent’s incentives were perfectly stable, time-varying feasibility may prevent
the principal from implementing, round-by-round, what would be optimal in
the averaged feasible set; the blow-up factor (X, C) is precisely the fragility
near the boundary.

5.3 A repair bound for drifting constraints (why dist(C,9X)
matters)

The remaining ingredient needed for a clean lower bound is a constructive
statement: starting from a fized scheme whose average decision lies in C, we
must implement a per-round feasible scheme under C} while staying close in

X. This is where dist(C,0X) and diam(X) enter.

Lemma 5.3 (Constraint repair with controlled displacement). Fiz ¢ € C
and suppose dist(C,0X) > 0. Then there evists a sequence {c;}l_, with
¢t € Cy for all t and % Z?:l c; = € such that

T
1 _ _
TZHQ—CH <2k(X,0)Ve. (17)
t=1
Consequently, for any fived weights {ms}ses and decisions {xs}scs C X with
> s TsTs = C, the translated decisions
Tt = Ts+ (¢t — C)
remain in X and satisfy > mwsxis = ¢ € Cy, while inducing an average

Lipschitz payoff loss at most

T

1 _

T E E s|u (21,5, a) — wi(ws, a)| < 2L K(X,C) Vo (Va € A). (18)
t=1 sesS

Lemma [5.3]is the precise form of the intuition in Step 5 of the reduction:
when C' is well inside X, we can “absorb” moderate movements of C; by
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small translations that preserve feasibility; near the boundary, the same
movement forces larger corrections, and the resulting loss is amplified linearly
by k(X,C).

5.4 Lower bound: achievability via a fixed strategy under
contextual no-regret

We turn to the robust achievability guarantee. The natural candidate strat-
egy is to pick an optimizer of the averaged one-shot problem, and then hold
it fixed across time. With fixed play by the principal, the agent’s contextual
no-regret (external regret) ensures that the agent cannot consistently gain by
switching, signal-by-signal, to a better fixed action. Combining this with the
same gap-based stability and the drift-to-average bounds yields a guarantee
relative to U*.

Theorem 5.4 (Achievability with a fixed strategy). Suppose |ui(x, a)l, |vi(x,a)| <
B and w(+,a) is L-Lipschitz for each a. Assume no weakly dominated actions
with inducibility gap G > 0. If the agent satisfies contextual no-regret with
bound CReg(T), then there exists a fixed principal strategy m = {(7s, T5)}ses
(chosen as a function of (u,v,C)) and a per-round feasible implementation
{(msye,5) oy with Y, msars € Cy for all t such that

T

_ 4B T _
Zut(a@t,at) >U* — 6” UReTg() — 2BV, —4LkK(X,C)Vc.
t=1

(19)

1
—E
T

In particular, if (ug, vy, Cy) are stationary, the principal can guarantee U* —
O(g\/CReg(T)/T) with a fixed strategy.

Theorem has a clear practical interpretation. If the agent’s learn-
ing rule is only disciplined against external deviations, then the principal
does not need adaptivity to achieve the long-run benchmark: a simple com-
mitment to a fixed policy computed from the time-averaged environment is
enough. The bound also makes transparent when this prescription is fragile.
First, if incentives drift (1, > 0), then an averaged policy is necessarily a
misspecified predictor of current payoffs; this is a statistical limitation rather
than a strategic one. Second, if constraints drift (Vo > 0), then feasibility
requires round-by-round adjustments; the associated welfare loss is governed
by the geometry of X through x(X,C) and by the Lipschitz constant L.
Third, the inducibility gap G again governs how quickly approximate in-
centive alignment translates into realized behavior that is close to a best
response favorable to the principal.

Putting the two theorems together. Taken jointly, Theorems[5.2]and[5.4]
identify U* as the correct limiting benchmark for repeated principal-agent
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interaction under standard learning dynamics, with a sharp separation of
roles:

e swap regret governs what an informed, adaptive principal cannot do
(anti-exploitation);

e external regret governs what a non-adaptive principal can do (achiev-
ability);

e drift in payoffs and constraints governs what neither side can eliminate,
and the conditioning parameter (X, C') tells us when constraint drift is
economically innocuous versus when it is amplified by tight feasibility.

The next section specializes these general statements to dynamic Bayesian
persuasion with drifting priors, where the drift terms admit closed-form ex-
pressions in total variation and where the benchmark U* can be computed
by a linear program whose size is explicit in |A], |S|, and the state dimension.

6 Specialization A: dynamic Bayesian persuasion
with drifting priors

We now specialize the abstract principal-agent model to a canonical dy-
namic Bayesian persuasion environment in which the only source of non-
stationarity is a slowly drifting public prior. This specialization is useful for
two reasons. First, it turns the abstract drift quantities into an explicit, in-
terpretable expression—a total-variation path length of the prior. Second, it
clarifies what our theorems imply for practice: when the prior changes grad-
ually, a principal (sender/platform) can compute a single persuasion policy
from the time-averaged prior and use it throughout, incurring a loss that is
linear in the amount of prior movement.

Model. Let the state space be finite, Q2 = {1,...,n}. In round ¢, a public
prior p; € A(Q) is realized. The principal observes p; and can commit
(within the round) to an information structure that induces a distribution
over posteriors. The agent observes the realized signal and chooses an action
a € A to maximize expected utility given the induced posterior.

