Auditing Algorithmic Pay: Testable Signatures of
Free-Fall Dynamic Contracting against Learning
Agents

Liz Lemma Future Detective

January 16, 2026

Abstract

Algorithmic management systems increasingly adjust compensa-
tion rules over time while workers (or Al assistants acting for workers)
learn how to respond. Recent theory shows that against mean-based
no-regret learners, optimal dynamic contracting can take a simple “free-
fall” form: offer a high incentive briefly, then drop incentives to zero,
inducing the learner to cascade through actions while the principal
continues earning reward at low cost. This paper turns that mech-
anism into an audit problem. We propose a clean binary-outcome
model with linear contracts and latent actions, where an external
auditor observes posted contract rates and realized outcomes across
many agents. Using the continuous-time characterization of mean-
based learning (best response to the historical average contract), we
derive moment inequalities and shape restrictions that must hold if
observed data are generated by free-fall-like manipulation. We pro-
vide a consistent specification test and a structural estimator that
reconstructs implied breakpoints (indifference points) and quantifies
a lower bound on surplus transfer relative to a counterfactual static
benchmark. The contribution is methodological: converting dynamic-
contracting-against-learning theory into falsifiable empirical restric-
tions and practical compliance metrics for 2026-era platforms.
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1 1. Introduction: algorithmic pay, learning agents,
and why ‘dynamic manipulation’ should be au-
ditable; summary of contributions and the free-
fall mechanism.

Algorithmic compensation systems are increasingly deployed in environments
where the platform observes rich performance metrics but neither the regu-
lator nor the worker fully understands how incentives evolve over time. In
such settings, a linear pay-for-success rule can be posted and updated auto-
matically, and workers respond not by solving a static optimization problem
once and for all, but by learning which actions “pay off” through experience.
This combination of automated contracting and adaptive behavior creates
a natural concern for auditors: a platform may be able to extract surplus
through dynamic paths of incentives that look innocuous when viewed period
by period, yet systematically shape behavior over the longer run. Our ob-
jective is to make this type of “dynamic manipulation” empirically auditable
using only the information that is typically available in practice—the posted
contract sequence and realized outcomes.

The central friction is informational. The auditor does not observe effort
or the worker’s action, and usually cannot credibly measure the underlying
cost of effort. At the same time, the platform can commit to (or at least
implement) a deterministic sequence of contract terms {a;}_;, where the
worker is paid a4 € [0, 1] upon success and 0 upon failure. In many applica-
tions, these contract terms are themselves a function of an internal algorithm,
potentially responsive to earlier outcomes, retention, or growth targets. A
naive audit that treats each round as independent will miss the key channel:
when workers use a mean-based learning algorithm, their behavior can be
well-approximated as a best response not to the current contract o4, but to
a smoothed statistic such as the historical average a; = % Zzzl a. Hence a
platform can influence current effort by shaping the entire history of incen-
tives.

We study a parsimonious principal-agent environment designed to iso-
late this channel. Agents repeatedly choose among finitely many ordered
actions a € {1,...,n}, where higher actions have higher cost ¢, and strictly
higher success probability g,. Outcomes y;; € {0,1} are observed, and the
platform’s per-success revenue is normalized to one. Under a linear contract
o, the agent’s expected utility from action a is u(ay, a) = ayqq — cq, while
the principal’s expected payoff is uf(as,a) = (1 — a;)qe. The key behav-
ioral assumption is not full rationality or perfect foresight, but mean-based
no-regret learning: over time, each agent shifts probability mass toward
actions that have performed well in terms of realized average utility. A con-
venient continuous-time proxy of this learning dynamic implies that play
concentrates on a best response to @; for most ¢, up to an algorithmic slack



AT) = of1).

This learning structure makes a particular form of dynamic manipulation
both feasible and, crucially, testable. We focus on a “free-fall” contract path:
the platform offers a constant incentive g for an initial phase t < #g, then
drops the incentive to zero thereafter, i.e.,

ar = apl{t < tp}.

Even though oy = 0 for t > tg, the historical average declines only gradually,

a {ao, t < to,
ap =
Oéoto/t, t > to,

so a mean-based learner continues to behave as if incentives remain positive
for some time. Intuitively, the platform “front-loads” incentives to move the
worker into a high-success action and then “coasts” on the worker’s inertia
as the average decays. Eventually, as a; falls, the worker becomes indiffer-
ent between adjacent actions. Denoting the indifference breakpoint between
actions @ — 1 and a by
Cq — Cg—1
Ga — da—1 ’
the learning dynamics imply that action downgrades occur when &; passes
these thresholds. Under free-fall, this generates a rigid, approximately hy-
perbolic timing pattern: the time at which the population switches from a to
a — 1 must satisfy &y, = aq—1,4, and hence t, = (agtp)/aq—1,,. This inverse
proportionality is the mechanism’s statistical fingerprint.

Our first contribution is to translate this fingerprint into restrictions that
an auditor can test using only contracts and outcomes. Because actions are
latent, we use the cross-sectional success rate §; = % Efil Yit as a suf-
ficient statistic for effort in large populations. The separation condition
A, = ming>2(gs — ga—1) > 0 implies that distinct actions induce distinct
success rates, so abrupt changes in §; can be interpreted as transitions in
the dominant action. Combining this outcome segmentation with the mean-
based best-response characterization yields a finite set of moment inequali-
ties: within any time segment where outcomes are consistent with action a,
the historical average &; must lie in the interval of contracts that make a
optimal, up to slack of order O(y(T')) and sampling error Op(1/v/N). These
inequalities provide necessary conditions for compatibility with free-fall ma-
nipulation without requiring the auditor to observe costs.

Our second contribution is a specification test that distinguishes free-fall-
compatible manipulation from benign contracting paths that do not generate
the hyperbolic “boundary-hitting” sequence. The logic is simple: under free-
fall, multiple action drops must align with a single pair of parameters («ayg, to)
through the mapping a; = agto/t after ty. A static contract, or a piecewise-
constant rule without a free-fall phase, can produce changes in outcomes, but

Qq—1,0a =



generically will not reproduce the implied relationship between change-point
times and breakpoints across several transitions. We formalize this contrast
using moment-inequality inference with nuisance parameters {q,} that are
only set-identified, thereby controlling size under the null while retaining
power against structured dynamic manipulation.

Our third contribution is constructive: when the data are compatible
with free-fall, we show how an auditor can recover the implied breakpoint
sequence and compute a conservative lower bound on the platform’s incre-
mental payoff relative to the best static linear contract. The economic con-
tent is that dynamic manipulation is not merely a qualitative concern; it can
be quantified as surplus transfer. Using the observed «; and §;, we can form
an empirical estimate of the platform’s realized payoff path and compare it
to a static benchmark that optimizes (1 — a)¢(«) given the inferred map-
ping from incentives to success probabilities. Because costs are unobserved,
we emphasize lower bounds that remain valid under set identification and
learning slack.

Several limitations are worth stating at the outset. Our approach relies
on the mean-based nature of learning and the existence of a stable ordering
of success probabilities across actions; if outcomes are heavily nonstationary
for reasons unrelated to effort, or if the population is highly heterogeneous in
unmodeled ways, outcome segmentation becomes less informative. Likewise,
a sufficiently sophisticated platform could randomize contracts or introduce
additional state variables to obscure the historical-average channel. We view
these caveats not as defects of the exercise, but as clarifying where auditing
leverage comes from: the audit is powerful precisely when incentive paths
are simple enough to be implementable at scale, and worker learning is struc-
tured enough to create predictable behavioral inertia.

2 Related Literature

Our analysis builds on several strands of work that study how incentives
interact with boundedly rational or adaptive agents, and how such environ-
ments can be disciplined empirically when key primitives are unobserved.
The common theme is that, once behavior is shaped by learning dynamics
rather than static optimization, the relevant object for design and inference
is not a one-shot best response but a path-dependent mapping from past in-
centives to current actions. This perspective is increasingly central in digital
labor markets and platform settings, where contract terms are updated by
algorithms and workers experiment, imitate, and gradually adjust effort in
response to experienced payoffs.