We map this into our notation by taking

X =A(Q) CcR", x € X is a posterior belief.

State-dependent utilities are time-invariant functions u(w,a) and v(w,a),
with |u(w,a)l, [v(w,a)| < B for all (w,a). The induced (belief-based) payoffs
are linear in the posterior:

w(x,a) == Z z(w) u(w, a), v(x,a) = Z z(w) v(w,a).

weN weN
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Thus all time dependence enters through feasibility, not through payoffs: we
have u; = w and v = v as functions of (z, a).

The persuasion feasibility constraint is Bayes plausibility: the average
posterior must equal the prior. In our language,

Cy={m} C X, Zﬂ-t,sl't,s cCy < Zﬂtsxt,s = .
ses ses

This is exactly the standard reduced form in Bayesian persuasion: a scheme
is a distribution over posteriors {(m s, 1 s)}ses that averages to p.

Averaging and the benchmark. Because each C; is a singleton, the
Minkowski average constraint set collapses to a singleton as well:

1 & 1 &
B S
t=1 t=1
Consequently, the benchmark U* becomes the ordinary one-shot persuasion
value under the averaged prior fi and the fixed utilities (u,v). In particular, in
this specialization there is no ambiguity about what we are comparing to: U*
is the sender-optimal commitment payoff for the time-averaged persuasion
instance.

Closed-form drift term from the prior path length. We next make
the drift penalties in Theorems[5.2) explicit. Since u; = v and vy = v, we
have

Vu =0, Vy = 0.
All non-stationarity is in the constraint sets {C;}, and because C; is a sin-

gleton, Hausdorff distance is simply the ambient norm distance:

du(Cry1, Ct) = ||per1 — pue-

If we adopt the ¢; norm on X = A(2) (natural for beliefs and total variation),
then

1 T-1
Ve = 7 2 s =l (20)

This is the promised closed-form term: the average total-variation path length
of the prior process.

The geometric conditioning term x(X,C) is also interpretable on the
simplex. Under /1, the diameter of the simplex is diam(X) = 2, and the
distance from i to the boundary is the smallest coordinate:

dist(C, 0X) = dist(j1, 0A(Q)) = mig a(w).
we
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Hence
2

miny, fi(w)’

K(X,C) = (21)

This clarifies when constraint drift is benign versus amplified: if the aver-
aged prior assigns very small probability to some state, then p lies near the
boundary and feasibility becomes ill-conditioned. Economically, rare states
create fragility because Bayes plausibility forces the distribution of posteriors
to “balance” these small masses; small changes in u; can then require large
shifts in posteriors.

Finally, the Lipschitz constant L for u(-, a) as a function of x is immediate
under £7:

lu(e, a) —u(a’,a)| = | Y _(#(w) — ' ())u(w, a)| < Bz — ||,

w

so we may take L = B.

Implications of the general bounds. Plugging f and L = B
into the main theorems yields particularly transparent corollaries.

First, under contextual swap regret, an informed and fully adaptive
sender cannot beat the averaged-prior persuasion value by more than swap-
regret plus a prior-drift penalty:

T
—. 4B CSReg(T)
;u(fvt,at) SU+—= +mlnwu ZHMHI e |1

1
=K
T T

(22
The first additive term is the familiar “approximate obedience” slack scaled
by B/G. The second is the cost of implementing, round by round, a scheme
that is only guaranteed Bayes-plausible with respect to the average prior:
the larger the movement in priors, the more translation is needed to restore
feasibility, and the more welfare can be lost (or gained) through Lipschitz-
ness.

Second, under contextual external regret, the sender can achieve (up to
the same prior-drift penalty) the averaged-prior value with a fized scheme

computed from p:
—« 4B [CReg(T)
>U o\ 7 ming, (o Z”Mtﬂ fie][1

(23)
The operational message is simple: when the receiver is disciplined only
against signal-by-signal fixed deviations (external regret), the sender does
not need to track the drifting prior in order to secure near-optimal long-
run performance. Tracking may still help, but any improvement over U* is
limited by the total variation budget of the prior path and the conditioning
of the averaged prior.
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Interpretation and limitations. Equations f connect three eco-
nomically meaningful objects: (i) how quickly the receiver learns to respond
to recommendations (regret rates), (ii) how much the belief environment
changes (total variation path length), and (iii) how close the average prior
is to having full support.

Two caveats are worth emphasizing. First, the factor 1/ min,, i(w) is
not an artifact of the analysis; it reflects a real instability near the bound-
ary of the belief simplex. If ji assigns vanishing mass to some state, then
Bayes plausibility severely restricts which posteriors can be mixed, and small
movements in u; can force large changes in feasible posterior distributions.
Second, our specialization has held (u,v) fixed. If payoffs also drift (for ex-
ample, the receiver’s objective changes due to policy, or the sender’s payoff
from actions changes due to market conditions), then V,, and V, re-enter
exactly as in the general theorems; the prior-path term is then only one
component of drift.

Computational notes: LP formulation and signal size. In this per-
suasion setting, the averaged benchmark U* is computationally tractable.
Because C' = {fi}, computing U* is equivalent to solving the one-shot per-
suasion problem under prior fi.

A standard direct-recommendation (or “action advice”) formulation is
convenient and aligns with our standing assumption |S| > |A]. We may
identify signals with recommended actions, i.e., take S = A without loss for
the value. Introduce variables ¢(w, a) > 0 representing the joint distribution
of state and recommended action:

¢(w,a) = p(w) o(a | w),

where o is the signaling rule. The Bayes plausibility constraint becomes
linear:

S bw.a) =) (W ER).

Obedience (receiver incentive) constraints are also linear: for each recom-
mended action a and deviation a’ € A,

Z d(w,a)v(w,a) > Z d(w,a)v(w,a).

wef) weN

The objective is linear in ¢:

rql;lgé( Z Z d(w,a) u(w,a).

T weQacA

This is a linear program with n|A| variables, n Bayes constraints, and |A|(]A|—
1) obedience constraints (plus nonnegativity). Its size depends polynomially

26



on || and |A|, and it can be solved once to obtain the fixed strategy used
in (23)). If instead the sender insisted on re-optimizing every round using
e, it would solve the same LP with i replaced by p; each time; our bounds
quantify when such repeated re-optimization can only marginally improve
long-run performance.

Finally, note how the signal-size issue fits into this computation. Al-
though a persuasion scheme can, in principle, use many signals (and our
general model allows |S| > |A|), the direct formulation above shows that for
value comparisons it suffices to use at most | A| signals: one per recommended
action. When |S| > |A|, the extra signals can be treated as redundant labels
that do not change the feasible set of implementable joint distributions over
(w,a). Thus, in this specialization, both the benchmark U* and the fixed
strategy achieving admit an explicit, efficiently computable representa-
tion.

7 Specialization B: Markov environments and mixing-
based drift bounds

The prior-drift persuasion specialization above illustrates a particularly trans-
parent (and deterministic) source of non-stationarity: Bayes-plausibility con-
straints that move along a bounded-variation path. In many economic and
computational settings, however, the environment is neither adversarial nor
smoothly drifting; instead it evolves according to a stochastic law with tem-
poral dependence. A canonical example is an ergodic Markov process cap-
turing demand regimes, political states, or macro conditions. In this section
we show how standard mixing assumptions translate directly into an explicit
“drift penalty” of order O(mmix/T'), and we discuss why the agent can still
be modeled as a regret-minimizer without explicitly learning the transition
kernel.

Model: a Markov state process generating primitives. Let w; be
a time-homogeneous Markov chain on a finite state space €2 with transition
matrix P and unique stationary distribution pe.. In round t, the realized
state w; generates the principal’s and agent’s stage primitives:

ur(z,a) = u(wy, x,a), ve(x,a) = v(wy, z,a), Cy = C(wy),

where u(w, -, a) and v(w, -, a) are linear in € X and uniformly bounded by B
in absolute value, and C(w) C X is convex for each w. We allow the principal
to observe w; (or equivalently to know (ug, v¢, Ct) at time t), while the agent
need not. The within-round timing is as in the global model: the agent
chooses a response map p;, the principal chooses a feasible signaling/decision
scheme my, then (s, x4, a;) are realized and feedback is observed by the agent.
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Two clarifications are useful. First, the Markov assumption is not an
informational restriction on the principal: the principal may still use an
arbitrary history-dependent strategy. Second, the agent’s learning rule is still
summarized solely by regret bounds (external or swap), which are defined
pathwise and therefore remain valid under any stochastic dependence.

Mixing time and empirical distributions. To connect Markov depen-
dence to our drift-to-average logic, it is convenient to focus on the empirical
occupation measure of states

T
. 1
fr = ; b € A(Q).

When the chain is ergodic and mixes rapidly, fi7 concentrates around pioo.
We quantify “rapidly” through a standard total-variation mixing time. Define

Tmix := Min {7’ >1: sup HPT(W") _,UooHl < %}7
we

where || - ||1 is total variation distance on A(2) (up to the usual factor 1/2).
Many equivalent definitions are available; any choice yields the same qualita-
tive conclusion: dependence across rounds reduces the effective sample size
by a factor proportional to Tix.

A standard consequence (see, e.g., concentration bounds for Markov
chains) is that for bounded test functions f: Q — [—1,1],

ST —"

1 T
E| 7 3 7)) ~ B [F()] =
t=1

and, more generally, that E||fir — pteoll1 < O(Tmix/T") (up to constants de-
pending on the particular mixing-time convention). The economic interpre-
tation is that the chain reaches stationarity quickly enough that the early
transient phase has vanishing weight in the T-round average.

From mixing to “drift penalties’: replacing variation by stationar-
ity gaps. Our main theorems are stated for arbitrary time-varying primi-
tive sequences (ug, v¢, Ct) and measure non-stationarity by path-length quan-
tities such as V,, and V. A Markov chain does not generally have small path
length: successive states may jump, so sup, , [us+1(2,a) — ug(w,a)| can be
large even when the chain mixes fast. The right object in Markov environ-
ments is therefore not variation of consecutive primitives, but rather distance
between the empirical environment and its stationary limat.
To formalize this, consider the stationary-prior (or stationary-environment)

one-shot benchmark defined by the stationary distribution:

U*(poo) := Stackelberg value of the one-shot problem with primitives averaged under fioo,
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i.e., with payoff functions u(z, a) := Eynp. [u(w, ,a)], 0(x, a) := Eyop [v(w, 2, a)],
and an appropriate stationary analogue of the feasibility set (for example,

the Minkowski average of {C(w)} under poo). In parallel, conditional on a
realized state path, the tiéme-averaged primitives correspond to the empirical
distribution fip:

2_L'T(xv a’) = ]EwNﬂT [u(w’ xz, a)]v 'L_}T(x’ a) = EwNﬁT [U(w’ z, a)]a

and an empirical averaged feasibility set C7 obtained by Minkowski averag-
ing C(w¢) across t.