Contracting with learning agents. A classic benchmark in contracting
is the repeated moral hazard model with linear incentives and risk-neutral



parties (?), where effort responds contemporaneously to current pay param-
eters. Our setting departs from this benchmark not by altering information
or risk-sharing, but by relaxing the behavioral assumption that agents in-
stantaneously play a best response to the current contract. Recent work
in dynamic mechanism design and principal-agent problems has begun to
incorporate learning or limited attention, emphasizing that principals may
exploit inertia, habituation, or reference dependence to reduce payments
while preserving output (??7). A related literature studies agents who learn
about the environment (or about their own productivity) over time, so that
contracts influence both current actions and beliefs (??). We view mean-
based no-regret learning as a complementary behavioral primitive: rather
than modeling a particular bias, we impose a robust adaptive property (low
regret) and exploit its implication that long-run play tracks a best response
to a smoothed payoff signal.

Within the broader learning-in-games literature, no-regret dynamics are
known to yield sharp predictions about which actions can persist (those near
the top of the average-payoff distribution) and how quickly dominated ac-
tions are discarded (??). The “mean-based” refinement we rely on, which
bounds play on actions that are far behind in cumulative utility, is partic-
ularly useful for identification because it converts a potentially complicated
stochastic adjustment process into tractable inequality restrictions with ex-
plicit slack (7). Relative to models of fully strategic forward-looking agents,
this approach trades off richness of equilibrium path predictions for robust-
ness: many learning algorithms satisfy the same mean-based property, so the
audit implications do not hinge on a specific parametric updating rule.

Econometrics for learning and adaptive behavior. FEmpirical work
on learning typically confronts an identification challenge: the researcher
observes actions and outcomes but not the counterfactual payoffs that drive
updates. Structural approaches specify a parametric learning rule (e.g., re-
inforcement learning, belief learning) and estimate it by simulated method
of moments or maximum likelihood (?). A separate line develops revealed-
preference or regret-based methods that can test rationality or bound pref-
erences using only observed play (??). Our approach is closer in spirit to the
latter: we do not attempt to recover each agent’s learning parameters, but
instead exploit an implication of low regret—approximate optimality with re-
spect to the historical payoff environment—to generate moment inequalities
that are directly testable in panel outcome data.

Methodologically, our use of change-point structure connects to econo-
metric work on structural breaks and segmentation in time series and panel
data (7). The novelty is that the breakpoints we target are not exogenous
regime shifts, but endogenous behavioral transitions induced by a determin-
istic incentive path filtered through learning. In large populations, cross-



sectional averaging reduces idiosyncratic noise, making the success-rate series
a convenient sufficient statistic for effort shifts. This observation aligns with
a growing literature on “macro” inference from many similar units (work-
ers, users, sellers) interacting with a common platform policy, where the
econometric object is an aggregate response function to a posted rule (7).

Empirical mechanism design and dynamic incentives. Our audit
problem is also related to empirical mechanism design, which aims to in-
fer or evaluate mechanism performance when agents respond strategically
to design parameters (??7). A key lesson from this literature is that, even
when primitives such as valuations or costs are unobserved, mechanisms
often impose testable restrictions (monotonicity, envelope conditions, in-
centive compatibility inequalities) that can be leveraged for estimation and
counterfactuals. We adopt this logic but in a dynamic environment where
incentive compatibility is behavioral (no-regret/mean-based) rather than
equilibrium-theoretic. The resulting restrictions take the form of breakpoint
and boundary-hitting inequalities: instead of identifying a full type distribu-
tion, we identify (or set-identify) the contract thresholds at which behavior
shifts. This is analogous to identification via kink points in static screening
models, but with the additional structure that the relevant state variable is
a running average of past incentives.

There is also a natural connection to the literature on dynamic pric-
ing and experimentation by platforms, including bandit-style policies and
reinforcement-learning-based decision rules. Much of that work focuses on
how a decision-maker learns demand or treatment effects over time (7). In
contrast, we emphasize the reverse channel: the platform may already know
how incentives map to outcomes, but can nonetheless use time variation in
incentives to exploit worker learning and extract rents. From an auditing
perspective, this distinction matters because it suggests that observed non-
stationarity in incentives is not automatically evidence of experimentation
or optimization under uncertainty; it may reflect deliberate intertemporal
manipulation of a predictable behavioral dynamic.

Platform audits, accountability, and regulatory practice. Finally,
our contribution speaks to an emerging policy and measurement agenda on
algorithmic accountability in labor and marketplace platforms. Regulators
and civil-society auditors often observe the platform’s posted rules (payment
formulas, bonus schemes, deactivation thresholds) and the realized outcomes
(earnings, completion rates, quality metrics), but lack access to internal state
variables, worker effort, or the platform’s objective function. This partial ob-
servability has motivated a growing empirical literature on external auditing
of algorithmic systems, including black-box tests, field audits, and statisti-
cal detection of rule changes (??). Our framework contributes an economic



structure to this toolkit: it identifies a concrete signature of a particular dy-
namic incentive manipulation (a front-loaded contract followed by a collapse)
that can be assessed using only standard administrative traces.

We also see our approach as complementary to transparency mandates
that require disclosure of contract terms but not necessarily the full algo-
rithm. Even when the posted sequence {a;} is observable, its behavioral im-
pact can be opaque if agents learn from long-run averages or other smoothed
signals. By translating a learning-based behavioral model into moment in-
equalities that the observed data must satisfy, we provide a way to separate
“innocent” time variation from time variation that is structurally consistent
with surplus extraction via inertia. At the same time, we acknowledge a lim-
itation that is shared by most audit methodologies: sufficiently sophisticated
platforms can add randomness, personalization, or multidimensional scoring
rules to blur the mapping from posted incentives to effort, weakening the
power of any test based on aggregate outcomes. In this sense, our results
clarify both the promise and the boundaries of empirical accountability: au-
diting leverage is greatest when incentive schemes are simple, scalable, and
therefore constrained in the kinds of dynamic patterns they can generate.

3 Model

We study a repeated principal-agent environment in which the platform
(the principal) chooses a sequence of linear incentive parameters, while a
large population of agents adapt their actions over time using a mean-
based no-regret learning rule. The key empirical feature is that agents’
actions are unobserved, so an auditor must reason from posted contracts
and realized outcomes alone. We keep the primitives deliberately sparse—
binary outcomes, a finite ordered action set, and linear payments—both
because these features match many platform pay schemes (bonuses for com-
pletion/acceptance/quality) and because they yield sharp restrictions once
combined with learning.

Agents, actions, and outcomes. There are N ex ante identical agents
indexed by ¢ € {1,...,N}, and the interaction unfolds over rounds t €
{1,...,T}. In each round, agent ¢ privately chooses a latent action a;; €
{1,...,n}. Action a should be interpreted as a coarse effort or compliance
level: higher actions are more costly but make success more likely. Formally,
each action a has a (time-invariant) cost ¢, and success probability g,, with
strict ordering

O=c1<ca < - <cp, O=q < q < - <(n-



Conditional on a;; = a, an observable binary outcome y;; € {0, 1} is realized
according to
yi+ ~ Bernoulli(g,),

independently across agents and (conditional on actions) across time. The
strict ordering of {q,} is a separation condition: it rules out observational
equivalence across adjacent actions and will allow us to map persistent
changes in observed success rates into changes in latent action mixtures in
large populations.

Contracts and per-round payoffs. Before agents act in round ¢, the
platform posts a linear contract parameter oy € [0, 1] that is common across
agents. The realized wage is paid only upon success:

Wit = Yt

We normalize the platform’s gross benefit from success to r = 1 without loss
of generality, so that a; has the interpretation of “the share of output paid to
the agent upon success.” Given action a;, the per-round monetary payoffs
are

Wﬁ = (1—ou)yis, 7T2A,t = QtlYit — Ca;y-
Taking expectations conditional on action a yields the expected utilities
uP(ar,0) = (1— or)ga,  u'(on,0) = asgq — ca.

Two implications are worth emphasizing. First, the agent’s expected utility
is affine in ay, with slope ¢,; this single-index structure is what makes histor-
ical averaging of incentives central under cumulative-payoff-based learning
rules. Second, the platform’s per-round payoff is increasing in success but
decreasing in oy, so the platform faces a standard tradeoff between inducing
higher g, and paying a larger success-contingent rent.