Because payoffs are bounded and linear in x, differences between station-
ary and empirical averages are Lipschitz in ||fir — ptoo|[1. Concretely, for any
fixed (z,a),

|ar(z,a) —@(z,a)] = | (Ar(w) = poo(@)) ulw, 2, a)| < Bz = o1,
we

and similarly for v. Thus, whatever bound our general analysis delivers in
terms of mismatch between realized play and the time average of primitives,
mixing allows us to replace that mismatch (in expectation) by O(BTyix/T)
when comparing to a stationary benchmark.

If constraints also depend on w, an analogous statement holds provided
the map w — C'(w) is well-behaved in the sense needed to control the distance
between Cr and its stationary analogue (e.g., via a Lipschitz bound in Haus-
dorff distance). In that case, the usual conditioning factor diam(X)/dist(-, 0.X)
reappears, but the stochastic component entering the bound is still E||fir —
lool|1 (or a comparable mixing-controlled discrepancy).

A representative corollary (upper bound under swap regret). To
highlight the message, suppose first that feasibility is state-invariant, C'(w) =
C, so that only payoffs vary with w. Then the stationary benchmark is partic-
ularly clean. Combining (a) the general anti-exploitation logic under contex-
tual no-swap-regret with (b) the mixing control , we obtain the following
implication: for any (possibly fully adaptive and state-informed) principal
strategy and any agent satisfying contextual no-swap-regret CSReg(T),

r < ") + O ST | o B7s) o

Z ’LL((A)t, Tt, at)

t=1

1
=
T T

Relative to the fully adversarial formulation, the role of “drift” is now played
by finite-horizon non-stationarity: the average state distribution differs from
stationarity by at most O(7mix/T"), and boundedness converts this into an
O(BTmix/T) payoff gap. FEconomically, even a sender who perfectly ob-
serves the current regime cannot, on average, obtain much more than the
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stationary-optimal value once the horizon greatly exceeds the mixing time,
unless the receiver’s behavior departs from approximate obedience (captured
here by swap regret).

A representative corollary (lower bound under external regret). A
parallel statement holds for achievability with a fixed policy under contextual
external regret. Again under state-invariant feasibility for simplicity, there
exists a principal strategy computed from the stationary one-shot problem
(equivalently, from primitives averaged under p,) such that, for any agent
satisfying contextual no-regret CReg(T),

T .
tzlu(wtaiﬂt,@t)] > Ut(poo) — O( CRE;Fg(T)) - O(B;m”‘),
(26)

The interpretation mirrors the persuasion specialization: when the receiver
is only disciplined against signal-by-signal fixed deviations, the sender does
not need to model or track the Markov dynamics to secure near-stationary-
optimal long-run performance. The only Markov-specific loss is the vanishing
transient term O(BTmix/T).

1

—E
T

When can the agent learn without modeling the dynamics? A
subtle point in Markov environments is whether a bounded-regret agent is
behaviorally plausible when payoffs are temporally correlated. Our view is
that it often is, and the reason is conceptual: the agent’s learning task
in our model is not “estimate P and solve a dynamic program,” but rather
“choose actions that perform well against the realized stream of recommenda-
tion contexts.” Standard online-learning algorithms guarantee regret bounds
without any stochastic assumptions, hence they remain valid (and are in fact
conservative) under Markov dependence.

This matters for applications in which the agent is a human, a firm, or
a downstream algorithm that responds to a platform’s signals. In such set-
tings, it is often unrealistic to assume the agent knows the state space (2,
the transition matrix P, or even that the environment is Markov. What is
more realistic is that the agent can evaluate realized payoffs (or gradients,
or bandit feedback) and adjust its behavior so that, in hindsight, it does not
systematically prefer a simple deviation mapping from signals to actions.
External regret corresponds to “I should not have consistently taken a differ-
ent fixed action upon seeing a given signal,” while swap regret corresponds
to “I should not have consistently applied a remapping from recommended
actions to alternative actions.” Neither notion requires an internal model of
P.

From the principal’s perspective, this is exactly the discipline that lim-
its exploitation. If the principal attempts to encode predictive information
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about future states into signals, a sophisticated agent could in principle use
such signals to form intertemporal plans. But our regret-based formulation
is intentionally myopic: the agent reacts to the signal in the current round.
Under this behavioral restriction, the only way Markov dependence matters
for long-run outcomes is through how quickly the distribution of states con-
verges to stationarity, which is precisely what mix captures. Put differently,
the principal may know the dynamics, but if the agent is primarily “learning
how to respond” rather than “learning the world model,” then the relevant
comparison is to the stationary one-shot benchmark, with an explicit and
vanishing finite-horizon correction.

Limitations and scope. Two limitations are worth keeping in view. First,
when T« is large relative to T, the stationary benchmark is not the right
yardstick: the chain may spend most of the horizon in a transient region,
and the O(BTyix/T) term need not be small. In that case our more general,
pathwise drift measures (or a benchmark based on the empirical distribution
fi7) may be more informative.