Timing and information. Each round ¢ proceeds as follows: (i) the plat-
form posts ay; (ii) each active agent i selects a;; (iii) outcomes y; ; are real-
ized; (iv) wages w;+ = ouy;r are paid. We assume the auditor observes the
full contract path {oy}+<7 and the realized panel {(y;:,w;¢)} for the agents
who are active in each round. The auditor does not observe a;;, nor the
primitives {cq, qq}; at most, the auditor maintains that actions are ordered
as above and that success probabilities are distinct. This partial observability
mirrors practical audit settings: posted pay rules and performance metrics
are recorded, but the platform’s effort technology and workers’ disutility are
not.

Because oy is common across agents, the cross-sectional average success
rate is a natural sufficient statistic for the state of behavior at time ¢:

| X
5t = N;yi,t-

9



When N is large, §; concentrates around the population success probability
induced by the (unobserved) action distribution. In this sense, the panel
structure supplies a “many small experiments” environment in which time
variation in oy can be traced through to time variation in aggregate success,
even though individual actions remain latent.

Mean-based learning and the historical-average approximation. The
central behavioral assumption is that agents do not necessarily best respond
myopically to a; each round, but instead adapt using a mean-based no-regret
learning algorithm over the finite action set. We impose this in a way that is
both flexible (many algorithms qualify) and operational (it yields inequalities
with explicit slack). Informally, mean-based learning requires that an action
whose cumulative payoff is far behind the best action is played only with
small probability. One convenient formulation is: there exists a slack pa-
rameter y(7T) = o(1) such that, for each agent i and time ¢, if the cumulative
payoff of action a is more than v(7)T below the maximum cumulative payoff
across actions, then the probability that the learner chooses a at time ¢ is
at most y(7"). This property is weaker than specifying a particular update
rule, yet strong enough to imply that play concentrates on (approximate)
maximizers of average payoffs.

In our setting, expected payoffs have the structure u” (o, a) = agg—cq. A
key implication is that, when the learner compares actions using cumulative
realized payoffs over time, the incentive component effectively aggregates
{as} through its historical average

1 t
O_ét = ;ZOAS.
s=1

Thus, in large T regimes where the realized averages track their expecta-
tions, the mean-based condition implies that the action(s) played with non-
negligible probability at time ¢ must be near best responses to &, rather than
to the instantaneous a;. This is the economic channel that makes dynamic
contracts potentially manipulative: by shaping a; slowly, the platform can
influence behavior even while reducing contemporaneous pay.

A(

Breakpoints and ordering. The strict ordering of {g,} and {c,} implies
that indifference between adjacent actions occurs at a unique contract level

Cq — Ca—1

, a=2,...,n.
qa — da—1

Qq—1,0 =
These “breakpoints” summarize the incentive thresholds at which the agent’s
preferred action changes when evaluated against a scalar incentive index.
Although the auditor does not observe a1, directly, the combination of
(i) ordered and separated success probabilities and (ii) concentration of play

10



under mean-based learning will allow us to infer when the population is
effectively in a regime where one action dominates, and to bound the implied
breakpoint locations using only {a;} and {;}.

Optional extension: churn. Many platform settings feature turnover:
workers enter and exit, and the relevant panel is unbalanced. We therefore
allow for an optional churn process in which each agent exits after each
round with (observed) hazard h € (0,1), independent of current outcomes
conditional on the history. The auditor then observes outcomes only for
the set of active agents in each round, and §; is computed over those active
units. Under independent churn, the main effect is informational: late-
round behavior is observed for fewer agents, increasing noise and reducing
the visibility of slow-moving learning dynamics. Our core restrictions are
robust to this extension, but their statistical power depends on effective
sample sizes that decline with h.

The next step is to translate these primitives into restrictions on observ-
able time paths: under mean-based learning, &; becomes the relevant state
variable, and changes in §; reveal when the population transitions across
incentive regions associated with different actions.

4 Continuous-time restrictions as testable implica-
tions

Our audit strategy rests on a simple but powerful implication of mean-based
learning in environments with linear incentives: when agents compare ac-
tions using cumulative payoffs, the relevant incentive index is not the cur-
rent contract oy, but the historical average a;. This observation converts a
potentially complicated dynamic response into a set of static best-response
restrictions evaluated at a slowly moving state variable. We then exploit
the geometry induced by ordered actions to translate these restrictions into
breakpoint-hitting conditions, which become especially sharp under the “free-
fall” contract path.

From mean-based learning to best responses to a;. Fix a time t.
Under mean-based no-regret learning, any action that is sufficiently far be-
hind the best action in cumulative payoff is played with vanishing probability
(up to the slack parameter (7). Because the agent’s expected payoff under
action a is u?(a, a) = agq, — ¢,, the payoff differences that govern learning
aggregate the incentive terms through > __, o5, and hence through &;. In a
continuous-time proxy (or, equivalently, a large-T regime in which empirical
averages are close to expectations), the mean-based condition is well ap-
proximated by the requirement that the action(s) played with non-negligible

11



probability at time ¢ lie in the best-response correspondence

BR(ay) € arg max {@qa — ¢a}-
acl,...,n
For auditing, we do not need exact maximization; rather, we need inequalities
that tolerate learning slack and finite-sample noise. A convenient reduced-
form statement is: there exists an error level dn 7 such that any action a
that has non-negligible population weight at time ¢t must satisfy the pairwise
inequalities

o_ctqa—caZO_thb—cb—(SMT for all b € {1,...,77,}, (1)

where oy = O(y(T)) + Op(N~'/2). The first term reflects that learning
algorithms may keep occasionally sampling suboptimal actions; the second
term reflects that the auditor sees realized outcomes rather than expecta-
tions, so empirical payoffs and empirical success rates concentrate only at
rate 1/ V/N each period. In what follows, we treat & ~N,7 as an explicit toler-
ance in moment inequalities.

Breakpoint regions and “boundary switching.” The ordered struc-
ture of (cq,q,) implies a one-dimensional threshold characterization. Indif-
ference between adjacent actions a — 1 and a occurs at the unique breakpoint

Cq — Ca—1

, a=2,...,n.
Ga — qa—1

Qg—1,0 =
Because ¢, is strictly increasing, the slopes of aq, — ¢, are strictly ordered,
and hence the argmax over actions changes only by moving between adjacent
actions as « varies. Consequently, in the idealized best-response model,
action a is optimal if and only if ay lies in the interval

ar € [g—1,0> Ya,at1]s (0,2 finite, aypy1 = 00).

Under the approximate condition , these intervals become “fuzzy” by an
amount controlled by dn 7: if the population concentrates on action a at
time ¢, then &; must lie within a dx pr-neighborhood of the corresponding
breakpoint region. Intuitively, the population cannot persistently exert an
action that is sharply dominated at the prevailing historical average incen-
tive, because mean-based learning would drive its probability weight down.

This geometry also yields a sharp prediction about when behavior changes.
Suppose the population transitions from predominantly playing action a to
predominantly playing action ¢ — 1. In the continuous-time proxy, such a
switch can occur only when the relevant state variable @; approaches the
boundary at which the two actions are approximately tied, i.e.,

0 X Qg—1,q at the switching time.

12



We emphasize that this is a restriction about the average contract, not about
the current ;. This is precisely what makes certain dynamic contracts
difficult to justify under benign interpretations: the platform may cut current
incentives while still keeping @y in a region that sustains high effort for some
time.

The free-fall contract and its hyperbolic signature. The free-fall
hypothesis posits a particularly stark dynamic: the platform pays a constant
success bonus ag up to an (unknown) time tg, then pays zero thereafter,

oy = Oéo]_{t S to}.

This path has a distinctive implication for the historical average. For t < ¢,
the average is constant, &y = ag. For t > tp, the average decays determinis-
tically as

1 & ¢
_ 1 _ o
Q= SEI ap = ap - (2)

Thus, after the switch, a; follows a hyperbola: the product @y is constant
and equal to agtg. This hyperbolic decay is the core “signature” of free-fall
manipulation, because it pins down the entire path of the incentive state
variable using only two scalars («p, to).

Combining with boundary switching yields a quantitative prediction
for the timing of action downgrades. Let ¢, denote the (approximate) time at
which the population drops from action a to action a — 1 during the post-tg
phase. The boundary condition implies &y, ~ a4—1,4. Under free-fall, this
becomes

to oot

Qg—1,0 = Q0 <~ tg = .
a Qgq—1,a

Two testable implications follow. First, switch times are inversely propor-
tional to implied breakpoints: higher breakpoints (harder-to-incentivize ac-
tions) must be abandoned sooner as a; decays. Second, across multiple
switches, the products tqo4—1,, must be (approximately) constant:

ta®a—1,0 = olo for all observed a that are crossed post-tg.

In other words, once we infer a sequence of action drops from the outcome
data, free-fall predicts that the associated boundary hits line up on a sin-
gle constant agtg. This is a rigid cross-equation restriction: while many
contracting policies can generate declining performance, few can generate a
coherent hyperbolic pattern in the average incentive that matches multiple
discrete drops in a way consistent with mean-based learning.

13



Observable consequences and the role of approximation. The audi-
tor does not observe actions, costs, or the breakpoints a,_1,4. Nevertheless,
the restrictions above connect observables to latent structure via two chan-
nels. The contract path {a;} is observed, so &; is observed mechanically.
Outcome data identify when the population success rate changes; under sep-
aration of {q,}, persistent shifts in §; correspond (in large N) to shifts in
the dominant action, at least up to a short transition window during which
learners may mix between adjacent actions.

All restrictions are approximate for three reasons that are intrinsic to
the environment. First, mean-based learning permits small-probability ex-
ploration, captured by (7). Second, even if all agents played the same
action, §; is a noisy estimate of its success probability, with noise of order
1/v/N. Third, the mapping from changes in 3; to changes in actions is only
sharp when the success probabilities are sufficiently separated (the minimum
gap A, governs this). Our approach therefore treats free-fall not as an exact
parametric model but as a set of inequalities with slack éy 7, which we will
use to build specification tests and conservative bounds in the next sections.

5 Identification strategy: from outcomes to latent
actions and implied breakpoints

The restrictions in Section [4] are expressed in terms of the latent action path
and the (also latent) primitives {(gq,¢q)}n—;. Our goal in this section is to
explain how, under separation and a large-population approximation, we can
translate observed outcomes and contracts into (i) an estimated segmenta-
tion of time into intervals in which the population predominantly plays a
single action, and (ii) a corresponding set of implied breakpoint constraints
for {ovg—1,4}. Throughout, we emphasize what is point-identified versus what
is only set-identified, since the auditor does not observe costs and does not
directly observe actions.

Step 1: contracts identify the incentive state &; mechanically. Be-
cause the auditor observes the posted sequence {oy}i<7, the historical aver-

age
1 t
at = EZOZS
s=1

is directly observed. This is the key state variable in the mean-based restric-
tions: once we work with &y, no further structural assumptions are required
to summarize how past incentives enter learning dynamics. In particular,
under any candidate model (free-fall or not), the path {a;} is known to the
auditor, and thus any proposed mapping from incentives to actions must be
consistent with &, lying in the appropriate breakpoint region over time.

14



Step 2: outcomes identify a low-dimensional latent regime process
(change-points). Let & = + SN 4+ denote the cross-sectional success
rate. Conditional on the (unobserved) population distribution over actions
at time ¢, §; concentrates around the mixture success probability

n
St = Zpa,tQa) DPait ‘= Pr(ai,t = a)~
a=1

Mean-based learning implies that, away from indifference boundaries, most
mass sits on a best response to &y, so that p,; is near one for a single action
a (and near zero for the rest), up to slack v(T"). Near a boundary o1,
mixing between two adjacent actions may persist for a short window. As a
reduced-form implication, ¢ — s; is approximately piecewise constant, with
jumps when @; crosses a breakpoint region. Therefore, we can treat the
time series {§;} as a noisy observation of a piecewise-constant signal and
estimate change-points 7 < --- < 7x using standard change-point methods
(e.g., penalized least squares, CUSUM, wild binary segmentation), chosen to
control false positives under sampling noise of order N~1/2,

Operationally, for each candidate segmentation we compute segment

means
1 Tk

(jk; ::j Z §t, ]C:].,...,K,
B Th=1

with 79 := 0. Under large N, §i concentrates around the dominant success
probability in that segment, except for boundary windows where it approx-
imates a convex combination of two adjacent ¢’s.

Step 3: separation links segments to an ordered action index (up
to relabeling). The separation condition ¢; < g3 < -+ < ¢, with min-
imum gap A, > 0 turns the segmentation into information about actions.
Intuitively, if two segments have sufficiently different mean success rates,
they cannot correspond to the same underlying action. Moreover, because
linear contracts preserve a one-dimensional ordering of best responses, the
sequence of dominant actions over time must move through adjacent actions
as ay drifts. This yields two practical identification consequences.

First, within each segment k, the auditor can assign an action rank based
on i: higher §i corresponds to higher action index, provided the difference
exceeds a tolerance level reflecting sampling error and learning slack. Second,
across time, the path of inferred ranks must evolve locally (switching by
at most one rank at a time), because best responses change only through
adjacent actions under the ordered (qq,c,) structure. These two features
help distinguish genuine action switches from spurious jumps in §; due to
noise, and they discipline the segmentation choice when multiple change-
point configurations fit the data similarly well.
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We stress a limitation: without observing {q,}, the auditor typically
cannot name the action a in an absolute sense (e.g., whether a given segment
corresponds to a = 3 or a = 4 in the platform’s internal taxonomy). What is
identified from outcomes alone is an ordered set of latent regimes and their
associated success probabilities, up to a monotone relabeling consistent with
separation.

Step 4: mapping segments to breakpoint constraints using a;.
Once we have an estimated segmentation, mean-based optimality converts
each segment into restrictions on a;. Suppose segment k is mapped to a
dominant action aj (again, an ordered label). Then the breakpoint-region
characterization implies that for all ¢ in that segment,

O_ét S [aak—l,(lk7 aak:ak+1]

up to a tolerance d 7. Since & is observed, each segment yields an interval
feasibility condition on the unknown breakpoints: the realized @; values in
the segment must fit inside the corresponding breakpoint region. A conve-
nient way to express this is via the segment extrema

Qp = min oy, Q= max ay,
tE(Tk_l,Tk] tE(Tk_l,Tk]

which are known. The mean-based restriction then implies (approximately)

aak—l,(lk S ak‘) aak,ak—l-l Z o,

where <, 2 absorb dy . Thus, even though a,—1, depends on unobserved
costs and success probabilities, the data bound each breakpoint above and
below whenever the corresponding action is sustained over a nontrivial time
interval. The boundaries are sharpest when &, drifts substantially within a
segment: then [ay, @] is wide, leaving little room for a breakpoint region

that could rationalize the segment.

What is point-identified, and what remains set-identified? From
the auditor’s perspective, {ay;} is point-identified by construction, and the
change-points {73} and segment means {Gy} are consistently estimable as
N — oo under standard conditions for piecewise-constant signals. Beyond
that, identification is partial.

On the outcome side, the distinct success probabilities {g,} are at best
set-identified unless the data traverse enough regimes to pin down each ¢,
directly (and even then, boundary mixing can blur exact equality). What
we can recover robustly is an ordered list of distinct regime means appear-
ing in the sample, together with confidence bands whose width scales as
O p(N -1/ 2).

16



On the incentive side, the breakpoints {a,—1,} are also generally set-
identified. Each observed segment provides inequalities that bound adja-
cent breakpoints, but without observing costs we cannot invert ag_1, =
(ca — ca—1)/(qa — ga—1) to recover {c,}, nor can we determine breakpoints
corresponding to actions never played. Point identification of a given break-
point requires that the data include a sufficiently sharp switch where a4
crosses the boundary and the mixing window is negligible relative to dn 7;
otherwise, the switch only pins the breakpoint to an interval whose width
reflects learning slack, sampling noise, and the speed of drift in a;.

These identification statements are exactly what we need for auditing:
the subsequent specification tests will not rely on point estimates of {qq, ¢4}
Instead, they exploit the fact that any mean-based explanation must satisfy
the breakpoint-region inequalities for a; and, under free-fall, must addition-
ally satisfy the hyperbolic timing structure linking multiple switches.