Second, if the agent is forward-looking and can condition its actions
on inferred states (for example, by using the principal’s signals as a state
estimator), then static regret notions may understate the agent’s strategic
capabilities. Addressing that case would require a genuinely dynamic model
of the agent’s objective and information (e.g., policy regret or reinforcement-
learning guarantees). Our contribution here is complementary: it isolates
what can be said when the agent’s adaptation is powerful enough to ensure
no-regret behavior, but not premised on correct modeling of the Markov
dynamics.

In summary, Markov mixing provides a clean route from stochastic de-
pendence to explicit finite-horizon corrections. It therefore yields a partic-
ularly interpretable instance of our general message: as long as the agent
learns to be approximately obedient in an online sense, the principal’s long-
run advantage from adaptivity is sharply limited, and in rapidly mixing en-
vironments the limiting object is the stationary one-shot Stackelberg value
up to a vanishing O(7mix/7") term.

8 Tightness and examples: why the drift and regret
terms are not artifacts

Our bounds isolate two distinct “sources of slack™ (i) environmental non-
stationarity (captured by variation-type terms such as V,, and V¢, or by a
mixing-controlled stationarity gap), and (ii) behavioral slack on the agent
side (captured by CSReg(T) or CReg(T)). Because both sources enter ad-
ditively, it is natural to ask whether one can sharpen the dependence—for
example, replacing the drift penalty by something smaller, or upgrading the
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\/~type dependence that appears in the achievability guarantee. In this sec-
tion we give stylized examples showing that, up to constants (and up to the
conditioning factor for drifting constraints), these terms are unavoidable.
The examples are deliberately simple: their role is not realism, but to make
clear which mechanism forces each term to appear.

8.1 A drift penalty is necessary: adaptivity can buy exactly
O(Vy)

We begin with a construction where the principal can outperform the aver-
aged one-shot benchmark by an amount proportional to the path-length of
payoffs, even when the agent is perfectly disciplined (zero regret) and the
principal faces no feasibility complications. For simplicity take B = 1 and
let X =10,1], A={1,2}, and S = {1, 2}, with the interpretation that each
signal s € S recommends an action. Let the agent’s payoff be time-invariant
and linear in z:
v(z,1) =z, v(z,2) =1—ux.

Thus the agent strictly prefers action 1 when z > 1/2 and strictly prefers
action 2 when z < 1/2 (ties at x = 1/2), and each action is uniquely optimal
for some x, so there is a positive inducibility gap away from the knife-edge
point.
Now let the principal’s payoff alternate across rounds but not depend on
x:
ug(x, 1) = 1{t odd}, ug(x,2) = 1{t even}.

In odd rounds the principal values action 1 and in even rounds values action
2. Consider two benchmarks:

The averaged one-shot benchmark. The time-averaged principal pay-
off satisfies u(x,1) = u(x,2) = 1/2 (up to an O(1/T) edge effect). Hence
the Stackelberg value of the averaged one-shot problem is

U* - 5,
because no matter what scheme is used in the averaged problem, the principal
cannot obtain more than 1/2 when both actions yield identical averaged
payoff.

An adaptive, state-informed principal. In the repeated game, the

principal observes u; and can choose (m,xts) accordingly. A simple de-
terministic strategy is:

if t is odd, send s = 1 with z;1 = 1; if ¢ is even, send s = 2 with x;5 = 0.
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Given v, the agent’s best response is a; = 1 when it sees x = 1 and a; = 2
when it sees x = 0. Thus the principal earns payoff 1 every round, so the
realized average payoff is 1.

Gap and variation. The gain over the averaged benchmark is 1 — U* =
1/2. Meanwhile the variation measure is large:
T—1
1 T-1
V== sup |wgr1(z,a) —w(z,a) = —— -1 = 1.
p= T2, S ) - w(o o) = 7

Hence the improvement 1 — U* is ©(V,) (with B = 1). By scaling the
amplitude of the alternation, one can make this proportionality exact: for
A € (0,1], define w(z,1) = 1 + % and w(z,2) = 3 — % on odd ¢ and
swap on even t. Then U* = % while the adaptive principal achieves % + %,
so the gap is A/2, whereas V,, &~ A. This shows that a drift penalty of
order at least ©(),) (and hence of order (BV,,) under the original scaling
conventions) cannot be removed in general: it is precisely the amount by

which an informed principal can “track” the changing payoff landscape.

8.2 Why drifting constraints must be accompanied by con-
ditioning

The role of dist(C,dX) is more geometric: it governs how stably one can
convert time-varying feasibility into a single averaged feasibility condition.
The need for such a conditioning factor can already be seen in one dimension.
Let X = [0,1] and suppose the principal payoff is increasing in the decision
(so the principal wants to push z upward), but the feasible sets impose an
upper bound that drifts:

Cy={x€[0,1]: x < b}, b: € (0,1).

Then the Minkowski average constraint is C = {z : @ < b} with b= £ Y, by,
and

dist(C,0X) =1 —b.