6 Specification tests: mean-based compatibility and
free-fall structure

Having translated the data into an estimated regime process (change-points
and segment means) and a collection of breakpoint-region constraints in-
dexed by those regimes, we now describe two related specification tests.
The first asks whether the joint path {ay, $}i<7 is compatible with some
mean-based principal-agent model with ordered actions (allowing an arbi-
trary contract sequence). The second is sharper: it asks whether the same
data are compatible with the one-switch free-fall manipulation pattern (an
initial constant contract followed by zero), which imposes additional cross-
segment restrictions on the timing of action drops.

6.1. A moment-inequality test for mean-based compatibility. The
mean-based restrictions are inherently inequality-based because (i) learners
may mix or explore with probability at most (7", and (ii) the auditor
infers actions only through noisy outcome averages. Accordingly, our null is a
feasibility statement: there exist latent primitives and a latent action labeling
under which the observed data satisfy the breakpoint-region implications up
to slack.

Fix a candidate segmentation 71 < --- < 7z and the induced set of
segments k = 1,... ,K . For each segment define o, and @j as the within-
segment extrema of &; (computed mechanically from {a;}). Let i be the
segment mean of §;. Separation implies that the segments can be assigned
an ordered action rank; we operationalize this by requiring that there exist
values 1 < -+ < @m (where m < n is the number of distinct success rates
visited in the sample) such that each §i lies near one of these values, with
tolerance by of order N~1/2. We then impose the mean-based best-response
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inequalities in a way that does not require observing costs: for each segment
k, there must exist adjacent breakpoints aj_1; < o 41 for the associated
rank j such that

aj-1j < Qp+ONT, Qjjt1 = o —ONT, (3)

where 0 7 absorbs both learning slack O(v(T')) and outcome noise Op(N~1/2).
Intuitively, says that the realized a; values in a segment must fit inside
some breakpoint region consistent with an approximately optimal action.

This yields a finite collection of inequalities of the generic form gy(0) < 0,
where 6 collects nuisance objects (the segment-level {g;}, the breakpoints
{oj—1;}, and the segment-to-rank assignment). The mean-based compati-
bility null can therefore be written as

HMB: 30c0Ost. m?ng(G) <0.

We reject H(l)v[B when the inequalities are jointly infeasible beyond the allowed
slack. In practice, we implement this as a minimization of the worst violation,

VmB = élelé m?X[ge(Q)]Jra []4 := max{z,0},

and compare VA to a critical value that accounts for sampling variation
in {gx} and in the estimated change-points. Two remarks are important for
auditing. First, VAIB is conservative with respect to unknown costs because
costs enter only through the breakpoints, which we treat as free (subject to
ordering) within ©. Second, failure to reject H(I)\/IB should be read narrowly:
it means the data can be rationalized by some ordered-action, mean-based
model, not that any particular platform behavior is validated.

6.2. A sharper test for one-switch free-fall. Mean-based compatibil-
ity alone does not distinguish benign contracting from free-fall manipulation.
The free-fall hypothesis adds a rigid structure: after an (unknown) time ¢y,
the posted contract is zero and thus &; = agtp/t declines hyperbolically.
Combined with the breakpoint-hitting logic, this implies that when the pop-
ulation drops from one action to the next, the historical average at the
change-point must approximately equal the corresponding breakpoint, and
hence the products “time x historical average” must line up across multiple
drops.

Let 71 < -+ < 7 denote estimated change-points in 8¢, and focus on
those 71 at which the inferred regime mean decreases (interpreted as an
action drop). For each such k, define the statistic

2k = TR Oy
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Under the free-fall path, if 7, > tg and 7% corresponds to a boundary crossing,
then as, ~ a1, and simultaneously &, = aoto/ 7y, so

ZA:]c ~ Ozoto, (4)

up to the same tolerance dn 7 plus change-point localization error. Con-
dition is attractive because it avoids explicit estimation of a,—14: the
breakpoints drop out, leaving a common constant across drops.

We therefore define a free-fall discrepancy

Vrrp := min max ‘ék—d,
cel0,T] keD

where D indexes the set of detected decreases in regime means. Small VFF
indicates that the observed action drops occur at times consistent with a
single hyperbolic regime governed by a common aptg. To incorporate the
defining one-switch feature, we additionally require that there exists a tg
such that «; is approximately constant for ¢ < tg and approximately zero
for t > ¢ (allowing a tolerance band to accommodate discretization or small
implementation noise). This second check uses the observed {a;} directly;
the role of Vip is to ensure that, even if {a;} is only approximately free-
fall, the outcome-implied switch times are consistent with the implied a;
geometry.

6.3. Size, power, and what drives detectability. Under benign regimes
such as static contracting, &; is approximately constant and hence Z; grows
linearly with 75 rather than remaining constant; thus multiple action drops
generically violate . This is the core source of power in the free-fall test:
it leverages cross-drop restrictions rather than within-segment fit. Power in-
creases with NV (sharper §; and more accurate change-point detection) and
with A, (cleaner separation of regimes). Conversely, larger learning slack
~v(T') weakens the mapping from @&; to a single dominant action, inflating
On,r and making both tests more permissive.

For size control, we treat both tests as moment-inequality problems with
nuisance parameters and rely on calibration that is robust to the weak de-
pendence induced by learning. A practical approach is to (i) fix the esti-
mated segmentation procedure, (ii) compute self-normalized standard errors
for segment means using the cross-section (variance g (1—gx)/NN within each
t, aggregated over ¢ in the segment), and (iii) use a block bootstrap over time
for the statistics built from {7} and {&;}, which captures the additional ran-
domness from change-point localization. We then select critical values in the
style of generalized moment selection (e.g., focusing on inequalities close to
binding) to avoid excessive conservatism when many constraints are slack.

Finally, finite-sample implementation requires choosing the tolerance dn 7.
We recommend an explicit decomposition oy, = dn + 07, where dy is set
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from binomial concentration (e.g., a normal or Hoeffding bound scaled by
N~12 and the segment length) and d7 is set to a user-chosen upper bound
on (7)) reflecting the assumed learning algorithm class. This makes the au-
diting posture transparent: tighter assumptions about learner slack translate
mechanically into a more demanding specification test.

7 Estimating manipulation magnitude: breakpoints
and surplus transfer

The specification tests in Section [0] are deliberately formulated as feasibility
checks. When the data are compatible with mean-based learning and, in
particular, when we do not reject one-switch free-fall, the natural next ques-
tion for an auditor is quantitative: how large is the implied manipulation?
In our setting this is not a structural exercise in recovering costs; rather,
we use the model-implied geometry to (i) reconstruct an implied breakpoint
sequence (hence an incentive—outcome response map) and (ii) compute a
conservative lower bound on the platform’s incremental payoff relative to
the best static linear contract. We also describe uncertainty quantification
that is transparent about what is and is not identified from {aw, it}

7.1. From change-points to an implied breakpoint sequence. Un-
der separated success probabilities, a decrease in the segment mean of §; is
naturally interpreted as a downward move in the dominant action. Under
mean-based learning, such a move should occur when the historical average
&y crosses the relevant indifference boundary. Accordingly, if 7% is an esti-
mated time at which the regime mean decreases, we associate the implied
breakpoint hit with the observable quantity o, .

To make this operational, let D C {1,... K } index the detected de-
creases in regime means. For each k € D, define

~

b = az,, Zp 1= T Qg
Under an approximately free-fall path and approximate best-response play,
we expect by to be close to a true breakpoint oq—1,4, and Z; to be close to the
constant agtg whenever 7, > ty. In practice, multiple decreases can occur
after tp, so we summarize {Zx}recp by a robust location estimate,

¢ € arg min max|Z; — ¢

gce[O,T} k€D 12 =,

which matches the free-fall discrepancy already used for testing. Conditional
on not rejecting free-fall, ¢ provides a one-dimensional summary of the speed
of the hyperbolic decline &; ~ ¢/t in the post-switch period.

We then assemble an ordered implied breakpoint sequence by sorting
{bk}rep from largest to smallest. When the data exhibit clear step-downs
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in 3¢, these sorted values correspond to successive a,—1,4’s visited along the
trajectory. When some action levels are skipped (e.g., agents jump from a to
a — 2 due to coarse time resolution or imperfect change-point localization),
the sorted IA)k’s should be interpreted as a subsequence of the full breakpoint
ladder. This partial identification is still sufficient for our payoff bound
below, because the static benchmark depends only on wisited actions and
their implied minimum incentives.

7.2. Reconstructing the static benchmark without costs. A key
advantage of linear contracts with ordered actions is that the principal’s
expected payoff at action a is
u(a,a) = (1 — @)qa,

and if a given « induces action a, then any larger « in the same best-response
region leaves ¢, unchanged while reducing (1 — «). Hence, among contracts
that induce action a, the best static contract is (approximately) the small-
est a that still induces a, namely the breakpoint a,—1,. This implies the
benchmark

Us}t)atic =T Iggi( (1 - aafl,a)qav (050’1 = 0)’ (5)
where the maximization is over the set of actions that are feasible in the
model (and, empirically, plausibly visited).

Equation is useful for auditing because it eliminates costs entirely: all
cost information is subsumed by the breakpoints, which are in turn tied to
observable a; at action drops. Concretely, for each visited post-switch drop
k € D we treat Z)k = @3, as an estimate of some a,_1,, and we treat the
corresponding segment mean gy (or the pre/post segment means around 7)
as estimates of the relevant g-levels. This yields an empirical envelope over
candidate action levels:

~p R
Ustatic =T Hlé);\( (1 - O‘j‘()q]T‘a
S

where j indexes distinct outcome levels inferred from the segmentation, ézj
is the inferred “minimum incentive” for level j (constructed from the relevant
l;k’s, with monotonicity enforced by isotonic regression if needed), and qA]T is
the inferred success probability at that level.

The dynamic payoff is directly observed from outcomes and posted con-

tracts:
T

N

7 . L1

U£zn = Z(l — )3, St = N Zyz’,n
t=1 i=1
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which is a per-agent payoff; multiplying by N gives the platform aggregate.
We then report the implied incremental gain

AP ._ 7P i P
AT = Udyn - Ustatic' (6)
To maintain a conservative auditing posture, we interpret Uslgatic as an upper

bound on what a well-chosen static contract could have achieved, so A" is a
lower bound on the incremental payoff attributable to the dynamic pattern,
subject to the maintained mean-based model.

7.3. Uncertainty quantification and conservative bands. Two sources
of uncertainty matter: (i) sampling noise in §; (and hence in segment means
), and (ii) error in locating change-points 73, which propagates into by, =
@3, and Z,. Both are compounded by learning slack v(T), which we treat
as an explicit tolerance component rather than something to be “estimated
away.”

For outcome noise, within a segment k of length L, a convenient ap-

. k(1 — qr)
qdk NN(ka NLk > )

which yields Wald-type intervals; for a more conservative bound, we can use
a Hoeffding inequality uniformly over ¢t and aggregate within segments. For
breakpoint uncertainty, we recommend a block bootstrap over time applied
to the sequence {5;}1<7 (keeping {oy} fixed), re-running the segmentation

proximation is

and recomputing {7}, {bx}, and AT in cach bootstrap draw. This captures
both change-point localization variability and weak time dependence induced
by learning.

To produce a conservative lower confidence bound for AP, we exploit
monotonicity: (1 — «)q is increasing in ¢ and decreasing in «. Thus an
upper bound on the static benchmark uses an upper confidence band for ¢

and a lower confidence band for the inducing breakpoint. Let [QJL ,cj]U] and

[OQJL, d?] denote confidence intervals widened by the slack dn 7 used in the

specification stage. Define
T
BU AL\ &U L oL
Ustatic =T max (1 — Oy )Qj > Udyn = Z(l - at)st )
ieJ t=1
with §/ a pointwise lower confidence bound for s;. Then

ANP,L ._ 7P L 5P, U
A T Udyn - Ustatic

is a conservative lower bound on incremental payoff that is explicit about
sampling error and about the assumed learning slack. When A% is econom-
ically material (e.g., large relative to baseline margins or policy thresholds),
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the auditor can report not only that the free-fall pattern is statistically com-
patible, but also that it plausibly generated nontrivial surplus reallocation.

These estimation steps are straightforward to stress-test in controlled en-
vironments. We therefore turn next to simulations that generate synthetic
data from mean-based learners under free-fall and explore robustness to ex-
ploration, noise, heterogeneity, and partial observability.

8 Simulation study: recovering free-fall signatures
in synthetic data

Our theoretical restrictions are deliberately austere: the auditor sees posted
contracts and realized outcomes, while actions and costs remain latent.
A simulation study is therefore useful for two reasons. First, it verifies
that the specification tests in Section [6] behave as advertised in finite sam-
ples (size control under benign contracting, power under free-fall-compatible
manipulation). Second, it clarifies how the economic primitives that are
unobserved in practice—exploration in learning, heterogeneity, and partial
observability—map into the tolerances dy 7 and into the precision of the
implied breakpoints and surplus-transfer bounds in Section [7}

8.1. Data-generating process (DGP). We generate synthetic panels
{(c, yit) }i<ni<r from the model primitives. Fix an action set {1,...,n}
with strictly increasing success probabilities 0 = ¢; < q2 < --- < ¢, < 1 and
strictly increasing costs 0 = ¢; < ¢ < --+ < ¢,. The principal posts either
(i) the free-fall sequence oy = apl{t < to} or (ii) a null sequence meant
to mimic “benign” contracting (static a; = a*, piecewise-constant incentives
without a hyperbolic-average regime, or smoothly varying incentives with
no mass at oy = 0). Agents are i.i.d. and, conditional on action choice a;,
outcomes satisfy

: A
yi,+ ~ Bernoulli(qq, , ), Wit = Yit, i1 = Wit — Ca;,-
The auditor constructs §; = % ZZ]\LI yitr and oy = %22:1 o exactly as in

the empirical procedure.

8.2. Mean-based learners: an implementable proxy. To operational-
ize mean-based no-regret, we use a learning rule that makes action proba-
bilities a monotone function of empirical average payoffs, with an explicit
exploration component. One convenient choice is a multiplicative-weights
(Hedge) update with forced exploration: each agent maintains scores S; ;(a)
for actions a € {1,...,n}, updates the chosen action using realized payoff
ﬂft, and samples at time ¢ + 1 from

pi,t+1(a) o8 exp(n Si,t(a))7 Pigt+1 < (1- €t)pz‘,t+1 +ée¢- Unif({la e 771})
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Here n > 0is a learning rate and €; governs exploration. In large T, the forced
exploration implies a bound of the form (7)) < max;e; on the probability
assigned to actions that are far behind in average payoff; by varying e; we
directly stress-test the role of v(T') in our moment inequalities. Because
agents observe their own outcomes and payments, the update uses realized
utilities, but the auditor does not need to observe any of these internal
objects.

8.3. What we measure. Each Monte Carlo replication produces (i) es-
timated change-points {7x} from the time series {§;} using the same seg-
mentation routine employed in the audit, (ii) the implied breakpoint hits
l;k = ay, and the free-fall invariants 2, = 7,0z, for detected decreases, and
(iii) the test outcomes for the free-fall specification checks. We report:

1. Size: under null contract paths, the empirical rejection probability at
nominal level 7.

2. Power: under free-fall, rejection probability as a function of N, T, A,
and exploration.

3. Localization error: |7, — 71| and its impact on by — qg—1,4|-

4. Magnitude recovery: bias and dispersion of AP and of the conservative
lower bound A% from Section ﬁ

These objects align with the auditor’s questions: (a) do we falsely flag be-
nign contracting, (b) do we detect manipulation when present, and (c) if
compatible, can we quantify a nontrivial payoff gap.

8.4. Baseline calibration and expected patterns. In a baseline de-
sign we choose moderate n (e.g., n € {3,5}), separated g-levels (e.g., evenly
spaced so A, is nontrivial), and costs chosen so that multiple breakpoints
ag—1,4 € (0,1) exist. We set (ap,to) so that a; crosses at least two break-
points post-switch. The qualitative predictions are immediate: holding all
else fixed, larger N tightens concentration of §; around its mean at rate
1/v/N, improving both change-point detection and the mapping from s,
to breakpoints; larger T' increases the number of boundary crossings and
sharpens the hyperbolic pattern in a;; smaller 7(7") makes mixing negligible
so the population more cleanly concentrates on adjacent actions.