When b is close to 1, the averaged constraint set lies close to the boundary
of X and small perturbations of the b; become hard to “absorb™ a change
of size § in some b; forces a change of comparable size in the feasible x;, but
relative to the tiny remaining slack 1—b this is a large fractional perturbation.
In the multi-dimensional setting (or when feasibility is imposed on averages
> s Tts¥t,s rather than on a scalar), the same phenomenon manifests as
follows: to repair a sequence of average-feasible points so that it is feasible
for a single averaged set, one applies an affine correction whose operator norm
scales like diam(X)/dist(C,0X). Thus, as dist(C',0X) | 0, any bound that
is uniform over drifting C; must deteriorate. This is not a proof of the exact
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constant in our conditioning term, but it explains why some dependence
of this form is information-theoretically unavoidable: near the boundary,
feasibility “amplifies” drift.

8.3 Linear dependence on swap regret is tight

We next show that the linear dependence on CSReg(T')/T in the anti-
exploitation (upper) bound cannot, in general, be improved. The idea is
that swap regret is exactly the resource that limits how often the agent
can systematically “mis-implement” a recommended action; if the principal’s
payoff is concentrated on those mis-implementations, the principal can gain
an amount proportional to the swap-regret budget.

Consider a stationary environment with X = {z*} a singleton (so feasi-
bility and z are irrelevant), S = {1} a single signal, and A = {1,2}. Let the
agent’s payoffs satisfy

v(l) =1, v(2) =0,

and let the principal’s payoff be the reverse:

The unique best response for the agent is action 1; hence the one-shot Stack-
elberg benchmark is U* = 0.

Now consider any realization of play in which the agent plays action 2
on m rounds. Define a swap mapping d : A — A by d(2) =1 and d(1) = 1.
On each of the m rounds where the agent played 2, this deviation would
have improved the agent’s payoff by 1. Therefore the agent’s swap regret
is at least m. If the agent satisfies CSReg(7T") < R, we must have m < R,
and thus the principal’s realized average payoff is at most m/T < R/T.
Conversely, for any m < R there exist action sequences with exactly m plays
of action 2 and swap regret m. Hence the maximal advantage the principal
can extract above U* is ezactly ©(R/T) in this example. This pins down
the linear scaling: no bound of order o(CSReg(T")/T) can hold uniformly
over all principal strategies and all swap-regret-bounded agents, because the
principal can always “monetize” the agent’s allowed remapping mistakes.

8.4 Why the /CReg(T)/T dependence is unavoidable

Finally, we give an example showing that the square-root dependence appear-
ing in the achievability guarantee under external regret cannot be improved
without additional regularity (e.g., strong concavity, stochastic assumptions,
or an explicit margin condition at the optimum). The mechanism is a famil-
iar knife-edge from Stackelberg problems: the principal’s averaged optimal
policy may rely on the agent being (almost) indifferent, but an external-
regret bound does not force consistent tie-breaking. To secure obedience,
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the principal must introduce an incentive margin, and the cost of doing so
trades off against the fraction of “mistakes” allowed by regret, producing a
/- rate.
Let X =[0,1], S = {1}, and A = {1,2}. The agent’s payoff is as in the
drift example:
v(z,1) ==, v(z,2) =1—=z,

so action 1 is optimal when = > 1/2 and action 2 is optimal when = < 1/2.
Let the principal’s payoff be

u(z,1) =1—u=, u(z,2) = 0.

The principal would like to induce action 1 while keeping x small. In the one-
shot Stackelberg problem with favorable tie-breaking, the principal chooses
x* = 1/2, the agent is indifferent, and the principal obtains
- 1
U*=u(1/2,1) = .
2
Now fix a horizon T" and suppose the agent is only constrained by external
regret: for the single signal, the deviation class reduces to choosing a fixed
action in hindsight. Let ¢ := CReg(7)/T. Consider any fized principal
policy that plays x = 1/2 4 for some v € [0,1/2] (we can focus on z > 1/2
because otherwise the agent prefers action 2 and the principal’s payoff is 0).
Then action 1 exceeds action 2 in agent payoff by 2y. Construct an agent
behavior that plays action 2 on a fraction

. 1 €
= min —
p "2y

of rounds and action 1 otherwise. The agent’s regret with respect to always
playing action 1 is exactly (27)-pT < T, so this behavior is consistent with
the external-regret constraint.

Against this agent, the principal’s expected average payoff is at most

(1= pult/2470) = (1-p) (5 -1).

When 7 > ¢ (so that p = ¢/(2y) < 1), the gap to U* = 1/2 is at least

1 15 1 >+5
2 A A

where the last inequality uses % -y > % for v < 1/2 up to constants.
Minimizing v + €/(4v) over v > 0 yields an unavoidable loss of order /¢ =

/CReg(T)/T. Intuitively, if we choose 7 small to keep u(1/2 + v,1) close
to 1/2, then the agent can afford to play the wrong action on a relatively

large fraction of rounds while maintaining low regret (because the incentive
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gap 27 is small). If instead we choose 7 large to create a robust incentive
margin, we pay linearly in v in the principal objective. The optimal balance
is at v < /g, producing a /¢ shortfall.

This example also clarifies what additional structure would be needed
to beat the square-root rate: one must rule out (or control) these knife-
edge optima by imposing either a strict separation between best and second-
best agent actions at the optimum (a margin condition at the chosen x),
or sufficient curvature/regularization that makes the principal’s loss from
introducing a margin smaller than linear.