8.5. Robustness dimensions. We extend the baseline along four di-
mensions that correspond to the main practical objections an auditor might
raise.

Ezploration and slow learning. We increase €; (constant or slowly decay-
ing) to generate persistent mixing across actions. This tests the necessity
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of allowing slack Sy = O(y(T)) + Op(1/V/N): as ~(T) rises, apparent
change-points blur, adjacent segments become harder to distinguish when
A, is modest, and the free-fall equalities in Z; become noisier. The test
should maintain size if the slack is widened accordingly, but power falls me-
chanically.

Outcome moise and common shocks. Beyond Bernoulli variance, we add
time shocks & that shift all success probabilities multiplicatively (e.g., gq(t) =
logit ™! (logit(qq) + &)) to capture demand or environment volatility. This
probes whether segmentation mistakes are driven by true action shifts or
by exogenous shocks. A practical lesson we expect to emerge is that audi-
tors should either control for observable covariates correlated with &, or use
conservative penalties in change-point detection to avoid over-interpreting
transient fluctuations as effort drops.

Heterogeneity. We allow agent types m with type-specific costs c((lm) (and
optionally type-specific q,(lm)), drawing types i.i.d. at entry. This generates
simultaneous mixing across best responses even when each type is internally
concentrated. In such environments, $; reflects a mixture of actions across
types, so the “step-down” pattern may be attenuated; however, under ordered
actions and common &;, the aggregate success rate remains monotone in &,
so the free-fall invariants can still be informative, albeit with fewer sharp
change-points. We also incorporate churn by letting each agent exit with
hazard h, replacing them with new entrants whose learning restarts; this
truncates late-stage evidence and is predicted to reduce power primarily for
later breakpoint hits.

Partial observability and aggregation. Finally, we coarsen the auditor’s
data to settings common in practice: (i) only aggregate success counts per
period are available (no individual panel), (ii) outcomes are observed at
weekly rather than daily frequency, and (iii) contracts are observed with
rounding or delay. These variants primarily affect the precision of §; and
the localization of 7. The implication is not that the audit fails, but that
conservative tolerances and coarser segmentation (fewer allowable change-
points) become necessary to preserve size.

8.6. Outputs and interpretation. We present results as heatmaps of
rejection probabilities and as event-study plots of §; against &;, emphasizing
the geometry that motivates the test: under free-fall, decreases in §; align
with nearly constant 2, = 70z, , whereas under static or smoothly varying
contracts they do not. For magnitude, we compare AP and APL to the true
simulated payoff difference relative to the best static linear contract. The
central practical message is that compatibility tests and conservative bounds
can be simultaneously informative when N is large enough to stabilize §; and
when learning is not so exploratory that v(7") dominates sampling noise.
The next step is to translate these procedures into an implementable
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empirical plan: what data an auditor would need, which proxies suffice when
full panels are unavailable, and how to operationalize the workflow as a
reproducible audit protocol.

9 Empirical application plan: data requirements
and an implementable audit protocol

Our theory is intentionally designed for environments in which the auditor
does not observe effort, costs, or the platform’s internal optimization. The
empirical objective is therefore modest but operational: using only posted
incentives and realized outcomes, we ask whether the joint time series is
compatible with (approximately) free-fall dynamic contracting under mean-
based learning, and, if compatible, we bound the implied incremental surplus
captured by the principal relative to the best static linear benchmark.

9.1. Minimal data and preferred data. At the minimum, the auditor
needs a time series of (i) the posted linear incentive ay € [0,1] (or a ver-
ifiable proxy for the marginal bonus per success), and (ii) realized binary
outcomes y; ; or their period aggregates. When individual panels are avail-
able, we prefer the full panel {y;;, w;+}i<n <7 along with a definition of
the active set each period (entry/exit timestamps). When only aggregates
are available, it suffices to observe success counts Y; = vaztl Yi+ and de-
nominators N; (exposure), so that §; = Y;/N; is well-defined. In practice
a¢ may be multi-dimensional; our recommended mapping is to construct
the effective marginal incentive for the audited action-outcome pair (e.g.,
bonus-per-delivery, bonus-per-accepted-job), and to explicitly document any
transformations from the raw contract.

9.2. Plausible proxies when contracts are proprietary. If the plat-
form does not disclose a; directly, we can often recover it from observed
payments and outcomes because w;; = ay;+ implies oy = E[w;y | yip = 1]
under correct measurement of the relevant success event. Operationally, we
estimate &y as the average bonus paid conditional on success, using all suc-
cessful transactions in period ¢. This requires transaction-level payments (or
at least mean bonus among successes). If only total payments are observed,
the auditor can bound oy using EZ wip < oy EZ yi ¢+ plus institutional con-
straints (e.g., published maximum bonus). We emphasize that measurement
error in oy enters our restrictions directly through &;, so the audit should
report sensitivity to plausible rounding and reporting lags.
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9.3. Pre-processing: constructing $; and a;. Given oy (or &) and
outcomes, we form

1 N 1 t
St = M;yi,h O_ét - t;asa

with N; the number of active agents (or exposures) at t. If exposures vary
materially over time, we recommend two parallel series: the unweighted
§; above, and an exposure-weighted variant over a coarser window (e.g.,
weekly), which stabilizes variance when N; is small in some periods. The
auditor should also pre-register an exclusion rule for periods with abnormal
measurement (platform outages, missing outcome logs) to avoid spurious
change-points.

9.4. Step 1: detecting outcome regimes and candidate effort drops.
The empirical analog of latent action switching is a change-point structure
in 8;. We implement segmentation on {5;} to obtain 7y < --- < 74. Any
standard method with a transparent penalty for over-fitting is acceptable (bi-
nary segmentation with information criteria, fused lasso, or likelihood-based
multiple change-point estimation), provided the auditor reports robustness
to the penalty choice. We then classify candidate drops as indices k such
that 87,41 —357, < 0 (after smoothing within segments). Intuitively, these are
the moments at which the population appears to switch to a lower-success
action.

9.5. Step 2: free-fall invariants and moment-inequality checks.
Under free-fall, a; follows a hyperbola after the switch, so breakpoint hits
imply near-constancy of the products z = 7,0, across successive drops.
Accordingly, for each detected drop at 7 we compute

bk:df—k, ik:f'k@;—k.

A simple specification diagnostic is whether Z; is approximately constant
over multiple drops, up to tolerances that reflect sampling noise and learning
slack. The formal procedure uses the moment inequalities implied by best
responses to a@;: within each estimated segment, &; should lie in an interval
consistent with a single action (or two adjacent actions) that rationalizes
the segment mean §;. Because the auditor does not know {q,}, we treat
them as nuisance parameters constrained only by ordering and separation;
inference is therefore set-identified. Practically, we recommend reporting two
versions of the test: (i) a conservative version that assumes only a minimal
separation A, and allows larger slack dy 7, and (ii) an informative version
that calibrates dn, 7 using placebo periods and the estimated variance of 3;.
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9.6. Step 3: estimating (¢9, ap) and reconstructing breakpoints. If
the invariants support a free-fall interpretation, we estimate the switch time
to by searching over candidate ¢ for which a; becomes (approximately) zero
and oy begins a 1/t decline. When «; is noisy, we instead estimate to as the
point that best linearizes t — tay after ¢5. Given to, we estimate &g as the
mean of ay over t < tg. We then map each drop time 7, > ty to an implied
breakpoint estimate o = @;,. Under the model, &y should correspond to
some og—1,q; We do not require labeling the action index a to conduct the core
manipulation test, but labeling becomes useful for magnitude calculations.