Takeaway. Taken together, these constructions justify the qualitative shape
of our guarantees. Drift-type terms are necessary because an informed
principal can track changing primitives by exactly the amount the envi-
ronment moves. Conditioning terms are necessary because feasibility re-
pair becomes unstable near the boundary. And the regret terms exhibit
a genuine asymmetry: the principal can convert a swap-regret budget into
an additive ©(CSReg(T")/T) advantage, while external regret is too weak
to prevent knife-edge indifference from degrading robust performance at a

O(1/CReg(T)/T) rate.

9 Discussion and implications: robustness, regula-
tion, and modeling choices under drift

Our results and tightness examples jointly highlight a basic tension that is
easy to miss when one starts from a stationary persuasion benchmark. On
the one hand, discipline on the agent side (no-regret, and especially no-swap-
regret) sharply limits what an adaptive principal can extract relative to an
averaged one-shot commitment problem. On the other hand, when primitives
drift, that averaged benchmark is itself only an approximation to what is
feasible in a finite horizon; the approximation error is not an analysis artifact
but a real wedge created by time variation. In this concluding discussion we
step back from the formal bounds and ask what these observations mean for
(i) robust design and regulation, (ii) benchmark selection, and (iii) extensions
that relax the informational assumptions or incorporate additional frictions.

9.1 What robust design and regulation can and cannot “fix”
under drift

A natural policy instinct is that if principals (platforms, senders, regulators,
recruiters) can adapt their information policies to fine-grained fluctuations,
then restricting adaptivity or imposing transparency should eliminate ex-
ploitation. Our bounds suggest a more nuanced message: behavioral dis-
cipline on the agent side can indeed cap exploitation, but the cap must
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move with the environment. Even if the agent is perfectly “rational” in the
learning-theoretic sense (vanishing swap regret), a principal who observes
the current payoff structure can still outperform the stationary or averaged
benchmark by an amount proportional to drift. Put differently, regulation
that targets strategic manipulation may not eliminate intertemporal selec-
tion: when the world changes, a principal can lawfully re-optimize.

This distinction is useful because it separates two families of interven-
tions.

1. Interventions that reduce behavioral slack. If we interpret the agent
as a boundedly rational decision-maker (or an algorithm) whose guar-
antee is of the form CSReg(T) = o(T'), then any intervention that
strengthens the agent’s response map—better tooling, audits, debias-
ing, or improved feedback that supports lower regret—directly tightens
the additive term involving CSReg(T")/T. In environments where drift
is small, this can be close to a complete solution: exploitation oppor-
tunities vanish at essentially the same rate as the agent’s swap-regret
budget.

2. Interventions that reduce environmental non-stationarity. When drift
is large, the binding term is instead BV, (and the constraint-variation
term when C; moves). Here, limiting principal adaptivity does not re-
move the underlying wedge between any fixed benchmark and realized
payoffs; rather it changes who bears the cost of non-stationarity. For
example, a rule that requires a principal to commit to a single pol-
icy for long windows makes the principal absorb drift risk (reducing
the principal’s ability to track), while a rule permitting frequent re-
optimization passes drift risk to the agent (who now faces a moving
target). Neither choice makes drift disappear; it allocates it.

A practical implication is that “robust persuasion design” should be evalu-
ated together with a drift model. If drift is primarily exogenous (seasonality,
macro conditions, shifting user composition), then one should not expect
commitment-style regulation to recover a stationary benchmark. If drift is
primarily endogenous (the principal’s own interventions change u; or v; over
time, e.g., through habituation or congestion), then the relevant object is
not simply V,, but a joint dynamic system where the principal can create
drift; bounding or taxing such induced variation may be a more direct lever.

Finally, our conditioning discussion for drifting constraints emphasizes
an often-overlooked point: feasibility requirements that are close to binding
are inherently fragile. In policy terms, if constraints (budget caps, fairness
constraints, safety envelopes) leave little slack, then even modest fluctuations
in feasible sets can force large reallocations. This is not an argument against
stringent constraints, but it is an argument for acknowledging that enforce-
ment will be sensitive to measurement error and short-run shocks precisely
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when slack is smallest.

9.2 How to choose a benchmark: averaged, stationary, or
dynamic?

A central modeling decision is what the principal should be compared to. We
used U*, the Stackelberg value of the averaged one-shot problem with prim-
itives (#,v,C), because it is (i) well-defined even when the principal is fully
informed and adaptive, and (ii) tightly linked to the occupation-measure
arguments that connect repeated play to a static feasible scheme. How-
ever, benchmark choice is ultimately normative and application-dependent,
and the tightness examples show that different benchmarks answer different
questions.

Averaged one-shot benchmark U*. This benchmark treats drift as “noise”
around a stable underlying environment. It is appropriate when a regulator
or analyst believes that, absent adaptivity, the relevant target is a time-
average notion of performance (e.g., average welfare, average conversion, av-
erage compliance). Under this view, our upper bound with swap regret can
be read as an anti-exploitation guarantee: no adaptive strategy can system-
atically beat the averaged commitment frontier except through behavioral
slack or drift. The cost of this benchmark is that it may understate what is
achievable if drift is predictable and societally acceptable to track.