9.7. Step 4: magnitude and conservative surplus-transfer bounds.
To quantify economic significance, we compute the principal’s realized payoff

using observables:
T

Uln = > _(1— ) 4,
t=1
interpreting §; as the per-agent success rate (or using Y; directly in totals).
To form the best static benchmark, we estimate an empirical response curve
G(a)) by associating each segment with its mean success rate and its corre-
sponding a; range, yielding a piecewise-constant (or monotone-smoothed)
mapping. The auditor then computes

T
Ustath: ma Z 1—0& Cj

static- A conservative lower bound AP.L is ob-
tained by minimizing over all response curves consistent with the moment
inequalities (ordering and separation), which we implement by solving a
finite-dimensional program over segment-level success rates.

and reports AP = [A]C{;n ur

9.8. Reporting, robustness, and limitations. We recommend that an
audit report include: (i) plots of §; and &; with estimated change-points; (ii)
the sequence {2} with confidence bands obtained by block bootstrap over ¢;
(iii) rejection decisions for both conservative and informative specifications;
and (iv) AP and APL with sensitivity to Ay, to alternative segmentation
penalties, and to controls for observable shocks (seasonality, policy changes).
The core limitation is interpretability under rich nonstationarities: if exoge-
nous shocks shift success probabilities directly, change-points in §; may not
correspond to effort changes. Our protocol therefore treats covariate ad-
justment and conservative segmentation as first-order safeguards. Within
these constraints, the procedure yields a reproducible workflow that can be
executed with either full microdata or aggregates, producing a transparent
compatibility assessment and an economically interpretable bound on the
potential gains from dynamic manipulation.
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10 Discussion and extensions

Our framework isolates a narrow but practically salient channel: with linear
pay-for-success incentives and mean-based learning, a platform can induce
predictable “effort regimes” that are detectable in aggregate outcome data,
even when effort and costs are unobserved. In this section we discuss how far
these ideas can be pushed in richer environments that auditors actually face,
and what kinds of regulatory questions our restrictions can (and cannot)
help answer.

Multi-KPI and multi-dimensional contracts. Many platforms do not
pay on a single binary outcome but on a vector of key performance indi-
cators (KPIs): acceptance rates, completion rates, ratings, timeliness, and
occasionally penalties (e.g., cancellations). A direct generalization is to treat
the agent as choosing an action (or effort allocation) that induces a vec-
tor of success probabilities g, € [0,1]™, and the platform as posting a lin-
ear contract with weights oy € [0,1]™, so that per-round utility becomes
uA(at, a) = oy - qq — ¢q. Under the same “best response to historical aver-
ages” logic, the relevant sufficient statistic is the historical average weight
vector &, and action switches occur when & crosses a supporting hyper-
plane between two actions. Relative to the scalar case, the geometry is more
complex: indifference “breakpoints” become facets of a polyhedral complex,
and the auditor should not expect a single hyperbolic invariant like t&; to
summarize the dynamics.

That said, much of the operational content survives if the auditor can
reduce the multidimensional contract to a one-dimensional effective incen-
tive for the KPI that is being audited. A sufficient condition is that (i) the
platform varies primarily the weight on one KPI while holding the others
fixed (or changes them only slowly), and (ii) the action ordering is essen-
tially one-dimensional in the sense that higher actions shift the audited KPI
monotonically and dominate lower actions for sufficiently large marginal in-
centives on that KPI. In that case, our scalar restrictions can be applied
to the implied time series aff for the audited KPI, interpreted as a projec-
tion of a;. A complementary robustness check is to repeat the procedure
KPI-by-KPI: free-fall manipulation targeted to a headline metric should gen-
erate stronger breakpoint-hitting structure for that metric than for auxiliary
metrics. Conversely, if effort substitution is central (e.g., raising comple-
tion reduces ratings), change-points may appear in multiple KPI series with
opposite signs, which itself can be informative for policy.

Nonlinearities, thresholds, and piece rates. Our maintained linearity
assumption is not innocuous: many real contracts include thresholds, caps,
streak bonuses, and tournaments. Two comments temper this limitation.
First, an auditor can often locally linearize incentives around the realized
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outcome path: if payments are piecewise-linear in the audited KPI, then
ay¢ can be interpreted as a marginal bonus over the region in which most
observations fall. Second, the economic mechanism we exploit is not linearity
per se but the presence of a low-dimensional statistic of past incentives that
learners respond to (here &;). Mean-based learning with recency weighting
or reference dependence would replace a; with another moving average; the
empirical signature would then be a different, estimable transformation (e.g.,
exponential decay rather than 1/¢). A useful extension is therefore to treat
the “memory kernel” as a nuisance object and test whether §; change-points
align with any plausible discounted-average path generated by an abrupt
downshift in incentives.

Stochastic stopping, churn, and unbalanced panels. Churn is central
in many labor platforms and can be endogenous to incentives. We already
allow for a per-period hazard h, but two distinct issues arise. The first is
statistical: late-stage behavior under free-fall is observed on a selected sample
of survivors, shrinking effective V; and increasing the variance of §;. This
does not invalidate our moment-inequality logic, but it does widen the slack
Onr and reduces power, especially for later breakpoint hits. Practically,
auditors should (i) report Ny alongside $;, (ii) weight change-point detection
by precision (e.g., approximate inverse-variance weights), and (iii) treat weak
late-stage evidence as suggestive rather than dispositive.

The second issue is economic: if exit depends on a; or on realized pay-
offs, the population composition may change even if each individual follows
mean-based learning. Then a drop in §; can reflect selection rather than
effort reduction. One way forward is to model a joint learning—participation
decision in which agents compare continuation value to an outside option.
This produces an additional testable implication: under free-fall, exit haz-
ards should rise around the same times that a; crosses indifference regions.
Empirically, auditors can therefore run a “stacked” audit that checks whether
breaks in §; coincide with breaks in exit rates. A mismatch—large outcome
change without a corresponding participation response, or vice versa—helps
discriminate effort switching from compositional shifts.

Multi-agent interactions and endogenous success probabilities. In
many applications, an agent’s success probability is not time-invariant condi-
tional on action because it depends on market thickness, congestion, match-
ing algorithms, or peer behavior. Formally, g, may become g,(z;) for an
aggregate state x; that evolves endogenously with the population’s actions.
This creates two challenges. First, segmentation of §; may detect change-
points driven by demand shocks rather than effort. Second, even under
free-fall incentives, the mapping from &; to outcomes may no longer be
piecewise-constant if x; drifts.
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We see two tractable extensions. The first is a “slowly varying state” ap-
proximation: if x; moves slowly relative to learning-induced switching, then
breakpoint-hitting remains sharp while segment means drift within segments.
Auditors can adapt by allowing within-segment trends and focusing the test
on the timing of discrete drops rather than on level constancy. The second
is to exploit quasi-experimental variation in x;: when covariates capturing
demand or congestion are observed, auditors can residualize outcomes and
apply our protocol to the residual series. Importantly, our approach is con-
servative in the sense that it only delivers necessary conditions for free-fall
compatibility; failure of the test is informative even in richer environments,
while passing the test should be interpreted as “compatible with” rather than
“proof of.”

Regulatory and governance implications. From a policy perspective,
our main contribution is to convert a qualitative concern—that platforms
may temporarily use generous incentives to build habits and then reduce
pay—into quantitative, falsifiable restrictions using only observables. This
suggests three practical uses. First, regulators (or internal compliance teams)
can deploy our audit protocol as a screening tool for markets in which in-
centive opacity is suspected, focusing investigative resources where multiple
breakpoint hits line up with the free-fall invariants. Second, when con-
cerns are substantiated, our surplus-transfer lower bounds provide a prin-
cipled starting point for remedies (e.g., restitution or mandated disclosure),
while explicitly accounting for partial identification and statistical uncer-
tainty. Third, our results support targeted transparency mandates: requir-
ing platforms to log and disclose marginal incentive schedules at a suitable
granularity materially increases auditability because measurement error in
oy directly weakens the restrictions.

At the same time, we emphasize limitations that matter for enforcement.
Our test is not a welfare test: free-fall compatibility does not imply con-
sumer harm, anticompetitive conduct, or illegality; it indicates a particular
dynamic incentive pattern consistent with surplus shifting from agents to the
principal. Moreover, platforms may have benign reasons to change incentives
(learning about demand, onboarding subsidies, seasonal policies). For this
reason, an evidence-based regulatory approach should treat our compatibil-
ity assessment as one input into a broader factual record, ideally combined
with contemporaneous product changes, demand measures, and stated policy
rationales. The methodological goal is modest but useful: to make dynamic
contracting claims auditable, reproducible, and quantitatively disciplined in
settings where effort is inherently latent.
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