Stationary benchmark under Markov structure. In dynamic persua-
sion with an ergodic Markov state, the stationary-prior value U* (o) is often
the object of interest because it corresponds to a long-run equilibrium with
stable beliefs. Our specialization indicates that, for finite T', the relevant
comparison includes a mixing-controlled bias term, essentially quantifying
how much time the process spends away from stationarity. This is a useful
diagnostic: if Ty is large relative to 7', then the stationary benchmark is
simply not a good approximation, and disagreements about “manipulation”
may actually be disagreements about whether the horizon is long enough for
stationarity to be meaningful.

Dynamic oracle benchmarks. In some applications, one might instead
compare to a mon-anticipating oracle that can choose m; as a function of
current primitives but is restricted in complexity or switching. For instance,
one can define a class II of admissible principal policies (e.g., Lipschitz in
time, or with at most K switches) and benchmark against

T

1

U*(II) := sup —E[E ut(:ct,at)]
7T1:T€H T t=1
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Such benchmarks better match environments where adaptivity is not it-
self suspicious (e.g., pricing under volatile costs), and the goal is instead
to separate learning limitations from strategic effects. The drawback is in-
terpretability: once the benchmark is dynamic, it is harder to say what
“exploitation” means, because outperformance is no longer the relevant met-
ric.

In our view, the right benchmark should be chosen by asking a con-
crete counterfactual: what policy could the principal have committed to ex
ante that would be viewed as legitimate, and what information would have
been available? The averaged benchmark corresponds to commitment with-
out time indexing; the stationary benchmark corresponds to commitment
under a stable prior; dynamic oracle benchmarks correspond to legitimate
re-optimization subject to explicit frictions. Our framework can be adapted
to each, but the drift terms will reappear in some form because they express
a genuine mismatch between realized and reference primitives.

9.3 Extensions and limitations

We close by outlining three extensions where we expect the same decomposition—
behavioral slack plus environmental drift—to remain informative, but where
the technical objects would change.

Principal learning (two-sided uncertainty). We assumed the principal
knows ug, v, Cy (or observes a state generating them). In many settings
the principal is also learning: a platform experiments with ranking rules, a
regulator learns compliance responses, a firm learns demand. If the principal
chooses m; based on noisy feedback, then the relevant performance notion
becomes a principal regret relative to a benchmark class, and the agent’s
regret interacts with the principal’s exploration. Conceptually, one expects
an additional term reflecting the principal’s learning error (e.g., PReg(T")/T)
on top of the CSReg(T)/T and drift penalties, but the more delicate point
is that exploration itself may increase apparent drift by inducing payoff
fluctuations. A clean separation would require modeling the state process
and feedback channel explicitly, and distinguishing exogenous variation from
endogenous experimentation.

Agent private information and dynamic persuasion. Our agent had
no private information, so signals serve only as recommendations that shape
behavior via incentives in v;. Many persuasion problems instead feature
agent types or private signals. Introducing private information changes both
the feasible set (Bayes plausibility replaces the simple average constraint)
and the meaning of regret constraints (the agent’s deviations may be type-
contingent). Nonetheless, the same high-level question persists: can an in-
formed sender exploit an adaptive receiver beyond a natural static bench-
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mark? We conjecture that swap-regret-type discipline will again be the right
behavioral notion when the receiver can condition on both messages and real-
ized actions (or reports), while drift will again govern the gap between finite-
horizon performance and any static benchmark based on averaged primitives.
The main additional complication is that, with types, drift may occur not
only in payoffs but also in the distribution of types, raising the question of
which distribution should be averaged and how quickly beliefs can track it.

Attention, message complexity, and informational frictions. We
took S large enough to encode recommendations, but in practice message
spaces are limited (few disclosure categories, coarse scores) and agents have
attention constraints (bounded memory, limited processing). These con-
straints can be modeled either as restrictions on |S| or as costs that penalize
complex p;. The immediate implication is that inducibility may fail even
in the averaged problem: the principal might be unable to separate actions
cleanly, effectively shrinking the attainable U*. At the same time, limited at-
tention can increase behavioral slack (larger regret bounds for feasible agent
algorithms), making the CSReg(7")/T term economically salient. This sug-
gests a design principle with a policy flavor: when drift is unavoidable, one
can mitigate manipulation concerns either by improving agent-side tooling
(reducing regret) or by reducing complexity demands (smaller S, simpler
mappings), but these levers trade off against efficiency because simpler poli-
cies may also reduce the frontier itself.

A final limitation. Our variation measures V,,, V,, V¢ are worst-case (supre-
mum over z and a), which is appropriate for uniform guarantees but may
be conservative in applications where drift is localized to regions of X that
are never reached. Refining the analysis to “path-dependent” variation along
realized play could tighten constants and improve empirical relevance, but
it would also complicate benchmark interpretation because the benchmark
would then depend on the induced path.

9.4 Takeaway

The main conceptual contribution of the framework is to make explicit that
repeated principal-agent interactions with learning agents are governed by
two independent scarcity constraints: the agent’s ability to implement a sta-
ble best-response mapping (captured by regret), and the analyst’s ability
to summarize a changing environment by a single static object (captured
by drift and conditioning). Regulation and robust design can meaningfully
reduce the first, and sometimes can reallocate the burden of the second,
but neither can eliminate the second without additional assumptions on the
environment process. In that sense, the model illuminates a tradeoff: disci-
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plining behavior curbs manipulation, while understanding and modeling drift
determines which benchmark is economically coherent in the first place.
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